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Estimating the survival functions in
a censored semi-competing risks model

Stephane LAURENT

December 2, 2012

Abstract Rivest & Wells (2001) proposed estimators of the marginaVigal functions
in a right-censored model that assumes an Archimedeanadetlveen the survival time
and the censoring time. We study the extension of these &stisnto the context of right-
censored semi-competing risks data with an independennddevel censoring time. We
intensively use martingale techniques to derive theirdasgmple properties under mild
assumptions on the true distribution of the data. As contpéwethe simpler context of
right-censored data, a primary difference is the need targelthe filtrations with respect to
which we use the Doob-Meyer decompositions of counting gsses.

Mathematics Subject Classification (2000)62N01- 62N02- 60G44

Keywords Archimedean copula Dependent censoringlmmersion of filtration-
Kaplan-Meier estimatorMartingale- Semi-competing risks

1 Introduction

Rivest & Wells (2001) addressed the problem of the estimadibthe survival functions
of two failure timesT andU whenT is subject to right-censoring vid and when as-
suming a known Archimedean copula for the joint distribotaf T andU. It is easy to
extend the derivation of their estimators to the contextigiit-censored semi-competing
risks data The failure timesT andU are termed as semi-competing risks when the avail-
able data are some repeated observations of fiih), U ). Right-censored semi-competing
risks data is then the situation when the semi-competirks ils and U are subject to
right-censoring via another failure timé and the data are some repeated observations of
(min(T,U,V),min(U,V), Ii7<y t<vy, Jiu<vy). ForinstanceT, U andV could respectively
represent the time to first relapse of a disease, the timeathdand the time to lost to
follow-up of an individual under medical treatment.

When assuming a one-dimensional parametric family of Angldean copulas for the
law of (T,U) and an independent right-censoring, methods to estimatotbula parameter
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and the marginal survival function @f have been proposed by Fine & al (2001), Jiang & al
(2005), Lakhal & al (2008). These methods consist in pluggiman estimate of the copula
parameter in an estimate of the marginal functio afepending on the copula parameter,
and Lakhal & al (2008) used the above mentioned extensidmedRivest & Wells estimator.

We will study the large sample properties of these Rivest di§¥sstimators extended to
the context of independent right-censored semi-compeisikg. Mathematically, this could
appear to be only a slight generalization of the case trdatdivest & Wells (2001), since
we will partly follow their proofs, which intensively usedhmartingale techniques for the
statistical analysis of counting processes. However, atanbal difference arises with the
martingale approach as compared to the case treated byt Rivdells: we will need to
enlarge the usual filtrations for the Doob-Meyer decompmsstof the encountered counting
processes (namely, we will use tlremersionof a filtration in a bigger one). Morever, the
proofs given by Rivest & Wells (2001) often refer to othergfwin the book of Fleming &
Harrington (1991), whereas the one we provide is self-énath and a point in the proof
of their theorem 2 is not clear: it seems to justify that a pescis Gaussian by the fact
that it is the sum of two Gaussian processes. We will use aiateamartingale central limit
theorem to give a correct proof of our extension of this theoto the context of independent
right-censored semi-competing risks. In addition, we disouss about the joint asymptotic
behaviour of the Rivest & Wells estimator ©fwith the Kaplan-Meier estimator &f .

To be more precise, we now specify the statistical model ustlely and we introduce
our main notations. The observations are the realizat{oqlsli,én,d“}?:l of nindepen-
dent replicates of a random four-tugl&, Y, A, Ay ) defined as follows. Consider three pos-
itive random variable§', U, V, which we respectively interpret as, for some individual,
the time to some nonterminal event of interest (e.g. timd th first relapse of a certain
disease), the censoring time of type 1 (e.g. the time unéthje and the censoring time
of type 2 (e.g. the time until lost to follow-up). Then the ebgble random variables are
X =min(T,U,V),Y =min(U,V), and the censoring indicators

At =1rauT<vy (T is not censored)
Ay =1y (type 1 censoring occurs before type 2 censoring).

We will always assume that is independent ofT,U) and O< P(T <U) < 1. One goal of
this paper is to provide consistent (in a sense to be pretased estimators of the survival
functions of T andU when assuming that the dependence betweemdU is given by
a survival Archimedean copule, with a strict generator denoted lgy That means that
@: [0,1] — [0,00] is @ continuous strictly decreasing convex function sgtigf ¢(0) = o
and¢(1) = 0, and the joint survival function of andU is given by

P(T > x,U >vy) = %p(S(x),F(y))

whereSandF respectively are the marginal survival functionsToAndU, and the copula
%p: [0,1)% — [0,1] is given by

Gp(u,v) = 0 (@) + @(V)).

