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[1] By means of the contact dynamics discrete element method, we investigate the quasi-
static behavior of granular media composed of rigid frictional particles. Eluding specific
modeling of the contact rheology, this method is suitable for numerical simulation of
the plastic deformations of granular materials. We studied the macroscopic stress-strain
and volume-change behavior, as well as force transmission and shear instabilities, in a
two-dimensional biaxial geometry for dense samples composed of 5000 rigid disks. The
peak and residual strengths and shear bands were analyzed by varying the confining
pressure and the coefficient of friction between particles. The results are consistent with
well-known features of the plasticity of noncohesive granular media. The mechanical
behavior is rigid-plastic governed by a Mohr-Coulomb yield criterion and showing strain
hardening and softening. Conjugated shear bands characterize plastic failure. The
volumetric strain is globally dilatant with considerable expansion observed along shear
bands. The macroscopic coefficient of friction, determined from peak and residual
strengths, increases nonlinearly and saturates to a constant value as a function of contact
friction. The strong force chains are mostly parallel to the major principal stress axis, yet
deviations are observed near the shear bands. These chains are often composed of
particles that are larger than the average. The deviatoric stress shows small fluctuations
often in the form of rapid falls that are correlated with tiny contractional events. This
behavior is interpreted in terms of the propagation of dynamic shear instabilities along the
shear bands, in close analogy with stick-slip behavior.

Citation: Taboada, A., K.-J. Chang, F. Radjaı̈, and F. Bouchette (2005), Rheology, force transmission, and shear instabilities in

frictional granular media from biaxial numerical tests using the contact dynamics method, J. Geophys. Res., 110, B09202,

doi:10.1029/2003JB002955.

1. Introduction

[2] Granular materials are commonly observed in natural
deposits such as colluvium which consists of a poorly sorted
mixture of angular rock fragments and fine-grained particles
[Turner, 1996]. Particle sizes may range from huge boulders
tens of meters long, detached from bedrock cliffs as a result
of physical fragmentation processes, to rock flour generated
by abrasive wear along frictional surfaces. Fault breccia and
gouge observed in brittle shear zones are also significant
examples of naturally occurring granular materials with
specific mechanical properties that control processes such

as the surface propagation of seismic ruptures [Scholz,
1990; Mair et al., 2002].
[3] Geological landscapes are often shaped by dynamical

surface processes involving granular materials [Friedmann
et al., 2003]. Sand dunes result from the accumulation of
sand grains moving by saltation and sliding along the slip
face [Bagnold, 1941]. The sliding process involves small
avalanches, triggered once the angle of repose is reached.
Landslides often involve heterogeneous granular materials
such as rocks and debris which may fall, topple or slide
[Cruden and Varnes, 1996]. The complex kinematics of the
flowing mass depends on the morphological and geological
characteristics of the slope, as well as the rheology of
surface materials and the triggering processes.
[4] The analysis of surface processes involving frag-

mented material in the geological context may benefit from
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the ongoing interdisciplinary research on granular materials.
The mechanical behavior of noncohesive granular materials
has been widely studied by experiments and numerical
simulations in soil mechanics, in condensed matter physics
and in different engineering applications such as powder
technology. The strength and volume change properties of
granular materials have been analyzed for various grain size
distributions and boundary conditions [e.g., Cambou, 1993;
Thornton and Sun, 1993; Oger et al., 1998; Morgan, 1999;
Oda and Iwashita, 1999; Thornton and Zhang, 2001].
[5] New insights about the microscopic origins of the

specific elastic and plastic properties of granular media have
been obtained by a careful analysis of the microstructure
[Oda, 1972a, 1972b; Rothenburg and Bathurst, 1989; Roux
and Combe, 2002], displacement fields [Kuhn, 1999; Radjaı̈
and Roux, 2002], stress transmission [Dantu, 1957; Cundall
et al., 1982; Jaeger et al., 1996; Radjaı̈ et al., 1998], and
shear band formation [Vardoulakis et al., 1978; Bardet and
Proubet, 1992; Desrues et al., 1996; Calvetti et al., 1997;
Place and Mora, 2000].
[6] Since two decades, distinct element simulations have

proved to be a powerful tool in the field of granular
materials [Cundall and Stack, 1979; Jean, 2001]. The
general philosophy of this approach is to integrate the
equations of dynamics over small time steps for individual
grains by taking into account the grain-grain interactions as
well as the bulk and boundary forces. While the grains are
assumed to be undeformable, the grain interactions are
often modeled through normal (repulsion) and tangential
(friction) forces depending elastically on the relative dis-
placements at the contact point [Cundall and Stack, 1979;
Luding, 1998; Oron and Herrmann, 1998]. Damping
actions are introduced in order to ensure numerical stability.
This approach requires very fine time stepping so as to
resolve the evolution of the small overlaps between the
grains. Such a fine resolution and other numerical precau-
tions cannot be avoided when small elastic deformations of
a granular material are of primary importance, e.g., for
sound propagation. There are, however, two situations
where this ‘‘soft-particle’’ approach is not suitable: (1) when
the grains are very rigid or the confining stress is too low
and (2) when one is interested in the plastic behavior
occurring beyond elastic response times and for very large
strains. Then, the natural physical approach is to rely on a
‘‘hard-particle’’ approximation. The numerical approach
that is well suited to simulate multibody dynamics in this
limit is the contact dynamics (CD) method. This method
was initiated by Moreau [1988, 1994, 1999] and Jean
[1995, 1999], and since then it has been used successfully
by different authors for the investigation of granular materi-
als [Moreau, 1993; Radjaı̈ et al., 1996; Daudon et al., 1997;
Chevoir et al., 2001; Staron et al., 2002].
[7] In this paper, we are interested in the quasi-static

rheology of materials composed of perfectly rigid particles
subjected to a classical test along a monotonic biaxial strain
path and simulated by the CD method. The idea is to study
the purely plastic and hardening-softening behavior of a
granular material in the absence of elastic strains and
cohesion. Plastic deformation refers to the irreversible strain
that is not recovered upon unloading. The tests are carried
out on numerical samples composed of 5000 rigid disks.
The numerical device is comparable to a triaxial test

apparatus, in which the sample is subjected to a confining
pressure applied through a deformable membrane. The grain
size distribution is uniform by weight, with sizes ranging
between 1 m and 4 m. The samples are compressed up to
10% of their initial height, allowing to estimate both their
maximum and residual strengths. The mechanical behavior
was analyzed for different values of the confining pressure
and the coefficient of friction between particles, the total
number of tests being 70.
[8] We consider in detail the peak and residual stresses,

volumetric strains, the influence of the bulk density, the
formation of shear bands, the stress transmission, the
influence of boundary conditions, and the intermittent
dynamics at small strain increments. We analyze, in partic-
ular, the propagation of macroscopic shear bands and
dynamic instabilities within the particle assembly for low
and high friction coefficients. The stick-slip behavior along
shear bands is described and interpreted in terms of the
accumulation and release of potential energy. The shear
band characteristics are related to deformation mechanisms
observed at the particle scale. We also study the relationship
between the contact friction and the macroscopic friction.
[9] It is noteworthy that the absence of grain elasticity in

our calculations imparts a peculiar informative dimension to
the results when they are compared to simulations with
elastic contacts. For example, the presence of a stick-slip
behavior in our simulations involves no stored elastic
energy. In the same way, the initial quasi-linear increase
of deviatoric stress with axial strain in our simulations is a
purely hardening effect. On the other hand, through these
studies, we illustrate the potential interest of the CD
approach as an attractive investigation tool for many geo-
logical processes involving fragmented material. In partic-
ular, since no length scale is associated with the contacts,
the time step may be quite large (e.g., 10�4 s). Numerical
approaches that consider contact forces involving a length
scale, such as those generated by elastic spring interactions,
usually require a much finer time step. Nonsmooth processes
such as the initiation and propagation of shear bands and
fractures are readily simulated; the absence of damping
actions at the contacts allows one to observe fine timescaled
mechanical processes such as shear instabilities.
[10] The main features of the CD method are introduced

in section 2. Then, we present the characteristics of our
numerical setup (boundary conditions, driving), the grain
properties and the procedures of sample preparation. Finally,
we present in several sections our results from the numerical
tests.

2. Contact Dynamics Method

[11] In contrast to usual distinct element calculations used
in the field of geomaterials, the CD method may be
described as a ‘‘nonsmooth’’ approach in the sense that
the dynamics is formulated in such a way that it deals with
velocity jumps as well as with smooth velocity variations.
In this framework, inelastic collisions and the Coulomb
friction law can be tackled without resorting to elastic
repulsive potentials or viscous-regularized force laws. This
method was proposed and developed on a mathematical
background of nonsmooth dynamics and concepts from
convex analysis in order to calculate efficiently the me-
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chanical interactions within large particle sets [Moreau,
1988, 1994, 1999; Jean, 1995, 1999]. The equations of
the CD method, as implemented for the simulations of the
present study, are presented in some detail in Appendix A
which is also meant to provide a didactic introduction to the
method for the novice.
[12] The particles are rigid disks exerting normal and

shear forces, N and T, respectively, on each other at their
contact points. In the absence of adhesion, the normal
contact forces are compressive. We attribute a positive sign
to compressive contact forces. The relative normal velocity
Un between two particles in contact is considered as positive
when they move away from each other (i.e., particles are
at incipient separation). Then, the impenetrability of the
particles implies the following ‘‘unilateral’’ conditions:

N � 0 Un ¼ 0

N ¼ 0 Un > 0:
ð1Þ

On the other hand, the Coulomb friction law is expressed by
a set of inequalities:

T ¼ �mN Ut > 0;

�mN � T � mN Ut ¼ 0;

T ¼ mN Ut < 0;

