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Estimating the survival functions in
a censored semi-competing risks model

Stéphane LAURENT

December 2, 2012

Abstract Rivest & Wells (2001) proposed estimators of the marginal survival functions
in a right-censored model that assumes an Archimedean copula between the survival time
and the censoring time. We study the extension of these estimators to the context of right-
censored semi-competing risks data with an independent second level censoring time. We
intensively use martingale techniques to derive their large sample properties under mild
assumptions on the true distribution of the data. As compared to the simpler context of
right-censored data, a primary difference is the need to enlarge the filtrations with respect to
which we use the Doob-Meyer decompositions of counting processes.

Mathematics Subject Classification (2000)62N01· 62N02· 60G44

Keywords Archimedean copula· Dependent censoring· Immersion of filtration·
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1 Introduction

Rivest & Wells (2001) addressed the problem of the estimation of the survival functions
of two failure timesT andU when T is subject to right-censoring viaU and when as-
suming a known Archimedean copula for the joint distribution of T andU . It is easy to
extend the derivation of their estimators to the context ofright-censored semi-competing
risks data. The failure timesT andU are termed as semi-competing risks when the avail-
able data are some repeated observations of min(T,U),U). Right-censored semi-competing
risks data is then the situation when the semi-competing risks T and U are subject to
right-censoring via another failure timeV and the data are some repeated observations of
(min(T,U,V),min(U,V),1l{T≤U,T≤V},1l{U≤V}). For instance,T,U andV could respectively
represent the time to first relapse of a disease, the time to death, and the time to lost to
follow-up of an individual under medical treatment.

When assuming a one-dimensional parametric family of Archimedean copulas for the
law of (T,U) and an independent right-censoring, methods to estimate the copula parameter
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HEC-Management School of University of Liège, Rue Louvrex14, 4000 Liège, Belgium.



2 Stéphane LAURENT

and the marginal survival function ofT have been proposed by Fine & al (2001), Jiang & al
(2005), Lakhal & al (2008). These methods consist in plugging-in an estimate of the copula
parameter in an estimate of the marginal function ofT depending on the copula parameter,
and Lakhal & al (2008) used the above mentioned extension of the Rivest & Wells estimator.

We will study the large sample properties of these Rivest & Wells estimators extended to
the context of independent right-censored semi-competingrisks. Mathematically, this could
appear to be only a slight generalization of the case treatedby Rivest & Wells (2001), since
we will partly follow their proofs, which intensively use the martingale techniques for the
statistical analysis of counting processes. However, a substantial difference arises with the
martingale approach as compared to the case treated by Rivest & Wells: we will need to
enlarge the usual filtrations for the Doob-Meyer decompositions of the encountered counting
processes (namely, we will use theimmersionof a filtration in a bigger one). Morever, the
proofs given by Rivest & Wells (2001) often refer to other proofs in the book of Fleming &
Harrington (1991), whereas the one we provide is self-contained, and a point in the proof
of their theorem 2 is not clear: it seems to justify that a process is Gaussian by the fact
that it is the sum of two Gaussian processes. We will use a bivariate martingale central limit
theorem to give a correct proof of our extension of this theorem to the context of independent
right-censored semi-competing risks. In addition, we alsodiscuss about the joint asymptotic
behaviour of the Rivest & Wells estimator ofT with the Kaplan-Meier estimator ofU .

To be more precise, we now specify the statistical model under study and we introduce
our main notations. The observations are the realizations

{

xi ,yi ,δTi,δUi
}n

i=1 of n indepen-
dent replicates of a random four-tuple(X,Y,∆T ,∆U ) defined as follows. Consider three pos-
itive random variablesT, U , V, which we respectively interpret as, for some individual,
the time to some nonterminal event of interest (e.g. time until the first relapse of a certain
disease), the censoring time of type 1 (e.g. the time until death), and the censoring time
of type 2 (e.g. the time until lost to follow-up). Then the observable random variables are
X = min(T,U,V), Y = min(U,V), and the censoring indicators

{

∆T = 1l{T≤U,T≤V} (T is not censored)
∆U = 1l{U≤V} (type 1 censoring occurs before type 2 censoring).

We will always assume thatV is independent of(T,U) and 0< P(T ≤U)< 1. One goal of
this paper is to provide consistent (in a sense to be precisedlater) estimators of the survival
functions ofT andU when assuming that the dependence betweenT andU is given by
a survival Archimedean copulaCφ with a strict generator denoted byφ. That means that
φ : [0,1] → [0,∞] is a continuous strictly decreasing convex function satisfying φ(0) = ∞
andφ(1) = 0, and the joint survival function ofT andU is given by

P(T > x,U > y) = Cφ
(

S(x),F(y)
)

whereSandF respectively are the marginal survival functions ofT andU , and the copula
Cφ : [0,1]2 → [0,1] is given by

Cφ(u,v) = φ−1(φ(u)+φ(v)
)

.

The survival function of the independent censoringV is denoted byG. We will focus
on the case whenS andF are continuous, but no assumption is made aboutG. Additional
assumptions on the generatorφ will be given later; these assumptions will always be ful-
filled for the Clayton and Frank families of Archimedean copulas. We will define and study
estimatorsŜφ andF̂φ of SandF that coincide with the Rivest & Wells estimators in the par-
ticular case when there is no type 2 censoring, which corresponds to the case whenG ≡ 1
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in our setting, i.e. whenV = ∞ almost surely. Similarly to Rivest & Wells (2001), we will
also study the large sample properties ofŜφ andF̂φ without assuming that the distribution
of (T,U) is given by the survival Archimedean copulaCφ. In addition we will study the
joint large sample properties ofŜφ with the Kaplan-Meier estimator ofF constructed on the
observations

{

yi ,δUi
}n

i=1.
The estimators and the framework are presented in section 2.These estimators are writ-

ten as stochastic integrals with respect to counting processes. We will fix a filtration and
provide the corresponding intensity processes of these counting processes, i.e. their Doob-
Meyer decomposition. The large sample properties of the estimators are the object of section
3. We assume the reader to be familiar with the basic martingale framework in the theory
of counting processes; see e.g. chapters 1 and 2 in Fleming & Harrington (1991). Never-
theless we hope that an intuitive overview of these notions is sufficient for understanding
our approach. We will use twice the following easy corollaryto Lenglart’s inequality; we
refer to Fleming & Harrington (1991) or Karatzas & Shreve (1988) for the statement of this
inequality and we left the proof of this corollary to the reader.

Corollary to Lenglart’s inequality. Let (Mn) be a sequence of local square integrable
martingales. If〈Mn〉(t) =OP(n), thensup0≤s≤t

∣

∣Mn(s)
∣

∣=OP(
√

n). The same statement with
oP instead of OP also holds true.

