
HAL Id: hal-00759625
https://hal.science/hal-00759625

Submitted on 1 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic generation of synthesizable hardware
implementation from high level RVC-cal description

Khaled Jerbi, Mickaël Raulet, Olivier Deforges, Mohamed Abid

To cite this version:
Khaled Jerbi, Mickaël Raulet, Olivier Deforges, Mohamed Abid. Automatic generation of synthe-
sizable hardware implementation from high level RVC-cal description. Acoustics, Speech and Signal
Processing (ICASSP), 2012 IEEE International Conference on, 2012, Kyoto, Japan. pp.1597 -1600,
�10.1109/ICASSP.2012.6288199�. �hal-00759625�

https://hal.science/hal-00759625
https://hal.archives-ouvertes.fr

AUTOMATIC GENERATION OF SYNTHESIZABLE HARDWARE IMPLEMENTATION

FROM HIGH LEVEL RVC-CAL DESCRIPTION

Khaled Jerbi ⋆† Mickael Raulet † Olivier Deforges † Mohamed Abid ⋆

†IETR/INSA. UMR CNRS 6164, F-35043 Rennes

email: FirstName.Name@insa-rennes.fr
⋆CES Lab. National Engineering school of Sfax

email: FirstName.Name@enis.rnu.tn

ABSTRACT

Data process algorithms are increasing in complexity espe-

cially for image and video coding. Therefore, hardware devel-

opment using directly hardware description languages (HDL)

such as VHDL or Verilog is a difficult task. Current research

axes in this context are introducing new methodologies to au-

tomate the generation of such descriptions. In our work we

adopted a high level and target-independent language called

CAL (Caltrop Actor Language). This language is associated

with a set of tools to easily design dataflow applications and

also a hardware compiler to automatically generate the imple-

mentation. Before the modifications presented in this paper,

the existing CAL hardware back-end did not support some

high-level features of the CAL language. The generated HDL

language had to be manually transformed to be synthesizable.

In this paper, we introduce a general automatic transformation

of CAL descriptions to make these structures compliant and

synthesizable. This transformation analyses the CAL code,

detects the target features and makes the required changes to

obtain synthesizable code while keeping the same application

behavior. This work resolves the main bottle-neck of the hard-

ware generation flow from CAL designs.

Index Terms— RVC-CAL, Data flow computing, CAL

compiler, Automatic transformation

1. INTRODUCTION

Watching and exchanging videos on the Internet or mobile

gadgets by billions of people all over the world is the current

phenomenon. Moreover, user requirements of high quality

are also growing which has caused a noteworthy increase in

the complexity of the algorithms of video codecs. To be used,

these algorithms have to be implemented on a target archi-

tecture that specifies the description language depending on

its nature: hardware or software. In this context, CAL Actor

Language [1] was introduced in the Ptolemy II project [2] as

a dataflow target agnostic language. The MPEG community

standardized the RVC-CAL language [3] in the MPEG-RVC

(Reconfigurable Video Coding) standard [4]. This standard

provides a framework to describe the different functions of

a codec as a network of functional blocks developed in RVC-

CAL and called actors. Xilinx developed a hardware compiler

called OpenForge1 [5] that generates hardware implementa-

tion using an Intermediate Representation (IR) called XLIM.

The bottle-neck of hardware generation using OpenForge is

the fact that RVC-CAL code generally contains high level

structures that are not compatible with this hardware com-

piler.

On the other hand, an RVC-CAL compiler called Orcc2[6]

is in development as a tool that compiles a network of actors

and generates several backends: C, LLVM, Java and notably

Xlim. Therefore, we proposed to work on the IR of Orcc to

add automatic transformations making any RVC-CAL design

synthesizable.

This paper presents an automatic transformation of RVC-

CAL code to modify the unsupported structures in the IR of

Orcc. The transformation tool analyzes the RVC-CAL code

and achieves the required transformations to obtain synthesiz-

able code what ever the complexity of the considered actor. In

section 2, we explain the main notions of the RVC-CAL lan-

guage and its functioning structures and mechanisms. The

proposed transformation process is detailed in section 3 and

finally hardware implementation results of MPEG4 Part2 de-

coder case study are presented in section 4.

2. BACKGROUND

The execution of an RVC-CAL code is based on the exchange

of data tokens between computational entities called actors.