ð2Þ

where Ut is the relative tangential velocity at the contact and
m is the coefficient of friction.
[13] The unknown variables are particle velocities and

contact forces. These are calculated at each time step by
taking into account the conservation of momenta, the
constraints expressed via inequalities (1) and (2), and the
dissipation of kinetic energy during particle collisions,
formulated in terms of normal and tangential restitution
coefficients. Although the uniqueness of the solution is not
guaranteed, the iterative research of the solution by means
of a nonlinear Gauss-Seidel scheme converges always
almost to the same solution, the difference between different
solutions being of the order of the numerical precision.
Physically, this means that the strength and plastic proper-
ties result from dissipative processes between the particles
(dry friction and inelastic collisions) and group rearrange-
ments, strongly constrained by the inequalities (1) and (2).
These properties might depend only marginally on the
deformability of the particles. The latter is assumed to be
small compared to particle sizes also in the usual discrete
element approach based on contact elasticity.
[14] Within the CD framework, it is also possible to

introduce rate and state-dependent friction laws such as
the well-known laws established first in rock mechanics
[e.g., Dieterich, 1979; Ruina, 1983; Abe et al., 2002]. The
influence of such fine physical parameters on multibody
dynamics in granular media merits a separate investigation.
For example, in the quasi-static limit, which is at the focus
of this paper, contact aging might contribute to the shear
strength. However, as we shall see in the following sections,
collective phenomena and shear instabilities occur already
in the presence of the most basic Coulombian friction
described by the inequalities (2). This corresponds to a

nonsmooth law in the sense that the relationship between
the friction force T and the sliding velocity Ut cannot be
reduced to a single-valued function. The same is true for the
unilateral conditions expressed by inequalities (1). Such
nonsmooth laws are readily implemented in the framework
of the CD method, whereas their implementation in the
usual discrete element approach requires a regularization
scheme that transforms the set of inequalities into a set of
equalities requiring at the same time some purely numerical
parameters to be introduced.
[15] We see that the major challenge addressed in this

paper is not the use of complex interaction laws, which
remains necessary and feasible, but rather to be able to
simulate the basic laws without introducing unphysical
parameters. This is the main merit of the CD method which
we exploit in the present studies prior to its application to
more complex geological situations. In this respect, while
the present study is entirely devoted to the rheology of rigid
cohesionless particle sets, let us observe that both cohesion
and contact deformation, as observed in rocks [e.g.,
Hazzard et al., 2000], can be modeled in the spirit of the
CD method [Radjaı̈ et al., 2001]. For example, the tensile
contact strength can be introduced by specifying a negative
(according to our sign conventions) threshold for normal
contact forces or impulsions. Adding an offset to the
tangential force threshold increases the shear strength.
Contact deformation is introduced by specifying an ‘‘influ-
ence zone’’ around the contact points: Cohesive interactions
are present as long as the contact points belong to this zone.
We have tested this approach and our preliminary results are
consistent with cohesive Mohr-Coulomb behavior.

3. Numerical Procedures

[16] We generate numerical samples composed of 5000
rigid circular particles in a two-dimensional space (also
represented as hard disks on a planar surface) (Figure 1a).
The initial sample is built by means of simple geometrical
rules and then it is molded by means of a uniaxial compac-
tion into a rectangular shape, before loading. Once com-
pacted, the sample will be sheared biaxially under different
confining pressures. The testing procedure consists of two
different phases in analogy with experimental procedures
used in soil mechanics biaxial and triaxial tests (Figures 1b
and 1c) [e.g., Bardet, 1997; Alshibli and Sture, 2000]. First,
the sample is subjected to a uniform confining pressure
along its boundaries. Then, it is shortened along the vertical
direction at a constant rate.

3.1. Material Parameters

[17] The following parameters were used in all
simulations:
[18] 1. In order to have a more homogeneous stress

distribution, the gravity is set to zero.
[19] 2. The density of the particles is that of rock forming

minerals in the crust (i.e., quartz): r = 2600 kg/m3.
[20] 3. The time step is Dt = 0.0005 s. The adequacy of

the time step to simulate precisely the deformation process
is evaluated as a function of the tolerated overlap between
particles. The tolerated overlap in our simulations is below
1% the smallest particle size, whereas the mean overlap is
generally one to two orders of magnitude lower.
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[21] 4. The normal and tangential restitution coefficients
are fixed to zero in order to reduce possible dynamic effects.

3.2. Grain Size Distribution

[22] Figure 2 displays the volume fraction of the particles
below a given radius as a function of this radius. The
particle radii are evenly distributed by weight (or by volume
fraction) between RMin = 0.5 m and RMax = 2 m. The choice
of metric size particles is deliberate since one of our goals is
to apply the CD method to simulate geological processes of
hectometric to kilometric scales, such as rock avalanches
(without particle rupture). These models would require less
than 50,000 particles, which is roughly the maximum
number of particles that can be simulated by a personal
computer in a reasonable time (less than one day). Never-
theless, the set of equations defining contact forces are
independent of particle sizes and do not involve a length
scale. Thus our results would be analogous for homothetic

Figure 1. (a) Numerical sample composed of 5000 rigid disks, built by geometrical construction rules.
(b) Uniaxial compaction of the numerical sample by means of a horizontal stress sc applied on the right
vertical wall. (c) Application of the confining pressure s3 and subsequent biaxial compression of the
sample. The variable s3 is applied through deformable walls materialized by the gray disks in the vertical
strips. The confining pressure is also exerted on the top horizontal wall, through an external vertical force.
The biaxial compression is obtained by gradually increasing the axial displacement of the top horizontal
wall at a constant rate. The variable s1 is the axial stress exerted by the disks on the top horizontal wall
during shear.

Figure 2. Grain size distribution of the numerical sample.
Particle radii are evenly distributed by weight between
RMin = 0.5 m and RMax = 2 m, respectively.
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particle sets as, for example, dense samples of millimetric
disks that preserve the relative size distribution and the
texture.
[23] The particle size distribution is deficient in small

sizes when compared with a natural well-graded soil, which
may show a wider range of particle sizes (RMax/RMin > 100).
Nevertheless, a range of the order of RMax/RMin = 4 seems
sufficiently wide to allow for a disordered two-dimensional
configuration devoid of long-range (crystal-like) ordering.
In soil mechanics, the uniformity of a sample composed of
three-dimensional particles (e.g., spheres) is characterized
by the uniformity coefficient Cu � D60/D10 where D10 is the
grain size diameter corresponding to 10% finer and D60 is
the grain size corresponding to 60% finer [e.g., Coduto,
1999]. Applying this expression to our 2D particle sample
gives Cu = 2.8/1.3 = 2.15. Note that in 2D, Cu is related
to the variation of area susceptible of exerting contact forces
in the particle set, since the perimeter of the disks is
proportional to the diameter.

3.3. Geometrical Preparation

[24] The particles are inserted one after another into a
rectangular box. The radius of each new particle is gener-
ated according to a random process meant to produce a
uniform distribution by weight. The position of each new
particle is chosen to minimize an ‘‘energy function’’ U in
the permissible space (i.e., with no overlap with the already
deposited particles). The energy function may be defined in
several ways depending on the boundary conditions. The
simplest situation arises when the force on a particle of mass
m is due to a uniform gravitational field �mgẑ, where g is
the acceleration of gravity and ẑ is a unit vector pointing
upward. In this case, the energy function U = mgz is simply
proportional to the height z of the particle. Hence the
particle is placed such that the z coordinate of its center is
minimum in the permissible space. The energy function
may also decrease near the two lateral vertical walls in order
to ensure a more homogeneous distribution of the disks
close to the geometric boundaries of the particle set.
[25] The numerical algorithm that is used to build the

particle set is illustrated in Figure 3. Let [P1, .., Pn] be the

chain of particles located on the top of the particle set and
let R be the radius of the new disk to be placed. Let L be the
curve located at a minimum distance R to the disks [P1, ..,
Pn] in the chain. The center of the new particle is located
along curve L at the point where the potential energy
is minimum. This point will always correspond to the
intersection between two (or possibly more) circle arcs. In
practice, the position of each new particle according to these
purely geometrical rules will always have at least two
contact points with particles already deposited. In this
way, the coordination number of the packing generated by
this procedure is about four. Nevertheless, the coordination
number decreases below four as soon as the true dynamics
is applied. The packing has initially a volume fraction n =
0.84. Because of a wide polydispersity of our samples,
this volume fraction is larger than that of a random close
packing composed of monodisperse disks where n = 0.82
[Troadec and Dodds, 1993].

3.4. Uniaxial Compaction

[26] The sample prepared by means of geometrical rules
is compacted in order to get a dense packing of rectangular
shape. The coefficient of friction between disks during
compaction is set to zero in order to facilitate particle
rearrangements. A normal stress sc is applied on the right
wall while other walls are fixed (Figure 1b). In these
conditions, the reorganization of particles is random and
the average distribution of contact orientations is quite
homogeneous for all directions in the plane (with variations
of less than 10% from the mean). The aspect ratio at the end
of compaction is h/l � 2.5, where h and l are the height and
the width of the sample, respectively.

3.5. Application of the Confining Pressure

[27] Before starting properly the biaxial compression test,
the two vertical walls are removed and the confining
pressure is applied directly on the disks. To do so, we select
the particles located inside two vertical strips that are
adjacent to the boundaries of the sample (Figure 1c). These
layers of particles will be subjected to horizontal external
forces applied at the center of mass of the disks. The
thickness of the vertical strips is 7.5 m, i.e., 2.5 times the
mean diameter of the disks. The horizontal force on each
disk is recalculated at each time step in order to keep the
stress constant on the vertical strips. We will refer to this
type of test as Deformable Wall (DW) test since the
confining pressure is applied through deformable walls,
materialized here by the particles in the strips.
[28] In order to prevent buckling or crushing of the

sample against the horizontal walls during shear, a layer
of particles is fixed to the top and bottom walls. These
‘‘bumpy’’ walls reduce at the same time the ‘‘layering
effect’’ often observed in the vicinity of the walls. These
boundary conditions ensure that the shear bands span the
sample across the deformable walls.

3.6. Biaxial Compression

[29] During biaxial compression, the axial displacement
of the top horizontal wall is increased at a fixed rate, the
bottom horizontal wall remaining fixed (displacement-
controlled loading). The samples are shortened up to
10% of their initial height. The vertical strain is given

Figure 3. Construction of a numerical sample by means of
geometrical rules. The center of each deposited disk is
placed along the curve L and at a point where the potential
energy is minimum.
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by �z = Dz/h0, where Dz is the axial cumulative displace-
ment of the top horizontal wall (positive in the direction
of compression), and h0 is the initial height of the
sample. The axial load is simply the sum of normal
forces exerted by the disks on the top horizontal wall.
[30] Since we are interested in the quasi-static regime, the

shear rate should be chosen so that the kinetic energy
supplied by shearing is negligible compared to the work
done by internal stresses per unit time and unit mass. This
can be formulated in terms of an ‘‘inertia parameter’’ I
defined as

I ¼ _g

ffiffiffiffi
m

p

r
; ð3Þ

where _g is the shear rate, m is the mean particle mass, and p
is the mean stress. The quasi-static limit is then character-
ized by the condition I 	 1. The objective value of _g in the
presence of shear bands is _g � Vsp/wsb, where Vsp is the
shortening displacement rate during the shear phase and wsb

is the mean width of the active shear bands. In our
simulations we find that wsb is roughly 5 times the mean
disk diameter; see below. With Vsp = 0.5 m/s, we get I 2
[0.007, 0.002], which is an acceptable range, lower values
of I requiring longer simulations.
[31] A total number of 70 tests were done. The numerical

simulations were performed by a personal computer with
two processors of 2.4 GHz. The execution time for running
five simultaneous high quality simulations is roughly
10 hours. The disk-disk coefficient of friction mdd was
varied from 0.01 to 12. Each sample (characterized by a
friction coefficient mdd), was tested for different values of
the confining pressure s3, ranging from 0.5 to 8 MPa.

