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Abstract 

A two-dimensional aerodynamics representation analysis is introduced for the investigation 

of inviscid flowfields of unsteady airfoils. The problem of the unsteady flow of a two-

dimensional NACA airfoil is therefore reduced to the solution of a non-linear 

multidimensional singular integral equation, when the form of the source and vortex strength 

distribution is dependent on the history of the above distribution on the NACA airfoil surface. 

An application is given to the determination of the velocity and pressure coefficient field 

around an aircraft by assuming constant source distribution.  
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1.  Introduction 

 

    During the last years the non-linear singular integral equations have concentrated an 

increasing interest, because of their application to the solution of basic problems of 

aerodynamics and fluid mechanics, especially referring to unsteady flows. The theory and 

computational methods by non-linear singular integral equations consist of the latest high 

technology to the solution of generalized problems of solid and fluid mechanics. Hence, there 

is a big interest to the continuous improvement of such computational methods. 

   The new design aerodynamic problems are reduced to the solution of a non-linear singular 

integral equation, which is used for the determination of the velocity and pressure coefficient 

field around a NACA airfoil. Such an aerodynamic behaviour of the NACA airfoils is a very 

important element to the design of new generation aircrafts, with very high speeds. Therefore, 

special attention should be given to the new technology computational methods concentrated 

to the solution of the before mentioned aerodynamic and fluid dynamic problem. 

   A.M.O.Smith and J.L.Hess [1], were the first scientists who investigated aerodynamic panel 

methods for studying airfoils with zero lift. According to them, the airfoil was modeled with 

distributed potential source panels for nonlifting flows, or vortex panels for flow with lift. 

This method was further extended by R.H.Djojodihardjo and S.E.Widnall [2], P.E.Robert and 

G.R.Saaris [3], J.M.Summa [4], D.R.Bristow [5], D.R.Bristow and J.D.Hawk [6] and 

R.J.Lewis [7], for studying three-dimensional steady and unsteady flows, by combining 

source and vortex singularities. Also, the unsteady panel methods to the modeling of 

separated wakes using discrete vortices, were further extended by T.Sarpkaya and R.L.Schoaf 

[8]. 

    Beyond the above, N.D.Ham [9], F.D.Deffenbaugh and F.J.Marschall [10], M.Kiya and 

M.Arie [11] and T.Sarpkaya and H.K.Kline [12] investigated some other flow models. 

According to them, the separating boundary layers were represented by an array of discrete 

vortices, emanating from a known separation point location on the airfoil surface. 

    On the other hand, during the past years, several scientists made extensive calculations by 

using unsteady turbulent boundary layer methods. Among them we mention: R.E.Singleton 

and J.F.Nash [13], J.F.Nash, L.W.Carr and R.E.Singleton [14], A.A.Lyrio, J.H.Ferzinger and 

S.J.Kline [15], W.J.McCroskey and S.I.Pucci [16] and J.Kim, S.J.Kline and J.P.Johnston [17]. 
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    Recently, non-linear singular integral equation methods were proposed by E.G.Ladopoulos 

[18] - [22] for the solution of fluid mechanics and aerodynamic problems and by 

E.G.Ladopoulos and V.A.Zisis [23], [24] for two-dimensional fluid mechanics problems 

applied to turbomachines. 

   In the present research, the aerodynamic problem of the unsteady flow of a two-dimensional 

NACA airfoil moving by a velocity UA , is reduced to the solution of a non-linear 

multidimensional singular integral equation. This nonlinearity results because the source and 

vortex strength distribution are dependent on the history of the vorticity and source 

distribution on the NACA airfoil surface. Beyond the above, a turbulent boundary layer 

model is further proposed, based on the formulation of the unsteady behaviour of the 

momentum integral equation.  

    An application is finally given to the determination of the velocity and pressure coefficient 

field around an aircraft by assuming constant source distribution.       

