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By means of contact dynamics simulations, we investigate the shear strength and internal structure of granular

materials composed of two-dimensional nonconvex aggregates. We find that the packing fraction first grows

as the nonconvexity is increased but declines at higher nonconvexity. This unmonotonic dependence reflects

the competing effects of pore size reduction between convex borders of aggregates and gain in porosity at the

nonconvex borders that are captured in a simple model fitting nicely the simulation data both in the isotropic

and sheared packings. On the other hand, the internal angle of friction increases linearly with nonconvexity and

saturates to a value independent of nonconvexity. We show that fabric anisotropy, force anisotropy, and friction

mobilization, all enhanced by multiple contacts between aggregates, govern the observed increase of shear

strength and its saturation with increasing nonconvexity. The main effect of interlocking is to dislocate frictional

dissipation from the locked double and triple contacts between aggregates to the simple contacts between clusters

of aggregates. This self-organization of particle motions allows the packing to keep a constant shear strength at

high nonconvexity.

DOI: 10.1103/PhysRevE.84.041302 PACS number(s): 45.70.−n, 61.43.−j, 83.80.Fg

I. INTRODUCTION

Most of recent research work on granular physics has been

concerned with the emerging behavior of a large number of

basically monodisperse spherical particles [1,2]. The fact that

a minimalistic model of granular matter reveals a complex

generic rheology implies that the granular physics can be

founded on a robust common denominator in spite of the wide

variety of granular materials with substantial differences in

their properties [3]. However, while essential for federative

research on granular matter, this fact tends at the same time

to eclipse the complexity arising from specific features of

particles and their interactions.

Chief among those features is particle shape. The particles

occur with various degrees of sphericity, elongation, angular-

ity, facetedness, and convexity. In analogy to friction, particle

shape affects the flow and equilibrium states of granular

materials. For example, faceted particles present a higher

shear strength than spherical particles [4–6], and packings

of elongated particles may approach unusually high or low

packing fractions [7–10]. Obviously, given the wide range

of shapes and their degree of regularity in conjunction with

particle size distribution, the mechanisms by which particle

shape comes into play are diverse, and they hardly begin to be

understood on quantitative grounds [11,12]. In this respect, the

sphere packing model may be considered as reference material

for the analysis of granular media with more general particle

shapes deviating from a spherical or circular shape [6,13].

Among various shape characteristics, nonconvexity is of

special interest as it conveys the possibility of interlocking

between particles. For example, in sintered powders such

as UO2 pellets used as nuclear fuel, the particles at the

micrometric scale are solid nonconvex aggregates composed of

convex crystallites of nearly round shape [14]. The nonconvex

feature of the aggregates varies from superficial roughness

of their surface to deep concavity, allowing equally for large

pores between aggregates and interlocked structures that vary

with the degree of compaction.

We consider in this paper a two-dimensional (2D) model of
nonconvex particles in which the degree of nonconvexity can
be varied and that can easily be simulated by discrete element
methods. These model particles are rigid aggregates of three
overlapping disks with a three-fold rotational symmetry (see
Fig. 1). Their nonconvexity can be tuned by adjusting the
overlap, the range of shapes varying thus from disk, for a full
overlap of the three disks, to a trimer of three tangent disks.

We perform quasistatic shear deformations of large pack-
ings of those model aggregates by means of the contact
dynamics method [15,16]. We are interested both in the
space-filling properties and shear strength as a function of
nonconvexity. The shape may affect the behavior through
various mechanisms such as the structure (packing texture and
compactness) induced by shape nonconvexity, hindrance of
particle rotations due to interlocking, enhanced mobilization
of friction, and multiple contacts between aggregates with an
effect similar to that of face-to-face contacts between faceted
particles [6,10,13]. We analyze various internal variables in the
initially isotropic packings prepared by isotropic compaction
and in the sheared packings in order to determine the prevailing
mechanisms with increasing nonconvexity of the aggregates.

In the following, we first introduce in Sec. II the technical

details of the simulations, procedures of sample preparation

and relevant mechanical observables, which are essential for

the interpretation of the results. Then, in Sec. III, we present

the evolution of shear stress and packing fraction with shear

strain and at an increasing level of nonconvexity. As we shall

see, the shape dependence is rather complex and characterized

by a saturation of shear strength at high nonconvexity and

unmonotonic evolution of the packing fraction. Sections IV,

V, VI, and VII are devoted to the analysis of contact network

topology, force distributions, friction mobilization, and force-

contact anisotropy. In Sec. VIII, we introduce a simple model

of packing fraction as a function of nonconvexity that nicely

fits our simulation data. We conclude with a discussion of the

most salient results of this work and its possible extension to

three dimensions and more general particle shapes.
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FIG. 1. Geometry of a regular aggregate.

II. SYSTEM DESCRIPTION

A. Particle shape parameter

Figure 1 shows a regular aggregate of threefold rotational

symmetry composed of three overlapping disks of the same

radius r . The shape of an aggregate can be characterized

by considering the radius R of the circumscribing circle

as compared to the radius R′ of the inscribed circle. The

difference �R = R − R′ represents the concavity of the

aggregate, that is, the inward deviation from the surface of

the circumscribing circle. Hence, we define the nonconvexity

η of an aggregate by the ratio

η =
�R

R
. (1)

An alternative parameter of nonconvexity for aggregates is the

ratio λ ≡ ℓ/2r , where ℓ is the distance between disk centers.

The parameter η can be expressed as a function of λ:

η =
3 +

√
3λ − 3

√
1 − λ2

3 + 2
√

3λ
. (2)

It varies from η = 0, corresponding to a disk (λ = 0), to η ≃
0.73, corresponding to a trimer of three disks of vanishing

overlap (λ = 1). The parameter η can also be related to the

notion of “roundness” expressed in geology as the ratio of the

average radius of curvature of the edges or corners to that of

the maximum inscribed sphere [17,18]. With our notations,

the roundness of the aggregates is simply r/[(1 − η)R], which

decreases from 1.72 for λ = 0 to ≃0.367 for λ = 1.

B. Numerical method

The simulations were carried out by the contact dynamics

method [2,15,19,20]. Newton’s equations of motion for all

rigid-body degrees of freedom of all particles are integrated by

taking into account contact reaction forces between particles,

as well as bulk forces such as gravity. In contrast to the molec-

ular dynamics method [21–24], where an explicit scheme is

used for solving the equations of motion by introducing stiff

repulsive potential and viscous damping between particles,

the contact dynamics method is based on an implicit scheme

involving an iterative Gauss-Seidel algorithm yielding simul-

taneously the contact forces and particle displacements at the

end of each time step. This iterative process is defined such as

to satisfy the kinematic constraints related to mutual exclusions

of particles and the Coulomb friction law. For this reason, the

contact dynamics method is unconditionally stable and does

not require elastic repulsive potential between particles. This

allows for much larger time steps than in molecular dynamics,

in particular in the limit of highly stiff particles or very low

confining stresses.