Each actor is independent from the others since it has its own

parameters and finite state machine if needed. Actors are con-

nected to form an application or a design, this connection is

insured by FIFO channels. Executing an actor is based on

firing elementary functions called actions. This action firing

may change the state of the actor in case of an FSM. An RVC-

CAL dataflow model is shown in the network of Figure 1.

1http://openforge.sf.net
2http://orcc.sf.net

���� �����

��������	A�B�C� D�E���

����

��������	A�B�C� D�E���

F�B ��B��� ��D�A�F� �DFD��

����

���	�AB

C�D�E

����������

�CD���� FA� ��	�����D�B

������D�F��� F�B D��� CF�

�� ������C�B

����

�����

�� ������C�B

����

Fig. 1. CAL actor model

The actor execution, so called firing, is based on the

Dataflow Process Network (DPN) principle[7] derived from

the Kahn Process Network (KPN) [8]. Let Ω be the uni-

verse of all tokens values exchanged by the actors and S=Ω*

the set of all finite sequences in Ω. We denote the length

of a sequence s ∈ S
k by |s| and the empty sequence by λ.

Considering an actor with m inputs and n outputs, Sm and

S
n are the set of m-tuples and n-tuples consumed and pro-

duced. For example, s0=[λ,[t0,t1,t2]] and s1=[[t0],[t1]]

are sequences of tokens that belong to S
2 and we have

|s0|=[0,3] and |s1|=[1,1]. A firing rule is called multi-token

iff : ∃e ∈ |s| : e > 1 otherwise it is called a mono-token

rule. The limitation of Openforge is the fact that it does not

support multi-token rules which are omnipresent in most ac-

tors. Our work consists of automatically transforming the

data consumption from multi-token to mono-token while pre-

serving the same actor behavior: firing rules and transitions

are detailed below.

2.1. Actor firing

A dataflow actor is defined with a pair < f,R > such as:

* f : Sm → S
n is the firing function

* R ⊂ S
m are the firing rules

* For all r ∈ R, f(r) is finite

An actor may have N firing rules which are finite se-

quences of m patterns (one for each input port). A pat-

tern is an acceptable sequence of tokens for an input port.

It defines the nature and the number of tokens necessary

for the execution of at least one action. RVC-CAL also

introduces the notion of guard as additional conditions

on tokens values. An example of firing rule rj in S
2 is:

{

gj,k : [x]|x > 0

rj = [t0 ∈ gj,k, [t1, t2, t3]]
which means that if there is

a positive token in the FIFO of the first input port and 3 to-

kens in the FIFO of the second input port then the actor will

select and execute a fireable action. An action is fireable or

schedulable iff :

• The execution is possible in the current state of the

FSM (if an FSM exists)

• There are enough tokens in in the input FIFO

• A guard condition returns true

An action may be included in a finite state machine or un-

tagged making it higher priority than FSM actions.

2.2. Actor transition

The FSM transition system of an actor is defined with

< σ0,Σ, τ,≺> where Σ is the set of all the states of the

actor, σ0 is the initial state, ≺ is a priority relation and

τ ⊆ Σ× S
m × S

n ×Σ is the set of all possible transitions. A

transition from a state σ to a state σ′ with a consumption of

sequence s ∈ S
m and a produced sequence s′ ∈ S

n is defined

with (σ, s, s′, σ′) and denoted:

σ
s 7→s′

−−−→
τ

σ′

To solve the problem of the existence of more than one possi-

ble transition in the same state, RVC-CAL introduced the no-

tion of priority relation such as for the transitions t0, t1 ∈ τ ,

t0 a higher priority than t1 is written t0 ≻ t1. As explained in

[9] a transition σ
s 7→s′

−−−→
τ

σ′ is enabled iff :

¬∃σ
p 7→q
−−−→

τ
σ′′ ∈ τ : p ∈ S ∧ σ

s 7→s′

−−−→
τ

σ′′ ≻ σ
s 7→s′

−−−→
τ

σ′

This section presented and explained the main RVC-CAL

principles. In the next section we present an automatic trans-

formation as a solution to avoid these limitations without

changing the overall macro-behavior of the actor.

3. THE PROPOSED METHOD

As shown in Figure 2, our transformation acts on the IR rep-

resentation of the front-end. The HDL implementation is

later generated using the Xlim back-end of Orcc followed by

OpenForge.

