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FAST ACCURATE COMPUTATION OF THE FULLY NONLINEAR

SOLITARY SURFACE GRAVITY WAVES

DIDIER CLAMOND∗ AND DENYS DUTYKH

Abstract. In this short note, we present an easy to implement and fast algorithm for the

computation of the steady solitary gravity wave solution of the free surface Euler equations in

irrotational motion. First, the problem is reformulated in a fixed domain using the conformal

mapping technique. Second, the problem is reduced to a single equation for the free surface.

Third, this equation is solved using Petviashvili’s iterations together with pseudo-spectral

discretisation. This method has a super-linear complexity, since the most demanding opera-

tions can be performed using a FFT algorithm. Moreover, when this algorithm is combined

with the multi-precision arithmetics, the results can be obtained to any arbitrary accuracy.

1. Introduction

Solitary waves play a central role in nonlinear sciences. They appear in various fields
ranging from plasmas physics to hydrodynamics and nonlinear optics [8, 16]. In some special
cases, solitary wave solutions can be found analytically. For example, explicit expressions are

known for integrable models such as KdV and NLS equations, but also for some non-integrable
equations such as [13]. However, no closed form solutions are known for the practically very
important case of the free surface Euler equations. In order to construct these solutions,

one has to apply some approximation methods. Historically, asymptotic approximations have
been proposed first [4] but, these series being divergent [7], the high-order approximations
are only valid in the limit a → 0 (a the wave amplitude). In order to avoid this limitation,

numerical approaches have been proposed [5]. Several numerical methods have also been
proposed [10]. One of the most widely used methods nowadays is Tanaka’s algorithm [14].
In this note, we propose a simpler and faster method based on Petviashvili’s iterations [12]

leading to a very efficient numerical scheme for the computation of solitary gravity waves
of the full Euler equations in the water of finite depth. Petviashvili’s iterations have been
successfully used for various simplified water wave equations but, to our knowledge, never

for the fully nonlinear problem. The algorithm proposed here is efficient and it allows a very
straightforward compact implementation under Matlab, for example. Such a script can be
freely downloaded [1].

The note is organised as follows. In section 2, we introduce the hypothesis, the notations
and the Babenko equation which is equivalent to the original problem. In section 3, we
describe a very simple and fast algorithm to compute the solution, and we give some numerical

results. Finally, the main conclusions are outlined in Section 4.
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Figure 1. Sketch of physical and transformed domains.

2. Mathematical model

We consider a steady two-dimensional potential flow due to a solitary gravity wave prop-

agating at the surface of a homogeneous fluid layer of constant depth d. Let be (x, y) a
Cartesian coordinate system moving with the wave, x being the horizontal coordinate and
y the upward vertical one. Since solitary waves are localised in space, the surface elevation

tends to zero as x → ±∞, and x = 0 is the abscissa of the crest. The equations of the bottom,
of the free surface and of the mean water level are given correspondingly by y = −d, y = η(x)
and y = 0, respectively.

2.1. Governing equation. Let be φ, ψ, u and v the velocity potential, the stream function,
the horizontal and vertical velocities, respectively, such that u = φx = ψy and v = φy = −ψx. It
is convenient to introduce the complex potential f ≡ φ + iψ (with i2 = −1) and the complex

velocity w ≡ u− iv that are holomorphic functions of z ≡ x+ iy (i.e., w = df/dz). The complex
conjugate is denoted with a star (e.g., z∗ = x − iy), while subscripts ‘b’ denote the quantities
written at the seabed — e.g., zb(x) = x − id, φb(x) = φ(x, y=−d) — and subscripts ‘s’ denote

the quantities written at the surface — e.g., zs(x) = x + iη(x), φs(x) = φ(x, y = η(x)). We
emphasise that ψs and ψb are constants because the surface and the bottom are streamlines.

The far field velocity is such that (u, v) → (−c,0) as x→ ±∞, so c is the wave phase velocity

observed in the frame of reference where the fluid is at rest at infinity (c > 0 if the wave travels
to the increasing x-direction). Note that c = (ψb − ψs)/d due to the mass conservation.

The dynamic condition can be expressed in term of the Bernoulli equation

2p + 2g y + u2 + v2 = c2, (2.1)

where p is the pressure divided by the density and g > 0 is the acceleration due to gravity. At

the free surface the pressure equals that of the atmosphere which is constant and set to zero
without loss of generality, i.e., ps = 0.

2.2. Conformal mapping. Let be the change of independent variable z ↦ ζ ≡ (iψs − f)/c,
that conformally maps the fluid domain {−∞ ⩽ x ⩽ ∞;−d ⩽ y ⩽ η} into the strip {−∞ ⩽ α ⩽
∞;−d ⩽ β ⩽ 0} where α ≡ Re(ζ) and β ≡ Im(ζ) (c.f. Fig. 1). The conformal mapping yields
the Cauchy–Riemann relations xα = yβ and xβ = −yα, while the complex velocity and the

velocity components are

w = − c(d z
dζ
)
−1

, u =
− cxα
x2
α + y 2

α

, v =
− c yα
x2
α + y 2

α

, u2 + v2 = c2

x2
α + y 2

α

.