It should also be noticed that the solution is not generally

unique when dealing with perfectly rigid particles. However,

the variability of the solution is small and often in the limit of

numerical precision as the kinematic constraints and disorder

prevail in granular dynamics. In practice, the evolution of the

system can be made almost deterministic by initializing the

iterative process at each step by the contact forces at the end

of the preceding step [19]. This point has been investigated

by comparison with molecular dynamics simulations and

experiments [25–29].

When treating complex-shaped particles such as aggre-

gates, the same iterative process can be applied although

several contact points may occur between two particles (see

Fig. 7). The contacts, including those occurring between

two neighboring particles, are treated as independent uni-

lateral constraints [30]. The reaction force between two

particles is the result of all forces acting at individual

contacts.

C. Sample preparation

Eight samples of 5000 aggregates were prepared for eight

different values of η ∈ [0,0.7]. To avoid long-range ordering,

a size polydispersity was introduced by taking R in the range

[Rmin,Rmax] with Rmax = 3Rmin and a uniform distribution

of particle volumes (∝R−2), which leads to a high packing

fraction ρ [31–34]. It is worth mentioning that a lower level

of size polydispersity might be sufficient for topological

disorder (disorder in the connectivity of the particles and force

transmission) but does not ensure the metric disorder of the

contact network.

A dense packing composed of disks (η = 0) was first con-

structed by means of random deposition inside a rectangular

box of dimensions l × h. For other values of η, the same

packing was used with each disk serving as the circumscribing

circle. The particle was inscribed with the given value of

η and random orientation inside the disk. This geometrical

step was followed by isotropic compaction of the packings

by the contact dynamics method inside a rectangular frame.

The gravity g and friction coefficients μ and μw between

the particles and with the walls, respectively, were set to

zero during compaction to ensure packing homogeneity. The

samples prepared by this procedure are both isotropic and

isostatic, as we see in Sec. IV. Figure 2 displays snapshots of

four packings for increasing value of η at the end of isotropic

compaction.

These isotropic samples were then sheared biaxially by

applying a slow downward velocity ẏ on the top wall with a

constant confining stress acting on the lateral walls. During

shear, the friction coefficient was set to 0.5 between particles

and to 0 with the walls. The zero friction with the walls prevents

from stress gradients as those that lead to the Janssen effect

[35]. The vertical shear rate ẏ/y is low enough to ensure a
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η = 0.0 η = 0.2

η = 0.4 η = 0.6

FIG. 2. Snapshots of the numerical samples at the end of isotropic

compaction with zero friction between particles for different values

of shape parameter η.

quasistatic state during shear by reducing the inertia parameter

I given by (in 2D) [36]:

I =
ẏ

y

√

m

p
, (3)

where m is the particle mass and p is the mean pressure by unit

length. In our simulations, I was below 10−3. Each sample is

sheared until a residual state is reached with a nearly constant

packing fraction.1

D. Stress and strain variables

In numerical simulations, the stress tensor can be evaluated

from the contact forces and the geometrical configuration of a

packing [37]. An interesting approach for the estimation of the

stress tensor was introduced by Moreau [38]. It is based on the

virtual power formalism and the notion of “internal moment”

M i defined for each particle i in the packing as

M i
ιδ =

∑

c∈i

f c
ι rc

δ , (4)

where f c
ι is the ι component of the force exerted on particle i

at the contact c, rc
δ is the δ component of the position vector

of the same contact c, and the summation runs over all contact

neighbors of particle i (noted briefly by c ∈ i).

It can be shown that the internal moment of a collection of

rigid particles is the sum of the internal moments of individual

particles, and the stress tensor σ is simply the density of

internal moment [38]:

σ =
1

V

∑

i∈V

M i =
1

V

∑

c∈V

f c
ι lc

δ, (5)

1Animation videos of these simulations are available at [www.cgp-

gateway/ref007].

where V is the volume of the packing or a domain inside

the packing and ℓ
c is the branch vector joining the centers

of the two touching particles at the contact c. In view of

the above definition, which can be shown to be equivalent

to other expressions of the stress tensor [2,39], the internal

moment tensor in a granular packing at equilibrium underlies

the Cauchy stress tensor which is a notion of continuum

mechanics.

In biaxial compression, the major principal stress direction

coincides with the compression axis and the principal stress

values are σ1 along the compression axis and σ2 along the

extension axis. The mean stress p and the deviatoric stress q

are defined by

p = 1
2
(σ1 + σ2), (6)

q = 1
2
(σ1 − σ2). (7)

For a system of rigid particles, the stress state is fully defined

by the dimensionless ratio q/p.

The strain variables are defined from the deformations of

the simulation box. Let h0 and l0 be the initial height and width

of the simulation box. The compression being in the vertical

direction, the cumulative principal strains ε1 and ε2 are given

by

ε1 =
∫ h

h0

dh′

h′ = ln

(

1 +
�h

h0

)

, (8)

where h is the current height and �h = h0 − h is the total

downward displacement, and

ε2 =
∫ l

l0

dl′

l′
= ln

(

1 +
�l

l0

)

, (9)

where l is the current box width and �l = l − l0 is the total

change of the box width.

The cumulative shear strain is defined by

εq ≡ ε1 − ε2, (10)

whereas the cumulative volumetric strain εp is given by

εp = ε1 + ε2 =
∫ V

V0

dV ′

V ′ = ln

(

1 +
�ρ

ρ

)

, (11)

where V0 = l0h0 is the initial volume and �ρ = ρ − ρ0 is the

cumulative change of packing fraction.

III. MACROSCOPIC BEHAVIOR

We are interested in this section in the effective qua-

sistatic rheology of the packings of aggregates in terms

of shear strength and evolution of packing fraction under

monotonic loading for increasing values of the nonconvexity

parameter η.

A. Shear strength

Figure 3 displays the normalized shear stress q/p as a

function of the cumulative shear strain εq for different values

of the nonconvexity parameter η. As a consequence of sample

preparation by isotropic compaction, q/p is vanishingly small

in the initial isotropic state (εq = 0). It jumps to a finite

value as soon as the shear is applied and then relaxes to a

041302-3
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FIG. 3. (Color online) Normalized shear stress as a function

of the cumulative shear strain for different values of the shape

parameter η.

constant residual shear stress up to fluctuations of rather small

amplitude. The initial jump to the peak stress reflects the fact

that the samples have a high packing fraction in the initial

state, and the particles are assumed to be perfectly rigid and

simulated as such by the contact dynamics method [15]. We

see that both the peak stress and the residual stress increase

with η. The normalized residual stress q∗/p is independent of

initial state and it represents the intrinsic shear strength of the

material that often is described by the internal angle of friction

ϕ∗ defined in 2D by

sin ϕ∗ =
q∗

p
. (12)

