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In solid-state physics, including photonics and wherever periodic lattice structures occur, it is essential to
establish the fundamental features associated with wave propagation through the lattice: This is achieved using
Bloch waves, the reciprocal lattice, and the reduction, using periodicity, to consider the irreducible Brillouin
zone. A general approach, although widely accepted as not being perfectly legitimate, is to plot the dispersion
relations around the edges of the Brillouin zone. We show definitively that this can be dangerous and that an
important mode of practical significance is missed if this is done in too cavalier a fashion: This missing mode is
illustrated for the design of endoscopes based on spring-mass (discrete) periodic structures and photonic crystals.
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I. INTRODUCTION

The generally accepted folklore is that plotting the dis-
persion relations around the edges of the Brillouin zone1,2

is broadly sufficient to identify the extent of stop bands, as
the maxima and minima almost always occur there.3 Some
mathematical literature4,5 explicitly constructs counterexam-
ples; nonetheless it is almost always the case that the edges of
the Brillouin zone contain the essential information sufficient
for most purposes. However, as we describe, one can actually
overlook a mode, or modes, that arises from a path within the
Brillouin zone and that exciting this mode, as shown in Fig. 1,
is of interest; it is almost certainly present in many periodic
structures already analyzed and has been missed. For clarity
we treat the simplest possible cases: a square array of circular
infinite conducting cylindrical holes in transverse electric (TE)
polarization (i.e., a longitudinal magnetic field orthogonal to
the plane of periodicity) [see Fig. 2(b)] and a square array
of simple masses and springs [see Fig. 2(a)]. However, our
analysis can be applied with some ad hoc changes to other
areas of physics whenever some periodicity occurs, such as
solid-state physics2,6 or the theory of composites.7,8

II. FORMULATION OF CONTINUOUS MODEL

We consider the Helmholtz equation as a generic model for
wave propagation which could, with appropriate notational and
linguistic changes, hold for acoustic, electromagnetic, water,
or out-of-plane elastic waves and encompass many possible
physical applications. We solve

∂2u

∂x2
1

+ ∂2u

∂x2
2

+ �2u = 0, (1)

for u(x1,x2) on the square cell −1 < x1, x2 < 1.
In the context of optics, the unknown u in Eq. (1) is

the longitudinal component of the electric field Hz in TE
polarization and the spectral parameter �2 is associated
with ω2ε(x1,x2)/c2 wherein ω is the electromagnetic wave
frequency, ε is the relative permittivity, and c is the speed of
light in a vacuum.

For waves through an infinite, perfect, doubly periodic
medium based upon a square lattice, one invokes Bloch’s

theorem1,2,9,10 and then simply considers the square cell with
quasiperiodic Bloch conditions applied to the edges:

u(1,x2) = eiκ1u(−1,x2), ux1 (1,x2) = eiκ1ux1 (−1,x2), (2)

u(x1,1) = eiκ2u(x1, − 1), ux2 (x1,1) = eiκ2ux2 (x1, − 1), (3)

and introduce the Bloch wave vector κ = (κ1,κ2) characteriz-
ing the phase shift as one moves from one cell to the next.
This Bloch problem is solved numerically, and dispersion
relations that link the frequency and Bloch wave number are
deduced. As is often presumed in solid-state physics,1 only
a limited range of wave numbers are considered, namely the
wave numbers along the right-angled triangle �XM shown in
the irreducible Brillouin zone in Fig. 2(c). There are, however,
some exceptions to this rule, such as operators on graphs5 and
Bloch waves in periodic acoustic4 and elastic11 strips.

The computed dispersion curves for discrete (Fig. 3) and
continuous (Fig. 4) structures illustrate several interesting
features: stop bands for which wave propagation is not possible
and striking regions of flat dispersion curves for which the
group velocity is zero and features of slow sound or light
occur.12 The missing mode illustrated in Fig. 1 is excited at a
frequency close to this flat dispersion curve; it is perfectly flat
in the discrete mass-spring system (cf. dashed curve in Fig. 3)
and almost so in the continuum analog of holes in a square array
(cf. dashed curve in Fig. 4). The hole size is realistic and could
be manufactured; moving to artificially large hole sizes pushes
the analogy of holes and masses toward being explicit (Sec. V).
Excitation at, or very close, to the frequency predicted leads
to a diagonal cross of oscillations that resemble a standing
wave in Fig. 1. Crucially this standing wave has directionality
that can be identified from the wave-number description in the
Brillouin zone shown in Fig. 2.