2 Estimators and martingale tools

We denote byΓ the survival function of min(T,U). Remark thatV is independent of min(T,U)
andX equals min(T,U) if and only if ∆T =1 or∆U = 1, therefore the Kaplan-Meier etimator
Γ̂ of Γ and the Kaplan-Meier estimator̂G of G are available as statistics of the observations
{xi ,δTi,δUi}n

i=1. Similarly to Rivest & Wells (2001), we seek estimatorsŜφ and F̂φ which
are right-continuous step-functions satisfyingŜ(0) = F̂(0) = 1 and

φ−1(φ
(

Ŝφ(t)
)

+φ
(

F̂φ(t)
))

= Γ̂ (t) when 0≤ t ≤ x̃n := max(xi ;1≤ i ≤ n), (1)

and we also require that̂Sφ jumps atxi whenδTi = 1 and thatF̂φ jumps atxi whenδTi = 0
andδUi = 1. Assuming no tied values, relation (1) implies that the sizes of the jumps of
φ◦ Ŝφ andφ◦ F̂φ must equal the sizes of the jumps ofφ◦ Γ̂ , therefore the unique estimators
satisfying the desiderata are given by

φ
(

Ŝφ(t)
)

=
n

∑
i=1

1l{xi≤t}∆(φ◦ Γ̂ )(xi)δTi

and

φ
(

F̂φ(t)
)

=
n

∑
i=1

1l{xi≤t}∆(φ◦ Γ̂ )(xi)(1−δTi)δUi

where∆(φ◦ Γ̂ )(s) = (φ◦ Γ̂ )(s)− (φ◦ Γ̂ -)(s) is the size of the jump ofφ◦ Γ̂ ats. Note that
Ŝφ andF̂φ are Kaplan-Meier estimators whenφ = − log. It is possible that̂Γ (x̃n) = 0, and
in this case either̂Sφ(x̃n) = 0 or F̂φ(x̃n) = 0. With counting processes notations,

Ŝφ(t)=φ−1
[

∫ t

0
1l{s≤x̃n}∆(φ◦ Γ̂ )(s)dN̄S(s)

]

and F̂φ(t)=φ−1
[

∫ t

0
1l{s≤x̃n}∆(φ◦ Γ̂ )(s)dN̄F (s)

]

whereN̄S andN̄F are the counting processes defined byN̄S(t) =∑n
i=1 δTi1l{xi≤t} andN̄F (t) =

∑n
i=1(1−δTi)δUi1l{xi≤t}.
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We will focus onŜφ. The analogous asymptotic results forF̂φ will be mentioned at the
end of section 3.

As a first step to the asymptotic study ofŜφ, we give in lemma 2.1 below another de-
creasing right-continuous step functionŜ∗φ starting at 1 and which is asymptotically equiv-

alent toŜφ whatever the distribution of(T,U). The advantage of̂S∗φ is thatφ◦ Ŝ∗φ is written
as a stochastic integral with respect toN̄S of a left-continuous process. From now on, we de-
note byπ= Γ G the survival function ofX = min(T,U,V) and byπ̂ the empirical survival
function of thexi . Remark that the equalitŷπ = Γ̂ Ĝ can fail in the presence of ties in the
jump times ofΓ̂ andĜ, but it almost surely holds since the law of min(T,U) is continuous
by assumption. Throughout the sequel, we will implicitly assume that there are no such tied
values.

Lemma 2.1 Let Ŝ∗φ be the right-continuous step function defined by

(φ◦ Ŝ∗φ)(t) =−1
n

∫ t

0
1l{π̂-(s)>0}

φ′(Γ̂ -(s)
)

Ĝ-(s)
dN̄S(s),

and let t0 > 0 be such thatπ(t0) > 0. If φ is twice differentiable with continous second

derivative, thensup0≤t≤t0

∣

∣

∣
(φ◦ Ŝφ)(t)− (φ◦ Ŝ∗φ)(t)

∣

∣

∣
= OP(n−1).

Proof First note thatΓ̂ -(s)− Γ̂ (s) = 1
nĜ(s)

for anys∈ {ti | δTi = 1} sinceĜ(s)Γ̂ -(s) = π̂-(s)

andĜ(s)Γ̂ (s) = π̂(s). Therefore, for such as≤ t0, by Taylor expansion, the inequality
∣

∣

∣

∣

∆(φ◦ Γ̂ )(s)+
1

nĜ-(s)
φ′ (Γ̂ -(s)

)

∣

∣

∣

∣

≤ sup
π(t0)≤s≤1

∣

∣φ′′(s)
∣

∣

4
(

nπ(t0)
)2

holds on the event
{

min
(

Γ̂ (s),Ĝ(s)
)

> π(t0)/2 for all s∈ [0, t0]
}

, whose probability con-
verges to 1 as the sample size increases. The result follows from the obvious inequality
N̄S(t0)≤ n. ⊓⊔

Remark that

(φ◦ Ŝ∗φ)(t) =−
∫ t

0
1l{π̂-(s)>0}Γ̂ -(s)φ′(Γ̂ -(s)

)

dΛ̂ (s) (2)

whereΛ̂ = 1
n

∫ dN̄S
π̂- is the Nelson-Aalen estimator of the cumulativecrude hazard rateof T

subject to be censored byY = min(U,V), which is conceptually given by

Λ (ds) =
P(T ∈ ds,T ≤ min(U,V))

P(min(T,U,V)≥ s)
,

but sinceP(T ∈ ds,T ≤V | T ≤U) = P(V ≥ s)P(T ∈ ds | T ≤U), we see that

Λ (ds) =
P(T ∈ ds,T ≤U)

P(T ≥ s,U ≥ s)

is also the crude hazard rate ofT subject to be censored byU . It is possible that
∫

dΛ < ∞,
for example when the joint law ofT andU is given by an Archimedean Clayton copula
with generatorx 7→ x−1 −1 acting on the marginal survival functionsS(t) = (t +1)−1 and
F(t) = exp(−t).
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From equality (2), it is expected thatφ◦ Ŝ∗φ, and then alsoφ ◦ Ŝφ owing to lemma 2.1,
converges toφ◦S∗φ given by

(φ◦S∗φ)(t) =
∫ t

0
ψ
(

Γ (s)
)

dΛ (s), (3)

where, from now on, we denote byψ the positive functionψ(x) = −xφ′(x), in accordance
with the notations of Rivest & Wells (2001). The decreasing functionS∗φ is not always a
proper survival function: consider for instance our preceding example of the integrable crude
hazard rateΛ , and takeφ =− log, so thatS∗φ = exp(−Λ ) andS∗φ(∞)> 0. It is easy to check
that S∗φ = S whenS is absolutely continuous and when the joint law of(T,U) is given by
the Archimedean copulaCφ acting on the marginal survival functions with a differentiable

generatorφ, by knowing that in that case,Λ (ds) = λ (s)dswith λ (t) =− 1
Γ (t)

φ′(S(t))
φ′(Γ (t))S

′(t), as
claimed by Rivest & Wells (2001). The interesting proposition below is a copy of proposition
2 in Rivest & Wells (2001).

