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Pressure-Driven Flow of a Rate Type Fluid with Stress Threshold in an Infinite Channel

Lorenzo Fusi Angiolo Farina
Università degli Studi di Firenze

Dipartimento di Matematica “Ulisse Dini”
Viale Morgagni 67/A, I-50134 Firenze, Italy

Abstract

In this paper we extend some our previous works on continua with stress threshold. In particular here we propose a mathematical
model for a continuum which behaves as a nonlinear upper convected Maxwell fluid if the stress is above a certain threshold and
as a Oldroyd-B type fluid if the stress is below such a threshold. We derive the constitutive equations for each phase exploiting
the theory of natural configurations (introduced by rajagopal and co-workers) and the criterion of the maximization of the rate of
dissipation. We state the mathematical problem for a one-dimensional flow driven by a constant pressure gradient and study two
peculiar cases in which the velocity of the inner part of the fluid is spatially homogeneous.
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1. Introduction

A large variety of materials such as food products, poly-
mers, paints, oils and foams cannot be described by the clas-
sical linear viscous model. For this reason a large class of non-
Newtonian models have been developed with the aim of ex-
plaining non linear behaviors such as shear thinning/thickening,
non linear creep and stress relaxation.
In his celebrated work7 Maxwell developed the first rate type

fluid model capable of describing stress relaxation, while later
Burgers1 developed a rate type model for describing some geo-
materials which included the classical rate type model due to
Oldroyd8, namely the Oldroyd-B type model. Oldroyd was
the first to develop a consistent framework for the rheology of
rate type viscoelastic fluids, focussing on the importance of the
frame invariance and introducing some kinds of derivatives to
obtain proper frame indifferent constitutive equations.
Since these seminal works, a plethora of models for vis-

coelastic response have been developed and numerous frame-
invariant time derivatives have been introduced. Rajagopal
and co-workers have developed in10 a proper thermodynami-
cal framework from which most of the viscoelastic constitutive
relations can be derived.
The laminar flow of rate-type fluids have been extensively

studied both in planar and cylindrical geometries. Waters and
King16 studied the pressure driven flow of an Oldroyd-Bfluid in
a straight cylindrical pipe, obtaining exact solutions by means
of Laplace transformmethod. Rahaman and Ramkissoon9 have
studied the non stationary flow of a Maxwell fluid in a pipe.
Steady solutions due to oscillating cylindrical boundaries for
second grade and Oldroyd-B type fluids have been obtained by
Rajagopal12 and Rajagopal and Bhatnagar13.
In this paper we investigate the behavior of a non-Newtonian

incompressible rate type fluid which switches from an Oldroyd-
B behavior to a non linear Maxwell behavior depending on
wether the stress is larger or smaller than a certain threshold.
A typical example of a continuum that changes its behavior de-
pending on the value of some function of the stress is the so–
called Bingham fluid, which is a Newtonian viscous fluid that
exhibits a threshold (the so called yield stress) below which the
strain rate is zero (so that no deformations occur).
In previous works we have studied a series of extensions of

this simple model and we have investigated the corresponding
mathematical problems in one dimensional settings. The first
extension was to the case in which the region where the stress
is below the threshold behaves like a Neo-Hookean elastic solid
(see2) and we have subsequently extended this case to the one
in which the same region behaves like a visco-elastic Maxwell
fluid3.
We have then studied the case of an elastic material such that

no deformation occurs above a certain threshold4 and we have
investigated the case in which the transition from rigid to elas-
tic occurs when the stress becomes greater than the threshold
(see5,6). The methodology developed in all these papers can be
used to formulate a variety of models for continuum with stress
threshold.
All the models were obtained in the framework of the the-

ory of natural configurations developed by Rajagopal and co-
workers11. Depending on the constitutive equations for the
phases constituting the continuum, we have obtained mathe-
matical formulations of various complexity. In general these
formulations consist in a free boundary problems involving hy-
perbolic and parabolic equations.
In this paper we study the case of a material in which one

“phase” behaves as a Nonlinear Maxwell fluid while the other
as a Jeffreys fluid. For the sake of simplicity we will choose for
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the latter the Oldroyd-B fluid model while for the former the
upper convected Maxwell model. Minor changes allow to con-
sider other models, like corotational Maxwell model or inter-
polated Maxwell model for the Maxwell fluid, and generalized
Jeffreys models fore the rate-type fluid (e.g. Oldroyd A).
The general constitutive equation for a nonlinear Maxwell

fluid is given by

λ
DT
Dt

+ T = 2ηD, (1)

where λ is a positive parameter, T is the stress tensor, η is the
viscosity and D is the symmetric part of the velocity gradi-
ent, and where D(·)/Dt stands for any frame invariant deriva-
tive (upper convected, lower convected, corotational). On the
other hand, the general constitutive equation for a generalized
Jeffreys model is

λ1
DT
Dt

+ T = 2η
[
D + λ2

DD
Dt

]
, (2)

λ1 and λ2 being positive parameters. In both cases the stress
is obtained by solving a differential equation involving a sym-
metric tensor (meaning six scalar differential equations). In the
framework of the theory of natural configurations we will ob-
tain specific forms for equations (1), (2) imposing the elastic
response of the continuum, the way the body dissipates energy
and requiring that the dissipation is maximum.
As we said we will focus on two specific kind of nonlinear

visco-elastic fluids, but the procedure we are going to describe
can be applied to any fluid whose constitutive equations are of
the type (1), (2).
Throughout the paper we use the terminology “fluid with a

stress threshold”, which seems to represent an oxymoron if one
think to the very definition of a fluid. By the way, with this
expression we intend to indicate that the switching from the
Oldroyd-b behaviour to theMaxwell behaviour occurswhen the
second invariant of the stress tensor reaches a fixed threshold
value.