The essence of our argument is that in, say, a square lattice
one can choose different elementary cells. The obvious and
natural elemental cell is a single hole, or mass, in a square
cell [cf. Fig. 2(a)] with Bloch conditions applied at the edges
of the cell. Of course, one could choose other cells, such as
one with four holes, or masses; naively one would expect to
obtain the same dispersion relations, modulo some folding
due to the periodicity, in both cases. The Brillouin zones for
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FIG. 1. (Color online) (a) A diagonal cross for a discrete mass-
spring square periodic array; the standing wave is excited by a forcing
of normalized frequency � = 1.99 at the origin for 1000 × 1000
masses surrounded by a layer of discrete perfectly matched layers
(PMLs) 100 masses deep. (b) Same but for an electric line source of
frequency � = 2.24 located at (0,0) radiating in an isotropic dielectric
medium with a square array (pitch 1) of 10 × 10 infinite conducting
cylinders (radius r = 0.3) in TE polarization (i.e., Neumann boundary
conditions), surrounded by continuous PMLs outside the square
region −8 < xj < 8, j = 1,2.

each cell are shown in Fig. 2(c) and, as one would expect, the
zone corresponding to the single mass cell is fundamental as
it subsumes that of the four-cell system. However, if one plots
the dispersion curves going around the exterior of the larger
(single-mass) zone, one never plots the dispersion relations
along MX′ in the interior of the larger cell: This line, even
after the reflections of periodicity, always lies in the interior of
the larger one. This would be of little consequence if the modes
it illustrated were disinteresting; however they are of interest
and are the diagonal cross modes. Observing the dispersion
curves in Figs. 3 and 4, one sees that the naive approach is
broadly true, except that suddenly a “new” mode appears in
the four-hole (mass) cases (shown as the dashed lines between
M and X′). Importantly, this is perfectly flat in the mass-
spring case and nearly so for the holes. This is even more

(a) Lattice of masses

Γ (0,0)

M (0,π)

X (π,π)

M′ (0,π/2)

X′ (π/2,π/2)κ 2

κ
1

(c) Brillouin zone

(b) Square array of cylinders

FIG. 2. The simple discrete mass-spring system shown in panel
(a) with the single-mass cell and four-mass cell shown. An array
of square cells with cylindrical inclusions is represented in panel
(b). Panel (c) shows the Brillouin zones used for the single-mass or
cylinder cell �,X,M and for the four-mass or cylinder cell �,X′,M ′.

clear when one observes the isofrequency contours for the
acoustic branch as shown in Fig. 5: The perfect flat band for the
mass-spring system corresponds to the straight diagonal line in
Fig. 5(a), and although the corresponding path for the circular
holes is no longer perfectly straight, the physical phenomena
from the mass-spring system persist. The flat curve has been
spotted, in a different context, for the mass-spring system13,14

and in that system its presence can be derived analytically;
as a result the diagonal cross has been seen numerically in
simple systems.13,15 Such flat modes, or nearly flat modes, are
of considerable interest in the context of slow light and slow
sound.12

III. FORMULATION OF DISCRETE MODEL

The discrete mass system, assuming identical unit masses
and spring constants, with the single-mass cell boils down to
the difference equation

yn+1,m + yn−1,m + yn,m+1 + yn,m−1 − 4yn,m + �2yn,m = 0

(4)

as the discrete Helmholtz equation [counterpart of Eq. (1)], �

being the frequency.
The Floquet-Bloch conditions16

yn+N,m+M = exp(i[Nκ1 + Mκ2])yn,m (5)

are a discrete counterpart of Eqs. (2) and (3) (here N,M are
integers); the resulting dispersion relation is immediate,

�2 = 4 − 2(cos κ1 + cos κ2), (6)
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FIG. 3. Bloch dispersion curves around the edges of the Brillouin
zone shown in Fig. 2 for the spring-mass model. Panel (a) shows the
dispersion curves for the single-cell model and panel (b) shows them
for the four-cell system: The latter has a flat mode between � and X′

that is absent from panel (a) if one does not consider the MX′ path.
This missing mode corresponds to panel (a) in Fig. 1.

