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We introduce a cohesive granular model of the wheat endosperm involving a discrete phase composed of starch granules, a continuous
phase representing the protein matrix and pores. The cohesion of the texture is governed by adherence between starch and protein,
reflecting the biochemical nature of the interface, and the protein content that controls the connectivity between starch granules. We

present a detailed parametric study of the stiffness, yield strength and regimes of crack propagation under tensile loading. We then show
that starch damage, as a descriptor of wheat hardness, scales with the relative toughness between the starch and the starch–protein
interface. The toughness appears therefore to be the control parameter governing transition from ‘soft’ to ‘hard’ behavior. Interestingly,
this parameter combines the starch–protein adherence with protein content, two major quantities often assumed to underly wheat
hardness.
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1. Introduction

Wheat hardness variation is an important trait in the

determination of end-use quality of wheat flours for food

industry. Common classifications differentiate ‘soft’ and

‘hard’ (T. aestivum) wheat from ‘very hard’ or durum

wheat (T. durum). Soft wheat kernels require less energy to

mill and produce flour consisting of small aggregates of

starch granules and protein, and many free starch granules.

Hard wheat kernels grind to coarser aggregates and include

damaged starch granules. Durum wheat kernels are very

hard in texture and high in protein content (Turnbull and

Rahman, 2002; Morris, 2002).

Three methods are generally used to determine wheat

hardness: near-infrared reflectance (NIR), particle size

index (PSI) and single-kernel characterization system

(SKCS) (Morris, 2002). In contrast to SKCS, where the

crushing strength of single grains are measured, in NIR

and PSI methods the wheat grain hardness correspond

rather to an empirical description of the particle size

distribution (PSD) after milling than an ab initio mechan-

ical property of the grain (Atwell, 2001; Dobraszczyk,

1994; Turnbull and Rahman, 2002).

It is generally assumed that the hardness is a conse-

quence of adherence between starch and protein as a major

biochemical characteristic of the endosperm (Barlow et al.,

1973; Greenwell and Schofield, 1986; Glenn and Johnston,

1992; Turnbull and Rahman, 2002; Piot et al., 2000).

In fact, micropenetrometer hardness tests indicate that the

proper mechanical strengths of starch granules and the

protein phase do not vary widely with wheat species

(Barlow et al., 1973; Glenn and Johnston, 1992), implying

that the nature of starch–protein interface differs between

‘hard’ and ‘soft’ varieties. In the case of ‘hard’ and ‘very

hard’ wheat, interactions between starch and protein are

strong contrary to ‘soft’ wheat in which the interactions are

weaker (Atwell, 2001).

Although genetically, ‘soft’, ‘hard’ and ‘durum’ wheat

grains are qualitative classes depending on the presence and

nature of puroindoline proteins (Greenwell and Schofield,
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1986; Morris, 2002), the hardness, as measured from the

PSD of meals, is also an increasing function of the protein

content determined by growing conditions and reflected in

the grain vitreousness (Haddad et al., 2001; Morris, 2002;

Turnbull and Rahman, 2002). In fact, vitreous kernels

generally show higher strength in compression, higher

density and larger protein content. However, no simple

correlation can be established between vitreosity and grain

hardness: vitreous and mealy kernels may be produced

from ‘soft’, ‘hard’ and ‘durum’ wheats.

Hence, the precise roles played by starch–protein

adherence, protein content and possibly other structural

features of the endosperm texture need to be quantified.

From mechanical viewpoint, a central issue is whether the

hardness defined via grain processing is controlled by a

unique strength property of the endosperm, e.g. the

strength at crushing or the stiffness (Dobraszczyk, 1994).

In this paper, we propose a lattice model capable of

representing the multi-phase structure of the wheat

endosperm at the scale of starch granules and allowing

for the computation of its elastic deformation, damage and

fracture. Each phase and its boundaries are represented by

lattice elements sharing the same properties and belonging

to the same portion of space. A sample of the wheat

endosperm is composed of starch granules, a continuous

phase representing the protein matrix, and pores. This

model provides a suitable framework in which the influence

of various structural and material parameters of the wheat

endosperm can be characterized. In particular, we are

interested in the stiffness, mechanical strength and particle

damage as a function of the protein volume fraction and

starch–protein adherence.

In the following, we first describe the model and the

numerical procedures which were used to generate numer-

ical samples of wheat endosperm. Then, we present a

parametric study where various mechanical properties are

analyzed as a function of the protein content and

starch–protein adherence. Finally, we show that our data

are consistent with an interesting interpretation of the

wheat hardness in terms of a single parameter combining

the protein content and starch–protein adherence. We

conclude with a summary of salient results and possible

perspectives of this work. The details of the lattice model

are given in the Appendix.