Proposition 2.1 If φ′
1/φ′

2 is increasing on(0,1) then S∗φ2
≤ S∗φ1

.

The asymptotic behavior of(φ◦ Ŝφ)− (φ◦S∗φ) will be rigorously studied with the help

of martingale techniques. Now, first of all, we seek a filtration with respect to whichφ◦ Ŝ∗φ
has a simple Doob-Meyer decomposition. When considering the filtration(F̄t) defined by

F̄t =
n
∨

i=1

∨

0≤s≤t

σ
(

δTi1l{xi≤s},(1−δTi)1l{xi≤s}
)

,

it is known (Fleming & Harrington 1991) that the counting processN̄S has the Doob-Meyer
decomposition̄NS= M̄S+Ā whereM̄S is a square integrable martingale and the compensator
Ā is the (increasing and predictable) process given by

Ā(t) = n
∫ t

0
π̂-(s)dΛ (s) (4)

whereΛ is the cumulative crude hazard rate introduced above. In ourstudy, the compensator
Ā is a continuous process since we assume thatT has a continuous distribution.

However the filtrationF̄ is not adequate for our study, since, for example, the stochastic
processeŝΓ - andĜ- are not adapted toF̄ , thereforeφ ◦ Ŝ∗φ is not written as a stochastic
integral with respect tōNS of a predictable process, while being left-continuous, because it
is not adapted toF̄ . From now we will consider the bigger filtrationH̄ = (H̄t) defined by

H̄t =
n
∨

i=1

∨

0≤s≤t

σ
(

δTi1l{xi≤s},(1−δTi)1l{xi≤s},δUi1l{xi≤s},(1−δUi)1l{xi≤s}
)

as the underlying filtration. In particular,̂Γ - andĜ- are predictable processes with respect
to H̄ . But we will keep the Doob-Meyer decomposition̄NS= M̄S+ Ā of N̄S because, as we
will now see (lemma 2.4), it is actually the same w.r.t. either F̄ or H̄ , that is,M̄S remains
a martingale with respect toH̄ . It would be sufficient to prove this fact by deriving the
compensator of̄NS w.r.t. H̄ in the same way as one derives its compensator w.r.t.F̄ , as
done by Fleming & Harrington (1991). But it is more instructive to prove that the filtration
F̄ is immersedin the filtration H̄ , which is the statement of lemma 2.4. We say that a
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filtration F is immersed in a filtrationG and we writeF
m⊂ G if all F -martingales areG -

martingales. This property is also known in the literature as the(H)-hypothesis. We refer e.g.
to Émery & Schachermayer (2001) or Mansuy & Yor (2006) and references given therein
for more information on the notion of immersion, which is very useful in many aspects of
stochastic calculus, but which seems to be rather unfamiliarto statisticians. The notion of
immersion already appeared in the literature on survival analysis without being explicitly
mentioned: it could be used to formulate the property (M) in Jacobsen (1989) about the
concept of independent right-censoring. It is more popularin the literature on credit risk
models: it explicitly appears e.g. in the papers by Gapeev & Jeanblanc (2008) and Bielecki,
Jeanblanc & Rutkowski (2008).

We have claimed just above that it is more instructive to prove the immersion ofF̄ in
H̄ than just show that the compensator ofN̄S in F̄ is the same as its compensator in̄H
by a direct calculation. Indeed, the immersion is a clean statement from which the stability
of the compensator is a direct obvious consequence, hence itis a better explanation of why
the compensator is stable. Moreover the immersion ofF̄ in H̄ will be derived from lemma
2.3 which will be also used to derive another immersion property (lemma 2.5). Lemma 2.2
below will allow us to restrict our attention to the casen= 1.

Lemma 2.2 Let F 1 andG 1 be two filtrations on some probability space and letF 2 and

G 2 be two filtrations on a possibly other probability space. IfF 1 m⊂ G 1 andF 2 m⊂ G 2 then

F 1⊗F 2 m⊂ G 1⊗G 2.

Proof See lemma 2 ińEmery & Schachermayer (2001). ⊓⊔

Owing to this lemma, in order to prove that̄F
m⊂ H̄ it is sufficient to prove thatF

m⊂H
where the filtrationsF andH are defined by

Ft =
∨

0≤s≤t

σ
(

∆T1l{X≤s},(1−∆T)1l{X≤s}
)

and
Ht =

∨

0≤s≤t

σ
(

∆T1l{X≤s},(1−∆T)1l{X≤s},∆U 1l{X≤s},(1−∆U)1l{X≤s}
)

.

Note that the event{X > t} is an atom of bothFt andHt and on the event{X ≤ t} one has
Ft = F∞ andHt = H∞.

Lemma 2.3 Let G be any filtration containingF and such that for each t≥ 0 the event
{X > t} is an atom ofGt andGt ⊃ F∞ on the event{X ≤ t}. ThenF is immersed inG .

Proof Under these assumptions, for every random variableV ∈ L1(F∞) and everyt ≥ 0,

E[V | Ft ] = E[V | Gt ] = E[V | X > t]1l{X>t}+V1l{X≤t}.

The equalityE[V | Ft ] = E[V | Gt ] means thatF∞ is conditionally independent ofGt given

Ft , and this equality holds for everyt ≥ 0, which is equivalent toF
m⊂ G by lemma 5 in

Émery & Schachermayer (2001). ⊓⊔

Lemma 2.4 The filtration F̄ is immersed in the filtrationH̄ . Consequently the Doob-
Meyer decomposition of̄NS with respect toH̄ is the same as its Doob-Meyer decomposition
with respect toF̄ .
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Proof The immersion stems from lemma 2.2 and lemma 2.3, and the consequence obviously
follows. ⊓⊔

The quadratic variation〈M̄S〉 of the square integrable martingalēMS will be needed. It
equals the compensator̄A since this one is continuous; this fact is the well-known particular
case whenN1 = N2 = N in the following theorem that we will need and that we prove
because we do not find it in the literature.