Figure 4 shows sin ϕ∗ as a function of η. The error

bars represent the standard deviation computed from the

fluctuations around the mean in the residual state as observed

in Fig. 3. It can be seen that, up to the fluctuations, sin ϕ∗

increases linearly from ≃0.3 to ≃0.43 at η = 0.5 and beyond,

where it stays independent of η. This increase of shear strength

reflects the effect of nonconvexity on the internal structure, as

we see in Sec. VII. However, it is surprising that this effect

is apparently absent for η > 0.4. In a recent work by Azema

and Radjai [10] granular packings of elongated particles were

investigated and a parameter similar to η was used. They found

a similar trend of increasing shear strength with η with nearly

the same values but, in contrast to our nonconvex particles, no

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
η

0.20

0.25

0.30

0.35

0.40

0.45

0.50

si
n

ϕ
∗

FIG. 4. Internal angle of friction ϕ∗ as a function of η. Error bars

represent the standard deviation in the residual state.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
ε

q

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

ρ

η=0.0
η=0.1
η=0.2
η=0.3
η=0.4
η=0.5
η=0.6
η=0.7

FIG. 5. (Color online) Evolution of packing fraction ρ with the

cumulative shear strain εq for different values of η.

saturation of shear strength was observed. We come back to

this point below when analyzing the microstructure.

B. Packing fraction

In Fig. 5, the evolution of packing fraction ρ is shown as

a function of εq for different values of η. All samples dilate

during shear and ρ declines from its value ρ iso in the initial

isotropic state down to a constant value ρ∗ in the residual

state. The samples dilate almost homogeneously at low shear

strains (�0.2) and thus ρ decreases rapidly. At larger strains,

dilation is localized within shear bands appearing throughout

the system. As the shear bands develop at different locations

inside the system, a nearly homogeneous density ρ∗ is reached

practically at εq = 0.5. For our rigid particles the residual

packing fraction ρ∗ is independent of the confining pressure

and, as q∗/p, it should be considered as an intrinsic property

of the material, that is, reflecting basically the particle shape

and size distribution as well as the friction coefficient between

particles.

Figure 6 displays ρ as a function of η at different instants of

εq . Remarkably, ρ first grows from its value for disks (η = 0)

toward a maximum at η ≃ 0.2 and then declines at higher

values of η. The peak value of packing fraction ρ iso in the

isotropic state is as high as 0.88. In the residual state, the

packing fraction ρ∗ takes as low value as 0.78 at η = 0.7.

A similar unmonotonic behavior of packing fraction has

been previously observed for granular packings of elongated

particles such as ellipses, ellipsoidal particles, spherocylinders,

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
η

0.78

0.80

0.82

0.84

0.86

0.88

0.90

ρ

ε
q
=0.0

ε
q
=0.05

ε
q
=0.5

ρ
iso

ρ
*

FIG. 6. (Color online) Packing fraction ρ as a function of η at

different levels of cumulative shear strain εq .
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and rounded-cap rectangles [7,8,10,40]. The falloff of the

packing fraction at higher aspect ratios is attributed to the

increase of excluded volumes, that is, the largest pore volume

that can not be filled by a particle. Obviously, a similar

effect can be advocated for our nonconvex particles which

can form an increasingly tortuous and large pore space as

the nonconvexity increases. However, the initial increase of

ρ0 as η varies from 0 to 0.2 indicates that this effect does

not prevail at low η corresponding to small deviations from

a reference circular shape. As we see below, this effect and

the subsequent decrease of ρ result from the size variation

of different classes of pores. We also guess that there is a

link between the decrease of ρ and the saturation of ϕ∗ at

large values of η. Indeed, it seems plausible that the increase

of free volume prevents from further increase of interlocking

although the particle nonconvexity becomes higher, so that

the shear strength remains constant. This picture emerges also

from the analysis of microstructure (Sec. IV).

IV. CONTACT NETWORK TOPOLOGY

In this section, we analyze the microstructure of our

simulated packings of aggregates as a function of particle

shape nonconvexity. The relevant microstructural variables

in a granular material are linked with the contact network,

which is the backbone of stress transmission in quasistatic

equilibrium [3]. The principal effect of shape nonconvexity is

to allow for multiple contacts between aggregates as shown

in Fig. 7. Four different types of contact can occur between

two aggregates as shown in Fig. 7: (1) simple contact (S),

(2) double-simple (DS) contact, defined as two simple contacts

between two pairs of disks belonging to the aggregates,

(3) double (D) contact, defined as two contacts between one

disk of one aggregate with two disks of the other aggregate,

and (4) triple (T) contact, defined as the combination of one

simple and one double contact.

Given multiple contacts between aggregates, we distinguish

between the coordination number Z, defined as the mean

number of contact neighbors per particle, and the connectivity
number Zc, defined as the mean number of contacts per

particle. For convex particles, we have Z = Zc. The contact

network of nonconvex particles can thus be characterized by

Z and the ratio K = Zc/Z. Let KS , KDS , KD , and KT be

the proportions of simple, double simple, double, and triple

contacts. It is easy to see that

K =
ZC

Z
= KS + 2(KDS + KD) + 3KT . (13)

Figure 8 shows the coordination number in the initial

(isotropic) and residual states as a function of η. Quite

interestingly, Z∗ ≃ 3 is nearly independent of η, whereas

a) (b) (c d)

FIG. 7. Four different contact configurations between two aggre-

gates: (a) simple, (b) double simple, (c) double, and (d) triple.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
η

2.5

3.0

3.5

4.0

4.5

Z Z
iso

Z*

FIG. 8. (Color online) Coordination number Z in the initial

isotropic state (labeled by “iso”) and in the residual state (labeled

by ⋆) as a function of nonconvexity η. The error bars of Z∗ indicate

the standard deviation of the data in the residual state.

Ziso follows the same trend as ρ iso (see Fig. 6). The higher

value of Ziso is a consequence of isotropic compaction with

zero friction. Its value then declines to Z∗ as a result of

dilatancy by shearing with μ = 0.5. The rather low value

Z∗ ≃ 3 implies that many aggregates have only three contact

neighbors irrespective of nonconvexity.

The connectivity number Zc is displayed in Fig. 9 as a

function of η. Its value in the isotropic state jumps from

Ziso
c = 4 at η = 0 to Ziso

c ≃ 6 at η = 0.1. Both values are

compatible with the isostatic nature of our packings prepared

with a zero friction coefficient [41–43]. Indeed, frictionless

circular particles (η = 0) are characterized by two degrees of

freedom (rotations being immaterial) and thus the isostatic

condition implies two independent constraints (normal forces)

which amounts to a connectivity number of 4. For slightest

deviation from circular shape the rotation becomes material

and a similar counting argument leads to a connectivity

number of 6. In contrast, for frictional aggregates in the

residual state, Z∗
c increases from 3 to ≃3.8 at η = 0.7. The

effect of increasing nonconvexity is therefore expressed by an

increasing number of multiple contacts with the same average

number of neighboring aggregates (Z ≃ 3). It is remarkable

that Z∗
c does not follow the trend of the packing fraction

(Fig. 25) as η is increased, so that at high nonconvexity the

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
η

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Z
c

Z
c

iso

Z
c
*

FIG. 9. (Color online) Connectivity number Zc in the initial

isotropic state (labeled by “iso”) and in the residual state (labeled

by ⋆) as a function of nonconvexity η. The error bars of Z∗
c indicate

the standard deviation of the data in the residual state.
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
η

1.0

1.1

1.2

1.3

1.4

1.5
K

K
iso

K*

FIG. 10. (Color online) The ratio K of connectivity number to

coordination number in the initial isotropic state (labeled by “iso”

or black line) and in the residual state (labeled by ⋆ or red line) as a

function of nonconvexity η. The error bars of K∗ indicate the standard

deviation of the data in the residual state.

packings of aggregates are less compact but more tightly

connected. The ratio K reflects this behavior as shown in

Fig. 10. The isostatic packings are characterized by a ratio

K iso ≃ 1.4 for η > 0, whereas the sheared packings in the

residual state have a ratio K∗ increasing smoothly from 1 to

1.26 as η varies from 0 to 0.7.