2. Numerical method

The endosperm texture varies depending on the variety

and growing conditions. Starch granules occur in volume

fractions ranging from 63% to 72% of the endosperm

(Atwell, 2001). There are mainly two size populations of

granules. The smaller nearly spherical granules (type B) are

2–10mm in diameter and 80–85% of the total number of

granules, whereas the large granules (type A) are lens-

shaped and 20–25mm in diameter. The protein matrix,

varying from 6% to 20% in volume fraction, surrounds the

granules (Pomeranz, 1988). Fig. 1(a) displays a scanning

electron micrograph of the fracture surface of a hard

endosperm. Both types of starch granules and the protein

phase, visible mostly in the form of cavities left by

dislodged granules, can be observed.

The endosperm can be modeled as a granular solid

composed of particles (starch granules) bound to one

another by a cementing phase (corresponding to the

protein matrix). In this picture, the scale-up of microscopic

interactions to macroscopic properties is mediated by the

granular nature of the endosperm. There are several

discrete element methods for the simulation of granular

media (Cundall and Strack, 1979; Moreau, 1994; Delenne,

2002; Radjaı̈ et al., 2000–2001). In all these methods, the

particles are assumed to be rigid and interacting via a

contact law accounting for elastic repulsion, friction and

cohesion. These methods cannot be used as such for the

wheat endosperm since we would like to account also for

the continuous matrix representing the protein phase. We

need thus an intermediate approach between discrete

element methods and the finite element method more

commonly employed in materials science and structural

engineering for the simulation of continuous media. This

approach should also account for breakable interface

elements (as interparticle contacts in granular media) and

breakable bulk elements (as a damageable volume element

in continua).

We rely on a lattice-type model which is a suitable

framework for the simulation of heterogeneous materials

(Roux, 1990; Schlangen and Garboczi, 1997; Van Mier

et al., 1997). The three phases composing the wheat

endosperm are thus discretized on the same lattice, the

behavior and breaking characteristics of each phase being

carried by lattice bonds. Different types of material

behavior can be obtained for each phase in this way by

incorporating elasto-plastic damageable bonds. When only

strength parameters are of interest, simple elastic–brittle

bonds can be used and large systems involving several

hundred starch granules with a variable volume fraction of

the protein can be simulated.

Fig. 1. (a) Scanning electron micrograph of the fracture surface of a hard

endosperm (Falcon wheat) with scale bar equal to 50mm; (b) representa-

tion of starch granules and the protein matrix on a triangular lattice.
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Lattice-type discretization has been used for statistical

mechanics of fracture in disordered media, and applied to

study the fracture properties of concrete, ceramics and soils

(Cheng et al., 2002a,b; Chiaia et al., 1997; Delaplace et al.,

1996; Feng et al., 1985; Herrmann and Roux, 1990; Gao

and Klein, 1998; Lilliu and Van Mier, 2003; Prado and van

Mier, 2003; Schlangen and Garboczi, 1997; Van Mier et al.,

1997, 2002; Van Mier and Van Vliet, 1999; Vogel et al.,

2005a,b). The space is discretized as a regular or disordered

grid of nodes interconnected by one-dimensional elements

or bonds. We use linear elastic–brittle elements defining

a triangular lattice with an equilibrium element length.

Each element is characterized by a Hooke constant and a

breaking force threshold. Each phase and its frontiers are

materialized by lattice bonds sharing the same properties

and belonging to the same portion of space, see Fig. 1(b).

A sample is defined by its contour and the configuration

of the phases in space. The samples are deformed by

imposing displacements or forces to the nodes belonging to

the contour. The initial state is the reference (unstressed)

configuration. The total elastic energy of the system is a

convex function of node displacements and thus finding the

unique equilibrium configuration of the nodes amounts to

a minimization problem. Performing this minimization for

stepwise loading corresponds to subjecting the system to a

quasistatic deformation process. The overloaded elements

(exceeding a threshold) are removed according to a

breaking rule. This corresponds to irreversible microcrack-

ing of the lattice. If necessary, a healing mechanism can be

implemented as well by restoring the broken elements.

The released elastic energy between two successive equili-

brium states is fully dissipated by microcracking. The im-

plementation details regarding lattice representation and

the resolution of governing equations are described in

Appendix A.

In principle, the time step should be small enough in

order to have only one critical bond at a time. But this

method is hardly feasible, and for a reasonable choice

of the time step, several elements may become critical

(overloaded) simultaneously. Two possible rules for

removing these critical elements are

� only the most critical bond is removed;

� all critical bonds are removed.

A breaking probability as a function of the degree of

criticality may also be used (Delaplace et al., 1996; Fitoussi

et al., 1998; Herrmann and Roux, 1990; Hu et al., 1998;

Van Mier et al., 1997, 2002; Chiaia et al., 1997;

Mishnaevsky et al., 2004). In order to optimize the

computational effort, we adopt the second solution but

with post-relaxation cycles until a equilibrium state is

reached before applying the next strain increment. This

gives rise to the possibility of crack propagation within one

time step. Physically, this corresponds to fast crack

propagation compared to deformation rate.