Theorem 2.1 Let N1 and N2 be counting processes and their Doob-Meyer decompositions
N1 = M1 +A1 and N2 = M2 +A2 with respect to some right-continuous filtration. If the
compensators A1 and A2 are continuous, then the covariation process〈M1,M2〉 equals the
compensator of the counting process N which counts how many times N1 and N2 have si-
multaneous jumps, that is, N is defined by N(t) = ∑s≤t ∆N1(s)∆N2(s).

Proof The proof we give is an adaptation of the proof of theorem 2.5.1 in Fleming & Har-
rington (1991). (the particular case whenN1 = N2 = N). The local (square integrable) mar-
tingalesM1 etM2 are right-continuous processes of bounded variation, hence the integration
by parts formula for Lebesgue-Stieltjes integrals yields

M1(t)M2(t) =
∫ t

0
M-

1(s)dM2(s)+
∫ t

0
M-

2(s)dM1(s)+∑
s≤t

∆M1(s)∆M2(s).

We have∆Mi(s) = ∆Ni(s) sinceA1 andA2 are continuous, therefore∑s≤t ∆M1(s)∆M2(s) =
N(t). Hence, denoting byN = M+A the Doob-Meyer decomposition ofN, one has

M1(t)M2(t)−A(t) = M(t)+
∫ t

0
M-

1(s)dM2(s)+
∫ t

0
M-

2(s)dM1(s)

Each processM-
1 andM-

2 is adapted, left-continuous and has right-hand limits, andis there-
fore locally bounded and predictable so that each process

∫

M-
1dM2 and

∫

M-
2 dM1 is a local

(square integrable) martingale. Finally the right-hand side of the equality above is a right-
continuous local martingale, thereby showing thatA= 〈M1,M2〉. ⊓⊔

Precisely, we will need to apply this theorem with the counting process̄NS which counts
the jumps ofŜφ and the counting process̄NΓ which counts the jumps of the Kaplan-Meier
estimatorΓ̂ of Γ , that is,N̄Γ (t) = ∑n

i=1 η i1l{xi≤t} whereη i = min(1,δTi +δUi). When con-
sidering the filtrationḠ defined by

Ḡt =
n
∨

i=1

∨

0≤s≤t

σ(η i1l{xi≤s},(1−η i)1l{xi≤s}),

it is known thatN̄Γ has the Doob-Meyer decomposition̄NΓ = M̄Γ + ĀΓ with ĀΓ (t) =
n
∫ t

0 π̂-(s)dΛΓ (s) whereΛΓ (ds) = P(min(T,U) ∈ ds)/P(min(T,U) ≥ s), and in particular
ΛΓ (ds)= λΓ (s)dswith λΓ (s)=−Γ ′(s)/Γ (s)whenΓ is absolutely continuous. In our study
we do not work in the filtrationḠ but in the filtrationH̄ previously introduced, but that does
not change the Doob-Meyer decomposition, according to the following lemma.

Lemma 2.5 The filtrationḠ is immersed in the filtrationH̄ , and consequently the Doob-
Meyer decomposition of̄NΓ is the same with respect to either̄G or H̄ .

Proof Similar to the proof of lemma 2.4. ⊓⊔
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Note that the compensator̄AΓ is a continuous process since min(T,U) has a continuous
distribution by assumption. Therefore〈M̄Γ 〉 = ĀΓ . In addition to the quadratic variation
processes〈M̄S〉 and〈M̄Γ 〉 we will also need the covariation process〈M̄Γ ,M̄S〉 (with respect
to the big filtrationH̄ ).

Lemma 2.6 The covariation process〈M̄Γ ,M̄S〉 of the local square integrableH̄ -martingales
M̄Γ andM̄S equals the variation process〈M̄S〉 of M̄S.

Proof This straightforwardly stems from theorem 2.1 since the process which counts the
simultaneous jumps of̄NΓ andN̄S is nothing butN̄S. ⊓⊔

Now we are ready to turn to further preliminaries for the asymptotic study ofŜφ. The
final aim of this section is to provide the asymptotic representation ofφ◦ Ŝφ −φ◦S∗φ given
in proposition 2.2. It is the cornerstone of the next section. The Doob-Meyer decomposition
of N̄S yields

(φ◦ Ŝ∗φ)(t) =−1
n

∫ t

0
1l{π̂-(s)>0}

φ′(Γ̂ -(s)
)

Ĝ-(s)
dM̄S(s)+

∫ t

0
1l{π̂-(s)>0}ψ

(

Γ̂ -(s)
)

dΛ (s). (5)

Thus,φ◦ Ŝ∗φ is a local submartingale: the first term in (5) is a local square integrable martin-

gale since
φ′
(

Γ̂ -(s)
)

Ĝ-(s)
1l{π̂-(s)>0} defines a locally bounded predictable process, and the second

term is an increasing predictable process. Lemma below allows us to replace the (local) mar-
tingale part ofφ◦ Ŝ∗φ (the first term of (5)) by a more convenient process for the asymptotic
study.

Lemma 2.7 If φ is twice differentiable with continuous second derivative, then, for any t0
such thatπ(t0)> 0,

sup
0≤t≤t0

∣

∣

∣

∣

∣

∫ t

0
1l{π̂-(s)>0}

φ′(Γ̂ -(s)
)

Ĝ-(s)
dM̄S(s)−

∫ t

0

φ′(Γ (s)
)

G(s)
dM̄S(s)

∣

∣

∣

∣

∣

= oP(
√

n).

Proof W.r.t. the underlying filtrationH̄ , the process̄H given by

H̄(s) = 1l{π̂-(s)>0}
φ′(Γ̂ -(s)

)

Ĝ-(s)
− φ′(Γ (s)

)

G(s)

starts at 0, is adapted and left-continuous with finite righthand limits, hence it is a locally
bounded predictable process, and therefore the processŪ =

∫

H̄ dM̄S is a local square inte-
grable martingale whose variation process is given by

〈Ū〉(t) =
∫ t

0
H̄2(s)d〈M̄S〉(s) = n

∫ t

0
H̄2(s)π̂-(s)dΛ (s).

SinceΓ (t0) > 0 andG(t0) > 0, and since botĥΓ -(s)−Γ (s) and Ĝ-(s)−G(s) areoP(1)
uniformly in s ∈ [0, t0], then H̄2(s) is itself oP(1) uniformly in t ∈ [0, t0]. Consequently
〈Ū〉(t0) = oP(n), hence the result follows from the corollary to Lenglart’s inequality. ⊓⊔

Now we state and prove the final result of this section, which is the main tool for the
next section. Recall thatφ◦S∗φ is defined by (3).
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Proposition 2.2 If φ is twice differentiable with continuous second derivative, then, for any
t0 such thatπ(t0)> 0,

(φ◦Ŝφ)(t)−(φ◦S∗φ)(t)=−1
n

∫ t

0

φ′(Γ (s)
)

G(s)
dM̄S(s)+

∫ t

0
ψ′(Γ (s)

)(

Γ̂ -(s)−Γ (s)
)

dΛ (s)+oP(n
− 1

2 )

uniformly in t∈ [0, t0].

