
HAL Id: hal-00759622
https://hal.science/hal-00759622

Submitted on 1 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimized dynamic compilation of dataflow
representations for multimedia applications

Jérôme Gorin, Mickaël Raulet, Françoise Préteux

To cite this version:
Jérôme Gorin, Mickaël Raulet, Françoise Préteux. Optimized dynamic compilation of dataflow repre-
sentations for multimedia applications. Annals of Telecommunications - annales des télécommunica-
tions, 2013, 68 (3-4), pp.133-151. �10.1007/s12243-012-0342-7�. �hal-00759622�

https://hal.science/hal-00759622
https://hal.archives-ouvertes.fr

Springer manuscript No.
(will be inserted by the editor)

Optimized dynamic compilation of dataflow
representations for multimedia applications

Jérôme Gorin · Mickaël Raulet · Françoise Prêteux

Received: date / Accepted: date

Abstract This paper proposes two optimization meth-

ods based on dataflow representations and dynamic

compilation that enhance flexibility and performance

of multimedia applications. These optimization meth-

ods are intended to be used in an adaptive decoding

context, or, in other terms, where decoders have the

ability to adapt their decoding processes according to a

bitstream. This adaptation is made possible by coupling

the decoding information to process a stream inside a

coded stream.

In this paper, we use dataflow representations from

the upcoming MPEG Reconfigurable Media Coding

(RMC) standard to supply the decoding information

to adaptive decoders. The benefits claimed by MPEG

RMC are a reuse of coding tools between different spec-

ifications of decoder and an execution scalability on

different processing units with a single specification,

which can target either hardware and/or software plat-

forms. These benefits are not yet achievable in practice

as these specifications are not used at the receiver side

in MPEG RMC. We valid these benefits and propose

two optimizations for the generation and the execution

of dataflow models: the first optimization takes benefits

of the reuse of coding tools to reduce the time to obtain

– configure – enforceable decoders. The second provides

Jérôme Gorin
ARTEMIS, Institut Télécom SudParis, UMR 8145, Evry,
France
E-mail: Jerome.Gorin@it-sudparis.eu

Françoise Prêteux
MINES ParisTech, 60 Boulevard Saint-Michel, 75272 Paris,
France
E-mail: Francoise.Preteux@minesparistech.fr

Mickaël Raulet
IETR, INSA Rennes, F-35043, Rennes, France
E-mail: mickael.raulet@insa-rennes.fr

an efficient, dynamic and scalable execution according

to the features of the execution platform. We show the

practical impact of these two optimizations on two de-

coder representations compliant with the MPEG-4 part

2 Simple Profile standard and the MPEG-4 Advanced

Video Coding standard. The results shows that config-

uration time can be reduced by 3 and the performance

of decoders can be increased by 50%.

Keywords MPEG Reconfigurable Media Coding ·
MPEG Reconfigurable Video Coding · MPEG Re-

configurable Graphic Coding · dynamic compilation ·
adaptive decoding · multimedia application · dataflow

program · reconfiguration · scalable execution ·
Dataflow Process Network · Dataflow scheduling

1 Introduction

The presence of multimedia has changed significantly

over the last two decades. The increasing popularity

of digital communication (e.g., Digital Terrestrial Tele-

vision) and multimedia terminals (e.g., smartphones)

has brought the use of multimedia standards to a

large number of customers. Multimedia applications are

dominated by international “fixed” standards such as

MPEG-2, MPEG-4 and VC-1. But new competitors

are entering into this highly competitive market; these

competitors look to new coding standards able to con-

tain more multimedia content in less data. These play-

ers develop their own technologies in such a way that

technology providers have to support and follow these

technologies so as not to fall too quickly into obsoles-

cence. The traditional approach to multimedia process-

ing curbs the evolution of multimedia applications, as

it induces a long delay between the development of a

new technology and its implementation in a device.

2 Jérôme Gorin et al.

Adaptive
encoder

Decoder
execution

Decoder
generation

Coded content Algorithms

Multimedia stream

Adaptive decoder

Decoded
stream

Fig. 1 Adaptive decoding environment.

The concept of adaptive decoding is a novel ap-

proach to compression in which a multimedia decoder

is dynamically constructed on a device according to

a coded stream [43]. It has been primarily addressed

to tackle the limitations of interoperability and evolu-

tion inherent in the use of static, fixed approaches of

video decoding. To this end, an adaptive decoding en-

vironment (Fig. 1) is composed of an adaptive encoder,

which transmits the compressed multimedia content,

and an adaptive decoder, that processes the multime-

dia content on the receiver side. In this network, one

transmitter not only provides the compressed multime-

dia content, it also provides a generic representation of

the algorithms required to decode it, called configura-

tion information. The advantages of this new approach

are twofold. First, it reduces times for proposing, stan-

dardizing and deploying new video coding concepts.

Secondly, it avoids proprietary implementation of de-

coders in devices, an undeniable source of inconsistency

between multimedia applications.

The adaptive decoder in this environment is sim-

ilar to a virtual machine, it dynamically compiles or

interprets configuration information from one multime-

dia application in order to process a stream. However,

the decrease of performance induced by dynamic com-

pilation becomes a significant issue when dealing with

multimedia processing. Indeed, a decoding process is

computation intensive and it typically requires full ex-

ploitation of the processing units, such as Digital Signal

Processor (DSP) or Graphics Processing Unit (GPU),

available in the execution system at the receiver side.

Conventional languages, such as those used in virtual

machines, are usually sequential, ergo they can hardly

scale heterogeneous resources. In this context, the ab-

straction of configuration information becomes a criti-

cal property to exploit the widest range of systems ca-

pable of receiving video content.

This paper extends the work investigated in [19]

where dataflow representations are used to describe de-

coder algorithms for adaptive decoders. A dataflow rep-

resentation is a paradigm of signal processing, where

an application is composed of a graph with vertices,

which represent operations of an application, and edges,

which represent the data flowing between operations. In

a multimedia context, the MPEG Reconfigurable Me-

dia Coding (RMC) standards offer a standardized ap-

proach to dataflow representations to ensure the per-

manence of the model. These standards also provide

decoder specifications in dataflow representation form;

these are modular, portable and user-friendly specifi-

cation of decoder in a unified form. In MPEG RMC

operations of dataflow representation are used to de-

scribe coding tools within MPEG standards. The bene-

fits of dataflow representations are (1) coding tools from

dataflow operations can be reused across specification

of decoder (2) the strong encapsulation of coding tools

provides an explicit representation of the potential con-

currency between the algorithms of a decoder. MPEG

RMC also provides synthesis tools for decoder develop-

ers to derive specifications into C, Java or HDL code.