Figure 11(a) displays the proportions of different contact

types as a function of η in the isostatic state. We observe

that, like Ziso and Ziso
c , the proportions of different types of

connection between aggregates are nearly independent of η in

the isostatic state. The simple contacts represent the highest

proportion (≃0.63), whereas the triple and double-simple

contacts have the lowest proportions (<0.1). The double
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η
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(a)
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FIG. 11. (Color online) Proportions of simple, double, double-

simple, and triple contacts as a function of η in the isotropic (a) and

residual (b) states.

contacts are represented by an intermediate proportion about

0.27. The fractions of contact types in the residual state are

displayed in Fig. 11(b). The proportion of simple contacts

declines as η is increased but its value remains above that in

the isotropic state at the expense of double contacts, which are

fewer in number.

One observes also a drastic loss of double contacts in the

residual state compared to the initial isotropic state for all

values of η. In contrast, the proportion of double-simple and

triple contacts are nearly the same. In fact, the isostatic state

corresponds to the unique minimum of the total potential

energy pV . This state is achieved by an enhanced number

of double and triple contacts, which tend to decrease the

volume. The situation is different in the residual state, which

is governed by shear-induced dilatation of the material and

where the particles explore constantly metastable states. In

this state, the double and triple contacts are no more required

for the equilibrium and stability of the packing. However, as

we see below, the role of interlocking due to a weak increase

of the number of double and triple contacts is to reduce energy

dissipation by allowing for clustered rigid rotations of the

paricles (see Sec. VI).

The description of the microstructure in terms of the

average coordination and connectivity between the aggregates,

provides us with a basic picture of the effect of shape

nonconvexity. The isotropic states prepared by compaction

with zero friction between aggregates are interesting but rather

special isostatic states that exhibit practically no dependence

on particle shape. The residual state, on the contrary, reveals a

clear shape dependence, marked out by increasing connectivity

though with a nearly constant coordination number as the

shape nonconvexity increases. In contrast to the unmonotonic

evolution of the packing fraction, the increasing connectivity

of the aggregates is obviously correlated with the increase of

shear strength. In the following, we analyze force transmission

and higher-order descriptors of the microstructure in order to

clarify the nature of this correlation.

V. FORCE DISTRIBUTIONS

The distribution of contact forces in granular media reflects

the inhomogeneity of the contact network. For our packings

of aggregates one expects an invariant distribution in the

isotropic state since the connectivity remains unchanged

as nonconvexity is increased. This is what we observe in

Figs. 12(a) and 12(b), where the probability density functions

(PDFs) of normal forces fn are displayed. The PDF for η 	= 0

is practically the same as for disks (η = 0) with a roughly

exponential falloff of large forces, a peak slightly below the

mean force and a nonvanishing PDF as the force tends to

zero [44–52]. The normal force PDFs in the residual state

are shown in Figs. 12(c) and 12(d). Here the distribution is

increasingly broader as nonconvexity is increased. We observe

an increasing number of weak forces and increasingly stronger

forces. The exponential character [P (fn) ∝ e−αnfn/〈fn〉] of the

distribution in the range of strong forces is more pronounced

compared to that in the isostatic state as the extent of strong

forces increases with η. It is characterized by the exponent

αn, which declines from ≃1.71 to 1 as η increases from 0

to 0.7. The distribution in the range of weak forces may be
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FIG. 12. (Color online) Probability distribution function of nor-

mal forces for different levels of shape nonconvexity η in the isotropic

(a),(b) and residual (c),(d) states in a log-linear and log-log scales.

The forces are normalized by the mean normal force.

approximated by a power law [P (fn) ∝ fn/〈fn〉−βn ], as seen

on the log-log scale with the exponent βn increasing from

≃−0.16 for η = 0 to ≃0.46 for η = 0.7. This means that the

packings of more nonconvex aggregates, though more closely

connected, are more inhomogeneous. This discrepancy may be

(a)

(b)

(c)

FIG. 13. (Color online) Snapshots of normal force chains for

η = 0.1 (a), η = 0.5 (b), and radial force chain for η = 0.5 (c) taken

in the residual state. Line thickness is proportional to force intensity.

In (c) the black, dark gray, medium gray, and light gray lines are,

respectively, radial forces for simple, double, double-simple, and

triple contacts.

attributed to enhanced disorder due to the increasing number of

multiple contacts between aggregates. Figures 13(a) and 13(b)

show two snapshots of normal forces for η = 0.1 and η = 0.5

in the residual state. We observe double contacts with double

force lines as well as enhanced force branching for η = 0.5.

The visual aspect of the force chains is consistent with a higher

inhomogeneity for η = 0.5.
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In order to highlight the role of multiple contacts in

force transmission, we consider the reaction forces between

aggregates. The reaction force F between two aggregates is

the resultant of point forces acting at their contacts. It can be

projected on the branch vector connecting the centers of the

two aggregates with unit vector n′. In this way, the complex

network of contacts can be replaced by the simpler network

of branch vectors and carrying the radial force F ≡ F · n′

between aggregates [6,13]. This network of neighbors can

be compared to that of convex particles and among systems

with different levels of shape nonconvexity. One example is

displayed in Fig. 13(c), which represents the radial forces

F extracted from the contact force. The radial force chains

observed in this figure have nearly the same feature as those

generally observed between convex particles.

We differentiate the average radial forces FS , FD , FDS ,

and FT of simple, double, double-simple, and triple contacts,

respectively. Figures 14(a) and 14(b) display the the radial

forces of different contact types normalized by the average

normal force 〈fn〉 as a function of η in the isotropic and residual

states. One remarkable feature is that these averages by contact

type are practically independent of η in the isotropic state. This

means that the average reaction force of each contact type

varies as the average normal force. F iso
S remains close to 1 (of

the order of the average normal force), whereas F iso
D and F iso

DS

are slightly below two. Since each double or double-simple

contact involves two contacts, this observation also means that

the two contact forces belonging to a double contact between a

pair of aggregates are almost statistically independent forces.