The survival function of the independent censorings denoted byG. We will focus
on the case wheS8 andF are continuous, but no assumption is made al®uadditional
assumptions on the generaipmwill be given later; these assumptions will always be ful-
filled for the Clayton and Frank families of Archimedean claguWe will define and study
estimatorsS, andF, of SandF that coincide with the Rivest & Wells estimators in the par-
ticular case when there is no type 2 censoring, which cooredpto the case whed =1
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in our setting, i.e. whel = « almost surely. Similarly to Rivest & Wells (2001), we will
also study the large sample propertieé@fand If¢ without assuming that the distribution
of (T,U) is given by the survival Archimedean coplg. In addition we will study the

joint large sample propertles S&, with the Kaplan-Meier estimator &f constructed on the
observationgy;, dyi }

The estimators and the framework are presented in sectibneze estimators are writ-
ten as stochastic integrals with respect to counting pessesVe will fix a filtration and
provide the corresponding intensity processes of thesetitmuprocesses, i.e. their Doob-
Meyer decomposition. The large sample properties of thimagirs are the object of section
3. We assume the reader to be familiar with the basic matérfgamework in the theory
of counting processes; see e.g. chapters 1 and 2 in Flemingréington (1991). Never-
theless we hope that an intuitive overview of these notisrsufficient for understanding
our approach. We will use twice the following easy corollamyLenglart’s inequality; we
refer to Fleming & Harrington (1991) or Karatzas & Shreveg8pfor the statement of this
inequality and we left the proof of this corollary to the read

Corollary to Lenglart’s inequality. Let(M") be a sequence of local square integrable
martingales. IfM")(t) = Op(n), thensug.s<; |[M"(s)| = ). The same statement with
op instead of @ also holds true.

2 Estimators and martingale tools

We denote by the survival function of mifiT,U). Remark tha¥ is independent of mifT,U)
andX equals miifT,U) ifand only if At =1 orAy = 1, therefore the Kaplan-Meier etimator
I" of I and the Kaplan-Meier estimat@rof G are available as statistics of the observations
{xi, &ri, dui}{_,. Similarly to Rivest & Wells (2001), we seek esnmat@;ﬁand F(,, which

are right-continuous step-functions satisfy®@) = F (0) = 1 and

o (9(SV) +o(Fp(1))) =1 (t) when0<t <% :=maxx;1<i<n), (1)

and we also require th&, jumps atx; whendri = 1 and thaﬂf(p jumps atg; whendri =

and &yj = 1. Assuming no tied values, relation (1) implies that the siakthe jumps of
(poSp andgo Fq, must equal the sizes of the jumpse$ I , therefore the unique estimators
satisfying the desiderata are given by

(&0 zl:“{x,q}ﬂ(([)or)( i) Ori

and

o(Fe(t)) lel{x,q}ﬂ(fpor)(xl)(l Ori) ui

whereA(@ol)(s) = (ol )(s) — (@oI")(s) is the size of the jump opo [ ats. Note that
Sy andF, are Kaplan-Meier estimators when= —log. It is possible thaf (%,) =0, and
in this case eitheﬁp(in) =0or If(p(f(n) = 0. With counting processes notations,

t A _ R t R _
S0 | [ Uosg 80NN ORs(9|  and  Fo) =07t | [ s Al00r e

whereNs andNg are the counting processes definedNeft) = 51, 8rilljy<y andNg (t) =
YL (1= 0ri)duilpx <t
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We will focus oné‘p. The analogous asymptotic results ﬁywill be mentioned at the
end of section 3.

As a first step to the asymptotic studyé}, we give in lemma 2.1 below another de-
creasing right-continuous step functiép starting at 1 and which is asymptotically equiv-
alent toS, whatever the distribution ofT,U). The advantage d, is thatgo S;, is written
as a stochastic integral with respeciNgof a left-continuous process. From now on, we de-
note by = I"G the survival function oX = min(T,U,V) and byt the empirical survival
function of thex;. Remark that the equalit§t = I G can fail in the presence of ties in the
jump times ofl” andG, but it almost surely holds since the law of iU ) is continuous
by assumption. Throughout the sequel, we will implicitlpase that there are no such tied
values.

Lemma 2.1 Leté; be the right-continuous step function defined by

(@oS,)(t) = f% /Ot :“{fr(s)>0}%(-i)5)) dNs(s),

and let y > 0 be such thatri(tg) > 0. If ¢ is twice differentiable with continous second

derivative, thersupy, ‘(cpo Sp)(t) — (o é&,)(t) ‘ =0Op(n71).

Proof First note thaf ~(s) — I (s) = n_él(_s) foranyse {t; | 3ri = 1} sinceG(s)[ " (s) = fr (s)

andG(s)f (s) = fi(s). Therefore, for such a< to, by Taylor expansion, the inequality

L
nG-(s)

cﬂ(r"<s>)\ < sup |@'(e)—2

‘A((pol’)(s) " n(tg)<s<1 (an(to))2

holds on the even{min(f(s),é(s)) > Ti(tg) /2 for all s€ [0,to] }, whose probability con-
verges to 1 as the sample size increases. The result folloas the obvious inequality
Ns(to) < n. a

Remark that
(0o8)0)=— [ Vo0 (90 (F(9) dA(9 @

whereA = %f %’\;‘—5 is the Nelson-Aalen estimator of the cumulatorede hazard ratef T
subject to be censored by= min(U,V), which is conceptually given by

T eds, T <min(U,V))
P(min(T,U,V)>s) ’

Ads) = L

but sinceP(T eds, T <V |T <U) =PV >s)P(T €ds| T <U), we see that

_P(TedsT<U)
A= 3F5susy)

is also the crude hazard rateDfsubject to be censored k. It is possible thaf dA < o,
for example when the joint law of andU is given by an Archimedean Clayton copula
with generatomx — x~ — 1 acting on the marginal survival functioét) = (t+1)* and