2. Kinematical results

We consider a material domain Ω ∈ R3 and we assume that
there exists a surface Γ that divides the domain in two regions
Ω1 and Ω2 such that Ω = Ω1 ∪ Ω2. We suppose that the ma-
terial that occupies the region Ω1 behaves as a upper convected
Maxwell fluid, while the material within the region Ω2 as an
Oldroyd-B fluid. We assume that Ω evolves in time so that at
time t > 0 the domain is Ωt = Ω1t ∪ Ω2t, we define Γt as the
sharp interface separating the domainsΩ1t andΩ2t (see Fig. 1).
The motion of a particle �x ∈ Ω is given by

�x = Θ(�X, t) (3)

where �X ∈ Ω is the Lagrangian coordinate and �x is the Eule-
rian coordinate, that is the position of particle �X at time t. We
assume that Θ is invertible. The velocity, in the Eulerian coor-
dinate system, is given by

�v(�x, t) =
∂Θ(�X, t)

∂t

∣∣∣∣∣∣�X=Θ−1(�x,t)
, (4)

Figure 1: Schematic diagram illustrating the evolution the natural configura-
tions of “phases” Ω1 and Ω2.

and the acceleration by

�a(�x, t) =
∂2Θ(�X, t)

∂t2

∣∣∣∣∣∣�X=Θ−1(�x,t)
. (5)

The deformation gradient of the motion is

F =: grad Θ(�X, t), (6)

where grad denotes the gradient with respect to the Lagrangean
coordinates. The velocity gradient is

L(�x, t) =: ∇�v(�x, t), (7)

where ∇ is the gradient taken with respect to the Eulerian co-
ordinates. The symmetric part of the velocity gradient is given
by

D(�x, t) =:
1
2

(
L + L

T
)
. (8)

We introduce also the left and right Cauchy-Green tensors

B = FF
T , C = F

T
F. (9)

The material time derivative (differentiation along a particle
path) will be indicated by the superposed dot, so that for any
scalar quantity F

Ḟ =
∂F

∂t
+ ∇F · �v. (10)

Following standard results we can prove that

L = ḞF
−1 (11)

and that
Ḃ = LB + BL − 2FDFT . (12)

The frame indifferent upper convected time derivative is given
by

∇

B= Ḃ − LB − BL
T . (13)
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Following11 we introduce, for each “phase”, the relative natural
configuration. In practice we consider the decomposition

F1 = F1pG1, F2 = F2pG2 (14)

where Fip is the gradient of the mapping1 from the reference
configuration Ωi to the natural configuration Ki and Gi is the
gradient of the mapping from the natural configuration Ki to
the configuration Ωit (see Fig. 1). The tensors Fip and Gi can
be viewed as mappings between the tangent vectors spaces of
the various configurations. We recall (see11) that the tensors
Fip are defined up to rigid rotations, so that, supposing that the
material is isotropic, we can assume that the tensors Fip are
positive definite symmetric tensors, i.e. Fip = Vip, where Vip
is the right stretch tensor in the polar decomposition. For each
“phase” we define

LiG =: ĠiĠ−1
i , DiG =:

1
2
(LiG + L

T
iG), (15)

Bip =: FipFTip, Cip =: FTipFip. (16)

It can be proved that

tr
(
Bip

)
= I · Ḃip = 2Bip · (D − DiG), (17)

so that, by (13), we have

∇

Bip= Ḃip − LBip − BipL
T . (18)

Recalling that Fip is symmetric, we get

∇

Bip= −2FipDiGFip, (19)

with
∇

I= −2D. (20)

We also recall that

˙detFip = det(Fip)tr
(
ḞipF

−1
ip

)
. (21)

3. Derivation of constitutive relations

In order to derive the constitutive equations for each phase,
we consider the reduced-dissipation equation for isothermal
conditions (see14)

T · L − ρψ̇ = ρθζ = ξ � 0, (22)

where ψ is the Helmholtz potential (internal energy per unit
mass), ζ is the rate of entropy production, θ is absolute temper-
ature and ξ is the rate of dissipation. For simplicity we rewrite
equation (22) as

T · D − Ẇ = ξ, (23)

1The word “mapping” is actually incorrect, since it may be possible that
such a mapping does not exists.

where we have exploited the fact that T·D = T·L and where we
have introducedW = ρψ. The basic assumption in our model is
that

ξ = ξ̂(Bip,DiG,D), W = Ŵ(trBip, trB2
ip), i = 1, 2. (24)

In doing so we are assuming that the elastic response, which is
the one from the natural to the actual configuration, is the one
of an elastic material, while the dissipative response is the one
of a visco-elastic fluid. We shall impose specific forms for the
quantities appearing in (24), without giving a specific represen-
tation of the stress tensor. The latter will be obtained through
the process of maximization of the rate of dissipation. This pro-
cedure consists in assuming that, among all the possible evolu-
tions of the natural configuration of each phase, we choose the
one which maximizes the dissipation function. In practice we
determine the tensor DiG that maximizes ξ̂ with Bip and D kept
fixed. Depending on the constitutive forms we use to repre-
sent dissipation and the response from the natural to the actual
configuration, we can model various continua like visco-elastic
fluids, solids etc.
We define a parameter a (related to the principal invariants

of the stress) and a threshold τo (related the stress threshold),
such that if a ≥ τo the body behaves like an upper convected
Maxwell fluid, while if a ≤ τo as a Oldroyd-B type fluid.
We define

a =
√
II(T̃), (25)

where T̃ is the traceless part of the stress tensor

T̃ = T −
1
3
(trT)I, (26)

and II(T̃) is

II(T̃) =
1
2
tr(T̃2). (27)