Front-end
Xlim

Back-end

Automatic

 transformation

RVC-CAL

IR Xlim

OpenForge Verilog

Fig. 2. Automatic transformation localization in Orcc com-

piling process

3.1. Actor transformation principle

Let us consider an actor with a multi-token firing rule r ∈ S
k

such as |r| = [r0, r1, .., rk−1], this rule fires a multi-token

action a realizing the transition source
a
−→
τ

target and I the

set of all input ports. The transformation creates for every

input port an internal buffer with read and write indexes and

clips r into a set R of k firing rules so that :

∀i ∈ I, ∃!ρ ∈ R :











ρ : S1 → S
0

|r| = 1

gρ : IdxWritei − IdxReadi ≤ szi
with ρ a mono-token firing rule of an untagged action

untaggedi, gρ is the guard of ρ and szi the size of the

associated internal buffer defined as the closest power of 2

of ri. This guard checks that the buffer contains an empty

place for the token to read. The multi-token action is conse-

quently removed, and new read actions that read one token

from the internal buffers are created. While reading tokens

another firing rule may be validated and causes the firing of

an unwanted action. To avoid the non-determinism of such a

case, we use an FSM to put the actor in a reading loop so it

can only read tokens. The loop is entered using a transition

action realizing the FSM passage source
transition
−−−−−−−→

τ
read

and has the same priority order of the deleted multi-token

action but has no process. The read actions loops in the

read state with the transition t = read
read
−−−→

τ
read. Then

the loop is exited when all necessary tokens are read us-

ing a read done action and a transition to the process state

t́ = read
readDone
−−−−−−→

τ
process ≻ t. The treatment of the

multi-token action is put in a process action with a transition

process
process
−−−−−→

τ
write. The multi-token outputs are also

transformed into a writing loop with write actions that store

data directly in the output FIFO associated with a transition

w = write
write
−−−→

τ
write and a write done action that insures

the FSM transition ẃ = write
writeDone
−−−−−−−→

τ
target ≻ w.

For example, the actor A of Figure 3 is defined with

f : S3 → S
2 with a multi-token firing rule:

r ∈ S
3 : r = [[t0, t1], [t2, t3, t4], [t5]].

actor A () int IN1, int IN2, int IN3 ==> int OUT1, int OUT2:

a: action

in1:[in1] repeat 2, IN2:[in2] repeat 3, IN3:[in3] ==>

OUT1:[out1], OUT2:[out2] repeat 2

do

{treatment}

end

end

Fig. 3. RVC-CAL code of actor A

Consequently, |r| = [2, 3, 1] which means that there is an

action in A that fires if 2 tokens are present in IN1 port, 3

tokens are present in IN2 and one token is present in IN3.

The transformation creates the FSM macro-block of Figure 4.

write Write_done

write2
write1

process
target

read

read2 read1 source

proc

read_done read3

transition
Untagged1

Untagged2

untagged3
>

Fig. 4. Created FSM macro-block

3.2. FSM creation cases

We consider an example of an actor defined as f : S3 → S
2

containing the actions a1..a5 such as a3 is the only action

applying a multi-token firing rule r ∈ S
3. Creating an FSM

only for action a3 is not appropriate because a1, a2, a4, a5
will be a higher priority which may not be true. The solution

is to create an initial state containing all the actions and add

the created FSM macro-block of a3 (previously presented in

Figure 4). The resulting FSM is presented in Figure 5. We

write

Write_done

write2 write1

process

read

read2 read1

proc

read_done read3
init

a1 a2
Transition

a4

a5

>
Untagged_IN1

Untagged_IN2

Untagged_IN3

Fig. 5. FSM with created initial state

now suppose the same actor scheduled with an initial FSM

as shown in Figure 6. The transition t = S1
s 7→s′

−−−→
τ

S2 is

S0
S1

S2

a1

a4

a3

a5

a2

Fig. 6. Initial FSM of an actor

substituted with the macro-block of a3 as shown in Figure 7.