F(t) = exp(—t).
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From equality (2), it is expected thgto é&,, and then alsapo§¢ owing to lemma 2.1,
converges t@o S, given by

(0o = [ 6(r(9) A, ®

where, from now on, we denote lyy the positive functiony(x) = —x¢/(x), in accordance
with the notations of Rivest & Wells (2001). The decreasingction S, is not always a
proper survival function: consider for instance our préicgéxample of the integrable crude
hazard rate\, and takep = —log, so thatS), = exp(—A) andS, () > 0. Itis easy to check
that§, = SwhenSis absolutely continuous and when the joint law(®fU) is given by
the Archimedean copuléy acting on the marginal survival functions with a differaie

generatoKp, by knowing that in that cas@,(ds) = A (s) dswith A (t) = — %t) %S’(t), as
claimed by Rivest & Wells (2001). The interesting propasitbelow is a copy of proposition

2 in Rivest & Wells (2001).

Proposition 2.1 If ¢ /¢, is increasing on(0,1) then §, <'S, .

The asymptotic behavior dipo S,) — (@o Sfp) will be rigorously studied with the help
of martingale techniques. Now, first of all, we seek a filtratvith respect to whiclpo é&,
has a simple Doob-Meyer decomposition. When consideriadiltnation (.%:) defined by

Fi=\ V 0(dridjes, (1-0n)y<s)

it is known (Fleming & Harrington 1991) that the counting pessNs has the Doob-Meyer
decompositiomNs = Ms+AwhereMsiis a square integrable martingale and the compensator
A'is the (increasing and predictable) process given by

Alt) =n /0 (9 dA(s) @)

whereA is the cumulative crude hazard rate introduced above. Istodly, the compensator
A’is a continuous process since we assumeTHads a continuous distribution.

However the filtration% is not adequate for our study, since, for example, the satitha
processe$ - and G are not adapted to7, thereforeq)oé; is not written as a stochastic
integral with respect tdls of a predictable process, while being left-continuous albise it
is not adapted to#. From now we will consider the bigger filtratios#” = (%) defined by

t= \/ o (5Ti:“{xi§s}a (1* 5Ti):“{xi§s}a d.li:“{xigs}a (1* aJi):“{xigs})

as the underlying filtration. In particulaf, andG™ are predictable processes with respect
to 2. But we will keep the Doob-Meyer decompositibla = Ms+ A of Ns because, as we
will now see (lemma 2.4), it is actually the same w.r.t. eitile or .77, that is,Ms remains

a martingale with respect té7. It would be sufficient to prove this fact by deriving the
compensator oNs w.r.t. 7 in the same way as one derives its compensator \w,tas
done by Fleming & Harrington (1991). But it is more instruetito prove that the filtration
Z is immersedin the filtration .#, which is the statement of lemma 2.4. We say that a
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filtration % is immersed in a filtratio®¥ and we write# 8 ¢ if all #-martingales ar¢/-
martingales. This property is also known in the literatigéh@(H )-hypothesis. We refer e.g.
to Emery & Schachermayer (2001) or Mansuy & Yor (2006) and esfees given therein
for more information on the notion of immersion, which is weiseful in many aspects of
stochastic calculus, but which seems to be rather unfantdiatatisticians. The notion of
immersion already appeared in the literature on survivalyais without being explicitly
mentioned: it could be used to formulate the property (M)agabsen (1989) about the
concept of independent right-censoring. It is more popinahe literature on credit risk
models: it explicitly appears e.g. in the papers by Gapeeed@blanc (2008) and Bielecki,
Jeanblanc & Rutkowski (2008). _

_ We have claimed just above that it is more instructive to erthe immersion of# in
¢ than just show that the compensatoMgfin % is the same as its compensatorfi
by a direct calculation. Indeed, the immersion is a cleatestant from which the stability
of the compensator is a direct obvious consequence, heisxa ietter explanation of why
the compensator is stable. Moreover the immersiogFah 7 will be derived from lemma
2.3 which will be also used to derive another immersion prigpgemma 2.5). Lemma 2.2
below will allow us to restrict our attention to the case: 1.

Lemma 2.2 Let.#1 and¥? be two filtrations on some probability space and.#&€ and
%2 be two filtrations on a possibly other probability spaceZit ¢ %t and .72 ¢ %2 then
Fle 72CGrag?.

Proof See lemma 2 ifEmery & Schachermayer (2001). ad

Owing to this lemma, in order to prove tha ¢ 7 itis sufficient to prove that# En
where the filtrations#? and.# are defined by

T = \/ 0 (Ardix<q), (1 A7) Ix<s))

0<s<t

and
A=\ 0(Orlx<sy,(1-87)Uix<g, Mo dix<s), (1—Ay)dix<q}) -

0<s<t
Note that the evenfX >t} is an atom of both#; and.7% and on the evenX <t} one has
G = Fo and I = 5.

Lemma 2.3 Let ¥ be any filtration containingZ and such that for each* 0 the event
{X >t} is an atom of%4 and% D> .Z., on the even{X <t}. Then.# is immersed ir¢.