Introducing new dependent variables X(α,β) ≡ x − α and Y (α,β) ≡ y − β, the Cauchy–

Riemann relations Xα = Yβ and Xβ = −Yα hold, while the bottom (β = −d) and the free surface
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(β = 0) impermeabilities yield Yb(α) ≡ Y (α,−d) = 0 and Ys(α) ≡ Y (α,0) = η. The functions
X and Y can be expressed in term of Xb solely [3]

X(α,β) = cos[ (β + d)∂α ]Xb(α), Y (α,β) = sin[ (β + d)∂α ]Xb(α), (2.2)

so that the Cauchy–Riemann relations and the bottom impermeability are fulfilled identically.

At the free surface β = 0, (2.2) yields Xs(α) = cos[d∂α]Xb(α), that can be inverted as
Xb(α) = sec[d∂α]Xs(α), and hence the relation (2.2) yields

Ys(α) = η(α) = tan[d∂α ]Xs(α), (2.3)

which relates quantities written at the free surface only. The relation (2.3) can be trivially
inverted giving, in particular, (∂αX)s = C {Ys} ≡ ∂α cot[d∂α]Ys, where C is a self-adjoint
pseudo-differential operator acting on a pure frequency as

C {eikα} = { k coth(kd) eikα (k ≠ 0)
1/d (k = 0) (2.4)

This operator can be efficiently evaluated in the Fourier space using a FFT algorithm.

2.3. Babenko’s equation. A Lagrangian for water waves can be obtained considering the

kinetic energy minus the potential one, leading, in the conformal plane, to the functional
L = ∫ ∞−∞ Ldα with L being the Lagrangian density [10]

L =
1
2 c

2 ηC {η} − 1
2 g η

2 (1 + C {η}).
The governing equation is the Euler–Lagrange equation of this functional, i.e.

0 =
∂ L

∂η
+ C{ ∂ L

∂ C {η}} = c2 C {η} − g η − 1
2 gC {η2} − g ηC {η}, (2.5)

which is the Babenko equation for gravity solitary surface waves [2]. Applying the operator

C
−1 to (2.5) and splitting the linear and nonlinear parts, the equation can be presented as

L {η} = N {η}, L {η} ≡ c2 η − gC
−1{η}, N {η} ≡ gC

−1{ηC {η}} + 1
2 g η

2, (2.6)

that is more convenient for the simple and efficient numerical resolution explained below.

3. Numerical method and results

First, we define the wave by choosing its Froude number F ≡ c/√gd. Second, we choose a
KdV-like initial guess of the free surface elevation η0(α)

η0(α) ≡ d (F 2 − 1) sech2(κα/2), F 2
= tan(κd) /κd. (3.1)

Third, equation (3.1-b) is used to compute κ and thence to determine the length L of the

computational domain (i.e. −L ⩽ α ⩽ L) such that η0(L) = 0 to machine precision. The
computational domain is then discretised with N equally spaced nodes, with N large enough
to avoid aliasing. Fourth, equation (2.6) is solved via Petviashvili’s iterations [9, 11, 12]

ηn+1 = S 2
n L

−1 {N {ηn}} , Sn =
∫ ∞−∞ ηn L {ηn}dα
∫ ∞−∞ ηn N {ηn}dα, (3.2)

where Sn is the co-called stabilisation factor which can be computed either in physical or
Fourier spaces, thanks to the Parseval identity [15]. In the implementation, we systematically
privilege the Fourier space since the operators C and C

−1 can be very efficiently computed

according to the definition (2.4) using any FFT algorithm.
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The convergence of the iterative process (3.2) is checked by following the norm of the
difference between two successive iterations along with the residual in the ℓ∞ norm

∥ηn+1 − ηn ∥∞ < ε1, ∥L {ηn} − N {ηn}∥∞ < ε2,

where εn are some prescribed tolerance parameters that are usually of the order of the floating
point arithmetics precision.

3.1. Numerical results. The present algorithm is illustrated on the following example of a
fairly high amplitude solitary wave. It is validated and compared against Tanaka’s algorithm
[14]. Tanaka’s solution is parametrized by the dimensionless parameter qc = ∣uc∣/√gd ∈ (0,1),
where uc is the fluid velocity at the wave crest. We choose the special value qc = 0.4 for
comparisons. Tanaka’s algorithm was implemented inMatlab1 in its original version without
any peculiar optimisations. The interval −30 ⩽ φ ⩽ 30 is discretised using 20,001 nodes and

the iterations are continued until the tolerance 10−10 is obtained between two successive values
of the Froude number F , i.e.

∣F 2
n+1 − F 2

n ∣ < ε3 (= 10−10 in our computation).