Therefore the following conditions must be fulfilled for every
time t � 0 √

II(T̃) � τo, in Ω1t, (28)√
II(T̃) � τo, in Ω2t. (29)

We define the dissipation rate as

ξ̂ = H(τo − a)
[
η2D2G · B2pD2G + η̂2D · D

]
+

+H(a − τo)η1D1G · B1pD1G, (30)

where H is the Heaviside function and η2, η̂2, η1 have the di-
mension of a viscosity. We also define the stored energy func-
tion as

W = H(τo − a)
[
μ2

2
(I · B2p − 3)

]
+

+H(a − τo)
[
μ1

2
(I · B1p − 3)

]
, (31)

where μ1 and μ2 have the dimension of a pressure. We assume
that in both phases the material is incompressible.
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4. Phase 1: Upper convected Maxwell fluid

The evolution of the “phase” Ω1 is obtained following the
criterion of maximization of the rate of dissipation. We skip
some technical details for which we refer the reader to3. In this
phase a ≥ τo, thus

ξ̂ = η1D1G · B1pD1G, W =

[
μ1

2
(I · B1p − 3)

]
. (32)

By virtue of (23) and (17) we get

(T − μ1B1p) · D = η1D1G · B1pD1G − μ1B1p · D1G. (33)

The right hand side does not depend on D so that

T = −PI + μ1B1p (34)

where P is the Lagrange multiplier due to the incompressibility
constraint. Using the maximization of the rate of dissipation
criterion we look for the tensor D1G which maximizes the en-
ergy dissipated3. Thus we solve the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ̂ − (T + PI) · D1G = 0

I · D1G = 0

∂ξ̂

∂D1G
+ κ1

(
∂ξ̂

∂D1G
− T

)
+ κ2I = 0

(35)

where κ1 and κ2 are unknown constant to be determined (La-
grange multipliers). We know (see appendix A in10) that the
tensors B1p and D1G commute, since they have the same eigen-
vectors. Thus, recalling the first of (32) it is easy to see that

T = 2η1
(
1 +

1
k1

)
D1GB1p +

κ2

κ1
I. (36)

Substituting (36) into (35)1 we get κ1 = −2. Thus

T = η1D1GB1p −
κ2

2
I. (37)

Subtracting (37) from (34) and multiplying by B−11p we get

η1

μ1
D1G =

1
μ1

(
k2
2
− P

)
B
−1
1p + I. (38)

Applying the trace operator to (38) we get

κ2 = 2P −
6μ1
trB−11p

. (39)

Recalling that F1p is symmetric and recalling (19), from (38),
we get

γ1
∇

B1p +B1p = λ1I, (40)

where
γ1 =

η1

2μ1
, λ1 =

3
trB−11p

. (41)

Thus the stress is given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T = −PI + μ1B1p,

γ1
∇

B1p +B1p = λ1I.

(42)

The constitutive equation (40), although similar to the one of
a upper convected Maxwell model, lacks the term containing
the symmetric tensor D (see15). Using the indeterminacy in
the stress tensor due to the incompressibility we can rewrite the
stress tensor in the form

T = −P̂I + μ1B̂1p (43)

where P̂ = P − μ1λ1 and B̂1p = B1p − λ1I and equation (42)
becomes ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T = −P̂I + μ1B̂1p

γ1

∇

B̂1p +B̂1p = 2γ1λ1D,
(44)

which is the constitutive equation of the upper convected
Maxwell model (see again15). Thus equations (42) and (44)
are interchangeable. We will use (42) to represent the upper
convected Maxwell fluid in the domain Ω1.

5. Phase 2: Oldroyd–B fluid

In the domain Ω2 the body behaves as an Oldroyd-B vis-
coelastic fluid. Also in this case we will obtain the evolution
equation applying the criterion of the maximization of the rate
of dissipation. We set

ξ̂ = η2D2G ·B2pD2G+η̂2D·D, W =

[
μ2

2
(I · B2p − 3)

]
. (45)

Proceeding as in the previous section we get

ξ̂ = T · D − μ2B2p · (D − D2G), (46)

that is

η2D2G ·B2pD2G−μ2B2p ·D2G = (T−μ2B2p− η̂2D+PI) ·D, (47)

where P is once again the Lagrangemultiplier due to the incom-
pressibility constraint. Since the left hand side does not depend
on D we get

T = −PI + μ2B2p + η̂2D. (48)

Eliminating B2p from (48) and (46) we get

ξ̂ = (T − η̂2D) · D2G + η̂2D · D. (49)

Applying the criterion of the maximization of the rate of dissi-
pation we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ̂ − (T − η̂2D) · D2G − η̂2D · D = 0,

trD2G = 0,

∂ξ̂

∂D2G
+ κ1

(
∂ξ̂

∂D2G
− T + η̂2D)

)
+ κ2I = 0.

(50)
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From (50)1 and (50)3

T = 2η2
(
1 +

1
κ1

)
D2GB2p + η̂2D +

κ2

κ1
I. (51)

Substituting (51) into (50)1 we obtain κ1 = −2, so that

T = η2D2GB2p + η̂2D −
κ2

2
I. (52)

Subtracting (52) from (48) and multiplying by B−12p , we have

η2

μ2
D2G =

1
μ2

(
κ2

2
− P

)
B
−1
2p + I, (53)

and, applying the trace operator to both sides of (53), we find

κ2 = 2P −
6μ2
trB−12p

. (54)

Proceeding as in the previous section, from (53), we get

γ2
∇

B2p +B2p = λ2I, (55)

where
γ2 =

η2

2μ2
, λ2 =

3
trB−12p

. (56)

Therefore, the constitutive equation in Ω2 can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
T = −PI + S,

S = μ2B2p + η̂2D,

S + γ2
∇

S= η̂2(D + γ2
∇

D) + λ2μ2I.