Proof Under these assumptions, for every random vari‘dbteLl(ﬂ‘oo) and evenyt > 0,
EV [ A]=ENV 4] =E[V [ X > t]1x.t +Vix<y

The equalityE[V | %] = E|V | %] means that%, is conditionally independent &; given

Z+, and this equality holds for evety> 0, which is equivalent to” 2 ¢ by lemma 5 in
Emery & Schachermayer (2001). ad

Lemma 2.4 The fiItratio_nﬁ_ is immersed in the filtrations. Consequently the Doob-
Meyer decomposition dfs with respect to7#” is the same as its Doob-Meyer decomposition
with respect toZ .
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Proof The immersion stems from lemma 2.2 and lemma 2.3, and theqaeace obviously
follows. O

The quadratic variagioml%) of the square integrable martinga¥s will be needed. It
equals the compensatarsince this one is continuous; this fact is the well-knowrtipatar
case wherN; = N> = N in the following theorem that we will need and that we prove
because we do not find it in the literature.

Theorem 2.1 Let Ny and N\, be counting processes and their Doob-Meyer decompositions
N1 = M1+ A1 and N = Mz + Az with respect to some right-continuous filtration. If the
compensators Aand A are continuous, then the covariation procéd4;, M,) equals the
compensator of the counting process N which counts how niraieg N and N have si-
multaneous jumps, that is, N is defined bg)N= 5 s; AN1(S)AN>(S).

Proof The proof we give is an adaptation of the proof of theorem12sFleming & Har-
rington (1991). (the particular case whidp= N, = N). The local (square integrable) mar-
tingalesM; etM; are right-continuous processes of bounded variation,éhdmintegration
by parts formula for Lebesgue-Stieltjes integrals yields

My (t)Ma(t) = /O M5 (9) dM(s) + /O “M(s) dMa(s) + ;AMl(S)AMg(S).

We haveAM; (s) = ANi(s) sinceA; andA; are continuous, therefofg,.; AM1(s)AMz(s) =
N(t). Hence, denoting bl = M -+ A the Doob-Meyer decomposition df, one has

t t
M1 (t)Ma(t) — Alt) = M(t) + /0 My (s) dMa(s) + /O M () dM (s)

Each procesdl; andM; is adapted, left-continuous and has right-hand limits, iartbere-
fore locally bounded and predictable so that each prof&&sdM, and [ M; dMy is a local
(square integrable) martingale. Finally the right-hardksif the equality above is a right-
continuous local martingale, thereby showing that (M;, My). O

Precisely, we will need to apply this theorem with the caupprocesds which counts
the jumps ofS, and the counting proces$ which counts the jumps of the Kaplan-Meier
estimator” of I', that_is,N_r (t) = 3Ly Nil <ty wheren; = min(1, ori+ &yi). When con-
sidering the filtratior defined by

_ n
4G = \/ o(Nilx<sy, (1= M) k<),

it is known thatN_r has the Doob-Meyer decompositicﬁr = Mr + Ar with Ar(t) =

n Jo 7r (s) dAr (s) whereAr (ds) = P(min(T,U) € ds)/P(min(T,U) > s), and in particular
Ar(ds) = Ar (s)dswith Ar(s) = —I’(s)/I" (s) whenr™ is absolutely continuous. In our study
we do not work in the filtratioZ but in the filtrations#” previously introduced, but that does
not change the Doob-Meyer decomposition, according todb@fing lemma.

Lemma 2.5 The fiItratiogg_is immersed in the filtration?, and consequently the Doob-
Meyer decomposition M is the same with respect to eith€ror 7.

Proof Similar to the proof of lemma 2.4. ad
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Note that the compensatéy- is a continuous process since 1finUJ ) has a continuous
distribution by assumption. Therefofr) = Ar. In addition to the quadratic variation
processe$Ms) and (M) we will also need the covariation proce#dr,Ms) (with respect
to the big filtrations?’).

Lemma 2.6 The covariation proces(S\/I,—,Ms> of the local square mtegrabL@f martingales
Mr andMs equals the variation procegd/s) of Ms.

Proof This straightforwardly stems from theorem 2.1 since thecgss which counts the
simultaneous jumps - andNs is nothing butNs. ad

Now we are ready to turn to further preliminaries for the aptatic study ofé‘p. The
final aim of this section is to provide the asymptotic repneaton Of(poé‘p —@oS, given
in proposition 2.2. It is the cornerstone of the next sectidre Doob-Meyer decomposition
of Ns yields

(@oS))(t) :*%/; Jl{fr(s)>0}%(_;s))dl\ﬁs(8)+/; Y90 (7(9)dA(s).  (5)

Thus,@o S; is a local submartingale: the first term in (5) is a local squategrable martin-

gale sinced—(é%]l{ﬁ@bo} defines a locally bounded predictable process, and the decon
term is an increasing predictable process. Lemma belowsillis to replace the (local) mar-
tingale part ofpo S, (the first term of (5)) by a more convenient process for thergytic

study.