As such, MPEG RVC has already proved its benefits

to provide statically compiled decoders fitted to a wide

range of platforms [24].

We extend the use of MPEG RMC specifications

to the adaptive decoding context and we propose two

optimization algorithms that reduce both the synthesis

process and the degraded performance caused by dy-

namic compilation:

– The first algorithm reduces the synthesis process by

compiling coding tools never used before.

– The second algorithm detects, regroups and opti-

mizes specific coding tools to be efficiently executed

on sequential processors.

The paper is organized as follows. We first give a

brief introduction to the entry-level mechanisms that

form a dataflow representation and to the benefit of

dataflow representation in an adaptive decoding con-

text. We then review the state-of-art of techniques

used to optimize the configuration and the execution of

dataflow representation. We finally detail the proposed

two optimizations in two dedicated sections. We con-

clude this paper by introducing one implementation of

these two optimizations in an adaptive open-source de-

coder, namely the Just-In-Time Adaptive Decoder En-

gine (JADE). The multimedia applications used are

from international coding standards, the MPEG-4 part

2 and the MPEG-4 part 10 Advanced Video Coding

(AVC). The results show that the proposed optimiza-

tion can speed up by a factor of 3 configuration time

of multimedia applications and can increase by of fac-

tor of 1.5 the performance of the same applications in

comparison with conventional approaches.

Optimized dynamic compilation of dataflow representations for multimedia applications 3

A B D

C

Fig. 2 A dataflow representation with 4 operations
(A,B,C,D) and 4 edges.

2 Describing decoder algorithms: the dataflow

approach

The adaptive decoding environment for video decoders

was first conceived in [43]. In this environment, config-

uration information for the adaptive decoder was based

on a specific imperative syntax [26] close to the C lan-

guage. As most existing video decoders are provided

in C, corresponding configuration information was eas-

ily derived from the decoders. However, the imperative

form of the syntax limits their execution to a sequen-

tial process on a single processing unit. One objective

of this paper is thus to increase the abstraction level

of configuration information to suit the widest range of

heterogeneous systems.

As such, dataflow representation of application is

a way to tackle the constraint of serial execution of

programs that is commonly found in most of program-

ing languages. A dataflow representation, as depicted

in Fig. 2, is modeled as a directed dataflow graph that

represents data flowing between operations. The ver-

tices are the operations of the application and edges are

the data dependencies between these operations. The

strength of a dataflow graph lies in the strong encapsu-

lation of the operations of an application. Unlike most

programming languages, dataflow programming focuses

on algorithms instead of instructions. The execution of

operations, closely related to functional programming,

can be done concurrently and independently and are

only driven by data.

2.1 MPEG Reconfigurable Media Coding: a

standardized model for dataflow descriptions

Dataflow representation of decoders has been approved

by the MPEG Reconfigurable Media Coding (RMC)

consortium as a solution for deploying their existing

and future standards [32]. This standard is composed

of the Reconfigurable Video Codec (RVC) [33], ded-

icated to the specification of video applications, and

Reconfigurable Graphics Codec (RGC) [31], dedicated

to the specification of graphic applications (primarily

3D mesh decoders). The RMC framework supplies a

normative standard library of multimedia coding tools,

the Video Tools Library (VTL) for RVC and the Graph-

ics Tool Library (GTL) for RGC. It also provides a set

of decoder configurations to process graphic and video

content expressed as networks of coding tools.

The dataflow model standardized in MPEG RMC

is based on the Dataflow Process Network (DPN) [30].

This model is selected since it is the most expressive

model among other dataflow models, such as KPN [14],

SDF [28] or CSDF [8]. Moreover, DPN does not need

the use of synchronization primitives, such as mutexes

and semaphores. The operations of a DPN in a network

are instances of Dynamic DataFlow (DDF) actors and

edges are unidirectional FIFO channels. The execution

of a DPN is broken into a sequence of actor executions

called actor firings and the sequence of actor firings is

determined by firing rules.

actor Abs () int I ==> uint O :

pos: action I: [u] ==> O:[u]

end

neg: action I :[u] ==> O:[-u]

guard u < 0

end

priority

neg > pos;

end

end

Fig. 3 CAL Actor Language description of an actor Abs that
computes Absolute Value of tokens from its input I to its out-
puts O.

MPEG RMC defines actors, the coding tools in the

VTL and GTL, with a domain-specific language called

RVC-CAL [5,15]. RVC-CAL is tailor made for cod-

ing/decoding algorithm specifications that have inputs

and outputs, states, and parameters. An actor is en-

tirely encapsulated and communicates with other ac-

tors by sending and receiving tokens (atomic pieces of

data) through communication ports, which represent

the input and the output of the coding/decoding algo-

rithm. Figure 3 gives an example of an actor RVC-CAL

named Abs that computes the absolute value of a to-

ken received on the input port I and outputs on the

output port O. This example produces and consumes a

single token at each firing. However, RVC-CAL actors

place no restriction on the number of tokens sent or

received at each firing, which makes the model Turing

complete [30].

RVC-CAL describes one actor firing with several ac-

tions. An action is the entry point of an actor, it may

read tokens from input ports, compute data, change the

state of the actor, and write tokens to output ports. The

4 Jérôme Gorin et al.

body of an action is executed as an imperative function

with local variables and imperative statements. In the

given example, the action pos computes values received

on port I as a variable u and sends this variable to the

port O. In this particular special action, the variable

u is only copied from the input I to the output. Con-

versely, the action neg copies a negative value of token

from the port I to the port O.

When an actor fires, a single action is selected. The

selection is made according to the number and the val-

ues of tokens available on the input ports of the ac-

tor, and also according to its current state. One way

to constrain the action selection is to associate a guard

condition to one action. The guard condition allows a

specification of additional firing conditions in an actor,

where the firing rules of an action depend on the values

of input tokens or the current state of the actor. In our

example, the action neg may only fire if a value on port

I is strictly negative. Actions selection may be further

constrained by using a Finite State Machine (FSM) in

the actor and/or priorities (>) between actions. Both

conditions impose a partial order among the action fir-

ing. The use of priorities is illustrated on actor Abs; a

negative value received on port I favors the firing of

action neg against the action pos. Finally, an actor can

contain parameters that are specified when this actor is

instantiated in a network that references it. The reader

may refer to [15] to obtain a precise description of the

RVC-CAL paradigm.