In contrast, we observe that F iso
T < 2.5, implying that the three
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FIG. 14. (Color online) Average forces by contact type normal-

ized by the average normal force as a function of η in the isotropic

(a) and residual (b) states.

forces belonging to a triple contact are generally correlated

since one would have F iso
T = 3 otherwise.

In the residual state, F ∗
S declines slightly from 1 with

increasing η and F ∗
T remains unchanged and close to 1.8 up

to error bars due to the weak number of triple contacts at

low values of η. F ∗
D falls off to very low values (≃1.2), a

sign of very high correlation between the two point forces

at the two contact points between one disk of one aggregate

and two disks of another aggregate (we would have F ∗
D = 2

without correlation). This correlation may be attributed to

the increasing level of kinematic constraint or interlocking as

nonconvexity increases (see Sec. VI). In contrast, F ∗
DS varies

in the range [1.6,1.9].

It is important to note that multiple contacts, though far

less in number than simple contacts (Fig. 11), carry the largest

forces and represent the strong radial force chains in Fig. 13(c).

Their respective weights in force transmission are, however,

given by KDFD , KDSFDS , and KT FT , which are below KSFS ,

but grow as KD , KDS , and KT increase with η.

VI. FRICTION MOBILIZATION

The degree of mobilization of friction forces is a basic state

parameter in granular materials. The friction forces increase

on average with shear stress, and sliding occurs only at a subset

of contacts where the friction force ft equals in absolute value

the friction coefficient μ times the normal force fn. In the case

of aggregates, an interesting issue is how far their nonconvex

geometry affects friction mobilization and whether sliding is

hindered by interlocking.

Let (na,ta) be a local frame of specified polarity attached

to a contact a of an aggregate, where na is the inward

contact normal and ta is the unit orthogonal vector. The

components of the contact force fa acting on the aggregate

in this frame are the normal force f a
n , which is positive,

and the tangential force f a
t , which can be either positive or

negative within the Coulomb friction criterion |ft | � μfn. We

have fa = f a
n na + f a

t ta . The accelerations are assumed to be

negligible in quasistatic deformation so that the forces and

force moments acting on the aggregate are balanced:

∑

a

fa = 0, (14)

∑

a

ha
nf

a
t = 0, (15)

with ha
n = ha · n, where ha is the contact vector joining the

center of inertia of the aggregate to the contact a.

Taking the average of the second equation in Eq. (15) over

all aggregates and assuming that ha
n and f a

t are statistically

independent, we get 〈hn〉〈ft 〉 = 0. Hence, we have 〈ft 〉 = 0

since 〈hn〉 > 0. This means that, due to the balance of force

moments, the average tangent force in the packing vanishes.

This is what generally is observed in numerical simulations

of granular materials. For this reason, the average tangential

force does not reflect the mobilization of friction.

The friction mobilization can be defined from higher-order

moments of tangential forces. At second order, the root mean

square (rms)
√

f 2
t of tangential forces provides a good measure

of friction mobilization when normalized by the mean μ 〈fn〉.
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Alternatively, a friction mobilization index If can be defined

from the absolute values of friction forces:

If =
〈

|ft |
μfn

〉

, (16)

where the average is taken over all contacts. This definition is

closer to the spirit of the Coulomb friction law as compared to

the rms of friction forces.

A somewhat more elegant way of describing friction

mobilization is to start with the probability density of the

friction force ft t , which derives from the joint probability

density P (ft ,t) of the friction force ft and its orientation t .

In 2D, the vector t = (− sin θ, cos θ ) is parametrized by the

orientation θ of the contact normal n and we have

〈ft 〉θ (θ )Pθ (θ ) =
∫ ∞

0

ft P (ft ,θ ) dft , (17)

where 〈ft 〉θ (θ ) is the average friction force along the direction

θ and Pθ (θ ) is the probability density of contact normal

orientations. Both Pθ and 〈ft 〉θ are π periodic since the contact

normals have no intrinsic polarity. Since the average friction

force vanishes, we have

0 = 〈ft 〉 =
∫ π

0

〈ft 〉θ (θ )Pθ (θ ) dθ. (18)

This equation implies that the functions 〈ft 〉θ (θ ) and Pθ (θ ) are

orthonormal.

Given the π periodicity of the above functions, they can

be Fourier-expanded, and at lowest order we get the following

approximation, which satisfies the orthonormal condition,

Pθ (θ ) =
1

π
{1 + ac cos 2(θ − θc)}, (19)

〈ft 〉θ = 〈fn〉 at sin 2(θ − θt ), (20)

where ac represents the fabric anisotropy of contact normals,

at is the anisotropy of friction forces, θc is the privileged

direction of contact normals, and θt is the reference direction

for friction forces. The normalization of 〈ft 〉θ by the average

normal force 〈fn〉 is necessary for the definition of a dimen-

sionless anisotropy at . Figure 15 shows polar diagrams of

the simulation data for 〈ft 〉θ (θ ) and Pθ (θ ) together with the

Fourier fits in the residual state. The fits are excellent. We see

that θc ≃ θt = π/2 coincides with the principal stress direction

θσ = π/2.

In this way, we define a friction mobilization function:

Mf (θ ) ≡
〈ft 〉θ
μ 〈fn〉

=
at

μ
sin 2(θ − θt ). (21)

This function has two modes along the directions θt ± π/4 and

the ratio at/μ is simply their amplitude. This amplitude can

therefore be used as a descriptor of friction mobilization. Note

that a descriptor of friction mobilization I ′
f can also be defined

by integrating the absolute value of Mf (θ ) in the range [0,π ].

This leads to the relation I ′
f = 2at/μ. This definition is similar

to that of If with the difference that Eq. (16) is the average of

the ratio of tangential and normal forces, whereas I ′
f involves

the ratio of the averages. Hence, we have I ′
f = 2at/μ � If .

The friction mobilization increases from zero in the

isotropic state with shear strain and its value in the residual

state depends on the nature of the material. In Fig. 16, I ∗
f ,

θ=π/2

θ=0(a)
θ=π/2

θ=0(b)

FIG. 15. (Color online) Polar diagrams of the probability density

of contact orientations θ (a) and friction mobilization function

(b) in the residual state for η = 0.7. The solid lines are leading-order

Fourier fits.

representing the residual-state value of If , is displayed as a

function of η. I ∗
f increases linearly with η from ≃0.45 for disks

and saturates to ≃0.62 above η = 0.4 in the same manner as

the shear strength (Fig. 4). This high correlation between the

shear strength and friction mobilization at increasing level of

shape nonconvexity indicates that particle shape-dependence

of shear strength is at least partially mediated by friction

mobilization.

Figure 17 displays a∗
t /μ and a∗

c , representing the residual-

state values of at/μ and ac, as a function of η. a∗
t /μ shows the

same trend as I ∗
f with values only slightly below 0.5I ∗

f . In the

same way, a∗
c increases from 0.3 to a steady value 0.4 beyond

η ≃ 0.3. Hence, the two descriptors of friction mobilization

are almost equivalent and the shear strength is correlated with

both friction mobilization and fabric anisotropy. This point is

discussed in more detail in Sec. VII.