Lemma 2.7 If ¢ is twice differentiable with continuous second derivatiben, for any§
such thatrt(tg) > 0,

[ L) / ‘” )‘=0P(ﬁ)~

Proof W.r.t. the underlying filtrationZ, the processi given by

] F9)
H(s) = L7 (s)>0 go’é_(i)s)) B ‘P'é(;s))

sup
0<t<ty

starts at 0, is adapted and left-continuous with finite riggmd limits, hence it is a locally
bounded predictable process, and therefore the prdu:essf H dMs is a local square inte-
grable martingale whose variation process is given by

_ 't ot
)0 = [ (S dMs)(s) =n [ HZ(s)7t (5)dA ().
Sincer (to) > 0 andG(to) > 0, and since botlt *(s) — I (s) and G (s) — G(s) are op(1)
uniformly in s € [0,to], then H?(s) is itself op(1) uniformly in t € [0,to]. Consequently
(U)(to) = op(n), hence the result follows from the corollary to Lenglartiequality. O

Now we state and prove the final result of this section, whicthé main tool for the
next section. Recall thato S, is defined by (3).
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Proposition 2.2 If @is twice differentiable with continuous second derivatthen, for any
to such thatr(tp) > O,

@80 (950 =2 [ T D aits) o ['/(r(9)(F(9-r5) sr(s)+ontr )

n.Jo )
uniformly in te [0,to].

Proof By lemma 2.1 and lemma 2.7, it suffices to show that

[ A0, (67 (9) ~w(r9)) A= [ 0/(1(9) (5~ () dA(3) +opin )

uniformly int € [0,1o]. Sincey’ is uniformly continuous on compact subsets@f1], this

follows from a Taylor expansion ap and from the fact thaf *(s) — I (s) = Op(n*%) uni-
formly in s € [0, tg]. O

Remark 2.1In case wherP?(V = o) = 1 and@ = —log then é.og is the Kaplan-Meier
estimator. In that case the proposition above shows that

o 1/ 1 — 1
_ —_ N -2
109Si0g(t) ~10GA (1) = — |/~ AMIS(s) +-op(n”)
uniformly in t € [0,tg]. Also note that this still holds wheémg is replaced by its left-
continuous versios,,, sinceS o, (t) = Siog(t) +Op(n~?) uniformly fort & [0,to].

As a consequence of remark 2.1 and lemma 2.5,
logF~(t) —lo F(t)—fl/t L oM (s)+op(n}) ©)
g g ~"hlo o r P

uniformly fort € [O,tOLwheLeMr is the (square integrable) martingale part in the Doob-
Meyer decompositiotNr = M- + Ar with respect to the filtratiow? given above lemma
2.5.

In the next section we will study the joint asymptotic beloaof Sp andl"". Then the
joint asymptotic behavior oﬁp and If¢ will derive from equality 1. We will also study the
joint asymptotic behavior o@w and the Kaplan-Meier estimatér of F which is available
as a statistic of the observatiofs, &} ;.

3 Large sample properties

We fix some assumptions throughout this section. We congjdeiO such thatr(tp) > 0,
we assume thap is twice differentiable with continuous second derivatared thatg' is
bounded away from 0, that igy(1) < 0. This last assumption will serve us to derive the
asymptotic behavior 0&0 from the one ofpo é‘p It is met by numerous common families
of Archimedean copulas, such as Clayton, Frank, or intgraover Frank families, but not
by the Gumbel family (these families are defined in Nelse®9)9

We start by proving the consistency 3}5 Recall thatS, = Sand when the model is
well-specified, that is, when the survival copula(®fU) is the Archimedean copulé.
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Theorem 3.1 The procesgo §¢ is a uniformly consistent estimate of the functimsga on
[0,to]. More precisely,

sup |(9oSp) () — (@0 S))(t)] = Op(n~2).

0<t<ty

Consequentlgup,

S(t) —S,(t)| = Op(n2).

Proof The consequence easily follows from the fact that is Lipschitz under the assump-
tion that¢' is bounded away from 0 To prove the first assertion, it sudficeview of propo-

sition 2.2, to prove that botf /g >) dMs(s) and [5 @' (I (s)) (F~(s) — T (s)) dA(s) are
Op(n~ 2) uniformly int € [0,1to]. Th|s is clear for the second term becalisés) — I (s) is
Op(n*%) uniformly ins€ [0,to]. For the first term, it suffices to show that gup. IMs(s)| =

Op(+y/Nn), but this results from the corollary to Lenglart’s ineqtialsince it is clear that
(Ms)(to) = Op(n). 0

Our next underlying goal is to prove that the procesgéﬁerpoéq,f Qo S(;) and,/n(logl""—
logl™) jointly converges weakly to an explicit continuous cente@aussian martingale for
the Skorohod topology oB|[0,tp]. Here and hereafter, we shortly denotelXQ, to] the Sko-
rohod spacé)([o,to],Rd) where the dimensiod is clearly understood from the context. By

proposition 2.2, we can equivalently replagz’é((poé‘p —@o S&) by
L[ EE s v [Wre) (e - re)me. 0

We putw(t) = t (,y( 6] ) dMs(s). Hence the key step is to study the joint asymptotic distri-

bution ofn~2W angl\/_(logl' —logrl"), which will be given in proposition 3.1. Note that
we can replace log~ —logl by its asymptotic martingale representation (6). The tosl w
will use is the following version of the martingale centiiahit theorem (see Ethier & Kurtz,
1986).