2.2 Parallelisms stated in dataflow programs

Dataflow formalism has been extensively considered in

the literature in order to produce efficient distributed

models of execution for heterogeneous platforms [30,16,

1,3]. With its construction in the form of algorithms

without any low-level details, a dataflow application

states a large number of potential parallelisms that re-

quire adaptation according to the number of processing

units of a particular execution platform.

Figure 4 illustrates these different degrees of paral-

lelism. Assume that each actor of Figure 2 has com-

puting time of CA = CB = CC/3 = CD for each fir-

ing, so that 3 units of C are required for each unit of

A,B,D. The DPN model states three degrees of par-

allelism (task, data and pipeline) applied to different

granularities of description :

1. Task parallelism refers to disjoint algorithms on

actor with no precedence relation. For instance, in

Fig. 2, A precede B implies that B cannot be exe-

cuted before A. On the other hand, B and C have

A

B

C

D

Processing units

Time

(a) Sequential

A

B

C

D

Processing units

Time

(b) Task parallelism

A

B

D

Processing units

Time

C C C

(c) Task and data parallelism

A

B

D

Processing units

Time

C C CA

B C C C

D

(d) Pipeline, task and data parallelism

Fig. 4 Parallelizing a dataflow program from (a) a sequen-
tial execution on a single processing unit. (b) enhances (a)
with one task parallelism between (B,C) using two processing
units. (c) enhances (b) with data parallelisms on C using four
processing units. (d) enhances (c) with pipeling A,B,C,D on
six processing units.

no precedence relation, they therefore imply a task

parallelism.

2. Data parallelism can be applied to actors with

no state dependencies and no token dependencies

between several successive firings. A set of data can

thus be processed concurrently by duplicating this

actor, so that it can consume N tokens at each firing

on M processing units at the same time and with

no overhead.

Optimized dynamic compilation of dataflow representations for multimedia applications 5

3. Pipelining refers to the area of an application

structured as a chain of actors. Each actor carries

out an asynchronous and atomic process. Each pulls

on a token from its inputs and push the processing

results to its outputs and starts the same process

again at the next clock. Pipelining does not enhance

the throughput on one calculation, but on the pro-

cessing of set of a data.

4. Coarse-grain and fine-grain parallelisms deal

with the division granularity of the application’s

algorithms into actors. A fine-grain description is

composed of small and atomic actors that frequently

exchange tokens during processing. Conversely, a

coarse-grain description is composed of computation

intensive-actors, which exchange a large amount of

tokens in one firing.

Data parallelisms are well suited for highly parallel

architectures of processor such as DSPs and GPUs since

actors can compute a large set of data at each clock cy-

cle. Conversely, task parallelisms are well suited for sys-

tems that contain a massive resources of computation

units, such as digital electronic systems. A fine-grain

description of actors in a dataflow graph states more

degree of parallelism, but also has a cost tied to the

communication synchronization between actors. Thus,

they are harder to execute efficiently on platform with

reduced number of processing units, since several con-

current actors have to be executed sequentially. In this

case, the execution order of actors is determined more

or less efficiently with scheduling strategies [29,11,44].

3 Efficient and modular use of dataflow

representations for multimedia applications

Many frameworks are available to produce static im-

plementations of dataflow representation for heteroge-

neous platforms, the most famous being Ptolemy [10]

and StreamIt [48]. Among them, the Orcc [53] compi-

lation allows a static compilation of RVC-CAL actors

for software and hardware platforms [53].

However, the use of dataflow programs is a relatively

new field in the context of adaptive decoding, and, gen-

erally speaking, in dynamic compilation. This approach

offers several benefits since one unified description form

can be sent ”as is” to target a large number of hetero-

geneous platforms, and the strong encapsulation of the

operations favors the reuse of algorithms between dif-

ferent decoders.

This section aims to give details of these benefits. It

also discusses the state-of-the-art on the current limi-

tations of this approach for its practical application.

Extended Profile Baseline profile

Main/
High Profile

I slices

P slices

Bslices

SI / SP
slices

Cabac

CAVLC

Interlace

Data
partitioning

Slice
Groups

Redundant
slices

ASO Arbitrary
slice ordering

FMO Flexible
Macrobloc Ordering

Fig. 5 Example of potential reusability on algorithms from
the Baseline/Main/High/Extended profiles coming from the
MPEG 4 Advanced Video Coding.

3.1 Partial recompilation of applications

Most of programming languages include code reusabil-

ity, the ability of a code to be reused, for upcoming ap-

plications. However, the efficiency of code reuse highly

depends on the permissiveness of one of the paradigms,

which usually allows side-effects and dependencies with

other codes in the same application.

In the case of dataflow programming, the strong en-

capsulation of operations allows the programmer to fo-

cus on the reusability of the algorithms. Dataflow rep-

resentations of applications are natively modular and

they facilitate the reconfiguration of algorithms by only

modifying the topology of the graph from a dataflow

network.

The ability to reuse code is particularly useful when

dealing with multimedia decoders. Generally speaking,

multimedia standards define many algorithms, or cod-

ing/decoding mechanisms, for different goals and re-

quirements. Since they are implemented on many differ-

ent devices with different use scenarios, they are struc-

tured in a set of profiles that are a subset of all the

algorithms they define. Fig. 5 illustrates the pool of

profiles of coding tools standardized in MPEG-4 part

10 Advanced Video Coding (AVC). This pool guar-

antees that at least 30% of the coding tools can be

reused when switching from one profile to another [18].

The reuse percentage rises when switching to MPEG-4

AVC scalable profiles (SVC) [40] and MultiView profiles

(MVC) [51].