Another aspect of friction mobilization is the proportion S

of sliding contacts in steady shearing [39]. Figure 18 displays

S∗ in the residual state as a function of η. S∗ varies about

0.13 at η = 0 to about 0.28 for η > 0.4. Hence, the number

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
η

0.40

0.45

0.50

0.55

0.60

0.65

I f*

FIG. 16. Friction mobilization I ∗
f in the residual state as a function

of nonconvexity. Error bars represent the standard deviation of the

data.
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FIG. 17. Friction mobilization a∗
t /μ (a) and fabric anisotropy a∗

c

(b) in the residual state as a function of nonconvexity. Error bars

represent the standard deviation of the data.

of sliding contacts follows the average friction mobilization.

The fact that none is affected by increasing the nonconvexity

of the aggregates beyond η = 0.5 is important information

for understanding the saturation of shear strength. Another

key information is that the sliding contacts are unevenly

distributed among simple, double-simple, double, and triple

contacts, as shown in Fig. 19. Only a weak number of triple

and double contacts are sliding, whereas the proportion of

sliding double-simple contacts increases with η at the expense

of simple contacts. Hence, in contrast to S∗
D , which remains

far below S∗
DS , the proportion K∗

D of double contacts increases

much faster than the proportion K∗
DS of double-simple contacts

(Fig. 11).

This differentiation between the roles played by the double

and double-simple contacts is maybe the best demonstration
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FIG. 18. Proportion of sliding contacts as a function of η in the

residual state. Error bars show the standard deviation in the residual

state.
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FIG. 19. (Color online) Proportions of sliding contacts as a

function of η in the residual state for different contact types between

aggregates. Error bars show the standard deviation in the residual

state.

of interlocking of the aggregates with the evident effect of

freezing the relative motion and sliding at the double and

triple contacts. As a result, frictional dissipation between the

most nonconvex aggregates occurs preferentially at the simple

and double-simple contacts. This enhanced interlocking has

the same effect as cohesion forces in a cohesive granular

material: As the aggregates are increasingly interlocked, they

move together in the form of rigid clusters composed of

several aggregates, giving rise to larger dilatation and thus

lower packing fractions. This mechanism explains the lower

values of packing fraction at high nonconvexity reached in the

residual state compared to the isotropic state, where friction

plays no role (see Fig. 6).

VII. FABRIC AND FORCE ANISOTROPIES

The fabric anisotropy ac and the tangential force anisotropy

at were introduced in the last section in connection with

friction mobilization. A similar definition can be applied to

the angular dependence of the average normal forces [53].

We consider the joint probability density P (fn,n) of the

normal force fn and its orientation n. In 2D, the vector

n = (cos θ, sin θ ) is parametrized by θ and we have

〈fn〉θ (θ )Pθ (θ ) =
∫ ∞

0

fn P (fn,θ ) dfn, (22)

where 〈fn〉θ (θ ) is the average normal force along the direction

θ . The average normal force is

〈fn〉 =
∫ π

0

〈fn〉θ (θ )Pθ (θ ) dθ. (23)

The Fourier expansion of 〈fn〉θ (θ ) at leading order together

with the condition (22) yield

〈fn〉θ = 〈fn〉 {1 + an cos 2(θ − θn)} , (24)

where an is the anisotropy of normal forces with privileged

direction θn. This form is well fit to the data as shown in

Fig. 20 in the residual state for η = 0.7. We also see that θn

coincides with the principal stress direction θσ = π/2.

The residual-state value of normal-force anisotropy a∗
n is

displayed in Fig. 21 as a function of η. It increases with η and,

up to fluctuations, saturates to a value nearly independent of η.
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θ=π/2

θ=0

FIG. 20. (Color online) Polar diagram of the angular average of

normal forces in the residual state for η = 0.7. The solid line is the

leading-order Fourier fit.

This is consistent with the behavior of friction mobilization and

fabric anisotropy. Since an represents the anisotropic structure

of the force chains, its saturation indicates that nonconvexity

has no influence on the force chains beyond η ≃ 0.4.

The force and fabric anisotropies are at the origin of shear

strength in granular materials. Indeed, the expression of stress

tensor (5) together with the Fourier expansions (20) and (24)

lead to the following relation in the residual state [53]:

sin ϕ∗ =
q∗

p
≃

1

2
(a∗

c + a∗
n + a∗

t ). (25)

This expression is based on the following assumptions, which

are satisfied with a good approximation in the residual state:

(1) The contact forces and branch-vector lengths are weakly

correlated; (2) the reference directions coincide with the major

principal stress direction, θc = θt = θn = θσ ; (3) the cross

products among the three anisotropies are negligible. The

values of shear strength given by this expression from the

anisotropies predict correctly the measured shear strength as

observed in Fig. 22 for all values of η in the residual state.

Equation (25) allows us to evaluate the relative weights of

fabric anisotropy, force chains, and friction mobilization with

regard to shear strength. From Figs. 17 and 21 we see that

a∗
t < a∗

n < a∗
c , so that the largest and smallest contributions are

due to fabric anisotropy and friction mobilization, respectively.

On the other hand, the saturation of shear strength beyond

η ≃ 0.4 is mainly due to the saturation of friction mobilization

and fabric anisotropy.
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FIG. 21. Normal-force anisotropy a∗
n in the residual state as a

function of nonconvexity. Error bars represent the standard deviation

of the data.
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FIG. 22. (Color online) Normalized shear stress q∗/p in the

residual state as a function of η (black line) with the harmonic

approximation (red line) given by Eq. (25). Error bars represent the

standard deviation of the data.

VIII. A MODEL OF PACKING FRACTION

The unmonotonic evolution of the packing fraction ρ with

the nonconvexity parameter η is intriguing as it contrasts with

a common intuition that the packing fraction of nonconvex

particles should decrease as a result of interlocking. We would

like to show here that the unmonotonic evolution of ρ with

η may be understood from the very definition of η and by

discerning at least two different types of pores between the

aggregates.

Let us consider the mean particle volume Vp and the mean

free volume Vf defined as the mean pore volume per particle,

and both normalized by the reference volume πR2. We assume

that the volume fractions in both initial and residual states are

homogeneously distributed so that the total packing fraction

results from particle-scale interactions rather than large-scale

strain localization. This condition is nearly satisfied for the

initial state due to the preparation process and for the residual

state as a result of long shearing (see Sec. III B). The packing

fraction is defined by

ρ =
Vp

Vp + Vf

. (26)

Given the normalization, we have Vp = 1 for η = 0. The

volume 1 − Vp represents the mean self-porosity of a particle,

whereas Vf − (1 − Vp) is the remaining free volume of the

interstitial space of three aggregates or more. As η increases,

Vp declines and self-porosity increases. According to Eq. (26),

if the void ratio e = Vf /Vp were an increasing function of η,

then the packing fraction would decrease with η. Since this is

not what we observe at low η, e is expected to decrease as η

varies from 0 to 0.2.