4. Main Results

4.1. Stress-Strain and Volume Change Behavior

[32] We first focus on the stress-strain behavior for a low
and a high coefficient of friction, mdd = 0.3 and mdd = 3,
respectively. These tests will be labeled DWL and DWH,
where L and H stand for low and high friction, respectively.
[33] Figure 4a shows the axial stress s1 as a function of

the axial strain �z for DWL (in gray) and DWH (in black)
tests at s3 = 8 MPa. The axial stress increases rapidly with
strain and passes by a peak before decreasing to a plastic
plateau. It shows low-amplitude (5% of the mean stress)
fluctuations which may be interpreted in terms of the
propagation of instabilities, as explained below. Similar
fluctuations have been observed in experiments with two-
dimensional particle sets [Ngadi and Rajchenbach, 1998]. It
is suggested that stress pulses are generated by nucleation
and propagation of transient cracks within packings of low
friction monodisperse beads.
[34] The overall mechanical behavior corresponds to a

hardening-softening rigid-plastic behavior as a characteristic
feature of dense granular media composed of rigid particles
[Roux and Radjaı̈, 1998]. The hardening and softening
aspects appear in the transient regime from the beginning
of the test to the plastic plateau reached at �z � 0.05. The
mean peak strength �smax is defined as the maximum value
of the mean vertical stress, for a mobile interval of D�z =
0.002 along the strain axis. The residual strength �sres is
defined as the mean axial stress for �z 2 [0.05, 0.1]

corresponding to the mean axial stress sustainable at large
strains once the sample has failed.
4.1.1. Low Friction
[35] The curve of s1

DWL first shows a peak at �z ffi 0.002,
with s1

DWL = 15 MPa. Then, a rapid decrease occurs,
reducing s1

DWL down to 10 MPa before increasing slowly
again to�13MPa with a well-defined plateau reached at �z�
0.02. The shape of the curve around the plateau is concave
down. Beyond this plateau, s1

DWL gently decreases to
�11 MPa at �z � 0.04. From this point onward, s1

DWL

shows stress fluctuations with a wavelength �D�z 2
[0.01, 0.025] around a roughly constant mean value.
The amplitude of stress fluctuations between consecutive
extrema is about 1–4 MPa. Besides long-wavelength
fluctuations, we observe small-amplitude fluctuations with
a much shorter wavelength, as well as sharp peaks whose
frequency increases with axial strain.
[36] The mean peak and residual strengths are �smax

DWL =
14.7 MPa and �sres

DWL = 12 MPa. Note that the main peak
corresponding to �smax

DWL is observed at the very beginning of
the test where both the volume fraction and the coordination
number are higher.
[37] The volumetric strain DVs

DWL during shear is also
displayed in Figure 4a. The material is globally dilatant, yet
very small contractional events can be observed. These
events occur less frequently at the beginning than later.
The mean dilation rate varies with the axial strain: For �z <
0.02, DVs

DWL increases steadily at a mean rate of �0.4,
whereas for �z 2[0.02, 0.04] the mean dilation rate decreases
to �0.1 and remains roughly constant for �z > 0.04. At the
beginning of the test, the dilation occurs homogeneously in
the whole sample. However, along with shear localization,
the dilation is more and more localized within the shear
bands [e.g., Desrues et al., 1996].
[38] The observed stress-strain and volume change

behaviors are consistent with the well-known features of
dense granular materials exhibiting peak and residual
strengths and dilatant behavior. The initial state of the
sample may be qualified as overcompacted. For loose
samples, the initial peak would probably not be observed,
whereas the residual stress would remain the same.
[39] Figure 4b shows the number of rolling and slipping

contacts, referred to as RCL and SCL, respectively, during
the test for the low friction sample. At rolling contacts the
friction force T is below the Coulomb threshold mN,
whereas slipping contacts imply that the Coulomb threshold
is reached. RCL decreases from �6900 to �6300, and its
mean value remains constant for �z > 0.01. SCL has a
similar behavior, showing an initial decrease from �1600 to
�840, followed by a roughly constant value. Note that RCL
varies in phase opposition with SCL in the fully plastic
state (the stress plateau) where the total number of contacts
NCL = RCL + SCL remains constant on average.
[40] Figure 5 shows the evolution of NCL and the total

number ZCL of contacts where N = 0 (geometrical contacts
with zero force). NCL decreases from �8500 to �7100 and
ZCL decreases from �360 to �160. The coordination
number N � 2NCL/N0, where N0 is the number of particles
with two or more contacts, is N = 3.9 at the beginning of the
shear phase, and it falls down to N = 3.39 at large strains.
On the other hand, the number of isolated particles (i.e.,
with less than two contacts) increases from 7% at the
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beginning of the test to 15% at large strains. Note that the
amplitude of short wavelength fluctuations of NCL and
ZCL is much smaller than that of RCL and SCL. The
coordination number in the fully plastic regime increases
slightly with the confining pressure: Doubling s3, increases
N by roughly 1%. This is basically related to a slightly
larger overlap between the particles at larger pressures. The
mechanical behavior is scarcely modified by this slight
change in coordination number.
[41] The correlation between the variations of the axial

stress and the number of contacts can be observed in
Figure 6a. which shows a zoom on the interval �z 2
[0.047, 0.051]. We observe the following:
[42] 1. The axial stress shows small oscillations around

successive plateaus, in which the sample dilates at a

nearly constant rate and the number of contacts remains
constant.
[43] 2. Stress plateaus are followed by a decrease in the

axial stress down to a local minimum located at 1–4 MPa
beneath the mean stress at the previous plateau. The
initiation of strain softening is indicated by means of
vertical gray bands in Figure 6a. This stress fall is concom-
itant with a small contraction of the sample at an increasing
rate. The total contraction during this phase is comparable
with the volume of one average size particle. The stress
minima are followed by one or several short-wavelength
oscillations. The stress fluctuations at �z � 0.05 are also
clearly correlated with variations in the number of contacts:
The number of slipping and zero force contacts increases
sharply. All these observations may be interpreted in terms

Figure 4. (a) Stress-strain and volumetric strain curves obtained for DWL and DWH biaxial tests for
low (gray) and high (black) contact friction. Number of rolling and slipping contacts between the disks
during shear for (b) low friction and (c) high friction.
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of the propagation of a dynamic shear instability within the
sample during compression. Note that the volumetric strain
rate becomes largely negative at this point indicating a small
quasi-instantaneous contraction.
[44] 3. After the instability, the system tends to recover a

new quasi-static state. The number of slipping contacts is
lower than its value before the instability. The axial stress
increases rapidly before falling gently to a new plateau
(these deviations correspond to the sharp peaks described in
Figure 4a).
4.1.2. High Friction
[45] The evolution of s1

DWH shows a well-marked peak at
�z � 0.0015, and then it decreases slowly exhibiting
fluctuations around the mean value (Figure 4a). The mean
peak strength is �smax

DWH ffi 20.6 MPa. A minimum strength ’
13 MPa is reached at �z � 0.045 followed by fluctuations
around a constant value. The mean residual strength is
�sres
DWH = 13.7 MPa. The axial stress is globally higher for

high friction than for low friction.
[46] The volumetric strain DVs

DWH during shear is also
globally dilatant, yet small contractional events are
observed (Figure 4a). For �z < 0.02, DVs

DWH increases at a
mean rate of �0.8. Thereafter, the mean dilation rate falls
progressively to zero. The total dilation of the sample is
greater for high friction than for low friction at any axial
strain. The total number of contacts NCH is slightly above
6000 (Figures 4c and 5a), and SCH �60 is one order of

magnitude lower for high than for low friction. Thus, at
high friction the particles tend to rearrange into a looser
packing with higher strength and lower number of contacts.
In the same way, ZCH is much larger for high friction than
for low friction (Figure 5b).
[47] The mean coordination number for the high friction

sample at the beginning of the test is N = 3.9. This value is
the same as in the case of low friction. It decreases,
however, to N = 3.09 at large strains. This is smaller than
that for low friction. The number of isolated particles (i.e.,
with less than two contacts) increases from 7% at the initial
stages of compression, to 20% at large strains.
[48] The evolution of s1

DWH is characterized by gentle
increments followed by rapid falls. These fluctuations are
observed all along the curve, and they are well correlated
with volume changes and variations in the number of
contacts as explained below. The mechanical behavior of
the sample in the vicinity of one of these stress perturbations
is shown in Figure 6b. We observe the following:
[49] 1. The variable s1

DWH gently increases over a small
strain interval D�z and reaches a local maximum (D�z may
vary between 0.0005 and 0.005). The axial stress shows
minor fluctuations around a concave-down mean curve.
These fluctuations (observed both for low and high
friction), reflect particle rearrangements as a distinctive
feature of a nonsmooth mechanical processes. The vertical
shortening D�z is between 0.1 and 1 m, which is slightly

Figure 5. Number of contacts (a) with a nonzero force and (b) with zero force during shear for low
(gray) and high (black) contact friction.
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below the mean particle radius. Simultaneously, the volu-
metric strain increases at a roughly constant rate and the
number of contacts remains constant.
[50] 2. Beyond this point, the sample enters into a

subcritical state in which a shear instability is about
to propagate: The mean axial stress decreases as the
volumetric strain rate falls to zero. At the same time, the
number of slipping contacts begins to increase. At some
point, yielding occurs and the sample enters into a transient
state characterized by (1) a succession of minima and
maxima whose amplitudes may reach up to 50% of the
mean axial stress; (2) a rapid fall in volumetric strain
(contraction); (3) a sharp reduction of the number of rolling
contacts RCH and a slight increase in the number of
slipping contacts SCH; and (4) a net decrease in the total
number of contacts NCH and a sharp increase in the number
of contacts with negligible contact forces ZCH.
[51] All these observations suggest an unstable regime

characterized by ‘‘dynamic’’ rearrangements and collisions

between particles along the shear bands. The strain interval
corresponding to the initiation and propagation of the shear
instability is indicated by a gray vertical band in Figure 6b.
[52] 3. After this unstable phase, s1

DWH is by 1–5 MPa
below the previous local maximum. SCH and ZCH fall to
their means values.
[53] The correlation between shear strength and volumet-

ric strain is similar to that observed by Morgan [1999],
where granular shear zones were simulated in a simple shear
geometry. The mechanical behavior bears a close analogy
with the stick-slip instability observed for solid friction
[Scholz, 1990; Mair et al., 2002]. There is, however, a
major difference: In our simulations, no elastic energy can
be stored. Nevertheless, because of volume changes, we
may attribute a ‘‘configurational energy’’ to the system
given simply by pV, where p is the average stress and V is
the volume. Contractional events correspond thus to a loss
of potential energy. This energy is dissipated by friction and
inelastic collisions in the sample. The contractional events

Figure 6. Axial stress, volumetric strain, and number of contacts as a function of axial strain in the
vicinity of a shear instability for (a) low friction and (b) high friction.
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are enhanced once the initial dense particle set has under-
gone some expansion. Large contractions correspond to
large stress peaks. This effect is more pronounced at high
friction for which the volume changes are larger.