(57)

Equation (57)3 is very closely related to the Oldroyd-B type
fluid15, but contains the extra term λ2μ2I and has the same re-
tardation and relaxation time γ2. To obtain the exact form of
the Oldroyd-B type differential equation we rewrite T as

T = −P̂I + Ŝ, (58)

where
P̂ = P − λ2μ2, Ŝ = S − λ2μ2I. (59)

It is easy to see that

Ŝ + γ2

∇

Ŝ= γ3 (D + γ4D) , (60)

where
γ3 = η̂2γ2, γ4 =

η̂2

η̂2γ2 + η2λ2
. (61)

Equation (60) is the constitutive equation of the Oldroyd-B type
fluid model. Proceeding as in the previous section we make use
of (57) to represent the Oldroyd-B type fluid in the domain Ω2.
Remark 1. From (57)2 and (57)3 we see that

B2p + γ2
∇

B2p= λ2I, (62)

thus (57) is equivalent to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T = −PI + μ2B2p + η̂2D,

B2p + γ2
∇

B2p= λ2I.

(63)

It is thus clear that the only difference between the Maxwell
fluid and the Oldroyd fluid is the extra viscous term η̂2D.

6. Linearized elastic response

From the constraint I · LiG = I · DiG = 0 we have that
tr(ĠiG−1

i ) = 0. Recalling that Gi = F−1ip Fi we get

ĠiG
−1
i =

(
Ḟ
−1
ip Fi + F

−1
ip Ḟi

)
F
−1
i Fip = Ḟ

−1
ip Fip + F

−1
ip LiFip, (64)

where Li = ḞiF
−1
i is the restriction of the velocity gradient to

the ith “phase”. Therfore

tr(ĠiG−1
i ) = tr(Ḟ−1ip Fip) + tr(Li) = 0. (65)

Recalling that the continuum is incompressiblewe have tr(Li) =
0 an consequently tr(Ḟ−1ip Fip) = 0. From (21)

˙detFip = 0 ⇒ detFip = detBip = 1. (66)

Now we assume that the elastic response from the natural to the
actual configuration is linear and we write

(Bip)rk = δrk + Birk, i = 1, 2, r, k = 1, 2, 3. (67)

where |Birk| = O(ε), with ε � 1. Recalling that detBip = 1 it is
easy to see that

1 = 1 +
3∑
r=1
Bir r + O(ε2), ⇒

3∑
r=1
Bir r = O(ε2), (68)

and
trBip = 3 + O(ε2). (69)

In an analogous way we can also prove that

trB−1ip = 3 + O(ε2). (70)

Assuming that the elastic response is linear means that we are
neglecting the second order terms in (70). Therefore in the case
of linear elastic response for both phases we have λ1 = λ2 = 1.

7. The one dimensional case

We now consider a channel flow driven by a pressure gradi-
ent. We assume that the flow occurs along the x−axis between
two parallel plates placed at distance 2L. We denote by y the co-
ordinate axis perpendicular to the flow of the fluid. We assume
that the domain Ω2 (where the body behaves as an Oldroyd–B
fluid) is confined between the moving surfaces y = ±s(t), while
the domain Ω1 (where the body behaves as a Maxwell fluid) is
confined in the regions s(t) � y � L and −L � y � −s(t) (see
Fig. 2).
For symmetry reasons we only consider the upper part of the

layer 0 � y � L. We define the velocity in the domains Ω1 and
Ω2 respectively as

�v(y, t) = v(y, t)�i, s(t) � y � L, (71)

�u(y, t) = u(y, t)�i, 0 � y � s(t). (72)

In practice we are assuming that the spatial dependence is only
upon the y coordinate, i.e. we are supposing that the plates
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Figure 2: One dimensional setting of the problem. The filled part −s(t) < y <
s(t) represents the domain where the fluid behaves as an Oldroyd-B fluid.

y = ±L are sufficiently large so that the dependence upon the
x and z coordinates can be safely neglected. For simplicity we
will derive the equation of motion for the domain Ω2, since the
one for the domain Ω1 is obtained in the same way setting the
extra viscosity η̂2 = 0 (recall that the constitutive equations in
the two phases differ only for the extra viscosity term η̂2D, see
Remark 1).
For the specific case we are considering we observe that the

tensor B2p depends only on y and t, that is B2p = B2p(y, t). Thus
we have

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0 uy 0
0 0 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , D =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0 uy 0
uy 0 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (73)

and, since we are assuming a linearized elastic response,

B2p =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1 + B11 B12 B13
B12 1 + B22 B23
B13 B23 1 + B33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (74)

where for simplicity we have omitted the apex 2. It is easy to
prove that equation (63)2 (recall that λ2 = 1) reduces to the six
scalar differential equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂B11
∂t

+
1
γ2
B11 − 2B12

∂u
∂y

= 0,

∂B12
∂t

+
1
γ2
B12 − (1 + B22)

∂u
∂y

= 0,

∂B13
∂t

+
1
γ2
B13 − B23

∂u
∂y

= 0,

∂B22
∂t

+
1
γ2
B22 = 0,

∂B23
∂t

+
1
γ2
B23 = 0,

∂B33
∂t

+
1
γ2
B33 = 0,

(75)

where the initial conditions are Brk(y, 0) = 0, r, k = 1, 2, 3.
Problem (75) can be solved obtaining⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B11(y, t) = 2
t∫
0

∂u
∂y

(y, τ)B12(y, τ) exp
(
τ − t
γ2

)
dτ,

B12(y, t) =
t∫
0

∂u
∂y

(y, τ) exp
(
τ − t
γ2

)
dτ,

B13(y, t) = B22(y, t) = B23(y, t) = B33(y, t) = 0.