While reusability is beneficial for programmers de-

signing static and fixed application, dynamic applica-

6 Jérôme Gorin et al.

tions, such as adaptive decoders, could also benefits

from this particular property in dataflow representa-

tions. Indeed, the drawback of most dynamic compilers

lies in the latency induced by the compilation of an ap-

plication into enforceable machine code. This dynamic

compilation avoids the application immediately start-

ing its execution. Identifying exactly the machine code

that can be reused when switching to a new decoder

configuration would significantly reduce the compila-

tion latency. The first configuration optimization, out-

lined in Section 4, is based on this observation. We pro-

pose an algorithm to dynamically identify actors and

interchange them on-the-fly when switching from one

dataflow representation of an application to another.

3.2 Scalable execution on single to multi-core

platforms

The strong encapsulation of actors in dataflow repre-

sentation also provides an explicit model of execution

based on concurrent computing. Indeed, a dataflow rep-

resentation can be executed by (1) executing in a sep-

arate concurrent process – or thread – each operation

represented by the vertices of the graph (2) following

the data dependency rules stated on the edge of the

graph with message-passing communications. The set

of concurrent processes in the network can be executed

separately on platforms that contain a larger number

of processing units than the number of actors in the

application. The set of concurrent processes can also

be executed on a single processor by interleaving the

execution steps of each by a time slicing way. As such,

dataflow representations match hardware platform, as

the number of processing resources on-board can be

greater than the number of operations in a network.

However, given the restricted processing resources of

software platforms, a genuine concurrency of the exe-

cution of dozens of processes can rarely be efficiently

achieved because of context switching between each ex-

ecution slice caused by the OS [30].

Instead of the context switching found in typical

concurrent execution models, the DPN model has a spe-

cial feature to allow a continuous execution of the op-

erations of a graph. One process can sequentially test

the firing rules from several actors, and fire an actor if a

firing rule is valid. An efficient scheduling for dataflow

programs consists in finding a, pre-defined or not, order

of actor firings throughout the execution process capa-

ble of maximizing the use of all the processing units in

one platform. Since actors in a DPN may have data-

dependent behaviors, and the data are unknown in the

system, the scheduling can be only done in the general

case at run time. Lee and Parks [30] introduce a wide

Dataflow network

A B D

C

Run-time environment

Processing Unit

while true
 if A fireable then
 fire A
 if D fireable then
 fire D
end

Process 1

while true
 if B fireable then
 fire B
 if C fireable then
 fire C
end

Processing Unit

Process 2

Round-Robin scheduler

Fig. 6 Scheduling a dataflow network with a round-Robin
strategy. 2 processes are assigned to a separate processing
units and each process is assigned to two operations (respec-
tively A, D and B, C). One process successively tests fireability

and fires fireable the operations if the case arises.

variety of execution models – called scheduler – to op-

timize the run-time scheduling of actors. This variety

is due to the fact that DPNs do not over specify ap-

plication algorithms the way non-declarative semantics

do.

A commonly-used execution model for DPNs con-

sists of testing the validity of the firing rules for each ac-

tor in a DPN with a round-robin strategy. This strategy
can be carried out, as illustrated in Fig. 6, by one pro-

cess or several processes. On one hand, the round-robin

scheduler has low complexity and it is simple to imple-

ment on the other hand, it may involve a low chance

of success between the test and the validation of fir-

ing rules as this strategy makes no assumption on the

topology of a graph and the singularity of its opera-

tions. For instance, in the example of Fig. 6, A may

need to fire 10 times before validating firing rules of

B and C. By using a round-robin strategy, the actual

firings of A would be done one-by-one after a circular

test of B,C,D in the graph. Furthermore, the firing

rules of operation D may go through several testing

phases while its activation only depends on operations

B and C. As such, round-robin strategy may usually

not be desirable if the fireability of operations is not

symmetric. Data-driven, demand-driven or mixed data-

driven/demand-driven strategies add more visibility to

the topology of a graph [50]. They use the last oper-

ations fired and test the fireability of the next opera-

Optimized dynamic compilation of dataflow representations for multimedia applications 7

tions in the graph in the case of data-driven strategy,

the previous operation in the graph for demand-driven

strategy, or both previous and next operations in a

mixed strategy. All these strategies may improve the

chance of success between test and validation of firing

rules in a graph, but also induce significant complex-

ity in the scheduling process. For instance, the mixed

data-driven/demand-driven strategy detailed in [54] is

5 more efficient compared to the round-robin strategy,

but it also increases the run-time scheduling overhead

with up to 10 more firing rules tested for a single actor.

The optimization detailed in Section 5 starts from

the observation that many algorithms in standardized

video coding tools consume a fixed amount of data to

produce a fixed amount of data. This is, for instance,

the case in the Discrete Cosine Transform (DCT) [17],

common to several MPEG video standards, which takes

a block of DCT coefficients – of size 8 × 8 in MPEG-4

part 2 and MPEG-2 – to recover a pixel-based block of

the same size via several matrix computations. We pro-

pose in Section 5 to maximize the scheduling order on

these operations without using any run-time schedul-

ing strategies. The developed algorithm suppresses the

overhead of runtime scheduling on these particular op-

erations while staying compliant with conventional run-

time scheduling on other operations.

4 Configuration optimization: dynamic

compilation & partial recompilation of

multimedia decoders

Dynamic compilation can be defined as the opposite of

a static code compilation. Static compilation generates

applications in the form of machine code, which match a

specific software and hardware execution environment.

The produced machine code is distributed as is and

can be executed on machines that match the defined

environment without any further modification.

Conversely, dynamic compilation requires a dy-

namic compiler to be included in the targeted envi-

ronment. Applications are distributed in a higher-level

form with a strong abstraction from any details of the

execution environment. The dynamic compiler works

at the receiver side to produce the enforceable ma-

chine code from one application. Dynamic compilers

have been studied in literature and found to produce

efficient compilations, such as Just-In-Time (JIT) [46]

or Ahead-Of-Time (AOT) [23] compilation, which can

significantly reduce delays to obtain the actual imple-

mentation of an application. A common use of dy-

namic compilation are virtual machines; they dynami-

cally compile and execute a common intermediate rep-

Dataflow
Representation (R)

Actors (A)

Graph (G)

Run-time environment

Dataflow compiler

Machine code

Dynamic compiler

Dataflow configuration (C)

S
ch

ed
ul

er
 (

S
)

Fig. 7 Flowchart of the dynamic compilation process on a
dataflow program.

resentation of applications – known as bytecode – on a

heterogeneous set of operating systems and processors.