with 0 � κ1,κ2 � π and is shown in Fig. 4(a). The four-mass
system results in four coupled difference equations which have
solutions

2(cos κ1 + cos κ2) ± (4 − �2) = 0, (7)

2(− cos κ1 + cos κ2) ± (4 − �2) = 0, (8)

with 0 � κ1,κ2 � π/2, and the four positive roots of these
correspond to the four paths one would get from reflecting the
smaller triangle �X′M ′ to fill the larger one. In particular,
the missing dashed line, which is a double root, comes
from the path along X′M shown as dashed in Fig. 2(c). Also
shown in Fig. 2(c) is another line M ′X′ corresponding to the
dot-dashed curves in Fig. 3; repeated roots also appear but are
of less interest. One can tease out the asymptotic structure
of the dispersion relations near the edges of the Brillouin
zone and then to relate these to asymptotic partial differential
equations14 that can be used to represent the solutions on a
long scale.17

Importantly, this analysis of discrete models underpins the
physics of the missing mode in continuous systems such as
arrays of infinite conducting circular cylinders for TE waves in
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(b) Four cylinders cell

ΓM′ X ′ M ′

Ω

FIG. 4. (Color online) Bloch dispersion curves around the edges
of the Brillouin zone shown in Fig. 2 for the continuous model. Panel
(a) shows the dispersion curves for the single cell with an infinite
conducting cylinder of radius r = 0.3 and panel (b) for the four cell
system: The latter has a nearly flat mode between � and X′ absent
from panel (a) if one does not consider the MX′ path.

optics or stress-free cylinders for anti-plane-shear (SH) waves
in acoustics: Discrete structures are often used in mechanics
as asymptotic models of densely packed composites,8 and
one can then invoke the one-to-one correspondence between
the Helmholtz equation governing these types of acoustical
(e.g., SH) and optical (e.g., TE) waves. In Sec. V we include
limiting cases showing nearly perfect agreement between the
dispersion curves in Fig. 3 for the discrete lattice structure
and dispersion curves for close-to-touching cylinders, whereby
a completely flat mode is obtained along the �X′ edge, as
in Fig. 3. However, having in mind a practical design of
an endoscope, we initially constrain ourselves to cylinders
of a moderate radius, and therefore the dashed curve along
the �X′ edge still displays some dispersion in Fig. 4. The
dispersion curves in Figs. 3 and 4 nonetheless share many
common features, such as a quasi-identical dispersion for the
dot-dashed curves along the X′M ′ edge of the Brillouin zone
for the periodic cell with four masses and four cylinders.

IV. PRACTICALLY IMPLEMENTABLE DESIGN

We finally propose a practically implementable design of
endoscope using the dispersionless feature of the missing
mode along the �X′ edge of the Brillouin zone for discrete
(see Fig. 6) and continuous (see Fig. 7) periodic structures. In
the former, the trajectory of the wave emitted by an excited
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FIG. 5. (Color online) Isofrequency curves for the acoustic
branch of (a) the spring-mass model and (b) of the cylindrical holes
of radius 0.3.

mass zigzags throughout the array of spring and masses, as it
travels along x1 = ±x2 directions and reflects internally when
the masses change; the wave trajectories resemble those of
geometrical ray optics (valid in the limit of short wavelengths)
although we are in a Bragg regime. A sharp focus point
is created, reminiscent of negative refraction from a ray
picture with alternating positively and negatively refracting
slabs forming a one-dimensional array of Pendry-Veselago

FIG. 6. (Color online) A square array of point masses, with mass
1.5 with a rectangular inset of unit masses from n = −150 to 120
and m = −50 to 50. A mass at (−155,0) is excited with an image
clearly visible at (+150,0); the normalized frequency of excitation is
� = 1.98 very close to the flat band in Fig. 3.