2.  Unsteady Aerodynamics by Non-linear Singular Integral Equations 

   A new non-linear unsteady fluid mechanics representation analysis is investigated, for the 

aerodynamic problem of a two-dimensional NACA airfoil. This method consists to the 

generalization of all past methods, by reducing the problem to the solution of a non-linear 

multidimensional singular integral equation. The above nonlinearity results because of the 

general form given to the source and vortex strength distribution, while these are dependent 

on the history of the vorticity and source distribution on the NACA airfoil surface. In this case 

the airfoil is moving with a speed AU . [18] – [22] 

    Hence, consider a two-dimensional airfoil moving in an  homogeneous  and  inviscid  fluid. 

(Fig.1). 

Fig. 1 

    The airfoil with the wake comprise s complete lifting system in an irrotational flow through 

the ideal fluid. Because of the existence of such an irrotationality, then for the local fluid 

velocity U one has:    

                                  0�� �U                                                           (2.1) 
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    Furthermore, by replacing the fluid velocity with the total velocity potential  H  we have: 

                                                                    H��U                                                            (2.2) 

while (2.2) can be further written as:    

                                                                h�� ��U U                                                       (2.3) 

where �U  denotes the outward velocity (Fig. 1) and  h  the potential due to the presence of 

the airfoil. 

    Beyond the above, the use of Green’s theorem [25] results the following relation for the 

velocity potential  ( , )h tx ,  with  t  the time, at any point  x  in continuous, acyclic irrotational 

flow: 

                         
� � � �

1

, , 1
( , ) 1 2 d 1 2 , , d

S S W

g t h
h t S t h S

r n r
	
 
 �
	�

� � � � � �
� �� �

�
x �             

(2.4) 

in which  S  is the surface of the airfoil  (Fig. 1),  W  the surface of the wake,  1n   the surface 

normal at the source point  �  (Fig. 1),  � �, ,g t h�   the source strength distribution,  � �, ,t h� �

the vortex strength distribution and  r  the distance equal to:  

                                   r � �x �                                                           (2.5) 

   The velocity potential (2.4) can be further written as following, which denotes a two-

dimensional non-linear singular integral equation: 
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� � � �

2

, , , ,
( , ) 1 2 d 1 2 d

S S W

g t h t h
h t S S

r r
�


 

�

� � �� �
� �

x              (2.6) 

   The kinematical surface tangency condition on the surface of the airfoil must be valid: [26] 

                                           � � 2

2

( , )
1 ( , ) 0

S t hS t
t n

	 	
	 	 �� � � � �

x
x U n                                

(2.7) 

in which  2n   denotes the surface normal at the field point  x  (Fig. 1). 

   This condition can be also written in the following form, for a body fixed coordinate 

system: 

                                            � � � � 2

( , )
1 ( , ) A

S tS t
t

	
	

� � � � � �
A

x
x U � x n                              

(2.8) 

where  AU   denotes the airfoil translation velocity and  A�   the airfoil angular rotation. 

   From eqs (2.7) and (2.8) follows: 

                                          � � 2

2

0A A
h
n

	
	 �� � � � � �U U � x n                                      

(2.9) 

   Finally, by inserting (2.9) into (2.6) follows a two-dimensional non-linear singular integral 

equation: 

                           
� � � �

� �

2

2 2

2

1 1
1 2 , , d 1 2 , , d

S S W

A A

g t h S t h S
n r n r
	 	
 
 �
	 	�

�

�  � � �� � � �
� � � �
� � � � �

� �� �

U U � x n

        

(2.10) 
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    The non-linear singular integral equation (2.10) can be also written as: 

                                              

� � � �

� �

2 3

, , , ,
1 2 d 1 d

S S W

A

g t h t h
S S

r r
�


 

�

�

� �

� � � �

� �
A 2

� �

U U � x n

                       

(2.11) 

   Therefore, by solving the non-linear integral equation (2.11) with the corresponding 

boundary conditions, then the velocity at any field point will be determined through (2.7). 