(76)

Considering now the balance of linear momentum

ρ�a = ∇ · T, (77)

we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
∂u
∂t

= −
∂P
∂x

+ μ2
∫ t
0
∂u
∂y

(y, τ) exp
(
τ − t
γ2

)
dτ +

η̂2

2
∂2u
∂y2

,

0 = −
∂P
∂y
,

0 = −
∂P
∂z
,

(78)
where the last two equations imply

P(x, t) = − f (t)x + g(t). (79)

Multiplying both sides of (78)1 by exp(t/γ2) and differentiating
w.r.t. time we get

1
c22

(
∂2u
∂t2

+
1
γ2

∂u
∂t

)
=

1
μ2

[
1
γ2
f (t) +

d f (t)
dt

]
+

+

(
1 +

η̂2

η2

)
∂2u
∂y2

+
η̂2

2μ2
∂3u
∂t∂y2

, (80)

where

c2 =
√
μ2

ρ
. (81)

The equation of motion in Ω1 can be obtained using the same
procedure and setting η̂2 = 0. Therefore we have

1
c21

(
∂2v
∂t2

+
1
γ1

∂v
∂t

)
=

1
μ1

[
1
γ1
f (t) +

d f (t)
dt

]
+
∂2v
∂y2

, (82)

where

c1 =
√
μ1

ρ
. (83)

Remark 2. The pressure field is determined imposing a known
applied pressure at some points x = a and x = b, namely
P|x=a = Pa(t) and P|x=b = Pb(t). In this case

f (t) =
Pb(t) − Pa(t)
a − b

, g(t) =
Pb(t)a − Pa(t)b

a − b
(84)
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Remark 3. Notice that rescaling B11 and B12 in (76) implies

B12 = O
(Vtc
L

)
, B11 = O

(
V2t2c
L2

)
, (85)

where V, L and tc are the characteristic velocity, length and
time respectively. Setting ε = VLt−1c , we have B12 = O(ε) and
B11 = O(ε2). Since we are considering a linearized elastic re-
sponse we neglect second order terms and the traceless part of
the stress tensor T̃ defined in (26) becomes

T̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ 0 μ1B12 0
μ1B12 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (86)

in s(t) � y � L and

T̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 μ2B12 +

η̂2

2
∂u
∂y

0

μ2B12 +
η̂2

2
∂u
∂y

0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (87)

in 0 � y � s(t). Conditions (28) and (29) become

|μ1B12| � τo, in s(t) � y � L, (88)∣∣∣∣∣μ2B12 + η̂2

2
∂u
∂y

∣∣∣∣∣ � τo, in 0 � y � s(t), (89)

while, on y = s(t),

|μ1B12| =
∣∣∣∣∣μ2B12 + η̂2

2
∂u
∂y

∣∣∣∣∣ = τo (90)

Remark 4. Assuming enough regularity for u(y, t) and v(y, t),
from (78)1, we get

∂u(y, 0)
∂t

=
f (0)
ρ

+
η̂2

2ρ
∂2u(y, 0)
∂y2

. (91)

Analogously, in the region s(t) � y � L, we have

∂v(y, 0)
∂t

=
f (0)
ρ

. (92)

8. Boundary conditions

We want to derive the boundary conditions at the interface
y − s(t) = 0, which we denote by Σ. We consider the classical
Rankine-Hugoniot conditions, which express the conservation
law on the moving discontinuity interface Σ

[Q]�w · �n = [�q ] · �n, (93)

where Q is any scalar quantity which is C1 on both sides of Σ,
�q is the flux of Q across Σ, �n is the unit normal vector of Σ, �w is
the velocity of Σ and [Q] = Q+ − Q−, [�q ] = �q+ − �q− represent
the jumps of Q and �q across Σ. The positive and negative sides
are defined choosing the orientation to the normal vector �n, so
that Q± and �q± represent the limits for (x, t) tending to Σ±. In

the case we are considering we have �n = �j so that �w = ṡ(t)�j and
we write

[Q]ṡ(t) = [�q ] · �j. (94)

When Q is density Q = ρ and �q = ρ�v, where �v is the velocity of
the medium. At y = s(t) we have

[ρ+ − ρ−]ṡ(t) = [(ρ+v − ρ−u)�i ] · �j = 0, (95)

implying the continuity of density across the interface. When Q
represents the momentum along the x direction we have Q+ =

ρv, Q− = ρu and on y = s(t)

�q+ = T
+�i = [−P+ + μ1(1 + B+11)]�i + μ1B

+
12
�j, (96)

�q− = T
−�i = [−P− + μ2(1 + B−11)]�i +

(
μ2B−12 +

η̂2

2
∂u
∂y

)
�j. (97)

Therefore, from (93),

ρ(v − u)ṡ(t) = μ1B+12 − μ2B
−
12 −

η̂2

2
∂u
∂y
. (98)

Assuming the no-slip condition u(s, t) = v(s, t) and recalling
(76)2 we get

μ1

∫ t

0

∂v(s, τ)
∂y

exp
(
τ − t
γ1

)
dτ =

= μ2

∫ t

0

∂u(s, τ)
∂y

exp
(
τ − t
γ2

)
dτ +

η̂2

2
∂u(s, t)
∂y

. (99)

Both sides of (99) represent the stress at the interface y = s(t)
and, from (90),

μ1

∫ t

0

∂v(s, τ)
∂y

exp
(
τ − t
γ1

)
dτ = −τo, (100)