FIG. 7. (Color online) Endoscope effect with the missing mode
in a square array (pitch 1) of 28 × 9 infinite conducting circular holes
of radius r = 0.3 for an electric line source of normalized frequency
� = 2.23 located at point (−12,0).

flat lenses.18 One can clearly see that the image of the source
through the endoscope is deeply subwavelength. When we try
to reproduce this discrete system paradigm with the array of
cylinders, we only achieve this endoscope effect to certain
extent: The image of an electric line source radiating at the
frequency of the missing mode produces a photonic jet19 rather
than a focusing point. We attribute this lack of precise focusing
to the dispersive nature of the dashed curve in Fig. 4, which is
the continuous model counterpart of the completely flat dashed
curve in Fig. 3. One improves upon this situation by enlarging
the cylinders (Sec. V) and/or by rotating the array (Sec. VI).
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(a) Single cylinder cell

Γ MXM X′
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−1 0 1 2 3
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1
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ΓM′ X′ M′

Ω

FIG. 8. (Color online) Bloch dispersion curves around the edges
of the Brillouin zone shown in Fig. 2 for almost touching cylinders of
radius 0.475. Panel (a) shows the dispersion curves for the single-cell
system and panel (b) shows them for the four-cell system: The latter
has a flat mode between � and X′.
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FIG. 9. (Color online) Nearly touching cylinders: (a) 20 × 20
circular cylinders, r = 0.475, pitch 1, source at (0,0), frequency
1.37; and (b) 9 × 20 circular cylinders, r = 0.475, pitch 1, source
at (−10.1,0), frequency 1.39.

V. LARGE CYLINDERS

To clarify details we illustrate that the analogy between
cylinders in the TE polarization and the discrete system can
be made sharper. The dispersion relation for large, almost
touching cylinders is shown in Fig. 8; the dashed mode along
�X′ is now almost perfectly flat and the dispersion curves of
Fig. 8 become (modulo a multiplicative factor) almost those of
the mass-spring model in Fig. 3. Physically one can interpret
each Neumann cylinder as a mass connected to its neighbors
by a thin wall that acts as a spring20 for which the flat band will
occur at � = π/2; further computations confirm this limit.

As the analogy with the mass spring becomes stronger,
the effects of the diagonal cross mode become sharper.
Figure 9 shows this for forcing with a square array of
cylinders with strongly localized waves along the diagonal;
the cross is slightly obscured, visually, by the sheer size of the
cylinders. The image is enhanced for the endoscope and the
zigzag bouncing of the waves within the cylindrical array is
emphasized but again visually obscured by the large cylinders.

VI. ROTATED ARRAY

For the smaller cylinders the endoscope effect is weaker
than for the discrete mass system. As we have just seen, the
discrete mass system is a perfect paradigm, but the realistic
system has two flaws: First, the critical dispersion curve is
no longer dispersionless and has some curvature. Second,
the continuous system is relatively small versus the discrete
system: 100 × 100 cylinders versus 1000 × 1000 masses.
One option to enhance the effect is to rotate the array of
cylinders through an angle π/4, thereby facilitating the wave
propagation x1 direction; see Fig. 10(b). It is worth noticing

FIG. 10. (Color online) Excitation using a square array rotated
through an angle π/4: (a) A cross for an electric line source of
normalized frequency � = 2.25 located at point (0,0) radiating in
an isotropic dielectric medium (ε = 1) with a rotated square array
(pitch 1) of 200 infinite conducting cylinders (radius r = 0.3) in
TE polarization (i.e., Neumann boundary conditions), surrounded
by continuous PMLs outside the region −15 < xj < 15, j = 1,2.
(b) Endoscope effect for the same configuration as in panel (a) but
for an electric line source of normalized frequency � = 2.35 located
at point (−12,0).

that with such an orientation of the array, the diagonal cross
effect in Fig. 1 is also rotated through an angle π/4 [see
Fig. 10(a)] to become a vertical cross.

VII. CONCLUDING REMARKS

We have conclusively shown, using analogies between
spring-mass and continuous models, that one must be extra
careful when using only the edges of the Brillouin zone
instead of its area. While Fermi surfaces21 (i.e., dispersion
surfaces) contain within them all the information required
to completely describe the stop-band structure of a periodic
structure, dispersion curves can miss some important features,
such as the cross. This standing wave has consequences for
the design of practically implementable focusing devices. A
possible extension of our study is the analysis of stop bands of
absorptive photonic crystals, where the dangers of using the
edges of the Brillouin zone are further enhanced.22
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