The variation of Vp with η can easily be calculated for the

geometry of aggregates. We have

Vp =
r2

π

{

5π

2
− 3 cos−1(λ) +

√
3λ2 + 3λ

√

1 − λ2

}

, (27)

with

r =
{

1 +
2
√

3

3
λ

}−1

, (28)
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where we have set R = 1. The parameter λ can be expressed

as a function of η by inverting Eq. (2).

The free volume Vf can be approximated as a sum of four

terms:

Vf (η) = Vf (0) + �V
(1)
f (η) − �V

(2)
f (η) − �V

(3)
f (η). (29)

Vf (0) is the free volume at η = 0. �V
(1)
f is the gain of free

volume due to the increase of self-porosity with η, simply

given by

�V
(1)
f = 1 − Vp, (30)

whereas �V
(2)
f is the loss of free volume due to interlocking,

which implies the overlap of their self-porosities. The distance

between the aggregates is reduced as the concave borders of

an aggregate are partially filled by the convex parts of a neigh-

boring aggregate [see Fig. 23(a)]. As a first approximation, we

assume that �V
(2)
f varies proportionally to the self-porosity:

�V
(2)
f = f (η)(1 − Vp), (31)

where f (η) is the filling rate depending on η. The net volume

change �V
(1)
f − �V

(2)
f = {1 − f (η)}(1 − Vp) is always pos-

itive (increasing free volume) since, due to steric exclusions,

the interlocking can never fully compensate the increase of

self-porosity with η. In other words, the extra free volume

created by the increasing concavity of the particle borders

cannot be filled by the convex borders of neighboring particles.

Moreover, an increasing number of large pores appear between

the nonconvex borders of the aggregates [see Fig. 23(b)]. For

this reason, the combination of self-porosity and interlocking

cannot explain the increase of ρ with η in the range [0,0.2].

We also expect that f (η) is a decreasing function of η

due to increasing angular hindrance between particles as

their nonconvexity becomes larger. We assume here a linear

decreasing function:

f (η) = α(1 − γ η). (32)

The last term �V
(3)
f represents the variation of free volume

as a result of the size variation of pores involving only the

convex borders of the particles [see Fig. 23(c)]. The radius of

curvature of the convex borders is the radius r of the disks,

(a)

(b) (c)

FIG. 23. (a) Overlap between the self-porosities of two aggre-

gates. (b) A pore involving at least one nonconvex border. (c) A pore

between the convex borders of aggregates.

FIG. 24. A snapshot of a portion of the isotropic sample for η =
0.5.

which declines for a fixed value R = 1 of the circumscribing

circle. Hence, the volume of a pore between the convex borders

of three or more particles decreases as −r2. Therefore, given

that r(η = 0) = R = 1, we set

�V
(3)
f = β(1 − r2), (33)

where β is assumed to be a constant. In contrast to �V
(1)
f −

�V
(2)
f , �V

(3)
f is a decreasing function of η and it explains the

increase of ρ with η in the range [0,0.2]. The reduction of

the pores composed of convex borders is clearly observed in

Fig. 24, where a snapshot of the isotropic sample is displayed

for η = 0.5. We observe many small pores between the convex

borders of the aggregates as well as large pores involving

concave borders.

Inserting the expression of Vf from Eq. (29) in Eq. (26)

together with Eqs. (30), (31), and (33), we arrive at the

following expression for packing fraction:

ρ(η)

ρ(0)
=

Vp

1 − αρ(0)(1 − γ η)(1 − Vp) − βρ(0)(1 − r2)
.

(34)

Given the expressions of Vp in Eq. (27) and r in Eq. (28) as

a function of λ(η) obtained from the inversion of Eqs. (2) and

(34) provides an excellent fit for our data points by adjusting

the values of the parameters from the position of the peak

and the packing fraction at η = 0.7 for εq = 0 and εq = 0.5,

as shown in Fig. 25. The best fit is obtained at εq = 0 for

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
η

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

ρ

ρ
iso

ρ
*

FIG. 25. (Color online) Packing fraction ρ as a function of η in the

initial isotropic state and in residual state (at εq = 0.5). The symbols

are the simulation data, whereas the solid lines are analytical fits by

Eq. (34). The error bars represent standard deviation in the residual

state.
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α = 0.87, β = 0.17, and γ = 0.17, and at εq = 0.5 for α = 1,

β = 0.11, and γ = 0.18.

The main assumption of the simple model introduced above

is that the particle shape is inside a circumscribing circle

of radius R and it occupies a portion of the total surface

πR2 of the circle with a central part which is fully inscribed

in a circle of radius (1 − η)R. This model can therefore be

applied to arbitrary shapes which can be described by similar

parameters, and we expect a similar unmonotonic dependence

of the packing fraction with respect to η.

IX. DISCUSSION AND CONCLUDING REMARKS

Large packings of nonconvex aggregates were simulated

and analyzed in this work with the aim of quantifying

the effect of nonconvex particle shape on the behavior of

granular materials. The aggregates are of a rather simple shape

characterized by a threefold rotational symmetry and a single

nonconvexity parameter η varying from 0 (corresponding

to a disk) to 0.73 (corresponding to a trimer of mutually

contacting disks). The shape dependence appears to be rather

nontrivial. One would expect the shear strength to increase

with η as a result of interlocking between aggregates. We do

observe a linear increase of the shear strength, measured by the

internal angle of friction in the residual state, but it saturates

to a value independent of η. It is also remarkable that the

packing fraction varies unmonotonically with nonconvexity, a

feature that seems to be shared with other shapes described by

deviation from circular shape.

The saturation of shear strength with nonconvexity recalls

a similar effect observed when the friction coefficient is

increased between particles in a granular packing [54]. The

internal angle of friction in a packing of circular particles

increases with friction coefficient, but tends to a constant

value that is no more affected by further increase of the

friction coefficient. This effect is attributed to the exhaustion of

sliding contacts and a self-organization of the particle motions

favoring rolling contacts, which do not dissipate energy. A

similar picture emerges also from our analysis of the multiple

contacts between aggregates. Indeed, an increasing number

of aggregates are interlocked so that most double and triple

contacts between aggregates are nonsliding. The aggregates

move in clusters with relative sliding and rolling localized

mainly at the simple and double-simple contacts. At the same

time, larger pores occur due to this “clustered” motion of

the aggregates and the packing fraction tends to decline. This

frictional clustering is therefore a general mechanism, which

provides an internal compensation mechanism in conjugation

with rolling and free volume change that allow the system to

keep a constant level of dissipation.

Another interesting feature of the packings of aggregates is

that the connectivity of the aggregates does not follow the

packing fraction. The effect of increasing nonconvexity is

expressed by an increasing number of multiple contacts with

essentially the same number of contact neighbors, whereas

the packing fraction increases with η before decreasing to a

rather low level. This means that the packing fraction is not

a good variable for the plastic behavior of granular materials

composed of nonconvex particles. This should not come as a

surprise since the expression of stress tensor does not involve

the packing fraction. The internal variables exhibited by a

harmonic decomposition of the stress tensor are the fabric

anisotropy, normal-force anisotropy, and friction mobilization,

formulated in terms of the friction force anisotropy. All these

anisotropies enter the expression of the shear strength and

follow nearly the same trend.