Proof By lemma 2.1 and lemma 2.7, it suffices to show that

∫ t

0
1l{π̂-(s)>0}

(

ψ
(

Γ̂ -(s)
)

−ψ
(

Γ (s)
))

dΛ (s)=
∫ t

0
ψ′(Γ (s)

)(

Γ̂ -(s)−Γ̂ (s)
)

dΛ (s)+oP(n
− 1

2 )

uniformly in t ∈ [0, t0]. Sinceψ′ is uniformly continuous on compact subsets of(0,1], this

follows from a Taylor expansion ofψ and from the fact that̂Γ -(s)−Γ (s) = OP(n−
1
2 ) uni-

formly in s∈ [0, t0]. ⊓⊔

Remark 2.1In case whenP(V = ∞) = 1 andφ = − log then Ŝ- log is the Kaplan-Meier
estimator. In that case the proposition above shows that

logŜ- log(t)− logΛ (t) =−1
n

∫ t

0

1
π(s)

dM̄S(s)+oP(n
− 1

2 )

uniformly in t ∈ [0, t0]. Also note that this still holds when̂S- log is replaced by its left-
continuous version̂S-

- log sinceŜ-
- log(t) = Ŝ- log(t)+OP(n−1) uniformly for t ∈ [0, t0].

As a consequence of remark 2.1 and lemma 2.5,

logΓ̂ -(t)− logΓ (t) =−1
n

∫ t

0

1
π(s)

dM̄Γ (s)+oP(n
− 1

2 ) (6)

uniformly for t ∈ [0, t0], whereM̄Γ is the (square integrable) martingale part in the Doob-
Meyer decomposition̄NΓ = M̄Γ + ĀΓ with respect to the filtrationH̄ given above lemma
2.5.

In the next section we will study the joint asymptotic behavior of Ŝφ andΓ̂ -. Then the
joint asymptotic behavior of̂Sφ andF̂φ will derive from equality 1. We will also study the
joint asymptotic behavior of̂Sφ and the Kaplan-Meier estimator̂F of F which is available
as a statistic of the observations{yi ,δUi}n

i=1.

3 Large sample properties

We fix some assumptions throughout this section. We considert0 > 0 such thatπ(t0) > 0,
we assume thatφ is twice differentiable with continuous second derivativeand thatφ′ is
bounded away from 0, that is,φ′(1) < 0. This last assumption will serve us to derive the
asymptotic behavior of̂Sφ from the one ofφ◦ Ŝφ. It is met by numerous common families
of Archimedean copulas, such as Clayton, Frank, or interiorpower Frank families, but not
by the Gumbel family (these families are defined in Nelsen, 1999).

We start by proving the consistency ofŜφ. Recall thatS∗φ = S and when the model is
well-specified, that is, when the survival copula of(T,U) is the Archimedean copulaCφ.
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Theorem 3.1 The processφ◦ Ŝφ is a uniformly consistent estimate of the functionφ◦S∗φ on
[0, t0]. More precisely,

sup
0≤t≤t0

∣

∣(φ◦ Ŝφ)(t)− (φ◦S∗φ)(t)
∣

∣= OP(n
− 1

2 ).

Consequentlysup0≤t≤t0

∣

∣

∣
Ŝφ(t)−S∗φ(t)

∣

∣

∣
= OP(n−

1
2 ).

Proof The consequence easily follows from the fact thatφ−1 is Lipschitz under the assump-
tion thatφ′ is bounded away from 0. To prove the first assertion, it suffices, in view of propo-

sition 2.2, to prove that both1n
∫ t

0
φ′
(

Γ (s)
)

G(s) dM̄S(s) and
∫ t

0 ψ′(Γ (s)
)(

Γ̂ -(s)−Γ (s)
)

dΛ (s) are

OP(n−
1
2 ) uniformly in t ∈ [0, t0]. This is clear for the second term becauseΓ̂ -(s)−Γ (s) is

OP(n−
1
2 ) uniformly ins∈ [0, t0]. For the first term, it suffices to show that sup0≤s≤t0 |M̄S(s)|=

OP(
√

n), but this results from the corollary to Lenglart’s inequality since it is clear that
〈M̄S〉(t0) = OP(n). ⊓⊔

Our next underlying goal is to prove that the processes
√

n(φ◦Ŝφ−φ◦S∗φ) and
√

n(logΓ̂ -−
logΓ ) jointly converges weakly to an explicit continuous centered Gaussian martingale for
the Skorohod topology onD[0, t0]. Here and hereafter, we shortly denote byD[0, t0] the Sko-
rohod spaceD

(

[0, t0],Rd
)

where the dimensiond is clearly understood from the context. By
proposition 2.2, we can equivalently replace

√
n(φ◦ Ŝφ −φ◦S∗φ) by

− 1√
n

∫ t

0

φ′(Γ (s)
)

G(s)
dM̄S(s)+

√
n
∫ t

0
ψ′(Γ (s)

)(

Γ̂ -(s)−Γ (s)
)

dΛ (s). (7)

We putW̄(t) =
∫ t

0
φ′
(

Γ (s)
)

G(s) dM̄S(s). Hence the key step is to study the joint asymptotic distri-

bution ofn−
1
2W̄ and

√
n(logΓ̂ - − logΓ ), which will be given in proposition 3.1. Note that

we can replace loĝΓ - − logΓ by its asymptotic martingale representation (6). The tool we
will use is the following version of the martingale central limit theorem (see Ethier & Kurtz,
1986).

Martingale central limit theorem. For each n≥ 0, let U(n)
1 , . . ., U(n)

d be d (cdlg) lo-
cal square integrable martingales w.r.t. some filtrationF (n) satisfying the usual conditions

(complete and right-continuous) and form the d-variate martingale U(n) = (U (n)
1 , . . . ,U (n)

d ).
Assume that the variation processes〈U (n)〉 are continuous. Let U∞ = (U∞

1 , . . . ,U∞
d ) be a

continuous d-variate centered Gaussian martingale and t0 > 0. If 〈U (n)〉(t) P→〈U (∞)〉(t) for

all t ∈ (0, t0) andE
[

sups≤t0

∣

∣∆U (n)(s)
∣

∣

2
]

→ 0, where| · | denotes the Euclidean norm, then

the sequence(U (n)) converges weakly to U(∞) in D[0, t0].