The 2D lattice model has the advantage to be cheap in

computational effort, allowing to simulate systems with a

large number of nodes for reasonable computing time. The

computational effort in solving the set of 2N equations by

minimizing the potential energy varies in general as N2.

Since in our case N will be huge (as huge as feasible), an

important aspect of the algorithm is that its storage

requirement should vary only linearly with N. Fortunately

in our case, due to the simple additivity of the potential

energy, the effort does not grow with N at all. Therefore,

the computation time should also depend only linearly on

N. The simulations reported in this paper were carried out

on samples of at least 4� 104 nodes. On a ‘G5 PowerPC’,

the CPU time is about 0.01 s per time step and per node.

3. Parameters and notations

We first generate a large dense packing of rigid disk-like

particles compressed isotropically by means of the discrete

element method. A rectangular portion of this two-

dimensional packing is overlaid on a triangular lattice.

The starch properties are attributed to the bonds falling

inside the particles. The protein is then added in the form

of trapezoidal-shape bridges connecting neighboring par-

ticles within a prescribed distance (a small fraction of the

particle diameter) (Feillet, 2000). The bonds belonging to

these bridges are given the properties of the protein matrix.

In the same way, the bonds falling between a particle and

the matrix or between two particles are given the properties

of the corresponding interface. These matrix bridges have

variable widths proportional to the total volume of the

protein matrix. The samples are bidisperse with particle

diameters dA and dB ¼ 0:25dA, and with four times more

B-type granules. The total particle volume fraction is about

0:80. In the simulations, the protein phase varies from 4%

to 20% in volume fraction.

There are three bulk phases: (1) particles (starch

granules), denoted ‘p’; (2) protein matrix, denoted ‘m’;

and (3) void space or pores, denoted ‘v’. There are also two

interface phases: (1) particle–particle interface, denoted

‘pp’, and (2) particle–matrix interface, denoted ‘pm’. The

elements belonging to each phase f (bulk or interface) are

given a Hooke constant kf and a breaking force f f. We

have f v ¼ 0 and the choice of the value of kv is immaterial.

In most models of composite materials the interphase

‘pp’ is neglected, assuming thus that all particles are

surrounded by the matrix. In the case of wheat endosperm,

however, the particle interactions play a central role and

the interface ‘pp’ should be considered on the same basis as

the ‘pm’ interface. In fact, the surface phases ‘pm’ and ‘pp’

are transition zones of finite width. However, the volume

fractions of these transition zones can be neglected

compared to that of the particles and matrix. The interface

phases affect the global behavior through their specific

surfaces (total surface per unit volume) and their strengths

represented by the Hooke constants kpp and kpm and the

corresponding tensile force thresholds f pp and f pm. In our
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simulations, we model the interface phases by bonds

linking two particles or a particle to the matrix. The

volume fractions of the interface phases are thus assumed

to be zero ðrpp ¼ rpm ¼ 0Þ and the volumes fractions rp, rm

and rv are attributed only to the three bulk phases, with

rp þ rm þ rv ¼ 1. (1)

It is dimensionally convenient to express the bond

characteristics in stress units. We thus define the bond

breaking (or debonding) stresses sf � f f=a and the moduli

Ef � kf=a, where a is the length of the lattice vector. These

bond moduli Ef of the lattice should be carefully

distinguished from the equivalent phase moduli which

depend both on the bond moduli and the geometry of the

lattice. We will use below square brackets to represent the

phase moduli: E½p�, E½m�, E½pp� and E½pm�. For a triangular

lattice, stretched orthogonally to a lattice vector, there is a

simple relation between the bond stiffness Ef and the

equivalent phase stiffness E ½f� (Schlangen and Garboczi,

1997):

E½f� ¼
ffiffi

3
p

2
Ef. (2)

4. Strength properties

We are interested in the influence of two parameters

playing a major role in the fracture behavior of the wheat

endosperm: the matrix volume fraction rm and the

particle–matrix adhesion spm. We keep the particle volume

fraction constant rp ’ 0:8 and rm is varied from 0:04 to

0:2. At rm ¼ 0:2, the whole interstitial space is filled with

the protein matrix, corresponding to zero porosity. The

behavior in the range rmo0:04 is strongly nonlinear and

the initiation and propagation of the cracks strongly

depend on the details of the microstructure. The elastic

moduli do not seem to be appreciably contrasted among

endosperm constituents (Glenn and Johnston, 1992). For

this reason, we set Ep ¼ Em ¼ Epm and sp ¼ sm. Further

parametric study will be necessary to evaluate the effect of

local elastic and failure contrasts with respect to the results

presented below. The particle–matrix adherence spm is

varied from 0:3s½p� to 1:05s½p�. We also assume that a

fraction of contacts between starch granules are ‘‘bare’’ in

the sense that they are not mediated by protein bridges.