The optimization detailed in this section takes the

benefits of these mechanisms with the goal of supplying

enforceable multimedia applications with a short de-

lay. The resulting multimedia application preserves the

strong encapsulation from the original dataflow repre-

sentation up to the machine code in the execution en-

vironment. We propose the flowchart depicted in Fig-

ure 7 that extends the use of dynamic compilers to

the support of the configuration and reconfiguration of

dataflow programs. Following this structure, a reconfig-

urable implementation of dataflow representations be-

comes a three-step process:

1. A dataflow compiler acquires a dataflow represen-

tation (R), the configuration information, from an

application in the form of one graph and several ac-

tors.

2. It produces a configuration (C) of the application in

a single intermediate representation form and adds

a model of execution, the scheduler (S), for its ex-

ecution. This configuration may vary according to

the run-time environment and the property of the

underlying dynamic compiler.

3. The dynamic compiler receives the produced config-

uration and translates its intermediate representa-

tion into enforceable machine code that suit to the

execution platform.

This section is organized in two contributions. The

first contribution implements dataflow models to con-

8 Jérôme Gorin et al.

serve their encapsulation up to the machine code of

the run-time environment. We draw on usual denota-

tional semantics from concurrent process networks to

provide this automatic and conservative configuration

of the dataflow representation. The second contribution

makes it possible to adapt the generated configuration

to a new dataflow representation.

4.1 Configuring a network of actors

The dataflow compiler in Fig. 7 produces a configura-

tion of a dataflow representation by instantiating and

connecting actors in a single representation of the cor-

responding application. As represented in Fig. 7, a de-

scription of an application is sent to the dataflow com-

piler as a dataflow representation R = (A,G) where:

– A is a set of actors the application is depending on,

and,

– G is a directed graph of vertices V , which reference

actors in A, and edges E that represent the commu-

nication topology between V .

Following the DPN principle [30], the dataflow com-

piler produces from the directed graph G = (V,E) a

configuration C = (I,D) of the application where:

– I is a set of instances of actors in A. An instance is a

reflection – or a clone – of an actor a in A referenced

by vertices V .

– D is a set of directed, point-to-point, order-

preserving, and asynchronous FIFO connecting

ports of instances. They correspond to the edge e

in E.

The technical challenge when generating a config-

uration is to conserve the functional behavior of each

actor along with its strong encapsulation.

We follow the denotational semantic used by

Kahn [25] to describe the behavior of set of processes

on communication channels. The processes are, for our

case, instances in I and communication channels are

FIFOs in D. In this notation, each FIFO carries a se-

quence of tokens at any time X = [x1, x2, ...], where

each xi is a token. An empty FIFO channel that carries

no tokens is an empty sequence denoted as ⊥. A se-

quence X that precedes a sequence Y , e.g. X = [x1, x2]

and Y = [x1, x2, x3], is denoted X v Y . The set of all

possible sequences is denoted S, while Sp is the set of

p-tuples of sequences on the p FIFO channels of a pro-

cess. In other words, [X1, X2, ..., Xp] ∈ Sp represents

the sequence consumed/produced by a process. S2 cor-

responds to s1 = [[x1, x2, x3],⊥] or s2 = [[x1], [x2]].

The length of a sequence is given by |X|; similarly

the length of an element s ∈ Sp is denoted |s| =

[|X1|, |X2|, ..., |Xp|]. Thus, |s1| = [3, 0] and |s2| = [1, 1].

Based on this denotational semantic, Khan defines

a process with m inputs and n outputs as a continuous

and monotonic function:

F : Sm → Sn (1)

A process is triggered when Sm appears on it in-

puts; it is activated iteratively as long as Sm exists.

Conversely, the process is suspended when Sm does not

exist on its input. In other terms, reading from a FIFO

can be blocking for one process until Sm appears again.

Dennis [13] extends the principle introduced by

Khan with the notion of firing rules in processes. By

using this notion, a process becomes an actor that can

be triggered by several sequences Sm on its inputs; a

network of actors becomes a DPN that does not re-

quire an environment of suspension/activation of pro-

cess specific to the Kahn model. Lee [30] introduces a

new denotational semantic for actors that can have N

firing rules:

R = [R1,R2, ...,RN] (2)

A firing rule Ri defines a finite sequence of patterns,

one for each input m of the actor:

Ri = [Pi,1, Pi,2, ..., Pi,m] ∈ Sm (3)

A pattern Pi,j is an acceptable sequence of tokens

in Ri on one input j from the input m of an actor. It

is satisfied if and only if Pi,j v Xj where Xj is the

sequence of tokens available on the jth FIFO channel.

The pattern Pi,j = ⊥ designates any empty list where

any available sequence on input j is acceptable. The

pattern Pi,j = [∗] is acceptable for any sequence con-

taining at least one token. The length of a pattern Pi,j

is denoted |Pi,j |.
An actor fires when at least one of its firing rules is

satisfied. Lee and Parks [30] define the firing of an actor

as functional, and the test of a set of firing rules of an ac-

tor as a sequential process. The term functional means

that the output tokens resulting from an actor firing

are purely a function of the input tokens. The term se-

quential indicates that firing rules can be tested in any

pre-defined order. The role of the scheduler added in a

configuration of a dataflow representation is therefore

to test sequentially and continuously the validity of fir-

ing rules, as defined in Equations 2 and 3, and fire the

corresponding function F as defined in Equation 1.

Optimized dynamic compilation of dataflow representations for multimedia applications 9

4.2 Configuring an actor

The test of the firing rules from each actor in a config-

uration requires evaluating the absence or presence of

tokens from/to the FIFO channels. It also requires to

“peek” at values from inputs to check if a sequence Sm

matches the pattern of one of the firing rules Ri ∈ R

on the input of an actor. An actor consumes a finite

number of tokens of value |Pi,j | from its input j when

firing rule Ri is satisfied. It produces a finite number

of tokens on its output k of size |sk| at each firing. To

conserve the strong encapsulation of each actor, we in-

sert two functions in the configuration to evaluate firing

rules according to the sequence of tokens include in the

FIFOs:

1. Has tokens function: Gets the number of tokens

available in a FIFO. It evaluates for one firing rule

Ri if the sequence Xj of the FIFO j corresponds to

the condition |Pi,j | ≤ |Xj |
2. Peek function: “Peeks” at a fixed number of tokens

from a FIFO without consuming. It evaluates in a

firing rule Ri if the sequence Xj of the FIFO j cor-

responds to the condition Pi,j v Xj .