This theorem is often used in the following context. We have counting processesN(n)
j ,

each having Doob-Meyer decompositionN(n)
j = M(n)

j +A(n)
j whereM(n)

j is a local square

integrable martingale and the compensatorA(n)
j is continuous, and we consider the local

square integrable martingalesU (n)
j (t) =

∫ t
0 H(n)

j (s)dM(n)
j (s) for some given predictable lo-

cally bounded processesH(n)
j . In this case,〈U (n)

j 〉(t) = ∫ t
0 (H

(n)
j (s))

2
dA(n)

j (s) and the jumps

of U (n)
j are theH(n)

j (τi) where theτi are the jumping times of the counting processN(n)
j . In
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this context, the conditionE
[

sups≤t0

∣

∣∆U (n)(s)
∣

∣

2
]

→ 0 occurs whenever theH(n)
j are uni-

formly bounded inn for eachj.
By applying the martingale central limit theorem we easily get

1√
n
(M̄S,M̄Γ ) G= (G1,G2) in D[0, t0],

whereG is a continuous centered Gaussian martingale withEG1(t)2 = 〈G1〉(t) =
∫ t

0 πdΛ ,

EG2(t)2 = 〈G2〉(t) =
∫ t

0 πdΛΓ andEG1(s)G2(t) = 〈G1,G2〉(s∧ t) =
∫ min(s,t)

0 πdΛ . Then
we can heuristically claim that
(

n−
1
2W̄,n−

1
2

∫

1
π

dM̄Γ

)

 (M1,M2) :=

(

∫ φ′ ◦Γ
G

dG1,
∫

1
π

dG2

)

in D[0, t0], (8)

which yield proposition 3.1 since loĝΓ -(t)− logΓ (t)≈−1
n

∫ t
0

1
π(s) dM̄Γ (s) in the sense of the

asymptotic martingale representation (6). We will rigorously prove (8) with the martingale
central limit theorem. Lemma 3.1 below is a preliminary step.

Lemma 3.1 The process n−
1
2W̄ converges weakly in D[0, t0] to the centered Gaussian mar-

tingaleM1 whose variance function V1 is given by

V1(t) =
∫ t

0

ψ (Γ (s))2

π(s)
dΛ (s).

Proof It is easy to check that〈M1〉=V1. Now we apply the martingale central limit theorem.

The processn−
1
2 H̄ on the interval(0, t0) whereH̄ is given by

H̄(s) =
φ′(Γ (s)

)

G(s)
=−ψ (Γ (s))

π(s)

is predictable since it is deterministic, and it is bounded.Therefore the process̄U := n−
1
2W̄

is a square integrable martingale whose variation process〈Ū〉 is given by

〈Ū〉(t) = 1
n

∫ t

0
H̄2(s)d〈M̄S〉(s) =

∫ t

0
H̄2(s)π̂-(s)dΛ (s),

and〈Ū〉(t) goes toV1(t) in probability since

sup
0≤s≤t0

∣

∣

∣

∣

∣

H̄2(s)π̂-(s)− ψ (Γ (s))2

π(s)

∣

∣

∣

∣

∣

≤
maxΓ (t0)≤x≤1

{

ψ(x)2
}

π(t0)
sup

0≤s≤t0

∣

∣

∣

∣

π̂-(s)
π(s)

−1

∣

∣

∣

∣

= oP(1)

The other conditionE
[

sups≤t

∣

∣∆Ū(s)
∣

∣

2
]

→ 0 required by the martingale central limit theo-

rem obviously follows from the boundedness ofH̄. ⊓⊔

Proposition 3.1 The bivariate process
√

n
(

n−1W̄(t), logΓ̂ -(t)− logΓ (t)
)

converges weakly in D[0, t0] to the centered Gaussian martingale(M1,−M2) whose vari-
ance function at time t is given by:

1. v1(t) := EM1(t)2 =V1(t) (lemma 3.1);
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2. v2(t) := EM2(t)2 =
∫ t

0
1

π(s) dΛΓ (s)

3. v12(t) :=−EM1(t)M2(t) =
∫ t

0
ψ(Γ (s))

π(s) dΛ (s).

Proof The variance function of(M1,M2) is easy to derive. We have seen thatn−
1
2W̄ M1

in lemma 3.1. The weak convergence logΓ̂ - − logΓ  −M2 also results from this lemma
in view of remark 2.1 and the asymptotic martingale representation (6). Still due to (6), we
are equivalently seeking to derive the limit law of the jointprocess

Ū = (Ū1,Ū2) :=

(

n−
1
2W̄,−n−

1
2

∫

1
π

dM̄Γ

)

.

To do so, we apply the martingale central limit theorem. It remains to show that the covaria-
tion process〈Ū1,Ū2〉 of the square integrable martingales̄U1 andŪ2 goes tov12 and to check
the condition about the jumps. The covariation process〈Ū1,Ū2〉 is given by〈Ū1,Ū2〉(t) =
−∫ t

0
φ′(Γ (s))
π(s)G(s) d〈M̄S,M̄Γ 〉(s), and we know that〈M̄S,M̄Γ 〉(s) = 〈M̄S〉(s) by lemma 2.6, hence

〈Ū1,Ū2〉(t) =−
∫ t

0

φ′(Γ (s))
G(s)

π̂-(s)
π(s)

dΛ (s)
P→−

∫ t

0

φ′(Γ (s))
G(s)

dΛ (s) = v12(t).

The conditionE
[

sups≤t

∣

∣∆Ū(s)
∣

∣

2
]

→ 0 required by the martingale central limit theorem

obviously holds because of the boundedness of the jumps of
√

nŪ1 and
√

nŪ2. ⊓⊔

From now on, we denote bȳD the process defined bȳD(t) = Γ̂ -(t)−Γ (t), so that the
right member in (7) is

√
n
∫ t

0 ψ′(Γ (s)
)

D̄(s)dΛ (s).

Proposition 3.2 The tridimensional process
√

n
(

n−1W̄,
∫

(ψ′ ◦Γ )D̄dΛ , D̄
)

converges weakly
in D[0, t0] to the centered Gaussian process(M1,−

∫

(ψ′ ◦Γ )Γ M2 dΛ ,Γ M2). The variance
of the second component of the limit process at t is

V2(t) = 2
∫ t

0

∫ s

0
Γ (u)Γ (s)ψ′(Γ (u)

)

ψ′(Γ (s)
)

v2(u)dΛ (u)dΛ (s),

where v2 is defined in the preceding lemma, and the covariance betweenthe first two com-
ponents at t is

V12(t) =
∫ t

0

∫ s

0

ψ
(

Γ (u)
)

π(u)
Γ (s)ψ′(Γ (s)

)

dΛ (u)dΛ (s).