This computation required 47 iterations which lasted 385 s on our desktop computer. The
resulting Froude number computed by Tanaka’s algorithm is

F = 1.274236297977903.

Then, we take this Froude number and use it as the solitary wave parameter in the Babenko
equation (2.6). We use a (periodised) domain of the same length as in Tanaka’s method, and

discretise it with N = 16,384 nodes. The tolerance is chosen to be 10−15, i.e. very close to
machine accuracy. These parameters are kept in all the computations presented below. The
iterative procedure is stopped when the ℓ∞ norm of the difference between two successive

iterations is less than the tolerance (the norm of the residual is checked a posteriori). Our
algorithm required 372 iterations to converge and the computations lasted for about 0.5 s, i.e.
almost three orders of magnitude faster than Tanaka’s algorithm. This flagrant difference in

CPU times can be explained by the fact that our method has the super-linear complexity
O(N logN) while Tanaka’s method has a quadratic complexity O(N2).

Moreover, the present algorithm can be used to compute solitary waves to an arbitrary

precision. To illustrate this, we implemented the scheme using a Multi-Precision Computing
Toolbox (MPCT) for Matlab [6]. The code modifications needed to implement the arbi-
trary accuracy are really minimalistic; this constitutes one of the major advantages of this

MPCT. In these higher-precision experiments, all floating point operations are done with 50
significant digits. The tolerance parameter is set to 10−50. To achieve such extreme accuracy,
the Petviashvili scheme required 1,386 iterations. The convergence of the algorithm is shown

on Figure 2-b. One can notice that the residual error is slightly higher than the difference
between two successive iterations, likely due to the presence of quadratic nonlinearities into
the equation. However, both measures of the numerical error decrease monotonically with

iterations. The resulting solitary wave profile is depicted on Figure 2-a along with the cor-
responding Tanaka solution. The two curves cannot be distinguished up to the graphical
resolution, thus validating our method. The respective accuracies can be asserted comparing

the dimensionless amplitudes a/d (Table 1). One can notice that despite the tolerance param-
eter set to 10−10 in Tanaka’s algorithm, its real accuracy is seriously degraded for this large

1In the sequel, all the algorithms are compared in the same computing environment: Matlab
®.
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Figure 2. Solitary wave profile (a) and convergence of the numerical error during

the iterations (b).

Tanaka (16 digits) Present (16 digits) Present (50 digits)

0.6819448200954614 0.6819656673869021 0.68196566738691572070985777997577037303844037027343

Table 1. Amplitude corresponding to F = 1.274236297977903 (wrong digits are underlined).

amplitude wave (only five digits of the wave amplitude are predicted correctly). Conversely,
the present method gives fourteen correct digits with a tolerance of 10−15 in double precision
calculation (about sixteen digits), and 49 correct digits using the 50-digit computation (the

latter was determined using a 60-digit calculation with a tolerance of 10−55 with eight times
more nodes over an interval twice the size).

The algorithm being validated, it can be used to produce some physically sound numerical

results. For example, we compute to high-precision (here 10−15, but it is not a limitation)
the speed–amplitude relation for solitary waves. The result is shown on Figure 3. We also
computed several values in a wide range of amplitudes using Tanaka’s algorithm (represented

with circles). Again, up to the graphical resolution we have a very good agreement between
the two methods. However, the speed of Tanaka’s algorithm does not allow to compute many
values in a reasonable time.

We note finally that, for simplicity, we defined the wave by its Froude number which varies
in the interval 1 ⩽ F ≲ 1.29421. Doing so, we can compute all waves such that 0 ⩽ a ≲ 0.796
that is sufficient for all cases of practical interest. However, there are solutions of larger

amplitudes, the limit a ≲ 0.796 being obtained here because F is not a monotonic function
of a (i.e., F (a) is multi-valued when a is large). Thus, in order to compute larger waves,
another parameter (e.g., a/d or qc) should be used to define the wave. This requires simple

modifications in the code [1]. We successfully did it and were able to compute all waves
such that a ≲ 0.82. For even higher waves, the present method is not efficient because these
extreme waves being (almost) singular at the crest, the Fourier series does not converge fast

enough and another spectral decomposition should be used instead.
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Figure 3. Speed versus amplitude relation predicted by the present (solid line) and

Tanaka’s (circles) algorithms.

4. Conclusions

We have described a fast, accurate and easy to implement method for computing steady
gravity solitary surface waves solution of the full Euler equations. The method is based on first
rewriting the problem into the equivalent but simpler Babenko’s equation and, second, using

Petviashvili’s iterations to solve it numerically. The resulting scheme allows the computation
to any arbitrary accuracy using a multi-precision floating-point arithmetics library [6]. All
ingredients of the method are well known, but their combination seems to be new in this

context and turns out to be very efficient. Our Matlab implementation is rather compact:
The computational numerical core is about a dozen lines of code, the rest being pre- and post-
processing. The script [1] can be freely downloaded and used (it can also be easily translated

into any programming language).
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