Since the integrity of the endosperm is supposed to be

ensured by the protein matrix, we consider that the bare

contacts are cohesionless, i.e. spp ¼ 0.

Each sample contains nearly 400 granules, and each

simulation is repeated over three independent configura-

tions. The samples are subjected to uniaxial tension tests by

imposing incremental displacement on the upper bound-

ary, see Fig. 2(a). The lower boundary is immobile and the

lateral boundaries are free.

Fig. 3 shows the stress–strain plots under tensile loading

for three different values of rm and spm (belonging to three

different regimes of crack propagation, as discussed in

Section 5). The corresponding crack patterns are displayed

in Fig. 4. We observe a brittle behavior with a well-defined

initial stiffness Et
eff and a tensile strength steff defined at the

stress peak. The post-peak behavior is characterized by

nonlinear propagation of the cracks initiated at the stress

peak in the form of a sequence of loading–unloading

events. Each event represents the storage of elastic energy

followed by energy dissipation as a result of microcracking,

i.e. the breaking of one or more bonds. The stiffness

declines due to progressive damage of the material. The

main crack is perpendicular to the direction of tension.

Fig. 4 suggests that the crack path depends more on the

protein content than on the starch-granule adherence. This

is because the stress inhomogeneities, which are responsible

for the stress concentration factor, are more sensitive to the

porosity than to adherence among the constituents. It is

noteworthy that the observed brittle behavior is a

consequence of the local elastic–brittle behavior. The

macroscopic behavior can be made more or less ductile

or time-dependent by enriching the bond behavior. In the

same way, the local strength parameters can be coupled to

ambient moisture in order to account for moisture effects

at the macroscopic scale (Haddad et al., 2001).

The effective stiffness Et
eff (normalized by E½p�) is shown

in Fig. 5 as a function of rm for three independent sets of

Fig. 2. (a) Boundary conditions of a simple tension test; (b) typical

configuration of protein bridges at high protein content, with pores

isolated from starch granules.

Fig. 3. Stress–strain plots under tensile loading for (1) spm=s½p� ¼ 0:6 and

rm ¼ 0:08; (2) spm=s½p� ¼ 1 and rm ¼ 0:08; and (3) spm=s½p� ¼ 1 and

rm ¼ 0:18.
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configurations. The stiffness Et
eff is nearly linear in rm with

a small variability between the three plots. We have

Et
effoE½p� due to porosity and the presence of bare contacts

between starch granules (Torquato, 2002). The offset 1�
Et

eff =E
½p� ’ 0:15 corresponds to the effect of bare contacts

in the limit rm ¼ 1� rp ¼ 0:2. The protein matrix has both

surface and bulk effects. Hence, the stiffness increases with

rm as a result of increasingly homogeneous stress distribu-

tion. The surface effect corresponds to the total starch–

protein interface which increases with the protein volume

fraction and implies growing adherence between the matrix

and the particles, as a result.

We approximately have

Et
eff ¼ ðk0 þ k1r

mÞE½p�, (3)

with k0 ’ 0:35 and k1 ’ 2:5. This linear increase of

stiffness with protein content is consistent with measure-

ments showing larger stiffness in more vitreous wheat

grains (Samson et al., 2005).

The tensile strength steff is a function of both rm and spm.

Fig. 6 shows a grey-level map of steff in the parameter space

ðrm;spmÞ. The tensile strength increases smoothly along

both axes and the isovalue plots are nearly straight lines.

The isovalues show the extent to which the effect of rm for

the tensile strength can be replaced by that of spm. This

means that the endosperm can be very resistant either at

low protein content with strong adherence between the

protein and starch granules or with low adherence and high

protein content.

At low rm, the endosperm texture can be qualified as a

cohesive granular medium where the protein phase behaves

essentially as a binding agent. Increasing rm results in

widening of the protein bridge cross section between starch

granules and thus enhanced cohesion as would do

increasing spm. At high rm, the texture can be described

as dispersed pores and granules in a continuous protein

phase. In this limit, the porosity declines as rm increases,

leading to less concentration of stresses and thus enhanced

strength and stiffness. The largest value of steff is ’ 0:03s½p�

and it occurs for rm ¼ 0:2 and spm ¼ 1:05. This limit

corresponds to strong starch–protein adherence. The low

value of steff in this limit is thus related to the sole effect of

bare contacts in tension.

5. Starch damage

In lattice models of fracture, it is common to consider

the number of broken elements as a measure of damage

(Herrmann and Roux, 1990). Since in wheat grain

processing, the fraction of damaged granules is a major

signature of the grain hardness (Pomeranz, 1988; Atwell,

2001), we focus here on the proportion nb of broken

elements in the bulk of the granules with respect to the total

number of broken elements in the material.