μ2

∫ t

0

∂u(s, τ)
∂y

exp
(
τ − t
γ2

)
dτ +

η̂2

2
∂u(s, t)
∂y

= −τo, (101)

where we take −τo since we expect vy(s, t) and uy(s, t) to be
negative
If we differentiate (100) w.r.t. time and recall (78)1 with η̂2 =

0 we get the interface condition

∂v(s, t)
∂y

+
ṡ
c21

∂v(s, t)
∂t

=
1
μ1

[
f (t)ṡ(t) −

τo

γ1

]
, (102)

while if we differentiate (101) w.r.t. time and recall (78)1 we
get the interface condition(
1 +

η̂2

η2

)
∂u(s, t)
∂y

+
ṡ
c22

∂u(s, t)
∂t

+
η̂2

2μ2
∂2u(s, t)
∂t∂y

=
1
μ2

[
f (t)ṡ(t) −

τo

γ2

]
.

(103)
If we now consider the momentum along the y direction we

have Q = 0 and

�q + = T
+�j = μ1B+12�i + (−P + μ1)�j, (104)

�q − = T
−�j =

[
μ2B−12 +

η̂2

2
∂u(s, t)
∂y

]
�i + (−P + μ2)�j. (105)
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From (93) we get

P+ − P− = μ1 − μ2. (106)

so, recalling Remark 2, we know that P+ = P−, implying nec-
essarily μ1 = μ2, that is the elastic modulus must be the same
in both phases. Thus from now on we set μ1 = μ2 = μ.
Last, if we consider the balance of energy across the interface

Σ we get

Q+ =
1
2
ρv2 +W+, Q− =

1
2
ρu2 +W−, (107)

�q + = T
+�v = v

[
−P + μ

(
1 + B+11

)]�i + vμB+12�j, (108)

�q − = T
−�u =

= u
[
−P + μ

(
1 + B−11

)]�i + v [μB+12 + η̂2

2
∂u(s, t)
∂y

]
�j. (109)

From (93), on y = s(t), we get

(W+ −W−)ṡ(t) = u
[
μB+12 − μB

−
12 −

η̂2

2
∂u(s, t)
∂y

]
. (110)

The right hand side of (110) vanishes because of (99) and there-
fore energy is continuous across Σ and ψ+ = ψ−, meaning
that the Helmoltz potential is continuous across the interface
y = s(t).

9. The mathematical problem

We are now able to state the mathematical formulation of the
problem. Since μ1 = μ2 = μ, we have

c =: c1 = c2 =
√
μ

ρ
, γ1 =

η1

2μ
, γ2 =

η2

2μ
. (111)

Moreover, for the sake of simplicity, we assume that the pres-
sure gradient is constant, that is f (t) =: fo > 0. We have

1
c2

[
∂2v
∂t2

+
1
γ1

∂v
∂t

]
=
∂2v
∂y2

+
2 fo
η1
, s(t) � y � L, t � 0, (112)

v(y, 0) = vo(y), so � y � L, (113)

∂v(y, 0)
∂t

=
fo
ρ
, so � y � L, (114)

v(L, t) = 0, t � 0, (115)

v(s, t) = u(s, t), t � 0, (116)

∂v(s, t)
∂y

+
ṡ
c2
∂v(s, t)
∂t

=
ṡ fo
μ
−
2τo
η1

, t � 0, (117)

1
c2

(
∂2u
∂t2

+
1
γ2

∂u
∂t

)
=

=
2 fo
η2

+

(
1 +

η̂2

η2

)
∂2u
∂y2

+
η̂2

2μ
∂3u
∂t∂y2

, 0 � y � s(t), t � 0, (118)

u(y, 0) = uo(y), 0 � y � so, (119)

∂u(y, 0)
∂t

=
fo
ρ
+
η̂2

2ρ
u
′′

o(y), 0 � y � so (120)

∂u(0, t)
∂y

= 0, t � 0, (121)

∂u(s, t)
∂y

(
1 +

η̂2

η2

)
+
ṡ
c2
∂u(s, t)
∂t

+
η̂2

2μ
∂2u(s, t)
∂t∂y

=

=
ṡ fo
μ
−
2τo
η2

, t � 0. (122)

We rescale the problem (112)-(122) setting

t = Tt∗, u = Uu∗, v = Uv∗, y = Ly∗, (123)

s = Ls∗, so = Ls∗o, (124)

and introduce

U =
2 foL2

η2
, T =

L
c
. (125)

α2 =
η2

η2 + η̂2
, β2 =

η2

η1
, Bn =

τo

foL
, (126)

We1 =
γ1c
L
, We2 =

γ2c
L
, Ŵe2 =

γ̂2c
L

=
η̂2c
2μL

, (127)

Re1 =
2ρcL
η1

, Re2 =
2ρcL
η2

, R̂e2 =
2ρcL
η̂2

, (128)

whereBn is the Bingham number,We1,We2, Ŵe2 are theWeis-
senberg numbers with respect to viscosities η1, η2, η̂2, while
Re1, Re2, R̂e2 are the Reynolds numbers with respect to vis-
cosities η1, η2, η̂2. The adimensional problem (we omit the * to
keep notation simple) becomes

∂2v
∂t2

+
1
We1

∂v
∂t

=
∂2v
∂y2

+ β2, y ∈ [s (t) , 1], t > 0, (129)

v(y, 0) = vo(y), so � y � 1, (130)

∂v(y, 0)
∂t

=
1
Re2

, so � y � 1, (131)

v(1, t) = 0, t � 0, (132)

v(s, t) = u(s, t), t � 0, (133)
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∂v(s, t)
∂y