4. RESULTS

The achieved automatic transformation was applied on MPEG4

Part2 intra decoder (see design in Orcc Applications 3) which

3http://orc-apps.sf.net

S0 S1

S2

a1

a4

transition

a5

a2

write

store

proc

read1

write_done

write2 write1
process

read_done
read3

read2

>
Untagged_IN1

Untagged_IN2

Untagged_IN3

Fig. 7. Resulting FSM transformation

contains 29 actors. The HDL generated code was imple-

mented on a virtex4 (xc4vlx160-12ff1148) and the area con-

sumption results we obtained are presented in table1. After

Criterion value

Slice Flip Flops 21,624/135,168 (15%)

Occupied Slices 45,574/67,584 (67%)

4 input LUTs 68,962/135,168 (51%)

FIFO16/RAMB16s 14/288 (4%)

Bonded IOBs 107/768 (13%)

Table 1. Design area consumption

the synthesis of the design, we applied a simulation stream of

compressed videos. Table 2 below presents the timing results

of a 176x144 image size video. The synthesis tool indicates

a maximum frequency of 27 MHz. Consequently, we applied

it as a frequency of the input data stimulus.

Image size 176x144

Output frequency(MHz) 2

Latency(µs) 328

processing time(ms/image) 11,7

Table 2. Timing results

5. CONCLUSION

This paper presented an automatic transformation of RVC-

CAL from high to low level description. This transforma-

tion allows avoiding structures that are not understandable by

RVC-CAL hardware compilers. We applied this automatic

transformation on the 29 actors of MPEG4 part2 video intra

decoder and successfully obtained the same behavior of the

multi-token design and a synthesizable hardware implemen-

tation.

Currently, we are optimizing the transformation to reduce

the memory consumption. The transformation process is gen-

eralized for all actors. Therefore, improvements are also in

progress to customize the transformation depending on the

actor complexity analysis. A future work will be the study of

the impact of the transformation on the power consumption

of the generated implementation.

6. ACKNOWLEDGMENTS

Special thanks for Matthieu Wipliez, Damien De Saint-Jorre

and Herve Yviquel for their relevant contribution in the trans-

formation code.

7. REFERENCES

[1] J. Eker and J. Janneck, “CAL Language Report,” Tech.

Rep. ERL Technical Memo UCB/ERL M03/48, Univer-

sity of California at Berkeley, Dec. 2003.

[2] C. Brooks, E.A. Lee, X. Liu, S. Neuendorffer, Y. Zhao,

and H. Zheng (eds.), “PtolemyII - heterogeneous con-

current modeling and design in java (volume 1: Introduc-

tion to ptolemyII),” Technical Memorandum UCB/ERL

M04/27, University of California, Berkeley, CA USA

94720, July 2004.

[3] ISO/IEC FDIS 23001-4: 2009, “Information Technology

- MPEG systems technologies - Part 4: Codec Configura-

tion Representation,” 2009.

[4] Shuvra Bhattacharyya, Johan Eker, Jrn Janneck,

Christophe Lucarz, Marco Mattavelli, and Mickal Raulet,

“Overview of the mpeg reconfigurable video coding

framework,” Journal of Signal Processing Systems, vol.

63, pp. 251–263, 2011, 10.1007/s11265-009-0399-3.

[5] Ruirui Gu, Jörn W. Janneck, Shuvra S. Bhattacharyya,

Mickaël Raulet, Matthieu Wipliez, and William Plishker,

“Exploring the concurrency of an MPEG RVC decoder

based on dataflow program analysis,” Circuits and Sys-

tems for Video Technology, IEEE Transactions on, vol.

19, no. 11, pp. 1646–1657, 11 2009.

[6] Jörn W. Janneck, Marco Mattavelli, Mickael Raulet, and

Matthieu Wipliez, “Reconfigurable video coding a

stream programming approach to the specification of new

video coding standards,” in MMSys ’10: Proceedings of

the first annual ACM SIGMM conference on Multimedia

systems, New York, NY, USA, 2010, pp. 223–234, ACM.

[7] Edward A. Lee and Thomas M. Parks, “Dataflow process

networks,” Proceedings of the IEEE, vol. 83, no. 5, pp.

773–801, 1995.

[8] G. Kahn, “The Semantics of a Simple Language for Par-

allel Programming,” in Information Processing ’74: Pro-

ceedings of the IFIP Congress, J. L. Rosenfeld, Ed., pp.

471–475. North-Holland, New York, NY, 1974.

[9] Johan Eker and Jörn W. Janneck, “A structured descrip-

tion of dataflow actors and its application,” Memoran-

dum UCB/ERL M03/13, Electronics Research Labora-

tory, University of California at Berkeley, May 2003.