Fig. 7 shows the evolution of nb as a function of vertical

strain for three different sets of parameters. For low

enough values of spm (plot 1), particle damage is marginal

whatever the matrix volume fraction rm. Obviously, the

bonds fail in this case favorably at the particle–matrix

interface. For a high enough level of spm (plots 2 and 3), the

fraction nb remains negligible up to brittle failure where it

increases first rapidly, then decreases slightly during the

post-peak period as more bonds fail inside the protein

matrix and at the starch–protein interface with respect to

the bonds failing inside the granules.

Fig. 4. Crack patterns for (1) spm=s½p� ¼ 0:6 and rm ¼ 0:08; (2) spm=s½p� ¼
1 and rm ¼ 0:08; and (3) spm=s½p� ¼ 1 and rm ¼ 0:18.

Fig. 5. Effective stiffness Et
eff as a function of the protein volume fraction

rm.

Fig. 6. Grey level map of tensile strength in the parameter space

(particle–matrix adherence vs. particle volume fraction).
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Fig. 8 shows a map of the fractions nb in the parameter

space. We see that below a well-defined frontier of nearly

bilinear shape, no starch damage occurs (nb ’ 0). For this

range of parameters, the cracks propagate in the protein

phase and through the pores. Above this ‘‘starch-damage

limit’’, the isovalue lines are parallel to the limit line with

an increasing level of nb. Remarkably, this line singles out a

point corresponding to rm ’ 0:12 and spm ’ 0:6sp. For

rm40:12, nb is independent of rm. The transition at rm ’
0:12 seems to reflect the percolation of the protein

phase throughout the system, with starch granules entirely

isolated from the pores by the protein phase; see Fig. 2(b).

Beyond this point, increasing the protein content has no

consequence for the width of protein bridges between

starch granules.

From Fig. 8, we differentiate three regimes of crack

propagation: (1) below the starch-damage limit, the cracks

bypass starch granules and propagate through the pores

and the starch–protein interface; (2) above this limit and

for rpo0:12, the cracks penetrate also partially into starch

granules from protein bridges that strongly concentrate

stresses and lead thus to surface abrasion of the granules;

(3) above this limit and for rp40:12, the cracks propagate
in the protein phase as well as across the starch granules,

causing fragmentation of the granules. These three regimes

are schematically represented in Fig. 9.

The starch damage occurs as a result of the penetration

of the cracks into the starch granules. According to

fracture mechanics, this occurs if the particle is less tough

than the matrix–particle interface. Otherwise, the crack will

be deflected to the interface (He and Hutchinson, 1989;

Buyukozturk and Hearing, 1998). The toughness Kc ¼
ðEGcÞ1=2 of a material combines the stiffness E with the

energy Gc required to create a crack of unit surface. In our

system, the elastic energy of a matrix–particle bond at

failure is ðf pmÞ2=ð2kpmÞ, and this energy is fully dissipated

when the bond fails. Hence, the adhesion energy (per unit

length in 2D) is

Gpm
c ¼ ðf pmÞ2

2akpm
. (4)

Using this expression, we define a particle–matrix ‘‘inter-

face toughness’’ by

Kpm
c ¼ ðEt

effG
pm
c Þ1=2 ¼

Et
eff

2Epm

 !1=2

spm. (5)

We also consider the toughness Kp
c of the particles

Kp
c ¼

E½p�

2Ep

� �1=2

sp. (6)

We substitute the expression of Et
eff as a function of rm

from Eq. (3) in (5) and we normalize by Kp
c from Eq. (6) to

get the ‘‘relative toughness’’

K r
c �

Kpm
c

Kp
c

¼ ðk0 þ k1r
mÞ1=2 s

pm

sp
, (7)

where we used the fact that Epm ¼ Ep in our simulations.

Fig. 7. Evolution of the fraction of broken bonds in the particle phase for

(1) spm=s½p� ¼ 0:6 and rm ¼ 0:08; (2) spm=s½p� ¼ 1 and rm ¼ 0:08; and (3)

spm=s½p� ¼ 1 and rm ¼ 0:18.

Fig. 8. Grey level map of the fraction of broken bonds inside the starch

granules as a function of the protein volume fraction rm and the

starch–protein adherence spm. Dashed line represents the ‘‘particle damage

limit’’ as predicted by Eq. (8). The numbers in the circles correspond to the

three plots of Figs. 3 and 7.