+ ṡ
∂v(s, t)
∂t

= We2 ṡ − β2 Bn, t � 0, (134)

∂2u
∂t2

+
1
We2

∂u
∂t

= 1 +
1
α2

∂2u
∂y2

+

+Ŵe2
∂3u
∂t∂y2

, y ∈ [0, s (t)], t > 0, (135)

u(y, 0) = uo(y), 0 � y � so, (136)

∂u(y, 0)
∂t

=
1
Re2

+
1
R̂e2

u
′′

o(y), 0 � y � so, (137)

∂u(0, t)
∂y

= 0, t � 0, (138)

1
α2
∂u(s, t)
∂y

+ ṡ
∂u(s, t)
∂t

+

+Ŵe2
∂2u
∂t∂y

= We2 ṡ − Bn, t > 0. (139)

Problem (129)-(139) is a free boundary problem involving a
telegraph equation and a third order equation, the free boundary
being the surface y = s(t). Due to its high complexity we do not
prove any analytical results but we focus on a particular case
which is the subject of section 10.

9.1. The stationary solution
Let us study the stationary version of problem (129)-(139),

that is the one in which all the time derivatives are set to zero.
We have

∂2v
∂y2

= −β2, y ∈ [s, 1], (140)

v(1) = 0, (141)

v(s) = u(s), (142)

∂v(s)
∂y

= −β2 Bn, (143)

∂2u
∂y2

= −α2, y ∈ [0, s], (144)

∂u(0)
∂y

= 0, (145)

∂u(s)
∂y

= −α2 Bn. (146)

It is easy to see that the solution of (140)-(146) is given by

v(y) =
β2

2
(1 − y2), (147)

u(y) =
α2

2
(s2 − y2) +

β2

2
(1 − s2), (148)

s = Bn. (149)

Remark 5. We notice that the stationary solution s = Bn has a
physical meaning if 0 < s = Bn < 1, that is if the condition

fo >
τo

L
(150)

is fulfilled.

Remark 6. In the next section we will consider the case in
which α2 � 1. In view of (148) we see that in this situation
the stationary solution of the problem does not depend on the
spatial coordinate y. Therefore, if α2 � 1 and β2 = O (1), it
is reasonable to assume that the initial conditions u(y, 0) and
ut(y, 0) are spatially uniform.

10. The reduced problem: case 1

Let us go back to problem (129)-(139) and let us first con-
sider the particular case in which η̂2 � η2. In particular, we
assume that

η̂2 � η2, Wei = O(1), Rei = O(1), i = 1, 2 (151)

Bn = O(1), β2 = O(1). (152)

Under assumptions (151) and recalling (126)-(127), it is easy to
show that

α2 � 1, α2 Ŵe2 ≈ We2 = O(1), (153)

R̂e2 � Re2 ≈ Re1 = O(1). (154)

Thus, neglecting the termswhose coefficients are “small”, prob-
lem (129)-(139) reduces to the following

∂2v
∂t2

+
1
We1

∂v
∂t

=
∂2v
∂y2

+ β2, y ∈ [s (t) , 1], t > 0, (155)

v(y, 0) = vo(y), so � y � 1, (156)

∂v(y, 0)
∂t

=
1
Re2

, so � y � 1, (157)

v(1, t) = 0, t � 0, (158)

v(s, t) = u(s, t), t � 0, (159)

∂v(s, t)
∂y

+ ṡ
∂v(s, t)
∂t

= We2 ṡ − β2Bn, t � 0, (160)

∂2u
∂y2

+ α2 Ŵe2
∂3u
∂t∂y2

= 0, y ∈ [0, s (t)], t > 0, (161)

u(y, 0) = Uo, 0 � y � so, (162)

∂u(y, 0)
∂t

= 0, 0 � y � so, (163)
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∂u(0, t)
∂y

= 0, t � 0, (164)

∂u(s, t)
∂y

+ α2 Ŵe2
∂2u(s, t)
∂t∂y

= 0, t > 0, (165)

where, as observed in remark 6, we assume that the initial con-
dition u(y, 0) = Uo > 0 is spatially uniform. Focussing on (161)
and setting α2 Ŵe2 = ζ, we get

∂2

∂y2

[
u(y, t) + ζ

∂u(y, t)
∂t

]
= 0 =⇒

=⇒
∂

∂y

[
u(y, t) + ζ

∂u(y, t)
∂t

]
= F(t). (166)

From (165) F(t) = 0, hence

u(y, t) + ζ
∂u(y, t)
∂t

= G(t), (167)

where, at this stage, G(t) is unknown. Equation (167) can be
integrated so that

u =
[
Uo +

∫ t

0
G(τ) exp (ζτ) dτ

]
exp (−ζt) . (168)

The latter implies that the velocity field in the region [−s, s]
does not depend on y, that is u = u(t).
We now have to determine an equation for u(t) not involving

G(t). To this aim we consider a region V with −s(t) < y < s(t)
and unitary length and width (see Fig. 3 ).

Figure 3: A portion V of the region −s(t) < y < s(t) of unitary length and width.