Martingale central limit theorem. For each n> 0, let Ul(m, Uém be d (cdlg) lo-
cal square integrable martingales w.r.t. some filtratigh" satisfying the usual conditions
(complete and right-continuous) and form the d-variate tingale U™ = (Ul(m,...,Ué”)).
Assume that the variation processgs™) are continuous. Let & = (Uy,...,ug) be a

continuous d-variate centered Gaussian martingale and®. If (U(")(t) 5 (U))(t) for
allt € (0,tp) andE [suggto }AU<”)(S)|2} — 0, where| - | denotes the Euclidean norm, then
the sequencéJ (") converges weakly to @ in D0, to].

This theorem is often used in the following context. We hawenting processeISIj(”),
each having Doob-Meyer decompositibl{an> = MJ(n> +A§”) whereMJ(n> is a local square
integrable martingale and the compensafaéfp is continuous, and we consider the local
square integrable martingaleén) = JiH »(”>( s)dM (n>( s) for some given predictable lo-
cally bounded processdﬁs} In this case( )( )= [0( ( ))sz(jm(s) and the jumps
of Uj< ) are theHJ- >( T;) where ther; are the jumping tlmes of the counting proc@é@. In
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this context, the conditiof [supSStO |AU(“>(S)}2} — 0 occurs whenever tde(") are uni-

formly bounded im for eachj.
By applying the martingale central limit theorem we easgy g

1 - — .
ﬁ(M& M/—) ~ G = (Gl,Gg) n D[O,to},
whereG is a continuous centered Gaussian martingale ®iEh (t)? = (G1)(t) = fé rrdA,

EGa(t)? = (Go)(t) = [ mdAr andEG1(S)Ga(t) = (G1,Ga)(sAt) = [o""*V 1dA. Then
we can heuristically claim that

(n*%VV,n*%/I—lel\ﬁr) s (M, M) = (/ "yér dGl,/%dGz) in D[0,to], (8)

which yield proposition 3.1 since 1dg (t) —logr (t) ~ —1 [5 w5 dMr (s) in the sense of the
asymptotic martingale representation (6). We will rigaiguyprove (8) with the martingale

central limit theorem. Lemma 3.1 below is a preliminary step

Lemma 3.1 The proceSSTI%VT/ converges weakly in[Dto] to the centered Gaussian mar-
tingaleM; whose variance functiom\is given by

_ ey
Vi(t) = /0 s dA(s).
Proof Itis easy to check thgiMl;) = V1. Now we apply the martingale central limit theorem.
The processsr% H on the interval0,to) whereH is given by

g 2O wirs)

" G(y) (s)

is predictable since it is deterministic, and it is boundBiaerefore the proceds := n-2W
is a square integrable martingale whose variation protéss given by

00 =1 [ R NS = [ F97 (5 A,
and(U)(t) goes tovi(t) in probability since

fr (s)

MaXr- (ty)<x<1 { U’(X)Z}
< sup 9

m(to) 0<s<ty

(s LLO)

o (s)

0<s<ty

— 1‘ =op(1)

The other conditior [sugSt |au(s) }2

} — 0 required by the martingale central limit theo-
rem obviously follows from the boundednessHof ad

Proposition 3.1 The bivariate process

V(nT'W(t),logr (t) —logr (t))

converges weakly in D,tp] to the centered Gaussian martingalel;, —M,) whose vari-
ance function at time t is given by:

1. w(t) ;= EMy(t)? = Vy(t) (lemma 3.1);
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2. w(t) :=EMy(t)2 = [} g dAr (9)
3. wia(t) 1= ~EMs ()M (t) = Jg LB dA(s).

m(s)

Proof The variance function ofM(;, M) is easy to derive. We have seen thatW ~- M;

in lemma 3.1. The weak convergence fog- logl™ ~ —MS also results from this lemma
in view of remark 2.1 and the asymptotic martingale repregam (6). Still due to (6), we
are equivalently seeking to derive the limit law of the jgimbcess

0= (00.0y) = (n*%VV,—n*% [: er> .

To do so, we apply the martingale central limit theorem. itains to show that the covaria-
tion procesgU;,U,) of the square integrable martlngaleﬁanduz goes tov12 and to check
the condmon about the jumps. The covariation proogssUs) is given by (Uy,Up)(t) =

5 g G <)d<M3,M,—>( s), and we know thatMs, M ) (s) = (Ms)(s) by lemma 2.6, hence

(U1, 02) (t / “f S))d/\ / “f dA(S) = via(t).

The conditionE [su;:gSt }AU_(s)ﬂ — 0 required by the martingale central limit theorem
obviously holds because of the boundedness of the jump4idf and/nU,. O

From now on, we denote kY the > process defined Wy(t) = F(t) — I (t), so that the
right member in (7) is,/n g @' (I (5))D(s) dA(S).