We would like also to underline here the specificity of the

isostatic state, which shows a basically invariant structure with

regard to the nonconvexity of the aggregates. The coordination

number, connectivity, proportions of different types of contact

between aggregates and probability densities of forces are

independent of nonconvexity. Nevertheless, the variation of

packing fraction is unmonotonic with η in the isostatic state,

too. This is a major argument in favor of the phenomenological

model introduced in this paper for packing fraction with

ingredients based on the particle shape rather than a particular

state of the material.

Further work is presently under way with more complex

nonconvex geometries and in 3D in order to evaluate the

robustness of the results presented in this paper. The analysis

presented in this paper may be generalized to other particle

shapes described by a parameter similar to η, which essentially

refers to a deviation from circular shape. This idea was

investigated within a benchmark by a collaborative group

for different particle shapes. The results of this work will be

presented elsewhere.

[1] H. Jaeger and S. Nagel, Rev. Mod. Phys. 68, 1259 (1996).

[2] B. Cambou and A. Danescu, in Multiscale Techniques for

Granular Materials, Chap. 3 (Wiley, New York, 2009),

pp. 101–145.

[3] F. Radjai, H. Troadec, and S. Roux, in Granular Materials:

Fundamentals and Applications, edited by S. Antony, W. Hoyle,

and Y. Ding (Royal Society of Cambridge, Cambridge, 2004),

pp. 157–184.

[4] H. Ouadfel and L. Rothenburg, Mech. Mater. 33, 201 (2001).

[5] C. Nouguier-Lehon, B. Cambou, and E. Vincens, Int. J. Numer.

Anal. Methods Geomech. 27, 1207 (2003).

[6] E. Azema, F. Radjai, and G. Saussine, Mech. Mater. 41, 729

(2009).

[7] A. Donev, F. H. Stillinger, P. M. Chaikin, and S. Torquato, Phys.

Rev. Lett. 92, 255506 (2004).

[8] A. Donev, I. Cisse, D. Sachs, E. Variano, F. H. Stillinger,

R. Connelly, S. Torquato, and P. M. Chaikin, Science 303, 990

(2004).

[9] W. N. Man, A. Donev, F. H. Stillinger, M. T. Sullivan, W. B.

Russel, D. Heeger, S. Inati, S. Torquato, and P. M. Chaikin, Phys.

Rev. Lett. 94, 198001 (2005).

[10] E. Azema and F. Radjai, Phys. Rev. E 81, 051304 (2010).

[11] S. Torquato and Y. Jiao, Phys. Rev. E 82, 051304 (2010).

[12] U. Agarwal and F. A. Escobedo, Nat. Mater. 10, 230 (2011).

[13] E. Azema, F. Radjai, R. Peyroux, and G. Saussine, Phys. Rev. E

76, 011301 (2007).

041302-13

http://dx.doi.org/10.1103/RevModPhys.68.1259
http://dx.doi.org/10.1016/S0167-6636(00)00057-0
http://dx.doi.org/10.1002/nag.314
http://dx.doi.org/10.1002/nag.314
http://dx.doi.org/10.1016/j.mechmat.2009.01.021
http://dx.doi.org/10.1016/j.mechmat.2009.01.021
http://dx.doi.org/10.1103/PhysRevLett.92.255506
http://dx.doi.org/10.1103/PhysRevLett.92.255506
http://dx.doi.org/10.1126/science.1093010
http://dx.doi.org/10.1126/science.1093010
http://dx.doi.org/10.1103/PhysRevLett.94.198001
http://dx.doi.org/10.1103/PhysRevLett.94.198001
http://dx.doi.org/10.1103/PhysRevE.81.051304
http://dx.doi.org/10.1103/PhysRevE.82.051304
http://dx.doi.org/10.1038/nmat2959
http://dx.doi.org/10.1103/PhysRevE.76.011301
http://dx.doi.org/10.1103/PhysRevE.76.011301


SAINT-CYR, DELENNE, VOIVRET, RADJAI, AND SORNAY PHYSICAL REVIEW E 84, 041302 (2011)

[14] J. Fourcade, P. Sornay, F. Sudreau, and P. Papet, Powder Metall.

49, 125 (2006).

[15] F. Radjai and V. Richefeu, Mech. Mater. 41, 715 (2009).

[16] M. Jean, Discrete-element Modeling of Granular Materials,

Chap. Contact Dynamics Method (Wiley, New York, 2011),

pp. 27–65.

[17] J. Mitchell and K. Soga, Fundamentals of Soil Behavior (Wiley,

New York, NY, 2005).

[18] S. Blott and K. Pye, Sedimentology 55, 31 (2008).

[19] J. J. Moreau, Eur. J. Mech., A/Solids 13, 93 (1994).

[20] M. Jean, Comput. Methods Appl. Mech. Eng. 177, 235 (1999).

[21] P. A. Cundall and O. D. L. Strack, Geotechnique 29, 47 (1979).

[22] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids

(Oxford University Press, Oxford, 1987).

[23] H. J. Herrmann, Chaos, Solitons Fractals 6, 203 (1995).

[24] S. McNamara, Discrete-element Modeling of Granular

Materials, Chap. Molecular Dynamics Method (Wiley-ISTE,

New York, 2011), pp. 1–26.

[25] F. Radjai and S. Roux, Phys. Rev. E 51, 6177 (1995).

[26] F. Radjai, Physics of Dry Granular Media, Chap. Multicon-

tacts Dynamics (Kluwer Academic, Dordrecht/Boston/London,

1997), p. 305.

[27] F. Radjai, S. Roux, and J. J. Moreau, Chaos 9, 544 (1999).

[28] J. Lanier and M. Jean, Powder Technol. 109, 206 (2000).

[29] F. Radjai and S. Roux, in The Physics of Granular Media, edited

by H. Hinrichsen and D. E. Wolf (Wiley-VCH, Weinheim, 2004),

pp. 165–186.

[30] F. Dubois, Discrete-element Modeling of Granular Materials,

Chap. Numerical Modeling of Granular Media Composed

of Polyhedral Particles (Wiley-ISTE, New York, 2011),

pp. 233–262.

[31] I. Bratberg, F. Radjai, and A. Hansen, Phys. Rev. E 66, 031303

(2002).

[32] A. Taboada, K. J. Chang, F. Radjai, and F. Bouchette, J. Geophys.

Res. 110, 1 (2005).

[33] C. Voivret, F. Radjai, J. Y. Delenne, and M. S. El Youssoufi,

Phys. Rev. E 76, 021301 (2007).

[34] C. Voivret, Ph.D. thesis, Université de Montpellier 2, 2008.
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