The non–dimensional global balance of linear momentum rela-
tive to the domain V yields∫ s(t)

−s(t)

du(t)
dt
dy =

2
Re2

[s − Bn] =⇒

=⇒
du
dt

=
1
Re2

[
1 −

Bn
s

]
. (169)

In particular, combining (167) and (169), we get also the fol-
lowing expression for G

G(t) = u(t) +
ζ

Re2

[
1 −

Bn
s(t)

]
. (170)

Going back to (169) we have

u(t) = Uo +
1
Re2

∫ t

0

[
1 −

Bn
s(τ)

]
dτ. (171)

The problem (155)-(165) reduces to

∂2v
∂t2

+
1
We1

∂v
∂t

=
∂2v
∂y2

+ β2, y ∈ [s, 1], t > 0, (172)

v(y, 0) = vo(y), so � y � 1, (173)

∂v(y, 0)
∂t

=
1
Re2

, so � y � 1, (174)

v(1, t) = 0, t � 0, (175)

v(s, t) = Uo +
1
Re2

∫ t

0

[
1 −

Bn
s(τ)

]
dτ, t � 0, (176)

∂v(s, t)
∂y

+ ṡ
∂v(s, t)
∂t

= We2 ṡ − β2Bn, t � 0, (177)

which is a free boundary problem for a telegraph equation.

11. The reduced problem: case 2

Here we consider the case in which Ŵe2 � 1 andWe2 � 1,
that is

η̂2 �
2μL
c
, η2 �

2μL
c
. (178)

Relations (178) imply

η̂2 � η̂2, α2 � 1, We2 =
1
Re2

� 1, (179)

α2Ŵe2 ≈ We2 � 1, α2We2 � 1, (180)

α2

We2
≈

1
Ŵe2

� 1. (181)

Once again we assume

We1 = O(1), Re1 = O(1), (182)

Bn = O(1), β2 = O(1). (183)

In this second case problem (129)-(139) reduces to

∂2v
∂t2

+
1
We1

∂v
∂t

=
∂2v
∂y2

+ β2, y ∈ [s (t) , 1], t > 0, (184)

v(y, 0) = vo(y), so � y � 1, (185)

∂v(y, 0)
∂t

= 0, so � y � 1, (186)

v(1, t) = 0, t � 0, (187)
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v(s, t) = u(s, t), t � 0, (188)

∂v(s, t)
∂y

+ ṡ
∂v(s, t)
∂t

= −β2Bn, t � 0, (189)

∂2u
∂y2

= 0, y ∈ [0, s (t)], t > 0, (190)

u(y, 0) = uo(y), 0 � y � so, (191)

∂u(y, 0)
∂t

=
1
R̂e2

u
′′

o(y), 0 � y � so, (192)

∂u(0, t)
∂y

= 0, t � 0, (193)

∂u(s, t)
∂y

= 0, t � 0. (194)

We observe that u = u(t) and, writing the balance of linear
momentum as in section 10, we get

du(t)
dt

=
1
Re2

[
1 −

Bn
s(t)

]
= 0, (195)

since we are assuming Re−12 � 1. Therefore, the velocity field
in [0, s(t)] is uniform in space and time, that is u(t) = Uo =

v(so) > 0 and we have to solve

∂2v
∂t2

+
1
We1

∂v
∂t

=
∂2v
∂y2

+ β2, y ∈ [s (t) , 1], t > 0, (196)

v(y, 0) = vo(y), so � y � 1, (197)

∂v(y, 0)
∂t

= 0, so � y � 1, (198)

v(1, t) = 0, t � 0, (199)

v(s, t) = Uo, t � 0, (200)

∂v(s, t)
∂y

+ ṡ
∂v(s, t)
∂t

= −β2Bn, t � 0. (201)

In this case the stationary solution is found solving the follow-
ing

∂2v
∂y2

= −β2, y ∈ [s, 1], (202)

v(1) = 0, (203)

v(s) = Uo, (204)

∂v(s)
∂y

= −β2Bn. (205)

From (202), (204), (205) we get

v(y) = −
β2

2
(s − Bn − y)2 +

β2Bn2

2
+ Uo, (206)

and imposing (203) we find

(s − Bn − 1) = ±

√
Bn2 +

2Uo
β2

. (207)

We immediately notice that the r.h.s. of (207) must be negative
if we want that the boundary s has a physical meaning. Indeed,
supposing that the r.h.s. is positive we have s > Bn + 1 > 1,
which has no physical interpretation. Thus

s = 1 + Bn −

√
Bn2 +

2Uo
β2

. (208)

Next we want that s ∈ [0, 1], thus we require√
Bn2 +

2Uo
β2

� 1 + Bn �

√
Bn2 +

2Uo
β2

+ 1. (209)

The left inequality holds if

Uo � β2
(
1
2
+ Bn

)
(210)

while the right inequality is always satisfied. Therefore, under
hypothesis (210), the stationary solution is unique and is given
by

v(y) = −
β2

2
(s − Bn − y)2 +

β2Bn2

2
+ Uo, (211)

s = 1 + Bn −

√
Bn2 +

2Uo
β2

. (212)

Notice that when Uo = 0 the stationary interface s = 1 and
u = 0 in [0, 1], meaning that the system has come to a stop.

12. Conclusions

We have developed a mathematical model for a fluid which
behaves like a upper convected Maxwell fluid if a function of
the principal invariants of the stress is above a certain threshold
τo and like a Oldroyd-B type fluid if it is below such a thresh-
old. Our model can be easily generalized to the case in which
one phase is occupied by a general nonlinear Maxwell fluid and
the other by a generalized Jeffreys fluid. We have formulated
the mathematical problem for a one-dimensional channnel flow
driven by a pressure gradient. The problem has turned out to be
a free boundary problem involving a hyperbolic telegraph equa-
tion and a third order equation. We have explicitly written the
stationary solution and we have studied two particular cases in
which the velocity of the inner part of the layer (the one below
the threshold) has uniform velocity. Due to the high complex-
ity of the general model, no analytical results have been proven.
The analytical study of problem (196)-(205) will be the subject
of a forthcoming paper.
An interesting extension of this work would be the one in

which one considers the full thermodynamical problem, for in-
stance assuming that the plates have different temperatures.
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