4.2. Strain Localization

[54] In this section, we analyze the deformation modes at
low and high friction. We focus on the particle displacement
and rotation fields at the final stages of the test. We also
consider normal and tangential forces. Figure 7 illustrates
the rotation and velocity fields in biaxial tests DWL and
DWH at �z � 0.09. Animation files illustrating the kine-
matic and static states of the samples are also available as
auxiliary material1.
[55] In both DWL and DWH tests, we observe conjugated

shear bands across the whole sample. Strain localization is
frequently observed in numerical tests [e.g., Bardet and
Proubet, 1992]. Shear bands can be clearly identified on the
image illustrating the total displacements of the particles
with respect to their initial positions. The magnitude of
individual displacements is given by the continuous color
scale located on the bottom of the image. The displacements
varies from 0 to 25 m (purple to orange on the color
scale). The particle rotation also provides a good indicator
of the local shear strain as illustrated in Figure 7
(middle). The rotations are given in radians according
to the color scale located below the image. Positive
rotation is counterclockwise.
[56] The orientation of our shear bands is consistent with

that of typical shear zones observed in samples of granular
soil subjected to biaxial and triaxial laboratory tests [e.g.,
Bardet, 1997; Alshibli and Sture, 2000]. The mean angle
between the shear bands and the axial stress both at low and
high friction varies between 30� and 40�. Shear bands are
slightly curved and they become steeper close to the
deformable walls. Shortening of the samples leads to the
formation of a bottom and a top wedge bounded by active
shear bands, which may be compared to normal faults
resulting from an extensional stress regime (with vertical
compression and horizontal extension). The top and bottom
wedges are weakly deformed, as shown by their relatively
homogeneous color (orange and purple, respectively). The
shear strain is strongly concentrated along the shear bands,
and, to a lesser extent, within the green triangular zones that
are progressively extruded along the deformable walls. The
initiation of conjugated shear bands is observed at very low
strains and roughly around the initial stress peak. Shear
bands propagate from local damage zones (strain inhomo-
geneities) that coalesce progressively into macroscopic
shear zones (see the animations available as auxiliary
material). These results are similar to those obtained from
biaxial (plane strain) experiments on sand, in which early
shear instabilities or bifurcations are observed [Vardoulakis
et al., 1978; Peric et al., 1992].
4.2.1. Low Friction
[57] For low friction, the width of the shear bands

increases progressively, reaching 12–16 m at the end of
shortening (Figure 7, top). This thickness is of the order of
4 to 6 average particle diameters. Note that shear band

thickness in cohesive granular media should be smaller due
to a reduced mobility of the particles. Shear bands show
evidence of a higher strain toward the top of the sample, and
they are composed of several narrow fault planes across the
particle set. Shear displacements and rotating particles tend
to be localized along these planes that seem to form an
anastomosed network pattern.
[58] The dilation is mainly concentrated along the shear

bands, where the pores are larger than the average pore size
(see the displacement field animation for low friction). The
particles belonging to the right-dipping shear band show a
higher degree of rotation and shear displacement. The sense
of particle rotations along shear bands follows mostly the
shear direction (synthetic disks). The most rapidly rotating
particles are organized in chain-like patterns that are parallel
to the shear band [Kuhn and Bagi, 2002]. The size range of
synthetic disks is quite heterogeneous, and it includes both
big and small particles. Nevertheless, we observe a consid-
erable number of particles with opposite rotation (antithetic
disks). Antithetic disks are generally small and they are
usually in contact with one or more synthetic disks. The
particle rotation (positive or negative) increases as the
particle size diminishes. The analysis of the velocity field
for the low friction sample shows that several conjugated
fault planes may be activated simultaneously. In addition,
fault planes are quite persistent in time and space. Particle
rotation and displacement gradients decrease rapidly away
from the shear planes. In fact, low friction favors energy
dissipation along slipping contacts that are adjacent to the
active shear planes. This suggests that the mechanical
coupling between the shear planes and the neighboring
particles is low.
4.2.2. High Friction
[59] For high friction, the conjugated shear bands are

much more diffuse than for low friction, and their average
thickness at the end of shortening is of the order of 8 to 10
mean particle diameters (Figure 7, bottom). Shear bands
show a higher strain level toward the bottom of the sample,
and they are composed of shear planes affecting a few
particle layers. Dilation occurs mainly along the shear bands.
The green triangular zones adjacent to the deformable walls
show a larger amount of porosity than in the low friction
case. Particle rotations are quite comparable for high and
low friction, yet some significant differences are observed:
(1) small particles with large rotations (positive and nega-
tive) are many more at high friction; and (2) rotating small
particles are located in the shear bands, and within the
adjacent areas (in the triangular zones, and to a minor extent,
in the top and bottom wedges). The velocity field illustrated
in Figure 7 (bottom, right), was obtained during a dilatant
period. The particle velocities are much more chaotic and
diffuse than for low friction. Nevertheless, we still observe
shear planes characterized by a discontinuous velocity field
across the shear zone. Shearing may jump successively from
one rupture plane to another over a small time interval.
Particle rotations and displacement gradients are distributed
within a larger volume around the shear planes.

4.3. Contact Forces

[60] The normal and tangential contact forces are illus-
trated as rectangles of different colors connecting particle
centers (Figure 8). The width of each rectangle is propor-

1Auxiliary material is available at ftp://ftp.agu.org/apend/jb/
2003JB002955.
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Figure 7. Total displacement (from the beginning of the test), rotation and velocity fields for low and
high contact friction at �z � 0.09.
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Figure 8. Contact forces for low and high friction biaxial tests, represented as rectangles of different
colors. Detailed views of contact forces and particles are shown in blow-ups. The axis of each rectangle is
the line connecting the disk centers; the width is proportional to the magnitude of the contact force; �z �
0.09; gray, normal force; pink and blue, positive and negative friction forces at rolling contacts; purple
and green, positive and negative friction forces at sliding contacts.
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tional to the magnitude of the contact force. Normal forces
N are in light gray. Friction forces T are represented by
means of the following color code: The positive and
negative forces below the Coulomb threshold are plotted
in pink and blue, respectively, whereas the positive and
negative forces at the Coulomb threshold are plotted in dark
purple and green, respectively. Positive tangential forces
induce counterclockwise torques on both particles.
[61] Both for low and high friction, the normal forces are

characterized by chains of strong forces whose magnitudes
are above the mean force [Radjaı̈ et al., 1998]. These chains
define a zigzag trajectory with particles located at the
vertices. The chains of normal forces are, on average,
parallel to the axial stress, and they are interconnected
through bifurcations and arches. Nevertheless, stress devia-
tions may be observed within the sample, in particular, close
to the shear bands. Note that the sign of the friction force
changes periodically (from pink to blue) along consecutive
contacts in a chain.
[62] The stability of strong chains involves two factors

(Figure 8): (1) friction forces that are exerted between
contiguous particles in the chain and (2) lateral normal
forces exerted by particles adjacent to the chain. Let aij be
the angle between the normal contact force and the mean
direction of the force chain (Figure 8, bottom). Concerning
the first factor, the magnitude of the friction force increases
when aij becomes greater. In this situation, the tangential
component tends to reorient the total contact force parallel
to the mean direction of the chain so as to ensure the
equilibrium of the chain. aij can take higher values (up to
90�) for high friction than for low friction, the zigzag
trajectory being more squeezed. These results may be
illustrated by a simple experience: try holding a ball with
two fingers. If the fingers are located at opposite points then
the ball will be quite stable since low frictional forces are
applied at the contact points. If you move your fingers
close, then frictional forces become higher and with oppo-
site sense, and the equilibrium is more difficult to sustain.
[63] The particles located in between the chains are

organized in a weak network of contacts including forces
whose magnitudes are less than the mean force. The weak
network shows a greater number of interconnections for low
than for high friction. In fact, particle chains are intrinsically
less stable at low friction, and they require statistically more
lateral supports to achieve equilibrium. These lateral sup-
ports usually correspond to adjacent particles from the weak
network [Radjaı̈ et al., 1998]. These observations are
consistent with the volumetric strain curves in Figure 4a,
which show that total dilation is greater for high than for
low friction so that NCH < NCL.
[64] The configuration of strong and weak chains is

correlated with the texture. As a general rule, force chains
involve particles larger than the average (Figure 8). Indeed,
the strong forces appear mostly along particle strings that
are subparallel to the axial stress. This means that the
particle strings composed of big disks are, on average,
stronger and more stable than strings that include small
disks. This behavior results from a very simple stability
concept: When particles of different sizes are piled up, the
packing is generally destabilized close to the smallest
elements. Let i and j be two consecutive circular particles
located along a chain (Figure 8, bottom). Let Dxij be the

distance between the disk centers perpendicularly to the axis
of the chain (Dxij > 0 if the particles are not perfectly
aligned with the chain’s axis). For a given distance Dxij, the
angle aij increases as the size of the particles decreases.
Thus small particles usually require greater friction forces
along the chain to achieve equilibrium, and they are more
easily disturbed than larger disks.
[65] The small particles are occasionally observed along

strong chains, especially during the early stages of the
shearing. These particles become unstable (especially for
low friction), and they are progressively expelled laterally.
Unstable disks often induce bifurcations in the strong
chains, as well as local rearrangements in the particle
set. These observations suggest that local segregation
processes related to the heterogeneous force distribution
can operate during shear. Lateral expulsion of small par-
ticles may reduce readily the axial strength and thus initiate
the propagation of shear instabilities across the sample.
Lateral expulsion of particles located along a strong force
chain has been proposed to explain stress fluctuations in
experimental compression tests [Ngadi and Rajchenbach,
1998].
[66] The heterogeneous distribution of forces as a func-

tion of the particle size has important consequences on the
deformation processes observed in natural examples. For
instance, stress concentrations observed along contact
chains may induce grain splitting of large particles de-
formed under high confining pressures. This process may
lead to a balance between grain sliding and crushing as a
mechanism for the generation of self-similar size distribu-
tions within shear zones [Biegel et al., 1989].
[67] The particle rotations are also correlated with the

distribution of forces within the particle set (Figure 8).
Major rotations involve principally the small particles that
are adjacent to the chains of strong forces. Thus shear
interactions may induce rotation of these particles within
the expanded zone located near the chains. Mechanical
coupling between rotating particles is currently observed
in the weak network: Adjacent particles may rotate in
opposite directions. In this sense, the weak network may
be compared to a fluid-like medium where particle move-
ment is less constrained, whereas particle chains resemble a
solid-like medium that absorbs normal and shear stresses
[Radjaı̈ et al., 1999].