The monotonic property of firing functions allows a

configuration to work on a bounded FIFO. Neverthe-

less, this property also requires that there is enough

room in the FIFO to store the sequence Sn produced

by a firing function. We insert three functions in the

configuration to handle the firing of an actor:

1. Has rooms function: Get amount of room available

in a FIFO. It evaluates if a sequence of token s ∈
Sm can be store in an FIFO of size l that already
contains a sequence X; in other terms it evaluates

|s| ≤ |X| − |l|.
2. Read function: Consumes a sequence of tokens X

from a FIFO.

3. Write function: Writes a sequence of tokens X to a

FIFO.

An RVC-CAL actor, depicted in Fig. 3, can be con-

sidered a special case of actor from DPNs. It encom-

passes a persistent state Σ that contains at any time a

set of p values [v1, ...vp]. These states are also initialized

to the set of values σ0 = [v01 , ...v
0
p] at the instantiation

of the actor. Moreover, one action i of an RVC-CAL

actor can be considered a single firing function fi ∈ F
such as:

F = [f1, f2, ..., fN] (4)

where each function fi ∈ F is associated with one firing

rule Ri ∈ R.

The firing functions can have a localized side effect

on the actor state Σ, therefore we can define their be-

havior as:

fi : Σ × Sm → Σ × Sn (5)

The associated firing rule can also depend on a value

Σi from the actor state Σ, namely,

Ri = [Pi,1, Pi,2, ..., Pi,m] ∈ Sm, Σi ∈ Σ (6)

For example, the actor Abs, whose source code is

given on Fig. 3, is specific case of an RVC-CAL ac-

tor with no persistent state (Σ = ∅). Its actions pos

and neg can be depicted with two firing functions

F = [fpos, fneg] where:

fpos : [s]→ [s] (7)

fneg : [s]→ [−s] (8)

The firing functions (7) and (8) are respectively as-

sociated to firing rules:

Rpos = {∃s ∈ Sm | s = [∗]} (9)

Rneg = {∃s ∈ Sm | s = [x1], x1 > 0} (10)

The inequality relation between the action pos and

neg imposes an ordered sequence of tests on these firing

rules, from the highest priority to the lowest, such as

R = Rneg > Rpos. As such, one firing rule evaluating

as valid invalidates all the firing rules of lower priority.

4.3 Adapting a configuration to a new dataflow

representation

The previous section has identified the elements that

composed a configuration of a dataflow representation

and the mechanism for scheduling this configuration.

The same configuration is then sent to the dynamic

compiler as a two separate sets of instances and the

directed FIFOs C = (I,D). The dynamic compiler al-

locates space in the memory of the executing platform

to store the state Σ from each instance in I and to store

tokens in directed FIFOs from D. The set of firing rules,

R, and the set of firing functions, F , in I are then com-

piled into a set of subroutines, for a later execution by

the configuration scheduler.

An essential feature of dynamic compiler is that

they conserve the location of every subroutine and

memory allocated from the original source code in order

to process their dynamic compilation. This location in-

formation makes it possible to modify subroutines and

memory spaces on-the-fly in the run-time environment

in order to switch the operations or the connections of

10 Jérôme Gorin et al.

Curr. Configuration (Cc)

A BB

A

New Configuration (Cn)

A BD

B

Prev. dataflow
representation (Rp)

New dataflow
Representation (RN)

Fig. 8 Example of reconfiguration from one dataflow rep-
resentation (Rp) to a new dataflow representation (Rn). 1
instance of A is removed (yellow) in the configuration; 1 in-
stance of actor D is added (green); 2 instances of actor B and
1 from actor A are reused (orange).

a dataflow representation or to apply load balancing

strategies in the scheduler. We call this process a run-

time adaptation by applying a partial recompilation on

dataflow programs.

Besseron [4] defines the three basic functions of a

run-time adaptation: monitoring, making decisions and

reconfiguring dataflow programs. Monitoring consists

of knowing the context of a program before the adap-

tation. Reconfiguration is the actual modification from

the former configuration to set a new configuration. The

decision is therefore the understanding of the reconfig-

uration, it chooses an appropriate reconfiguration ac-

cording to the old and the new context.

There are two types of reconfiguration approaches:

dynamic and static reconfiguration [4]. Static reconfig-

uration takes place before or at the beginning of the ex-

ecution of an application. Monitoring is then reduced to

the machine code and the memory space currently used

in the program, regardless of the states in the program.

Conversely, dynamic reconfiguration can be performed

several times during the execution of the application, it

monitors the machine code of the program and its ac-

tual state, and it identifies quiescent points [34] in the

application in order to not interfere with its current

execution.

Traditional approaches in adaptive decoders [43] re-

duce the complexity of the run-time adaption by adding

decisions in the configuration information. However,

these decisions bind the adaption of an application to a

dynamic reconfiguration where the transmitter and the

receiver of configuration information know the context

of the application at any time. This case can only oc-

cur when the decoding application processes similarly

coded content during all the dynamic reconfiguration

process.

A common use case of context changing is when the

run-time environment requires processing new coded

bitstream without informing the transmitter. We pro-

pose sending a complete dataflow representation when

an adaptation of one application is required, to place

the complexity of the monitoring and the decision at the

receiver side of the adaptive decoding context. Thus,

the strong encapsulation of the actors makes it possible

to intuitively identify the operation that are wasteful

or lacking in the new dataflow representation. For in-

stance, Figure 8 depicts a reconfiguration of a dataflow

representation Rp composed of 2 instances of an actor

A and 2 instances of an actor B. A new dataflow repre-

sentation RN is received on the run-time environment,

composed of 1 instance of actor A, 2 instances of actor

B and one instance of new actor D. The new configu-

ration Cn from RN can reuse 2 instances of B and 1

instance of A from the current configuration Cc, which

has been generated from Rp.

4.4 Monitoring, decisions, and reconfiguration on

configurations

At the monitoring side, the current configuration Cc

owns at any time a set of instance Ic and a set of

directed FIFO Dc. Ic and Dc are representations of

the previously-transmitted dataflow representation Rp,

composed of a graph Gp = (Vp, Ep) and of a set of ac-

tors Ap. Each instance ic in Ic owns a current state Σc

in Σ. Each directed FIFO dc in Dc owns a sequence

of token X. Before starting the execution of the con-

figuration, the entire instances it comprises are in their

initial states σ0 ∈ Σ. The directed FIFOs contain an

empty sequence of token X = [⊥].