 

3.  Non-linear Pressure Distribution Analysis 

   

   By the unsteady Bernoulli equation, which is valid at any point in an irrotational, ideal flow, 

will be determined the pressure distribution on the airfoil: 

                                          � �2
1 2

HP P H
t

	�
	�

� �� � � �� �� �
                                      

(3.1) 

in which  �  denotes the fluid density. 

   Furthermore, by using the derivation of the previous section, then (3.1) reduces to the 

following form: 

                             � � � �2
1 2A A

hP P h h
t

	�
	� �

� �� � � � � � �� � �� �� �
U U � x                  (3.2) 

    Also, (3.2) can be written as: 
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� �

� � � �
2

2

1

1 1

1 2 1 2

A A S

A A S

HP P H
t

H HH
n n

	�
	

	 	
	 	

� �

�

�� � � � � � �� ���
�� 
�� � � � � � � � � �
�� � �

U U � x

U U � x n

              (3.3) 

if  replacing  the h� ,  by the surface gradient S h� :

                                                              
1

1

S n
hh h
n

	 �
	

� � � �                                               (3.4) 

   Hence, because of (2.9), then (3.3) takes the form: 

                                          

� �

� ��  � �2 2

11 2 1 2

A A S

A A S

HP P H
t

H

	�
	� �

�

�� � � � � � �� ���
�� � � � � � �
�

U U � x

U U � x n

             (3.5) 

which will be used for the computations. 

 

4.  Laminar and Turbulent Boundary Layer Models for Aerodynamics 

 

   Several boundary layer models can be used for the laminar, the turbulent parts of the flow 

and the transition region between them, in order to determine the aerodynamic behaviour of 

the airfoils. These boundary layer models are the finite difference, finite element or integral 

models.  

   In the present research a turbulent boundary layer model is proposed, based on the 

formulation of the unsteady behaviour of the momentum integral equation. Hence, the 

unsteady momentum integral equation valid for both laminar and turbulent flow may be 

written as: (Fig. 2) 
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                                      2
1 2

1
( ) (2 )

2

B F
B2

B B

d u c1 u d d S
u t S u S

	 		
� � � �

	 	 	
                          (4.1) 

where  u B  denotes the boundary layer edge velocity, t the time, 1d  the displacement 

thickness,  2d   the momentum thickness, S  the surface distance and  cF  the friction factor. 

Fig. 2 

   Furthermore, consider the case of a laminar layer, so that the pressure gradient parameter � 

is given by the following formula: 

                                                2 1
( )B B

d
B B

d u uk R
u S u t

	 	
� �

	 	
                                               (4.2) 

where  Rd  denotes the Reynolds number based on   u B  and   2d .  

 

   By considering also some special relations between the parameters  cF /2, 2d  and 1d , then 

we obtain a solution for the laminar formulation. Hence, for the wedge solutions following 

relations can be used: 

                                                     
1

2

1.91 4.13

2

(0.68 0.922 )

0.325 0.13

F

d

c D
R

N D
D kN

�

�
�

� �

� �

                                                 (4.3) 

where  N  is the shape parameter, D  the blockage factor  1d  / Bd  with Bd   the boundary layer 

thickness and  R d  the Reynolds number based on  u d and d.

   

    Beyond the above, for the turbulent layer model following relation is valid: 
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                                                 1

1
[ ( )]B B

B

u d d �
u S

	
� �

	
                                                 (4.4) 

and the function  �  is obtained by the formulas: 

                                                   

0.916

1

/15

1̀

d
0.025( )

d

4.24 ( )

0.013 0.0038

d

d

B B

B
B B B

B

w

� � � d
S

� K

K e
d P

x

!

!
"

�

�

� �

�

� �

�

                                  (4.5) 

in which  � w  denotes the wall shear stress and  dp/dx the streamwise pressure gradient. 

   The shape factor relationships are further obtained as following: 

                                              

2

1/2

2

1 ln( ) cos ( )
2

1
(sgn )( )

0.41 2 2

2( )

2

B B B

F F

wF

B

u y yf
u d d

c c

f B
c

u


#

#

#
"
�

� � �

�

� �

�

                                (4.6) 

with  u  the velocity in the boundary layer at a distance  y from the wall and  �  the fluid 

density.     