4.4. Shear Instabilities

[68] The zones of instability may be identified with the
particles whose velocity is well above the shortening rate
(Figure 9). For low friction, velocity instabilities are located
along narrow bands close to the shear planes. For high
friction, the instabilities appear along larger and thicker
shear bands and they may propagate across the whole
sample. The velocities of unstable particles follow a sort
of fluctuating wavy pattern around the mean shear direction.
These instabilities are systematically observed during the
small contractional events described previously, and they
may be compared to the velocity field observed around a
fault plane during an earthquake. Velocity fluctuations are
characteristic of nonsmooth mechanical processes (they do
not correspond here to numerical noise) [Radjaı̈ and Roux,
2002]. Coseismic velocities and displacements are higher in
the vicinity of the shear plane and they fall away from the
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fault. These critical velocities underly the macroscopic
stick-slip behavior discussed in section 4.3.
[69] As expected, stress deviations are observed close to

the shear bands [Petit and Barquins, 1990; Baotang et al.,
1995], both for low and high friction (Figure 9). The force
chains are frequently deviated as they approach the shear
planes, tending to become parallel or perpendicular to the
rupture planes. Note that when the principal stress direction
becomes parallel or perpendicular to a shear plane, the shear
stress becomes minimal. This behavior suggests that the
shear bands correspond to macroscopic zones of weakness
with a lower shear strength than the bulk.

4.5. Shear Strength Versus Contact Friction

[70] In order to study the influence of contact friction on
the shear strength, we analyzed the stress-strain behavior for
the following set of friction coefficients:

mdd 2 0:01; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:8; 1; 1:2; 3; 6; 12½ �: ð4Þ

Each sample (characterized by a friction coefficient), was
sheared for the following set of confining pressures (in
MPa):

s3 2 0:5; 1; 2; 4; 8½ �: ð5Þ

For each test we determine both the maximum and residual
strengths �smax and �sres. For a given value of mdd, the
behavior is characterized by plotting the results of the tests

in p � q space for different confining pressures, where p =
(s1 + s3)/2 is the mean stress, and q = (s1 � s3)/2 is the
stress deviator. We did not observe a systematic variation in
the orientation of shear bands as a function of confining
pressure. Figure 10a displays the peak failure envelope
obtained from a linear regression, which fits quite well the
five data points obtained for mdd = 3. The coordinates of
each point are calculated by setting s1 = �smax. The fitting
line passes through the origin implying that the cohesion
intercept is zero. The regression line allows to calculate the
classic Mohr-Coulomb failure line, which is tangent to the
Mohr circles at rupture. The macroscopic shear strength
may be characterized by the slope of the Mohr-Coulomb
line, which is given by

mmacro ¼ tanf

sinf ¼ q=p:
ð6Þ

The residual strength envelope is calculated in the same
way, by taking s1 = �sres. The slope of the corresponding
Mohr-Coulomb residual failure line is termed mmacro

res . We
find that the cohesion intercept is zero for all values of the
contact friction mdd. Hence the macroscopic behavior is
characterized by only two parameters: mmacro

res and mmacro.
[71] Figure 10b shows the macroscopic friction parame-

ters, mmacro and mmacro
res , as a function of the contact friction

coefficient mdd. The macroscopic friction increases rapidly
at low values of mdd. In other words, a slight increase of
contact friction in this limit has a considerable impact on the
equilibrium states of the particle set. On the contrary, for

Figure 9. Velocity field of the disks and normal contact
forces observed during the propagation of a shear instability
within the sample for high contact friction. The shortening
displacement rate Vsp = 0.5 m/s.

Figure 10. (a) Peak failure envelope obtained from a
linear regression to fit the five data points obtained for mdd =
3. p = (s1 + s3)/2 and q = (s1 � s3)/2. (b) Relationship
between the contact friction mdd and the macroscopic
friction parameters mmacro and mmacro

res . The data are fitted
by means of concave down exponential functions.
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larger values of mdd, both mmacro (for mdd > 2) and mmacro
res (for

mdd > 1) reach an asymptotic value. These results are
consistent with those obtained by means of usual discrete
element methods [e.g., Bardet and Proubet, 1992; Oger et
al., 1998].
[72] The data are fitted by means of a concave down

exponential function:

mmacro mddð Þ ¼ 0:49� 0:37 e�2:5mdd

mresmacro mddð Þ ¼ 0:28� 0:22 e�4mdd :
ð7Þ

The intercepts of the exponential functions with the vertical
axis are given by mmacro(0) = 0.12 and mmacro

res (0) = 0.06.
These offsets define the macroscopic friction parameters for
frictionless particles. This means that the macroscopic shear
strength persists even at zero contact friction, suggesting
that inelastic collisions at the particle scale lead to
Coulomb-like frictional behavior at the macroscopic scale
[Roux and Radjaı̈, 2001].
[73] The global response obtained for circular particles,

may be extended to other grain shapes such as polygons.
Indeed, we expect that angularity just tends to strengthen
the sample and slow down local or global phenomena such
as shear band formation [Nouguier-Lehon et al., 2003].
Indeed, the macroscopic coefficient of friction is higher for
angular grains than for disks. For three-dimensional particle
sets, the shear strength is higher since there is a larger
number of kinematical constraints in spite of the extra
degrees of freedom (e.g., N 2 [4.5, 6]) [Frye and Marone,
2002]. For instance, the angle of stability of a sandpile is
higher than for a pile of disks. Nevertheless, additional
simulations are required to determine quantitatively the
influence of grain shape and angularity on the global
behavior of granular materials.
[74] The analysis of biaxial tests shows that the shear

strength of a shear band in a granular material results from
two different mechanisms operating simultaneously at the
particle scale: The first mechanism is simply friction mobi-
lization along a space direction or along the shear band
when the latter is present. The second mechanism is the
roughness of the shear zone, which is intimately related
with the particle size distribution and the texture of the
sample. Particles along a shear band may be viewed as
obstacles or asperities that restrain the relative displacement
of the disks parallel to the shear zone. Imbricated particles
subjected to shearing exert normal contact forces on each
other that resists shear movement. The projection of com-
pressive normal forces along the shear band largely contrib-
utes to the macroscopic shear strength. Thus before a shear
instability propagates, particles must climb above obstacles,
or displace the asperities along the shear zone. This ‘‘climb-
ing process’’ generates expansion and corresponds to
the quasi-static deformation phase described before. In
principle, this mechanism may operate even if the friction
coefficient at the contacts is zero. From an energetic point
of view, this mechanism works if the collisions are inelastic
and thus dissipate the accumulated potential energy.
[75] The stress deviations observed in the vicinity of

shear bands are also related to this mechanism: If a chain
of force is perpendicular to a shear band, then the contact
planes between particles in the chain are subparallel to the

shear direction. Thus the projection of contact normal forces
along the shear plane is very low, and its contribution to the
macroscopic shear strength is negligible.

5. Conclusions

[76] The contact dynamics method is suitable for the
description of geological processes involving large plastic
deformations of heterogeneous particle collections. The
mechanical behavior of frictional granular materials was
analyzed by means of biaxial numerical tests performed on
samples composed of polydispersed disks, using the contact
dynamics method. The main results of this study can be
summarized as follows:
[77] 1. Perfectly rigid particle systems analyzed by means

of the contact dynamics method have a macroscopic plastic
behavior that is consistent with that observed for systems
consisting of more or less deformable (elastoplastic) particle
systems and simulated by usual discrete element methods.
Nevertheless, stress fluctuations seem to be enhanced in
the absence of contact deformability or damping effects.
The mean mechanical behavior is a hardening-softening
rigid-plastic behavior governed by a Mohr-Coulomb yield
function.
[78] 2. Shearing results in the formation of conjugated

shear bands across the system. The mean angle between the
shear bands and the axial stress for low and high friction
between the particles is the same and it varies between 30�
and 40�. Dilatancy occurs mainly within the shear bands.
The width of the shear bands at �z = 0.1 increases from 5 to
10 average particle diameter as the contact friction increases.
The particle rotations along shear bands mostly follow the
shear direction, although we observe a considerable number
of small particles rotating in the opposite direction. The
mechanical coupling between the shear planes and the
neighboring particles increases as the contact friction rises.
[79] 3. The axial stress increases rapidly with strain and

passes by a peak before falling to a plastic plateau showing
low-amplitude fluctuations.
[80] 4. The influence of contact friction mdd on macro-

scopic friction coefficients for peak and residual strengths
(mmacro and mmacro

res ) is analyzed via the construction of the
Mohr-Coulomb envelopes. The macroscopic friction
increases rapidly at low values of mdd, whereas for larger
values of mdd, both mmacro and mmacro

res reach an asymptotic
value. We find that the macroscopic shear strength persists
even at zero contact friction, suggesting that inelastic
collisions at the particle scale lead to Coulomb-like fric-
tional behavior at the macroscopic scale.
[81] 5. The volumetric strain during the shear test is

globally dilatant and localized within the shear bands. The
total dilation is always larger for high friction than for low
friction. The number of slipping contacts decreases with
contact friction.
[82] 6. The fluctuations of the axial stress around the

mean are characterized by gentle increments followed by
rapid falls, in close analogy with the stick-slip behavior of
solid friction. These stress falls are concomitant with small
contractional events, suggesting the propagation of dynamic
shear instabilities.
[83] 7. Strong force chains follow a zigzag trajectory with

particles located at the vertices. These chains are, on
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average, parallel to the axial stress, though deviations occur
in the vicinity of the shear bands. The zigzag pattern is more
pronounced at high friction. The sign of the friction force
changes periodically along consecutive contacts in a chain.
The chains are basically stabilized by weak forces from
lateral supporting particles.
[84] 8. The force chains involve mostly particles

larger than the average. Small particles are occasionally
observed along strong chains. These particles become
unstable and they are progressively expelled from the chain.
Small particles in contact with strong chains exhibit large
rotations
[85] Some of these microscopic features suggest plausible

mechanisms that can be relevant in the geological context.
In this respect, it is of interest to consider the application of
the contact dynamics approach to simulate heterogeneous
geological structures or dynamic processes involving
tectonic deformations and gravitational phenomena. How-
ever, such applications imply the use of more complex
interactions at the particle scale. In particular, cohesion and
aging phenomena are certainly of primary importance at
geological timescales. From a purely numerical standpoint,
the contact dynamics method provides an attractive alter-
native to the usual discrete element methods used in geo-
sciences. The present contribution in a geological
background is an attempt in this direction.