Proof First, in view of proposition 3.1 and the Delta method (proposition A.1), the process√
n(n−1W̄, D̄) converges weakly to the continuous centered Gaussian process(M1,Γ M2).

Since(α ,β) 7→ (α ,
∫ ·
0 g(β(s))ds,β) is a continuous function fromD

(

[0, t0],R2
)

toD
(

[0, t0],R3
)

wheneverg is continuous (see Prigent, 2003), the announced weak convergence stems from
the continuous mapping theorem. By Fubini’s theorem,

(

∫ t

0
Γ (s)ψ′(Γ (s)

)

M2(s)dΛ (s)

)2

=2
∫ t

0

∫ s

0
Γ (u)Γ (s)ψ′(Γ (u)

)

ψ′(Γ (s)
)

M2(u)M2(s)dΛ (u)dΛ (s),

and the expression ofV2(t) follows from Fubini’s theorem as well. The expression ofV12

also follows from Fubini’s theorem and from the expression of v12 given in proposition 3.1.
⊓⊔
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Remark 3.1 In the particular case treated by Rivest & Wells (2001), an error occurs in the expression ofV2.
This error results from the erroneous claim that the limit variance of

√
n
(

π̂-(t)−π(t)
)

is π(s∧ t)−π(s)π(t)
instead of the correct varianceπ(s∨ t)−π(s)π(t).

Theorem 3.2 below describes the asymptotic distributionalbehavior of our estimate of

interestŜφ. Recall thatS∗φ =SandΛ (ds)=− 1
Γ (s)

φ′(S(s))
φ′(Γ (s))S

′(s)ds in case when the Archimedean
copulaCφ is the survival copula of(T,U).

Theorem 3.2 The process
√

n
(

φ
(

Ŝφ
)

−φ
(

S∗φ
)

)

converges weakly in D[0, t0] to a centered

Gaussian process with variance function

V(t) =
∫ t

0

ψ (Γ (s))2

π(s)
dΛ (s)

−2
∫ t

0

∫ s

0

ψ
(

Γ (u)
)

π(u)
Γ (s)ψ′(Γ (s)

)

dΛ (u)dΛ (s)

+2
∫ t

0

∫ s

0
Γ (u)Γ (s)v2(u)ψ′(Γ (u)

)

ψ′(Γ (s)
)

dΛ (u)dΛ (s)

where v2(t) =
∫ t

0
1

π(s) dΛΓ (s).

Consequently,
√

n
(

Ŝφ −S∗φ

)

converges weakly to a centered Gaussian process with

variance function V(t)/φ′(S∗φ(t)
)2

.

Proof The consequence follows from the Delta method (propositionA.1). By the asymp-

totic representation (7) and proposition 3.2,
√

n
(

φ
(

Ŝφ
)

−φ
(

S∗φ
)

)

goes to−M1−
∫

Γ (ψ′ ◦
Γ )M2 dΛ , henceV(t) = V1(t)−2V12(t)+V2(t) with the notations of proposition 3.2 and
lemma 3.1. ⊓⊔

Remark 3.2An error occurs in Rivest & Wells (2001) where the particularcaseΓ = π is treated: the authors
giveV1(t)+2V12(t)+V2(t) instead ofV1(t)−2V12(t)+V2(t).

Now we turn to the estimator̂Fφ of F introduced in section 2. All our results forŜφ and
S∗φ admit analogous statements forF̂φ andF∗

φ , whereF∗
φ is defined similarly toS∗φ with

ΛF (ds) =
P(U ∈ ds,U ≤ min(T,V))

P(min(T,U,V)≥ s)
=

P(U ∈ ds,U ≤ T)
P(min(T,U)≥ s)

instead ofΛ . Since

P(T ∈ ds,T ≤U)+P(U ∈ ds,U ≤ T) = P(min(T,U) ∈ ds),

one hasΛ +ΛF = ΛΓ , therefrom we find that(φ◦S∗φ)+(φ◦F∗
φ ) = (φ◦Γ ). By the similar

relation (1) between̂Sφ andF̂φ, we obtain the following result.

Proposition 3.3 The process
√

n
(

φ
(

Ŝφ
)

−φ
(

S∗φ
)

,φ
(

F̂φ
)

−φ
(

F∗
φ
)

)

converges weakly in

D[0, t0] to the centered continuous Gaussian process

(

−M1−
∫

Γ (ψ′ ◦Γ )M2 dΛ ,M1+

∫

Γ (ψ′ ◦Γ )M2 dΛ − (ψ ◦Γ )M2

)

.
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Proof Using the asymptotic representation (7) and proposition 3.2, this results from the
equality

φ
(

F̂φ
)

−φ
(

F∗
φ
)

=−
(

φ(Ŝφ)−φ(S∗φ)
)

+
(

φ(Γ̂ )−φ(Γ )
)

and from the Delta method (proposition A.1). ⊓⊔

Finally, we will discuss about the Kaplan-Meier estimatorF̂ of F constructed on the
observations

{

yi ,δUi
}n

i=1. Even whenφ is known,F̂ can be preferable tôFφ since it jumps
at eachyi for thosei with δUi = 1, whereasF̂φ only jumps at theyi for thosei with δUi = 1
andδTi = 0 (henceyi = xi). We will argue that the bivariate process

√
n(Ŝφ −S∗φ, F̂ −F)

converges weakly to a continuous Gaussian process onD[0, t0] for anyt0 such thatπ(t0)> 0.
Of course we already know that this is true for the two marginal processes. With the same
type of arguments used before, we see that the statement above is true if the trivariate process

Θ̄ :=
√

n





n−1W̄
logΓ̂ − logΓ
logF̂ − logF





converges weakly to a continuous Gaussian process. We know that logF̂ − logF has an
asymptotic martingale representation

logF̂(t)− logF(t) =
∫ t

0
h(s)dM̄(s)+oP(n

− 1
2 )

uniformly in t ∈ [0, t0], whereM̄ is a certain square integrable martingale with respect to the
filtration J̄ defined by

J̄t =
n
∨

i=1

∨

0≤s≤t

σ
(

δUi1l{yi≤s},(1−δUi)1l{yi≤s}
)

andh is a measurable function bounded on[0, t0]. Therefore we have an asymptotic repre-
sentation

Θ̄ ≈
√

n





∫

f dM̄S
∫

gdM̄Γ
∫

hdM̄



 ,

but the square integrable martingales̄MS, M̄Γ and M̄ are not martingales with respect to
the same filtration. But since we know that each of the marginal processes of̄Θ converges
weakly to a centered continuous Gaussian process, then we know that the joint sequence
is tight (corollary VI.3.3 in Jacod & Shiryaev, 2003), henceit suffices to check that the
finite-dimensional distributions of̄Θ converge to the same finite-dimensional distributions
of a trivariate Gaussian process. This is achievable since each of the martingales̄MS, M̄Γ
andM̄ is the sum ofn independent identically distributed terms, each of these terms being
constructed from the observations(xi ,yi ,δTi,δUi) for one individuali.
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4 Discussion

We have derived the large sample properties of the estimatorŜφ defined as the extension of
the Rivest & Wells estimator (2001) from the context of right-censored data to the context
of right-censored semi-competing risks data. We firstly note that further work is needed to
cover the case whenφ′(1) = 0, which occurs for the Gumbel copula.