    Hence, the skin friction law is equal to: 

                                       

0.268
1.732

0.0511 2 sgn(1 2 )
2

dF Rc B B
B

�
� � � �� �
� �

                          (4.7) 
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5.  Velocity Calculations for Constant Source Distribution (Airfoil with Velocity) 

 

    Consider the special case of a constant source distribution  g. In this case the general non-

linear problem presented in previous paragraphs, is much more simplified and is solved as a 

linear problem. The geometrical representation of the problem is shown in Fig. 3.  

Fig. 3 

 

   In this special case the fluid  velocity  U,  is calculated as following: 

                         � �
/2

2

d
cos sin

2

A

A

g r
r

! !

�

� ��U i j                                              (5.1) 

where ,i j�  are the unit vectors on the x  and  y  axes, respectively, and A  denotes the 

separating wake (Fig. 3).   

    Hence, the fluid velocity  U can be determined as following, for the cases when 0py $

and 0py � :

                                     

1
1 2

2

1

2

2 ln ( ) , 0

2 ln , 0

p

p

rg y
r

rg y
r


 ! !




% � �
� � $& � �

& � �� '
& �&
(

i j

U

i

                             

(5.2) 

                                                                                                                                             

    Moreover, we consider the pressure coefficient  pC :
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2

( ) [1 2 ( ) ]p AC P P U U�� �� � �                                       

(5.3) 

where  �  denotes the fluid density and P�  the stream pressure. 

    By using Bernoulli’s equation, then the coefficient pC  may be written as: 

                                                        
2 2( )p AC U U U�� � �                                               (5.4) 

which can be used for the computations. 

 

6.  Application of Unsteady Aerodynamics for New Generation Aircrafts  

    As an application of the previous mentioned two-dimensional unsteady aerodynamics 

theory, we will calculate the velocity field presented around an aircraft. The construction of 

new generation turbojet engines makes possible the design of very fast big jets. Beyond the 

above, the increasing evolution of aeroelasticity in aircraft turbomachines continues to be still 

improved, according to the needs of aircraft powerplant and turbine designers. 

    Hence, the Aeronautical Industries should achieve a competitive technological advantage in 

several strategic areas of new and fast developing advanced technologies, by which a bigger 

market share can be achieved, in the medium and longer terms. Such an increasing big market 

share includes the design of new generation large aircrafts with very high speeds. 

   In the present application the length of the aircraft under consideration is c=50.0m and the 

airfoil section NACA 0021 (Fig. 3). 

 

    Moreover, it was supposed unit source distribution and therefore, the velocity field on the 

boundary of the airfoil was computed by (5.2). Also, the pressure coefficient  pC  was 

calculated through (5.4) for several aircraft velocities  AU  and wind velocity U � = 15m/sec.

    Figures 4, 5, 6 and 7  show the pressure distribution on the turbojet presented, for aircraft 

speeds  AU � 1,2,3,4 Mach  respectively (1 Mach=332 m/sec). Also, Figs. 4a to 7a show the 

same pressure distribution on the airfoil, in three dimensional form. 
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Figs. 4 - 7 /  Figs. 4a - 7a 

 

    As it is shown in the above Figures, for the up boundary points of the NACA airfoil the 

values of the pressure coefficient are icreasing approximately up to x/c = 0.25, while they 

decreasing again up to x/c =1. On the other hand, for the down boundary points the values of 

pC  are decreasing up to x/c = 0.35, and then increasing up to x/c = 1. 

 

7.  Conclusions 

    A general non-linear model has been proposed for the determination of the velocity and 

pressure coefficient field around a NACA airfoil moving by a velocity UA in two-dimensional 

unsteady flow. Such a problem was reduced to the solution of a two-dimensional non-linear  

singular integral equation, which has to be solved by computational methods. The 

nonlinearity resulted because of the form of the general type of the source and vortex strength 

distribution. 