Proposition 3.2 The tridimensional procesgh (n'W, (' o' )DdA, D) converges weakly
in D[0,tp] to the centered Gaussian procédd;, — (/' oM ) MadA, I My). The variance
of the second component of the limit process att is

:2/0t/OSI_(U)I—(S)WI(F(U))w/(r(S))VZ(U)dA(U)dA(S)7

where vy is defined in the preceding lemma, and the covariance bettiesiirst two com-
ponents att is

_perw) o
)= S T r©) dAwanrs)

Proof First, in view of proposition 3.1 and the Delta method (prsifion A.1), the process
v/N(n~1W, D) converges weakly to the continuous centered Gaussiangw (e, I My).
Since(a, B) — (a, Jy9(B(s)) ds, B) is a continuous function from ([0, to], R?) to D([0, to], R3)
wheneven is continuous (see Prigent, 2003), the announced weak igamnee stems from
the continuous mapping theorem. By Fubini’s theorem,

2 s
([ row(remaeans ) =2 ["rir©w ) e)mmss i,

and the expression &k(t) follows from Fubini’s theorem as well. The expressionvie
also follows from Fubini's theorem and from the expressibme given in proposition 3.1.
O
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Remark 3.1In the particular case treated by Rivest & Wells (2001), anrevccurs in the expression @5.
This error results from the erroneous claim that the limitarace of\/n(fr (t) — m(t)) is I(sSAt) — ri(s) T(t)
instead of the correct varianggs\vt) — m(s)mt).

Theorem 3.2 below describes the asymptotic distributiteslavior of our estimate of
interesléq,. Recall that§, = SandA (ds) = — ﬁ gé?@% S(s) dsin case when the Archimedean
copula@y, is the survival copula ofT,U).

(4

Theorem 3.2 The process/n ((p(éq,) - (S )) converges weakly in [D,to] to a centered
Gaussian process with variance function

. 2
V(t):/ot%dA(s)

2 UGy ey mnwans

m(u)
+2/0t/OS’_(U)I'(S)Vz(u)w’(I'(u))w’(r(s))d/\(u)d/\(s)

where y(t) = [3 g dAr (9).
Consequently;/n (é‘p—Sfp) converges weakly to a centered Gaussian process with
variance function \(t)/(p’(S(;,(t))z.

Proof The consequence follows from the Delta method (proposiidr). By the asymp-
totic representation (7) and proposition 3,27 ((p(éq,) - (p(S(;)) goes to-Mj — [ (¢ o
MM2dA, henceV (t) = Vi (t) — 2Via(t) + Vo(t) with the notations of proposition 3.2 and
lemma 3.1. O

Remark 3.2 An error occurs in Rivest & Wells (2001) where the particudasel” = ris treated: the authors
give Vq(t) + 2Vio(t) + Va(t) instead oy (t) — 2Via(t) + Va(t).

Now we turn to the estimatd¥, of F introduced in section 2. All our results f&, and
S admit analogous statements fey andF, whereF(; is defined similarly tds, with

Ne (ds) — PU edsU <min(T,V)) PUecdsU<T)
FOS) = T Uv) > BminT.U)>9

instead ofA. Since
P(T eds, T <U)+PU eds,U <T)=P(min(T,U) € ds),

one has\ +Ar = Ar, therefrom we find thatgo S;)) + (9o F;) = (o). By the similar
relation (1) betweeéw and If(p, we obtain the following result.

Proposition 3.3 The process,/n ((p(éq,) —0(S,), 0(Fyp) — (p(F(;)) converges weakly in
D[0,to] to the centered continuous Gaussian process

(—Ml—/I’(Lp’oI')Mgd/\,Ml—}—/l'((p’ol')Mzd/\ - ((pol')Mz) .
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Proof Using the asymptotic representation (7) and propositi@) Bis results from the
equality

o(Fp) — 0(Fy) = —(0(Sp) — @(Sp)) + (@) — (1))

and from the Delta method (proposition A.1). ad

Finally, we will discuss about the Kaplan-Meier estimakoof F constructed on the
observations{yi,d“}?:l. Even wheng is known,F can be preferable té(p since it jumps
at eachy; for thosei with &y; = 1, wheread~, only jumps at they; for thosei with &y; =1
and dr; = 0 (hencey; = x;). We will argue that the bivariate procesﬁ(% - S F— F)
converges weakly to a continuous Gaussian proce§§@ty| for anyty such thatr(tp) > 0.
Of course we already know that this is true for the two maigimacesses. With the same
type of arguments used before, we see that the statemerd &liove if the trivariate process

_ nw
©:=n|logl —logl
logF —logF

converges weakly to a continuous Gaussian process. We KmalogF — logF has an
asymptotic martingale representation

logF (t) —logF (t) = /: h(s) dM(s) +op(n~2)

uniformly int € [0,1o], whereM is a certain square integrable martingale with respecteto th
filtration ¢ defined by

§Z :‘\/ 0 (Qillgy<s, (1— i)y <q))

andh is a measurable function bounded [xty]. Therefore we have an asymptotic repre-

sentation
_ J fdMs
@%\/ﬁ fngI s
JhdMm

but the square integrable martingalds, M- andM are not martingales with respect to
the same filtration. But since we know that each of the malgiracesses 0® converges
weakly to a centered continuous Gaussian process, then owve that the joint sequence
is tight (corollary VI.3.3 in Jacod & Shiryaev, 2003), heriteuffices to check that the
finite-dimensional distributions @ converge to the same finite-dimensional distributions
of a trivariate Gaussian process. This is achievable siach ef the martingaleMs, M
andM is the sum ofh independent identically distributed terms, each of thesa$ being
constructed from the observatiofs, Vi, ri, dui) for one individuali.
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4 Discussion

We have derived the large sample properties of the estiréatdefined as the extension of
the Rivest & Wells estimator (2001) from the context of riglehsored data to the context
of right-censored semi-competing risks data. We firstiyertbat further work is needed to
cover the case whegl (1) = 0, which occurs for the Gumbel copula.