Appendix A: Contact Dynamics Algorithm

[86] In this appendix we detail the algorithmic features of
the contact dynamics (CD) method as a distinct element
numerical approach. We present an ‘‘operational’’ descrip-

tion of this method in view of its implementation in a
numerical code.
[87] Let us consider two disks i and j, located close to

each other (Figure A1a). If the disks are in contact, they will
exert forces on each other at their contact point. Let Pi and
Pj be the material points belonging to the boundaries of the
disks and coinciding with the contact point. In order to
describe the forces and velocities at the contact point, we
define a local reference frame given by two orthonormal
vectors t̂ij and n̂ij, which are tangent and normal to the
contact surface, respectively (Figure A1b). The reference
frame (̂tij, n̂ij) is linked to particle i, and it will be used to
describe the forces applied by particle j on particle i. Note
that t̂ij and n̂ij are parallel and perpendicular to the common
tangent plane.
[88] Let Tiĵtij and Nijn̂ij be the shear and normal forces

exerted by particle j on particle i at the contact point. By
convention, we set Nij � 0 when the normal contact force is
compressive. Repulsion between particles is necessary to
prevent interpenetration once the contact has been estab-
lished. The normal force cannot be negative unless the
contact is cohesive and it can support traction.
[89] Symmetrically, we define a local reference frame t̂ji

and n̂ji linked to particle j, that will be used to describe the
forces exerted by disk i on disk j (Figure A1b). The shear
and normal forces acting on particle j are given by Tjîtji and
Njin̂ji, where Tji = Tij, Nji = Nij, t̂ji = �t̂ij and n̂ji = �n̂ij.
These relationships satisfy Newton’s third law (action and
reaction). In this representation, the contact forces are
described by two unique scalar values (Tij,Nij).

A1. Local Kinematics

[90] The velocity Ui of the material point Pi located in the
perimeter of disk i can be expressed in the local reference
frame (̂tij, n̂ij), as follows (Figure A1c):

Ui ¼ Vi þ wi � ri ¼ Vi � n̂ijn̂ij þ Vi � t̂ij þ wiri
� �̂

tij; ðA1Þ

where Oi and Vi are the position and velocity of the center
of mass of disk i, wi is its angular velocity, and ri is the
position vector of point Pi relative to the center of mass Oi

(krik = ri, where ri is the radius of disk i). The scalar wi

gives the magnitude and direction of the angular velocity of
disk i (positive counterclockwise).
[91] A symmetric equation is written for the velocity Uj

of the material point Pj located in the perimeter of disk j,
expressed in the local reference frame (̂tji, n̂ji):

Uj ¼ Vj þ wj � rj ¼ Vj � n̂jin̂ji þ Vj � t̂ji þ wjrj
� �̂

tji: ðA2Þ

[92] Consider a collision between disks i and j. Then, we
can calculate the change in velocity for each particle
following the collision. Velocity changes for each disk are
also expressed in the local reference frames linked to the
contact point:

DUi ¼ Uþ
i � U�

i ¼ Vþ
i � V�

i

� �
� n̂ijn̂ij

þ Vþ
i � V�

i

� �
� t̂ij þ wþ

i � w�
i

� �
ri

� �̂
tij ðA3Þ

DUj ¼ Uþ
j � U�

j ¼ Vþ
j � V�

j

� �
� n̂jin̂ji

þ Vþ
j � V�

j

� �
� t̂ji þ wþ

j � w�
j

� �
rj

h î
tji; ðA4Þ

Figure A1. (a) Example of two arbitrary disks i and j,
which are in contact at a given point. (b) Normal and
friction forces acting at the contact point, expressed for each
particle in the local reference frame. (c) Velocities of the
center of mass of each disk, and of the material points Pi

and Pj coinciding with the contact point.
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where the superscript minus and plus indicate velocities
immediately before and after the collision, respectively.
[93] From these equations we calculate the variation of

relative velocity DUij between material points Pi and Pj

resulting from the collision between the two disks:

DUij ¼ DUþ
ij � DU�

ij ¼ Uþ
i � Uþ

j

� �
� U�

i � U�
j

� �

¼ Uþ
i � U�

i

� �
� Uþ

j � U�
j

� �
¼ DUi � DUj: ðA5Þ

We calculate the components of DUij in the local reference
frame (̂tij, n̂ij):

DUij ¼ DUn
ij n̂ij þ DUt

iĵtij; ðA6Þ

DUn
ij ¼ DVi � DVj

� �
� n̂ij; ðA7Þ

DUt
ij ¼ DVi � DVj

� �
� t̂ij þ Dwiri þ Dwjrj

� �
; ðA8Þ

where we have DVi =Vi
+�Vi

�, DVj =Vj
+�Vj

�, Dwi = wi
+�

wi
�, and Dwj = wj

+ � wj
�.

A2. Balance Equations

[94] In this section, we shall use the balance of momenta
to calculate the equations relating the contact forces and
the relative velocities between particles at contact points.
Consider an assembly of particles, which are moving as a

result of large-scale deformation of the granular medium.
Let i and j be two contacting disks at time t. We may
calculate the variation of velocity of the particles as a
function of the impulsions exerted on each particle. The
total force acting on particle i is given by (Figure A2)

Fi ¼
X
k

Nik n̂ik þ Tik t̂ik
� �

þ f vi ; ðA9Þ

where k represents the index of particles susceptible to be in
contact with disk i. These neighboring particles may exert
contact forces, which are decomposed according to their
respective local reference frames: Nikn̂ik and Tik̂tik are the
normal and shear components of the contact force exerted
by particle k on particle i. fi

v is the total bulk force acting on
particle i (e.g., the gravity force). In this representation, we
assume that the internal stresses between different parts of
the system are given by contact forces, and the external
stresses exerted on the system are given by bulk or
boundary forces.
[95] A similar expression holds for the force resultant

exerted on particle j:

Fj ¼
X
l

Njln̂jl þ Tjl t̂jl
� �

þ f vj ; ðA10Þ

where l represents the index of particles susceptible to be in
contact with disk j. Note that disk j is one of the close
neighbors of disk i and vice versa.
[96] Consider a small time interval Dt over which the

particles in the system may interact and collide. Integrating
Newton’s second law for particle i during time interval Dt
yieldsZ

Dt
Fidt ¼ mi V

þ
i � V�

i

� �
¼ miDVi ¼

X
k

Rik n̂ik þ Sik t̂ik
� �

þ Pv
i ;

ðA11Þ

where

Rik n̂ik ¼
Z
Dt

Nik n̂ikdt;

Sik t̂ik ¼
Z
Dt

Tik t̂ikdt;

Pv
i ¼

Z
Dt

f vi dt:

ðA12Þ

Here, Rikn̂ik, Sik̂tik and Pi
v represent contact impulsions at

contacts (ik) and the bulk force impulsion acting on particle
i, respectively. The variables Vi

� and Vi
+ correspond to the

instantaneous velocities of particle i at the beginning and at
the end of time interval Dt. mi is the mass of particle i. This
equation states that the change of momentum is equal to the
time integral of the contact and the bulk forces acting on the
particle.
[97] A similar equation holds for particle j:Z
Dt

Fjdt ¼ mj Vþ
j � V�

j

h i
¼ mjDVj

¼
X
l

Rjln̂jl þ Sjl t̂jl
� �

þ Pv
j : ðA13Þ

[98] The variation of the angular velocity of disk i is
calculated by relating angular momentum and torque. Con-

Figure A2. Particles susceptible to form a contact with
disks i and j, with their respective local reference frames.
The sets of particles exerting contact forces on disks i and j
are k = {1, 2, j, 5, 6} and l = {2, 3, 4, 5, i}, respectively (see
text for explanation).
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sidering an inertial coordinate system whose origin is
located at the center of mass Oi of disk i, we have

&i ¼
X
k

rik � Tik t̂ik ; ðA14Þ

where &i is the torque exerted on particle i, and rik is the
position vector of the contact point relative to Oi (krikk = ri).
Note that only shear forces apply torque about the center of
mass, since they are perpendicular to the position vector rik.
The bulk force fi

v does not exert any torque since it acts at
the center of mass Oi. The torque may be linked to the
variation of angular velocity in 2D by means of the
following expression

Z
Dt

&idt ¼ Ii w
þ
i � w�

i

� �
¼ IiDwi

) IiDwi ¼ ri
X
k

Sik ; ðA15Þ

where Ii is the moment of inertia of disk i about an axis
passing by the center of mass, and IiDwi is the variation of
the spin angular momentum of disk i.
[99] A similar equation holds for disk j:

Z
Dt

&jdt ¼ Ij w
þ
j � w�

j

h i
¼ IjDwj

) IjDwj ¼ rj
X
l

Sjl : ðA16Þ

We can now calculate the equations relating the variation of
relative velocity DUij between material points Pi and Pj, and
the impulsions acting on disks i and j in time interval Dt.
Replacing equations (A11) and (A13) in equation (A7), we
obtain:

DUn
ij ¼

Rij

mn
ij

þ 1

mi

X
k 6¼jð Þ

Rik n̂ik þ Sik t̂ik
� �

þ Pv
i

2
4

3
5 � n̂ij

� 1

mj

X
l 6¼ið Þ

Rjln̂jl þ Sjl t̂jl
� �

þ Pv
j

2
4

3
5 � n̂ij; ðA17Þ

where

1

mn
ij

¼ 1

mi

þ 1

mj

: ðA18Þ

Note that the sums over indices k and l do not include the
contact between disks i and j. This expression yields the
impulsion Rij normal to the contact:

Rij ¼ mn
ijDU

n
ij þ Kn

ij ; ðA19Þ

with

Kn
ij

mn
ij

¼ � 1

mi

X
k 6¼jð Þ

Rik n̂ik þ Sik t̂ik
� �

þ Pv
i

2
4

3
5 � n̂ij

þ 1

mj

X
l 6¼ið Þ

Rjln̂jl þ Sjl t̂jl
� �

þ Pv
j

2
4

3
5 � n̂ij: ðA20Þ

The same procedure can be used to express the tangential
component of the relative velocity as a function of the
impulsion, by using equations (A11), (A13), (A15) and
(A16) in equation (A8):

DUt
ij ¼

Sij

mt
ij

þ 1

mi

X
k 6¼jð Þ

Rik n̂ik þ Sik t̂ik
� �

þ Pv
i

2
4

3
5 � t̂ij

� 1

mj

X
l 6¼ið Þ

Rjln̂jl þ Sjl t̂jl
� �

þ Pv
j

2
4

3
5 � t̂ij

þ r2i
Ii

X
k 6¼jð Þ

Sik þ
r2j

Ij

X
l 6¼ið Þ

Sjl; ðA21Þ

where

1

mt
ij

¼ 1

mi

þ 1

mj

þ r2i
Ii
þ
r2j

Ij
: ðA22Þ

Equation (A22) allows us to calculate the impulsion Sij in t̂ij
direction:

Sij ¼ mt
ijDU

t
ij þ Kt

ij; ðA23Þ

with

Kt
ij

mt
ij

¼ � 1

mi

X
k 6¼jð Þ

Rik n̂ik þ Sik t̂ik
� �

þ Pv
i

2
4

3
5 � t̂ij

þ 1

mj

X
l 6¼ið Þ

Rjln̂jl þ Sjl t̂jl
� �

þ Pv
j

2
4

3
5 � t̂ij

� r2i
Ii

X
k 6¼jð Þ

Sik �
r2j

Ij

X
l 6¼ið Þ

Sjl: ðA24Þ

A3. Energy Dissipation

[100] The conservation of momentum does not provide by
itself a complete description of the equations of motion of
the particle set. Indeed, the interactions between particles
may lead to a loss of mechanical energy as a result of work
done by nonconservative forces such as friction. Energy
dissipation during a collision event will induce a reduction
of the kinetic energy of the colliding particles. In view of
the fact that the principal unknown variables are velocities,
it is simpler to consider an additional constraint relating
velocities before and after collisions. On phenomenological
grounds, a very simple approach used in the framework of
the CD method is to introduce restitution coefficients
defined by [Moreau, 1993]:

Unþ
i � Unþ

j ¼ �rn Un�
i � Un�

j

� �
) Unþ

ij ¼ �rnU
n�
ij ; ðA25Þ

where rn is the Newton coefficient of normal restitution.
The variables Ui

n� and Ui
n+ indicate the normal component

of velocity of particle i at the contact point, immediately
before and after a collision, respectively. This equation
states that the relative normal velocities before and after a
collision between two disks are proportional and have
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opposite directions. We have rn 2[0, 1], where rn = 0
corresponds to a perfectly inelastic collision (particles stick
together after the collision), and rn = 1 corresponds to a
perfectly elastic collision involving no energy dissipation.
[101] A similar equation can be written for the tangential

component of velocity along a contact:

Utþ
i � Utþ

j ¼ �rt U t�
i � Ut�

j

� �
) Utþ

ij ¼ �rtU
t�
ij ; ðA26Þ

where rt is the coefficient of tangential restitution. The
variables Ui

t� and Ui
t+ indicate the tangential component of

velocity before and after a collision, respectively. This
equation states that the relative tangential velocities between
the contact points Pi and Pj, are proportional and have
opposite directions before and after a collision. Again, we
have rt 2[0, 1], where rt = 0 corresponds to an inelastic
collision (in the tangential direction). The limit rt = 1
implies that the tangential relative velocity has the same
magnitude and an opposite direction after the collision.
[102] A major issue is the detection of the collisions

between particles during the evolution of the particle set.
For the sake of clarity we analyze separately the mechanical
interactions between the colliding particles in the normal
and tangential directions (n̂ij, t̂ij). Thus we will distinguish
the normal collisions from the tangential ones, each of
which will have a different physical interpretation.
A3.1. Collision in the ‘‘Normal’’ Direction n̂ij
[103] The concept of collision in the normal direction

(CN) refers to any two particles that are exerting contact

normal forces on each other, whether or not they are truly
colliding dynamically. Thus different kinds of CN should be
distinguished:
[104] 1. Dynamic collisions in the normal direction

(DCN) occur at very short timescales, much smaller than
the characteristic evolution time of the system. In this
situation, the normal relative velocity before the collision
is negative: Uij

n� < 0, which according to our sign con-
ventions means that the particles are getting closer to each
other. The normal relative velocity after a DCN event must
satisfy the condition Uij

n+ � 0. This condition is necessary to
prevent interpenetration between particles. To simplify the
analysis we will consider that dynamic collisions are in-
stantaneous and that they may generate discontinuities in
the velocity field and an instantaneous propagation of
impulses within the particle set. This last assertion is valid
both in the normal and tangential directions.
[105] 2. Particles that are in contact persistently over a

finite time interval t may also be colliding in the normal
direction, since they may exert normal impulse on each
other. A persistent contact implies that the instantaneous
relative velocity Uij

n = 0 during time interval t. Persistent
contacts may open during multiple collision events. This
situation may be expressed in terms of normal relative
velocities at the beginning and at the end of a small time
interval Dt: Uij

n� = 0 and Uij
n+ > 0 (note that the normal

velocity field is discontinuous over time interval Dt).
[106] A collision between two disks i and j in time

interval Dt requires that particles should be in contact at
the beginning of the time interval, otherwise contact forces
are nonexistent. This condition may be expressed as a
relation between the distance dij and the normal force Nij

known as the Signorini condition. This condition can be
formulated by means of the following inequalities:

dij � 0;

Nij � 0;

dijNij ¼ 0:

ðA27Þ

Figure A3a illustrates the graph of the displacement
Signorini condition. These relations state that the distance
between particles is positive or zero; if the distance is
positive then the contact normal force is nonexistent, and if
the distance is zero then particles are in contact and the
normal force can take any nonnegative value (with the
convention that positive normal forces are repulsive). This
condition imposes that particles do not interpenetrate as a
consequence of repulsive normal forces.
[107] The contact between the particles is not a sufficient

condition for a CN to take place (remember that a CN event
implies contact normal force interactions between particles).
Particles in contact may collide or not in the normal
direction, depending on their relative velocities at the
contact point. From the definition of the coefficient of
normal restitution in equation (A25), we can state that a
collision in the normal direction occurs if and only if the
following condition is verified:

Unþ
ij þ rnU

n�
ij ¼ 0: ðA28Þ

Figure A3. (a) Graph illustrating the Signorini condition
in the direction normal to the contact between disks i and j.
(b) Graph illustrating the Coulomb friction law at the
contact ij, relating the formal relative tangential velocity �Uij

t

and the impulsion Sij in the tangential direction. (c) Solution
of the equations of motion in the normal direction, obtained
by the intersection between the Signorini graph in velocity
and the line relating normal impulsion and the formal
relative normal velocity. (d) Solution of the equations of
motion in the tangential direction, obtained by the
intersection between the Coulomb law and the line relating
tangential impulsion and normal relative tangential velocity.
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During a DCN the relative normal velocity has opposite
directions before and after the collision event (with rn > 0).
[108] Hence let us define a new variable to which we will

refer as the formal relative normal velocity (FRNV), such
that

�Un
ij ¼ mn

ij Unþ
ij þ rnU

n�
ij

� �
: ðA29Þ

We have �Uij
n = 0 if and only if there is a collision in the

normal direction between particles. The expression of �Uij
n

given in equation (A29) differs from that given by Moreau
[1993] by the positive factor mij

n (see equation (A18)), which
will allow to simplify the solution of the equations in
section A4. The CN event may be dynamic or it may
correspond to a persistent contact during time interval Dt
(in both settings �Uij

n = 0). The situation in which a persistent
contact opens as a consequence of a multiple collision is
such that �Uij

n > 0. This inequality must be satisfied to
prevent interpenetration. Moreover, repulsive normal forces
exerted along the contacts induce positive normal velocities
between particles. Note that the opening of a persistent
contact is not considered as a CN event and contact forces
are zero.
[109] The previous relations may be expressed by the

following inequalities, which relate the FRNV and the
normal impulsion (once particles are in contact):

�Un
ij � 0;

Rij � 0;

�Un
ij Rij ¼ 0:

ðA30Þ

These inequalities are known as the Signorini condition in
velocity, and they define the possible values for variables
�Uij
n and Rij, as illustrated in the graph in Figure A3a: The

FRNV between particles is positive or zero; if the FRNV is
positive then the normal impulsion is nonexistent, and if the
FRNV is zero then the particles collide in the normal
direction and the normal impulsion can take any non-
negative value.
A3.2. Collision in the ‘‘Tangential’’ Direction ^̂tij
[110] A similar analysis may be carried out for tangential

collisions. The tangential relative velocity at the contact
point determines the magnitude and the direction of the
frictional forces and impulsions acting in the contact plane.
In general, we may assume that the friction force Tij is
directed opposite to the instantaneous relative velocity Uij

t .
The dependence between the magnitudes of Tij and Uij

t may
be specified by simple relations: If Uij

t 6¼ 0 then the particles
slip along the contact and we have kTijk = mNij, where m is
the coefficient of friction; if Uij

t = 0 then the contact is
nonslipping and kTijk � mNij.
[111] From the definition of the coefficient of tangential

restitution we may establish the relationship between shear
forces and relative velocities during a collision. We first
discuss the physical interpretation of a collision in the
tangential direction, which should satisfy the following
equation:

Utþ
ij þ rtU

t�
ij ¼ 0: ðA31Þ

Equation (A31) results from the phenomenological relation
given in equation (A26).
[112] Consider a collision event in which particles are

rotating with respect to each other immediately before the
collision (e.g., Uij

t� 6¼ 0). The collision in the tangential
direction (CT) may be dynamic or it may correspond to a
persistent contact during time interval Dt. Equation (A31)
implies that the relative tangential velocity has opposite
direction before and after the collision (if rt > 0 and Uij

t� 6¼
0). The precise interaction between particles during a CT
event may be complex. Nevertheless, we can state that the
instantaneous relative velocity Uij

t = 0 at a given moment
during the collision process. This key observation suggests
that the ‘‘mean’’ tangential relative velocity during the
collision event is close to zero. We may then assert that
the mean status of the contact between the two particles is
close to a nonslipping condition. Thus the concept of
collision in the tangential direction as formulated by means
of the restitution coefficient may be related to a nonslipping
shear interaction along the contact (equations (A26) and
(A31)).
[113] To simplify the analysis, let us define a new variable

to which we will refer as the formal relative tangential
velocity (FRTV), such that

�Ut
ij ¼ mt

ij U tþ
ij þ rtU

t�
ij

� �
: ðA32Þ

We will assume that �Ut
ij = 0 if and only if the mean status of

the contact is nonslipping (mij
t is a positive constant defined

in equation (A22)).
[114] Consider a collision event in which particles form a

nonslipping persistent contact (Uij
t = 0 and �Uij

t = 0). In this
situation, the particles roll without slipping and shear forces
are below the maximum frictional resistance. This contact
behavior is consistent with the definition of collision in the
tangential direction, satisfying equation (A32). The non-
slipping condition along persistent contacts may be lost
during multiple collision events. This situation may be
expressed in terms of tangential relative velocities at the
beginning and at the end of a small time interval Dt: Uij

t� =
0, Uij

t+ 6¼ 0, and �Uij
t = mij

t Uij
t+ (note that the tangential

velocity field is discontinuous over the time interval Dt).
Particles will then slip along the contact, and the friction
force will reach its maximum value. In this situation, the
FRTV will be oriented in the same direction as Uij

t+.
[115] The relationship between the FRTV and the impul-

sion associated with shear (frictional) forces may be
summarized by the following inequalities (Figure A3b):

�Ut
ij ¼ 0 ) Sij 2 �mRij; mRij

� �
;

�Ut
ij > 0 ) Sij ¼ �mRij;

�Ut
ij < 0 ) Sij ¼ mRij:

ðA33Þ

If �Uij
t = 0, we assume that there is no slip between the

particles at the contact point and the tangential impulsion
can take any value in between a negative and a positive
threshold. The particles may roll without slipping and
without dissipating energy by friction.
[116] If �Uij

t 6¼ 0, then the particles slip along the contact,
and the friction force attains its threshold value. Note that
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this physical situation is not rigorously considered as a CT
event, even though frictional interactions are present. This
simple law is equivalent to a Coulomb friction law in which
the shear force Tij 2[�mNij, mNij].

A4. Solution of the Equations of Motion

[117] To solve the equations of motion for the set of
particles, we express the relative velocities in terms of
formal relative velocities and restitution coefficients in the
equations of dynamics. The relative normal velocity is given
by

DUn
ij ¼ Unþ

ij � Un�
ij ¼

�Un
ij

mn
ij

� 1þ rnð ÞUn�
ij : ðA34Þ

Inserting (A34) in equation (A19) yields

Rij ¼ �Un
ij þ Kn

ij � mn
ij 1þ rnð ÞUn�

ij

h i
: ðA35Þ

This is a linear equation between the variables �Uij
n and Rij,

with unit (positive) slope. The offset term depends on the
mass of particles i and j, the coefficient of normal
restitution, the relative velocity before the collision and
the forces acting on the contacts other than ij.
[118] The intersection between this line and the graph

relating normal impulsion and FRNV is unique and defines
the solution for the impulsion and velocity in the normal
direction for particles that are in contact at the beginning of
time interval Dt (Figure A3c). In a similar way, the relative
tangential velocity is given by

DUt
ij ¼ Utþ

ij � Ut�
ij ¼

�Ut
ij

mt
ij

� 1þ rtð ÞUt�
ij : ðA36Þ

Inserting equation (A36) into equation (A23) yields

Sij ¼ �Ut
ij þ Kt

ij � mt
ij 1þ rtð ÞUt�

ij

h i
: ðA37Þ

This is also a linear equation with unit (positive) slope,
between variables �Uij

t and Sij. The offset term depends on
the mass of particles i and j, the coefficient of tangential
restitution, the relative velocity before the collision and the
forces acting on the contacts other than ij. The intersection
between this line and the graph relating tangential impulsion
and FRTV is unique, and corresponds to the solution for the
impulsion and velocity in the tangential direction for
particles that are in contact at the beginning of time interval
Dt (Figure A3d).
[119] Let Np be the number of particles in the system and

Nc be the total number of contacts. The solution of the set of
equations in 2D at any time t consists in calculating the
impulsions acting on the particles during a small time
interval Dt, and the velocities at time t + Dt. These
unknown variables are calculated from the knowledge of
the initial positions and velocities of particles at time t. The
number of unknown variables is 3Np + 2Nc, since each
particle involves two translational velocities and an angular
velocity, and each contact has two unknown force compo-
nents (shear and normal forces). The number of available
equations is also 3Np + 2Nc: To each contact correspond two
Signorini graphs and each particle satisfies three dynamic

equations (in integral form). Thus in principle the system of
equations may be solved.
[120] From a practical point of view, the calculation of the

unknown variables is done following several steps. From
the Signorini graphs and the linear equations relating
impulses and formal velocities, we calculate the contact
forces. The algorithm uses an implicit-type time stepping in
which we begin with an arbitrary distribution of impulsions
Rij and Sij, which may correspond to their values in the
previous time step. For each contact ij we may calculate
the linear equation relating impulsion and relative formal
velocity. The intersection between the linear equation and
the Signorini graph (Figure A3), gives a set of new values of
the impulsions Rij

0 and Sij
0 , which may be compared with the

previous ones. This process is iterated until a convergence
criterion is satisfied (e.g., jRij

0 � Rij < �j, where � 	 1).
[121] Once the impulsions and formal velocities are

known, we can calculate the contact forces acting on each
particle during time interval Dt:

Nij ffi Rij=Dt

Tij ffi Sij=Dt:
ðA38Þ

The positions and velocities at the end of time interval Dt
may be calculated from the definition of relative formal
velocities or from the total impulse acting on each particle.

Notation

i, j indices indicating two arbitrary disks in
the particle assembly.

Pi, Pj material points located on the perimeter of
the disks and coinciding with the contact
point.

t̂ij, n̂ij unitary vectors defining the local refer-
ence frame at the contact between disks i
and j.

T, N shear and normal contact forces.
Tij, Nij magnitudes of the shear and normal

forces applied at the contact ij.
Un, Ut relative normal and tangential velocities

between two particles.
Ui, Uj velocities of the material points Pi and Pj.
Oi, Oj positions of the center of mass of disks i

and j.
Vi, Vj velocities of the center of mass of disks i

and j.
wi, wj vectors indicating angular velocities of

disks i and j.
wi, wj magnitude of angular velocities of disks i

and j.
ri position vector of point Pi relative to the

center of mass Oi.
rj position vector of point Pj relative to the

center of mass Oj.
ri, rj radius of disks i and j.

DUi, DUj velocity changes at contact points Pi and
Pj during a collision.

DUij variation of relative velocity between
material points Pi and Pj resulting from
the collision between disks.
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DUij
n, DUij

t normal and tangential components of DUij

in the local reference frame.
Fi total force acting on particle i.
fi
v total bulk force acting on particle i (e.g.,

the gravity force).
mi, mj mass of particles i and j.
Rik, Sik contact impulsions exerted by particle k on

particle i in the normal and tangential
directions.

Pi
v impulsion exerted by the bulk forces on

particle i.
&i torque exerted on particle i.
Ii moment of inertia of disk i about an axis

passing by the center of mass.
Kij
n, Kij

t constant coefficients in the linear expres-
sions defining the local impulsions at
contact ij.

rn, rt coefficients of normal and tangential
restitution.

CN collision in the normal direction.
DCN dynamic collision in the normal direction.

FRNV formal relative normal velocity.
CT collision in the tangential direction.

FRTV formal relative tangential velocity.
t, Dt finite and differential time interval.

dij distance between particles i and j.
�Uij
n, �Uij

t formal relative normal and tangential
velocities at contact ij.

� small positive value defining the conver-
gence criterion for numerical solution.

Np, Nc number of particles and contacts in the
system.

(RMin,RMax) minimum and maximum particle radii in
the grain size distribution.

Cu uniformity coefficient of the grain size
distribution.

D10, D60 grain size diameter corresponding to 10%
finer and 60% finer in the grain size
distribution.

U potential energy function for the con-
struction of the numerical sample.

g acceleration of gravity.
ẑ unit vector pointing upward.

[P1, . . ., Pn] chain of particles located on the top of the
particle set.

n packing fraction of the sample.
N average coordination number of the

sample.
r density of the particles.

h, l height and the width of the sample.
mdd friction coefficient between the disks.
mdl friction coefficient between the disks and

the walls.
sc horizontal stress applied along the right

vertical wall during compaction of the
sample.

s3 confining pressure applied on the sample
boundaries.

�z, D�z vertical strain of the sample and vertical
strain interval.

Dz axialdisplacementofthetophorizontalwall
(positive in the direction of compression).

h0 initial height of the sample.
s1 compressional axial stress applied on the

sample.
DW biaxial test such that the confining

pressure is applied through deformable
walls.

I inertia parameter.
_g shear rate.

Vsp shortening displacement rate during the
shear phase.

wsb mean width of the active shear bands.
DWL, DWH biaxial tests for low or high friction (mdd =

0.3 and mdd = 3, respectively).
s1
DWL compressional stress for low friction test.
�smax maximum value of the mean vertical

stress, for a mobile interval D�z = 0.002.
�sres residual strength given by the mean

vertical stress for �z 2[0.05, 0.1].
�smax
DWL, �smax

DWH maximum vertical stress for low and high
friction.

�sres
DWL, �sres

DWH residual strength for low and high friction.
DVs

DWL volumetric strain of the sample for low
friction.

DVs
DWH volumetric strain for high friction.

V volume of the sample.
RCL, RCH number of rolling contacts for low and

high friction.
SCL, SCH number of slipping contacts for low and

high friction.
NCL, NCH number of contacts for low and high

friction.
ZCL, ZCH number of contacts with zero force.

m coefficient of friction between particles.
aij angle between the normal contact force

and the mean direction of a force chain.
Dxij distance between the centers of the disks,

measured perpendicularly to the axis of
the force chain.

p mean stress (s1 + s3)/2.
q deviatoric stress (s1 � s3)/2.

mmacro, mmacro
res friction coefficients characterizing the

macroscopic peak and residual strength.
f internal friction angle.
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