Fig. 9. A schematic representation of cracking regimes.
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The important point about the expression of relative

toughness K r
c in Eq. (7) is that it combines explicitly the

matrix volume fraction rm with the interphase adherence

spm. Fig. 10 shows the fraction nb of broken bonds in the

particle phase as a function of spm=sp for several values of
rm. In Fig. 11 we have plotted the same data for all values

of rm as a function of K r
c. It is remarkable that all data

points collapse nearly on a single plot with a variability

that is essentially of the same order of magnitude as

sample-to-sample fluctuations. Below a characteristic

toughness K r
c ’ 0:5, no starch damage occurs. Beyond this

point, the fraction of broken bonds increases linearly with

K r
c within the available statistical precision.

The characteristic toughness corresponds physically to

transition from a regime where the cracks are deflected to

the particle–matrix interface to a regime where the cracks

can penetrate into the particles. Eq. (7) enables us to

predict the shape of the particle-damage limit in Fig. 8.

This is the plot of spm as a function of rm for Kr
c ’ 0:5.

From Eq. (7) we get

spm ’ 0:5spðk0 þ k1r
mÞ�1=2. (8)

This equation is displayed on the grey level map of nb in

Fig. 8 with no other fitting parameters than the values of k0
and k1 obtained from Fig. 5. We see that Eq. (8) is a good

approximation for the particle-damage limit.

6. Summary and discussion

In this paper, a granular model of the wheat endosperm

was introduced and applied to investigate the effect of two

major parameters that control the wheat hardness: the

protein volume fraction and the starch–protein adherence.

This model involves a jammed assembly of starch granules

interconnected by the action of the protein matrix. As a

result of jamming, the contact zones between the granules

are not covered every where by the protein matrix, leading

to cleavages or bare contacts that are significant for stress

concentration in addition to the effect of the pores. These

features make the structure of the wheat endosperm

particularly variable, and the mechanical behavior is

expected to depend in a complex manner on the filling

volume and the nature of the matrix–particle interface.

Moreover, the scale-up of interphase adherence to macro-

scopic stress–strain and yield properties is mediated by the

granular structure of the material. Our approach resorts

to a lattice-type sub-particle discretization of both the

granules and the protein matrix, and incorporates in a

simple way the possibility of crack initiation by bond

breaking. In order to simulate large representative samples,

we opted for efficient algorithms involving simple interac-

tions and rules as well as a quasistatic procedure based on

energy minimization.

We studied the stress–strain behavior under simple

tension. It was found that the protein volume fraction

and the starch–protein adherence play nearly the same role

as far as the tensile strength is concerned. But the same

parameters control differently the damage characteristics

as reflected in the fraction of broken bonds inside starch

granules. Indeed, both the interfacial adherence and

protein volume fraction are bounded. The adherence is

bounded by the internal cohesion of the granules whereas

the surface effect of the protein matrix saturates as soon as

the protein bridges between the granules percolate. Beyond

either of these limits, the particle damage is more sensitive

to the starch–protein adhesion than the protein volume

fraction.

In particular, there is a starch-damage limit in the

parameter space below which no starch damage occurs. In

this regime, the cracks propagate either in the protein

matrix or at the starch–protein interface. Above the starch-

damage limit and below a particular value of the protein

volume fraction, corresponding to the percolation thresh-

old of the protein matrix throughout the system, the cracks

penetrate also partially into the particles whereas above

Fig. 10. Fraction of broken bonds inside the starch granules as a function

of starch–protein adherence for different values of the protein volume

fraction.

Fig. 11. Fraction of broken bonds inside the starch granules as a function

of the relative toughness for different values of the protein volume

fraction.
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this particular value of the protein volume fraction, the

cracks propagate across the granules causing the fragmen-

tation of starch granules.

Our data suggest that the starch-damage limit is

controlled by a single parameter combining the protein

volume fraction with the starch–protein adhesion. We

showed that this parameter, which scales quite well our

starch damage data, corresponds to the relative toughness

of the starch–protein interface with respect to the starch

toughness. This finding is consistent with the fracture

mechanics energetic arguments implying that the penetra-

tion of a crack into a particle occurs only if the particle is

less tough than the matrix–particle interface. Hence,

putting together our main parameters, the relative tough-

ness provides a simple link between starch damage and

these parameters.

These findings are of interest to the interpretation of

the characterization methods of wheat grains based on

post-process analyzes such as the size distribution of

the fragments or the starch damage. They elucidate

the specific roles of the protein volume fraction and the

starch–protein adherence often advocated to explain the

hardness of the wheat endosperm. Combining both

parameters, the relative toughness links in a simple way

the starch damage to these parameters. This is vital

information in view of material processing and it provides

a quantitative basis for the use of starch damage as a

descriptor of wheat hardness.