Our approach confirm that martingales techniques are anuatietpol in the theoretical
study of survival analysis (see Aalen & al, 2009, for an expws of the use of martingale
methods in survival analysis). We used the natural and bletyition of immersion of a
filtration in a bigger one and we hope that our work will copite to the popularization of
this notion.

A first possible extension of our work is to generalize it te tase when the survival
function ofY is possibly improper, with a point mass-ate representing the proportion of
cured patients. In the simpler context of right-censoretd,dai, Tiwari and Guha (2007)
generalized the works of Rivest & Wells (2001) to this case.

A second possible extension is to allow the model to incaf@ocovariates. In the sim-
pler context of right-censored data (when only fMrC} is observed and is not censored),
a way to do so has been achieved by Braekers & Veraverbek&)280d this could be
extended to the context of semi-competing risks data. Theygse to estimate the survival
function of min(Y,C} by a Beran-type estlmaté( | z) depending on the covariatg and
then to deflnéia( | ) similarly toS¢ by usingr” (- | ) instead of the Kaplan-Meier estima-
tor I . The large sample properties of the corresponding estnﬁ@(o\ z) are then derived
with the help of empirical processes theory.

Some methods to fit a right-censored semi-competing riskdemeith an unknown
Archimedean copula have been proposed e.g. by Lakhal & 8B8)2&hd Xu & al (2010). The
drawback of the Lakhal & al approach is that it only allowsdoe-parameter Archimedean
copulas. The Xu & al model approach adopts a different modeleuchenne & al (2012)
studied the performance of another method through sinamstiSome of the results of the
present paper could help to investigate the theoreticdlystfi the large sample properties
of their approach, by using the Chen & al (2003) theory.

Methods allowing for both an unknown copula and the incaafion of covariates also
have been developed, most recently by Chen (2012).
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A Delta method in the Skorohod space

The goal of this appendix is to prove a version of the Deltahwetin the Skorohod spad#{0, 1] when the
limit process is continuous, because we do not find it in tteediure. The proof we give is essentially the
same as the proof of the Delta method for real random vasabla alternative proof consists in using the
powerful functional Delta method (van der Vaart & Wellne989 after having said that in this context, the
weak convergence iB[0,1] is equivalent to the weak convergence in the uniform sersé the modern
theory of empirical processes; this fact results from theod..7.2 in van der Vaart & Wellner (1996) and
theorem 6.6 in Billingsley (1999). All our statements arevad for stochastic processes in the Skorohod
spaceD ([0, l],Rd) which we shortly denote bip[0, 1]. Similarly we shortly denote bg[0, 1] the space of

continuous function€ ([0, 1], RY)

Lemma A.1 Let (X,) be a sequence of random variables ifOF1] which converges weakly to a random
variable X in 40, 1. Then the sequendsuRs<; [|Xn(s)||) converges weakly tsupy <1 [X(S)||.

Proof This follows from the continuity ok — sup<s1 [|X(S)|| outside a set with null measure with respect
to the law ofX. 0

Lemma A.2 Let(Z,) be a sequence of random variables ifoF1] such thasupjgtglﬂzn(t)ﬂ =op(1) and
the sequence,/MZ,) converges weakly to a random variable W if9]. Let R RY — R be a function such
that R(z) = o(||z]|) when z— 0. Thensupy<;<1 |vAR(Zn(t))| = op(1).

Proof One has

[VAR(Za(0)] = [[VAZa®)[[(Zn(0)) < sup [|VAZa(S)|[h(Za(0))

whereh is the function defined bj(z) = |R(2)|/||Z|| if z# 0 andh(0) = 0, which is continuous at 0. The
sequencesupy<s< [[v/NZa(s)||) converges weakly to sgps<1 [[W(s)|| by lemma A.1, hence, owing to Slut-
sky’s theorem, it suffices to show that gup.; h(Za(t)) = op(1), but this follows from the continuity df at
0. o g

Proposition A.1 (Delta method)Let (X,) be a sequence of random variables ifd[1] and 6 a function be-
longing to D0, 1]. Assume thasupy.<1 || Xa(t) — 8(t)|| = op(1) and that the sequenggn(X, — 6) converges
weakly in 00, 1] to a random variable G in (,1]. Let g: RY — RK be a differentiable function. Denote by
Ry the remainder in the first order Taylor expansion of gatthat is, R,(y) = g(p +Y) — g(1) — g (1)(Y).

If SURycr1|[Roc ()| = O(I]). then yAi(g(%) — 9(8)) = ¢'(8) y/Ai(Xn — 8) + 0p(1) uniformly on[0,1],
therefore,/n(g(Xn) —g(8)) converges weakly td(9)G in D[0, 1].

Proof One has

[VA(90%) - 9(8)) ~ 4/ (8)VAi(X, - 0)]| < VAiR(X - )
whereR(y) = SUR<t<1||Rat) (¥)

|, hence the result follows from the preceding lemma. O

Denoting byH the limiting process in the above proposition, its variafisection isEH(s)H(t) =
DG(S)C(s,t)D@(t) whereD, is the matrix ofg’(z) andC(s,t) = EG(s)G(t)" is the variance function db.
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