An adaptation is required on the configuration when

a new dataflow representation, Rn, composed of a graph

Gn = (Vn, En) and a set of actors An, is sent to the re-

ceiver. As the configuration is only compose of strongly

encapsulated components, the dataflow compiler can

apply the following decisions:

1. Each instance ic in Ic that refers to an actor a ∈ Ap

and where a /∈ An must be removed from the con-

figuration. In other terms, all the instances from Ic
that refer to an a that is in the relative complement

Ap \An are marked with a “removed” decision. We

denote this decision as 	.

2. Each vertex vn in Vn that refers to an actor a ∈
An \ Ap must be compiled as a new instance in Ic.

We denote this decision as ⊕.

3. One occurrence vn in Vn that refers to an actor a ∈
An∩Ap must be linked to one instance ic in Ic that

Optimized dynamic compilation of dataflow representations for multimedia applications 11

refers to the same actor a in Ap. We denote this

decision as �.

4. Each vertex vn in Vn where there is no remaining

occurrence ic in Ic are marked by the decision ⊕.

5. The remaining instances in Ic – which have not be-

ing marked by a decision– are marked by the “re-

moving” decision 	.

At the reconfiguration side, instances from Ic
marked as 	 have their machine code from its firing

functions F and its firing rules R cleared in the run-time

environment, along with the memory space allocated to

store their state Σ. Reconfiguration of the vertices in Vn
marked as ⊕ includes generating the machine code and

allocating the memory for F , R and Σ according to the

actors they reference. The reconfiguration process also

takes into account the scheduler associated with the

configuration where decisions 	 and ⊕ add or remove

the tests and the firings executing on the corresponding

instance.

To produce a static reconfiguration, the directed FI-

FOs from Dc must be set again to the empty sequence

X = [⊥] and must be reconnected to a port of an in-

stance in the new configuration. The number of FIFOs

must match the number of edges in Ep. The states Σ

from each instance marked as � in Ic are set to their

initial states σ0.

For a dynamic reconfiguration, a directed FIFO

from Dc, which connects two instances (x, y), where x

or y is marked as 	, is cleared from the memory space of

the run-time environment. The edges from En, which

connect two instances (x, y), where x or y is marked

as ⊕, are converted into new FIFOs in the configura-

tion. Reconfiguring an instance marked as 	 must be

performed during its quiescent point, i.e. when the in-

stance is not consuming or producing tokens from or to

FIFOs in the configuration. Reconfiguring a instance

cannot occur during its firing period.

One crucial requirement of the algorithm is that all

actors with one same behavior must own an equivalent

identifier from the previous to the new reconfiguration

in order to process their matching. This condition fits

the MPEG RMC framework, as all coding tools from

the VTL and GTL are identified with a unique string.

5 Execution optimization : efficient clustering

of algorithms on processing units

In the previous sections, we stated that one essential

benefit of the DPN model lies in its strong expressive

power, so as to simplify algorithm implementation for

programmers. This expressive power includes: the abil-

ity to describe data-dependent computations through

token production/consumption, where production/con-

sumption may vary according to values of tokens; the

ability to express non-determinism, which can be used

to construct actors that respond to unpredictable se-

quences of tokens; and, the ability to produce time-

dependent behaviors that rely on the time at which

tokens are available on the input of an instance.

However, when dealing with the scalability of this

model, we stated that this strong expressive power in-

curs a cost on the efficiency of its implementation, as

several operations may be scheduled at run-time on

a single processing unit. The overhead caused by a

scheduling strategy, along with its variable chance of

success between test/validation of a firing rule for each

operation, can create a succession of synchronization is-

sues between the firing of instances in a configuration.

This issue can ultimately lead to inefficient implementa-

tion of dataflow programs or to unsteady performance

on their executions. The granularity of an application,

i.e., the number of actors to schedule in the configu-

ration, becomes an important factor that can prevent

synchronization issue of instances.

The challenge when optimizing the execution of a

configuration is then to conserve the strong expressive

power of DPN while reducing the overhead caused by

its required run-time scheduling. In this section, we pro-

pose a process that reduces the number of actors that

are required to be scheduled at run-time, by clustering

network regions that have a locally static behavior. We

mean by one locally static region a set of connected

instances in the configuration that has a firing order

we can determine statically, regardless the data stored

in the FIFOs of the configuration. The contribution is

based on three existing algorithms; we apply them to

produce the following process:

1. We detect instances with predictable behaviors in a

dataflow representation by using classification algo-

rithms [52,55],

2. Predictable instances connected amongst them-

selves are clustered into a single node if they match

the composition theorem [41]. The resulting clus-

ter becomes a composite node in the graph of the

dataflow configuration,

3. Instances grouped in a composite node are sched-

uled at compile time in the configuration with a

Single-Appearance Scheduling (SAS) [36]. The other

remaining instances, along with the resulting com-

posite nodes, are scheduled at run-time.

We provide details of each of these processes in the

following sections.

12 Jérôme Gorin et al.

A B D

C

(1,1)

(2,1)

10

5

2

1
Fig. 9 Dataflow Process Network where actors B and C have
a Synchronous DataFlow (SDF) MoC and actor B has a Cyclo-

Static Dataflow (CSDF) MoC.

5.1 Detecting predictable actors

The literature introduces many algorithms, such as [52]

and [55], to classify dynamic actors into restricted

Model of Computations (MoCs). Restricted MoCs rep-

resent different trade-offs between expressiveness, in ex-

change for considerable advantages such as compile-

time predictability [30]. Compile-time predictability in-

cludes the ability to determine, partially or in its en-

tirety, the firing sequence of a composite node only com-

posed of predictable actors.