   Furthermore, a turbulent boundary layer model was proposed, based on the formulation of 

the unsteady behaviour of the momentum integral equation. The unsteady momentum integral 

equation which was studied, is valid for both laminar and turbulent flow, and was given as a 

general method for the determination of the aerodynamic behaviour of the airfoils. 

   On the other hand, by supposing constant source distribution, then the velocity and pressure 

coefficient field around an aircraft moving with several velocities, was determined. This 

method should be applied for the design of new generation large aircrafts with very high 

speeds. 

   Finally, the non-linear singular integral equation methods, will be in future of continuously 

increasing interest, as such methods will be very important for the solution of the generalized 

solid and fluid mechanics problems. Special attention should be therefore given to the 

amelioration of the non-linear singular integral equation methods, as many modern solid and 

fluid mechanics problems with considerable complicated forms, are recently reduced to non-

linear forms. 
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Figure Captions

[1]: A two-dimensional airfoil of surface  S  in an homogeneous and inviscid fluid. 

[2}: Laminar and Turbulent Boundary Layer Model for Aerodynamics. 

[3]: Coordinate system for the 2D airfoil of an aircraft. 

[4]: Pressure distribution around the aircraft of Fig.3, for constant source distribution and 

speed 1 Mach.    

[5]: Pressure distribution around the aircraft  of Fig.3, for constant source distribution and 

speed 2 Mach.    

[6]: Pressure distribution around the aircraft  of Fig.3, for constant source distribution and 

speed 3 Mach.    

[7]: Pressure distribution around the aircraft  of Fig.3, for constant source distribution and 

speed 4 Mach.    

[4a]:Pressure distribution around the aircraft  of Fig.3, for constant source distribution and 

speed 1 Mach – 3D form.    

[5a]:Pressure distribution around the aircraft  of Fig.3, for constant source distribution and 

speed 2 Mach – 3D form.    

[6a]:Pressure distribution around the aircraft  of Fig.3, for constant source distribution and 

speed 3 Mach – 3D form.    

[7a]:Pressure distribution around the aircraft  of Fig.3, for constant source distribution and 

speed 4 Mach – 3D form.    
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Non-linear Multidimensional Singular Integral Equation for 2-D Unsteady Aerodynamics  

Determination of the Velocity and Pressure Coefficient Field around an Aircraft 

Turbulent Boundary Layer Model based on the behavior of Momentum Integral Equation.  

General type of the Source and Vortex Strength Distribution around NACA Airfoils 

Unsteady Momentum Integral equation for both Laminar and Turbulent Flows
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Figure 4.  Pressure distribution around the aircraft for constant source distribution and speed 1 Mach
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Figure 4a. Pressure distribution around the aircraft for constant source distribution and speed 1 Mach
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Figure 5. Pressure distribution around the aircraft for constant source distribution and speed 2 Mach
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Figure 5a. Pressure distribution around the aircraft for constant source distribution and speed 2 Mach
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Figure 6. Pressure distribution around the aircraft for constant source distribution and speed 3 Mach

-7,200

-7,000

-6,800

-6,600

-6,400

-6,200

-6,000

-5,800

-5,600
.02 .10 .18 .26 .34 .42 .50 .58 .66 .74 .82 .90 .98 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.2 2.4

X/C

C
p 

( x
 1

0^
-8

 )

Up Boundary Points
Down Boundary Points
Out Points

Figure 6



.02 .10 .18 .26 .34 .42 .50 .58 .66 .74 .82 .90 .98 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.2 2.4

Up Boundary Points
Down Boundary Points

Out Points

-7,200

-7,000

-6,800

-6,600

-6,400

-6,200

-6,000

-5,800

-5,600

C
p 

( x
 1

0^
-8

 )

X/C

Figure 6a. Pressure distribution around the aircraft for constant source distribution and speed 3 Mach
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Figure 7. Pressure distribution around the aircraft for constant source distribution and speed 4 Mach
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Figure 7a. Pressure distribution around the aircraft for constant source distribution and speed 4 Mach
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