Our approach confirm that martingales techniques are an adequate tool in the theoretical
study of survival analysis (see Aalen & al, 2009, for an exposition of the use of martingale
methods in survival analysis). We used the natural and helpful notion of immersion of a
filtration in a bigger one and we hope that our work will contribute to the popularization of
this notion.

A first possible extension of our work is to generalize it to the case when the survival
function ofY is possibly improper, with a point mass at+∞ representing the proportion of
cured patients. In the simpler context of right-censored data, Li, Tiwari and Guha (2007)
generalized the works of Rivest & Wells (2001) to this case.

A second possible extension is to allow the model to incorporate covariates. In the sim-
pler context of right-censored data (when only min{Y,C} is observed and is not censored),
a way to do so has been achieved by Braekers & Veraverbeke (2005), and this could be
extended to the context of semi-competing risks data. They propose to estimate the survival
function of min{Y,C} by a Beran-type estimatêΓ (· | zi) depending on the covariatezi , and
then to definêSφ(· | zi) similarly to Ŝφ by usingΓ̂ (· | zi) instead of the Kaplan-Meier estima-
tor Γ̂ . The large sample properties of the corresponding estimator Ŝφ(· | zi) are then derived
with the help of empirical processes theory.

Some methods to fit a right-censored semi-competing risks model with an unknown
Archimedean copula have been proposed e.g. by Lakhal & al (2008) and Xu & al (2010). The
drawback of the Lakhal & al approach is that it only allows forone-parameter Archimedean
copulas. The Xu & al model approach adopts a different modeling. Heuchenne & al (2012)
studied the performance of another method through simulations. Some of the results of the
present paper could help to investigate the theoretical study of the large sample properties
of their approach, by using the Chen & al (2003) theory.

Methods allowing for both an unknown copula and the incorporation of covariates also
have been developed, most recently by Chen (2012).



16 Stéphane LAURENT

A Delta method in the Skorohod space

The goal of this appendix is to prove a version of the Delta method in the Skorohod spaceD[0,1] when the
limit process is continuous, because we do not find it in the literature. The proof we give is essentially the
same as the proof of the Delta method for real random variables. An alternative proof consists in using the
powerful functional Delta method (van der Vaart & Wellner 1996) after having said that in this context, the
weak convergence inD[0,1] is equivalent to the weak convergence in the uniform sense, as in the modern
theory of empirical processes; this fact results from theorem 1.7.2 in van der Vaart & Wellner (1996) and
theorem 6.6 in Billingsley (1999). All our statements are proved for stochastic processes in the Skorohod
spaceD

(

[0,1],Rd
)

which we shortly denote byD[0,1]. Similarly we shortly denote byC[0,1] the space of
continuous functionsC

(

[0,1],Rd
)

Lemma A.1 Let (Xn) be a sequence of random variables in D[0,1] which converges weakly to a random
variable X in C[0,1]. Then the sequence

(

sup0≤s≤1‖Xn(s)‖
)

converges weakly tosup0≤s≤1‖X(s)‖.

Proof This follows from the continuity ofx 7→ sup0≤s≤1‖x(s)‖ outside a set with null measure with respect
to the law ofX. ⊓⊔

Lemma A.2 Let (Zn) be a sequence of random variables in D[0,1] such thatsup0≤t≤1

∥

∥Zn(t)
∥

∥= oP(1) and
the sequence(

√
nZn) converges weakly to a random variable W in C[0,1]. Let R: Rd →R be a function such

that R(z) = o
(

‖z‖
)

when z→ 0. Thensup0≤t≤1

∣

∣

√
nR

(

Zn(t)
)∣

∣= oP(1).

Proof One has
∣

∣

√
nR

(

Zn(t)
)∣

∣=
∥

∥

√
nZn(t)

∥

∥h
(

Zn(t)
)

≤ sup
0≤s≤1

∥

∥

√
nZn(s)

∥

∥h
(

Zn(t)
)

whereh is the function defined byh(z) = |R(z)|/‖z‖ if z 6= 0 andh(0) = 0, which is continuous at 0. The
sequence

(

sup0≤s≤1‖
√

nZn(s)‖
)

converges weakly to sup0≤s≤1‖W(s)‖ by lemma A.1, hence, owing to Slut-
sky’s theorem, it suffices to show that sup0≤t≤1 h

(

Zn(t)
)

= oP(1), but this follows from the continuity ofh at
0. ⊓⊔

Proposition A.1 (Delta method)Let(Xn) be a sequence of random variables in D[0,1] andθ a function be-
longing to D[0,1]. Assume thatsup0≤t≤1

∥

∥Xn(t)−θ(t)
∥

∥= oP(1) and that the sequence
√

n
(

Xn−θ
)

converges
weakly in D[0,1] to a random variable G in C[0,1]. Let g: Rd → Rk be a differentiable function. Denote by
Rµ the remainder in the first order Taylor expansion of g atµ , that is, Rµ (y) = g(µ + y)−g(µ)−g′(µ)(y).
If sup0≤t≤1

∥

∥Rθ(t)(y)
∥

∥ = o
(

‖y‖
)

, then
√

n
(

g(Xn)− g(θ)
)

= g′(θ)
√

n
(

Xn − θ
)

+ oP(1) uniformly on[0,1],
therefore

√
n
(

g(Xn)−g(θ)
)

converges weakly to g′(θ)G in D[0,1].

Proof One has
∥

∥

√
n
(

g(Xn)−g(θ)
)

−g′(θ)
√

n
(

Xn−θ
)∥

∥≤
√

nR(Xn−θ)

whereR(y) = sup0≤t≤1

∥

∥Rθ(t)(y)
∥

∥, hence the result follows from the preceding lemma. ⊓⊔

Denoting byH the limiting process in the above proposition, its variancefunction isEH(s)H(t)′ =
Dθ(s)C(s,t)D

′
θ(t) whereDz is the matrix ofg′(z) andC(s,t) = EG(s)G(t)′ is the variance function ofG.
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