Our representation of endosperm as an elastic–brittle

material in this paper was motivated by the choice of a

minimalist system for a detailed parametric study of

strength and fracture properties. This model can, however,

be greatly enriched in order to incorporate more complex

material behaviors for starch and protein materials. In

particular, visco-plastic behavior and moisture-dependence

properties of the wheat endosperm can be taken into

account within this framework. For example, plastic or

viscous dissipation could affect our results concerning the

relation between starch damage and the interface tough-

ness. Hence, our results can be applied mainly to the case

of weak moisture content at high loading rates, as in a dry

grinding process.

The results analyzed in this paper were obtained by the

application of a unique protocol for the preparation of

numerical samples. We varied the phase volume fractions

and the adhesion between the phases but the protocol itself

did not change. This protocol ensured a nearly homo-

geneous filling of the interstitial space between the

granules, and the bare contacts between touching granules

were assumed to be cohesionless. The robustness of our

results with respect to the protocol and the influence of the

filling procedure require further investigation. In the same

way, the influence of the stiffness contrast between starch

granules and the protein matrix was not considered in this

paper, but it merits a systematic investigation in view

of comparison with the effect of the two parameters

considered in this paper.

Appendix A. Implementation details

A.1. Lattice representation

We consider a triangular lattice with a rectangular

contour. Two types of geometrical disorder can be

introduced: (1) metric disorder by moving randomly each

node to a new position within a given distance. The

connectivity (six bonds per node) of the lattice is conserved;

(2) topological disorder by removing randomly a fraction

of bonds down to the percolation threshold of the lattice.

Various types of material disorder can be introduced as

well into the model. In particular, the elastic properties of

the bonds or their thresholds may be attributed according

to a prescribed spatial distribution. The latter involves a

length scale which in many statistical models of disorder is

simply taken to be the mesh length. In our system, this

length is given by the average size of the particles, and the

properties are uniform in each phase. Hence, if no other

geometrical or material disorder is introduced, the lattice is

characterized by a granular disorder at a mesoscopic scale

(as compared to the mesh length); see Fig. 1(b). The stress

field is mainly dictated by granular disorder.

In the following, we assume an unstressed triangular

lattice with equilibrium bond length a. Usually, a regular

lattice is described in terms of multiples ðk; lÞ of its lattice
vectors as depicted in Fig. 12(a). This is not very suitable

for its management within a computer simulation. A more

convenient way is a scheme along the lines of a ‘‘stretched

checkerboard’’ as displayed in Fig. 12(b). If there are Ny

rows with Nx nodes in an even row and Nx � 1 nodes in an

odd row, there are N nodes in the system given by

N � NxNy �Ny=2, (A.1)

and its dimensions are ðLx;LyÞ given by

Lx ¼ Nxa,

Ly ¼
ffiffiffi

3
p

=2Nya. ðA:2Þ

Notice that all the N nodes can be enumerated in a canonic

way according to the following mapping:

i ¼ k þ lð2Nx � 1Þ
2

. (A.3)

Fig. 12. Two methods for indexing a triangular lattice.
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Then, all the neighbors of a node i along the three lattice

directions are simply given as in Fig. 13.

A.2. Degrees of freedom

The degrees of freedom of the system are the displace-

ments r
k;l of the nodes from the initial positions R

k;l . We

work with the relative displacements

D
k;l ¼ r

k;l � R
k;l , (A.4)

allowing for larger precision by avoiding to subtract large

numbers. Setting a ¼ 1, we define the square distances

1þ qk;l0 � ðrkþ2;l � r
k;lÞ2

¼ ðDkþ2;l
x � Dk;l

x þ 1Þ2 þ ðDkþ2;l
y � Dk;l

y Þ2, ðA:5Þ

1þ qk;l1 � ðrkþ1;lþ1 � r
k;lÞ2

¼ ðDkþ1;lþ1
x � Dk;l

x þ 1=2Þ2

þ ðDkþ1;lþ1
y � Dk;l

y þ
ffiffiffi

3
p

=2Þ2, ðA:6Þ

1þ qk;l2 � ðrk�1;lþ1 � r
k;lÞ2

¼ ðDk�1;lþ1
x � Dk;l

x � 1=2Þ2

þ ðDk�1;lþ1
y � Dk;l

y þ
ffiffiffi

3
p

=2Þ2, ðA:7Þ

with Dk;l
x � D

k;l :ex and Dk;l
y � D

k;l :ey. In fact,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ qk;lj

q

is

the Euclidean distance between node ðk; lÞ and its

neighbors j. In the reference triangular lattice, the values

j ¼ 0; 1; 2 correspond to the directions along ex,ep=3 and

e2p=3, respectively.

Setting

X k;l
0 � Dkþ2;l

x � Dk;l
x ,

Y k;l
0 � Dkþ2;l

y � Dk;l
y , ðA:8Þ

X k;l
1 � 1

2
ðDkþ1;lþ1

x � Dk;l
x Þ,

Y k;l
1 �

ffiffi

3
p

2
ðDkþ1;lþ1

y � Dk;l
y Þ, ðA:9Þ

X k;l
2 � �1

2
ðDk�1;lþ1

x � Dk;l
x Þ,

Y k;l
2 �

ffiffi

3
p

2
ðDk�1;lþ1

y � Dk;l
y Þ, ðA:10Þ

and temporarily suppressing the indices k; l for the sake of
readability, we end up with

q0 ¼ X 2
0 þ Y 2

0 þ 2:X 0,

q1 ¼ X 2
1 þ Y 2

1 þ X 1 þ
ffiffiffi

3
p

Y 1,

q2 ¼ X 2
2 þ Y 2

2 � X 1 þ
ffiffiffi

3
p

Y 1. ðA:11Þ

A.3. Evolution

Each element is characterized by a stiffness and a

breaking force threshold. The quantity ð
ffiffiffiffiffiffiffiffiffiffiffiffi

1þ qj
p

� 1Þ
represents the strain, and the potential energy Uk;l

j of a

spring of stiffness Ek;l
j is expressed as

U j ¼
E j

2

ffiffiffiffiffiffiffiffiffiffiffiffi

1þ qj

q

� 1
� �2

¼ Ej 1þ
qj

2
�

ffiffiffiffiffiffiffiffiffiffiffiffi

1þ qj

q� �

¼ E j

8
q2j �

1

2
q3j

� �

þOðq4j Þ. ðA:12Þ

This expansion is useful to avoid the computationally

costly evaluation of square roots. In this context, a

standard procedure would be to substitute the qj in Eqs.

(A.11) into (A.12) in order to obtain a systematic

expansion in powers of deformation X j and Y j.

In the simulations reported in this paper, an upward

(tension) or downward (compression) displacement is

imposed on the row l ¼ Ny, while at the columns k ¼ 0

and k ¼ 2Nx � 2 we have open boundary conditions.

Imposing stepwise displacement at the boundary and

looking for a new equilibrium state at each step corre-

sponds to a quasistatic loading as long as the imposed

displacement rate is small compared to the sound speed in

the material, which is fulfilled for most practical purposes.

Hence, any velocity-dependent behavior of the material

must be related only to the breaking rules as discussed

below.

The new equilibrium state is determined by minimizing

the total potential energy

C ¼
X

j;k;l

Uk;l
j , (A.13)

with respect to the displacements D
k;l . The conjugate

gradient method according to Polak and Ribiere is

employed (Press et al., 1996). The key idea behind this

algorithm, which needs the gradient of the minimizing

function as well, is that the directions in the 2N-

dimensional space of the degrees of freedom, along which

line-minimization is performed, are not consecutively

perpendicular to each other (as in the straightforward but

less efficient steepest descent method) but conjugate in the

sense that minimization along a new direction does not

spoil the work done for previous directions.

Fig. 13. Indexation of neighboring nodes.
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Samson, M., Mabille, F., Chéret, R., Abécassis, J., Morel, M., 2005.

Mechanical and physicochemical characterization of vitreous and

mealy durum wheat endosperm. Cereal Chemistry 82, 81–87.

Schlangen, E., Garboczi, E.J., 1997. Fracture simulations of concrete

using lattice models: computational aspects. Engineering Fracture

Mechanics 57, 319–332.

Torquato, S., 2002. Random Heterogeneous Materials—Microstructure

and Macroscopic Properties. Springer, New York.

Turnbull, K.M., Rahman, S., 2002. Endosperm texture in wheat. Journal

of Cereal Science 36, 327–337.

Van Mier, G.M.J., Chiaia, M.B., Vervuurt, A., 1997. Numerical

simulation of chaotic and self-organizing damage in brittle disordered

materials. Computer Methods in Applied Mechanics and Engineering

142, 189–201.

Van Mier, J.G.M., Van Vliet, M.R.A., 1999. Experimentation, numerical

simulation and the role of engineering judgement in the fracture

mechanics of concrete and concrete structures. Construction and

Building Materials 13, 3–14.

Van Mier, J.G.M., van Vliet, M.R.A., Wang, T.K., 2002. Fracture

mechanisms in particle composites: statistical aspects in lattice type

analysis. Mechanics of Materials 34, 705–724.

Vogel, H.-J., Hoffmann, H., Leopold, A., Roth, K., 2005a. Studies of

crack dynamics in clay soil: II. A physically based model for crack

formation. Geoderma 125, 213–223.

Vogel, H.-J., Hoffmann, H., Roth, K., 2005b. Studies of crack dynamics

in clay soil: I. Experimental methods, results, and morphological

quantification. Geoderma 125, 203–211.

10


	Wheat endosperm as a cohesive granular material
	Introduction
	Numerical method
	Parameters and notations
	Strength properties
	Starch damage
	Summary and discussion
	Implementation details
	Lattice representation
	Degrees of freedom
	Evolution

	References