The subsets of classes of actors, for which the fir-

ing sequence can be entirely determined at compile

time, are called Synchronous DataFlow (SDF) [28] and

Cyclo-Static Dataflow (CSDF) [8]. An SDF actor con-

sumes and produces a constant number of tokens at

each firing. It may have a single firing rule, which is

valid for any sequence Sm of a certain size on its in-

puts [29,28]. In the case where an actor has several

firing rules, an actor is SDF if all its firing rules have

the same consumption, which mean for RA ∈ R and

∀RB ∈ R:

|RA| = |RB | (11)

All the firing functions of an SDF actor must also

produce a fixed number of tokens at each firing, which

means for fa ∈ F and ∀fb ∈ F :

|fa(s)| = |fb(s)| (12)

for any s ∈ Sm and sb ∈ Sm

The CSDF MoC [8] extends SDF actors by allowing

the number of tokens produced and consumed to vary

cyclically. This variation is modeled with a state in the

actor, which returns to its initial value after one period.

Figure 9 depicts a mixed implementation of dataflow ac-

tors where the instance A is in keeping with the CSDF

MoC, B and C are in keeping with the SDF MoC, and

D is dynamic. Each edge is annotated by the consump-

tion/production rate known at each firing. An annota-

tion of “5‘” on the head of an edge indicates that the

instance C is SDF and consumes five tokens at each fir-

ing. A production (2, 1) on the tail of an edge indicates

a pattern of production on the CSDF instance A where

its firing produces alternatively one and three tokens.

Classification algorithms in [52,55] analyze the be-

haviors of an actor in reaction to sequence of tokens Sm,

where the size |Sm| is increasing. In the case where the

production and the consumption of the actor follows

a fixed pattern or cycle pattern, the actor is detected

as predictable; it follows the rules from one of the pre-

sented MoC. These algorithms involve a resource con-

suming computation as every actor in a network must

be tested on a wide series of token. However, in an

adaptive context, this process can be performed at the

transmitter side in order to avoid any overhead in the

run-time environment of the receiver.

5.2 Clustering predictable actors in one composite

node

The objective of clustering several actors into a single

node, the composite node, is to obtain a valid sequence

of firing in it that can be determined before its ac-

tual execution in the configuration. This valid sequence

avoids the use of any run-time scheduling for its execu-

tion. As such, an essential condition to set a composite

node is to determine whether such a sequence of firing

is possible. We call this condition consistency checking

or clock calculation on the instances from a composite

node.

A 3 B2

(a) Strongly con-
nected SDF actors

A1

A2

B1

B2

B3

(b) Precedence
graph

Fig. 10 Illustration of (a) two strongly connected SDF actors
(b) with their corresponding precedence graph.

If such a sequence exists, it must then be deter-

mined according to the precedence of the actors in the

composite node. This step corresponds to the creation

of a static scheduling strategy. An essential hypothe-

sis to prove the existence of static scheduling concerns

the sequence of tokens owned by the FIFOs in the

configuration. A valid sequence of firing ensures that

there will be neither accumulation nor lack of tokens –

called a deadlock – between each firing of predictable

actors. A common practice to check this hypothesis is to

build a precedence graph, depicted in Fig. 10, where the

Optimized dynamic compilation of dataflow representations for multimedia applications 13

consumption/production on each edge is homogeneous

and equal to one. Pino states in [41] that a precedence

graph, which contains no cycle, is a Directed Acyclic

Graph (DAG). This DAG ensures that there exists at

least one possible static scheduling strategy to be ap-

plied in the composite node. In other terms, there exists

a sequence of firings in a DAG that can produce a con-

tinuous series of tokens in FIFOs where these FIFOs

return to an initial and determined state at the end of

a cycle.

Pino also introduces in [41] three composition rules

that validate the clustering of two SDF actors in a sin-

gle composite node. He uses this clustering algorithm as

a pre-pass to define static scheduling strategies that re-

duce the number of vertices in a dataflow representation

only composed of SDF actors. The scheduling strategy

such defined minimizes the synchronization overhead

on multi-threaded implementations and maximizes the

throughput by grouping buffers. The composition rules

help ensure that the resulting precedence graph will al-

ways be a DAG and that the static execution of the

composite node may not cause any deadlock. We de-

picted these three rules on two SDF instances (x, y)

in Fig. 11 and we extend them to the general use of

dataflow actors, with the help of the classification al-

gorithms. We can observe that the composition rules

include the notion of delays, denoted δ. Delays are ini-

tialization tokens placed at the compilation of an SDF

network. They are not yet included in classification al-

gorithms.

y

3

x z

(a)

y1 x2

x1

x3

z1

z2

z3

δ(e)
•

y

x z x

y

z

(b)

δ(e)•
y

x z

(c)

Fig. 11 Composition rules on two strong connected SDF
instances (x, y) (left) with their impact on the corresponding
precedence graph (right): (a) illustrates the violation of the
first precedence shift condition, (b) illustrates the violation of
the hidden delay condition, and (c) illustrates the violation
of the cycle introduction condition. Each violation introduces
a cycle in the precedence graph denoted with bold arrows.

To process the proposed configuration optimization,

we remove the notion of delay from the composition

rules and we deduce two new conditions in the compo-

sition rules. These 2 rules ensure that the clustering of

two instances will never cause any deadlocks in the ap-

plication. Supposing that (x, y) are two instances that

reference either a SDF or a CSDF actor:

1. If p(x) and c(y) are the number of tokens produced

by x and consumed by y at each firing respectively,

there exists a positive integer k such a c(y) = k ×
p(x),

2. There is no simple path from x to y which contains

more than one arc. A simple path refers to a path

that does not pass twice through the same arc of a

graph, i.e. all of whose arcs are distinct.

The implementation of these conditions is made by

passing through all the pairs (x, y) connected with at

least one edges. We mark as candidate for clustering

all the ones that have both a consumption q(y) and

a production q(x) known. Each candidate (x, y) then

passes through the following steps:

1. if c(y) 6= k × p(x), the pair (x, y) is removed from

the candidate list;

2. a breadth-first search or a depth-first search is ap-

plied on the network graph to find all the simple

path between x and y. If the pair (x, y) has more

than one simple path, it is removed from the candi-

date list, and,

3. the couple (x, y) is finally clustered into a single

composite node λ and this composite node λ is con-

nected in the graph. The incoming edges from x

become the incoming edges of λ, which is marked

as having a consumption of k × c(x). The outgoing

edges from y become the outgoing edges of λ and

are marked with a production p(y).

This process is iterative and is executed until there

exist no candidate to cluster in the network. It results

in a hierarchical configuration where the highest level is

composed of both instances and composite nodes. This

hierarchy is scheduled using a run-time strategy. The

lower levels of the hierarchy are clusters of SDF and

CSDF actors that can be scheduled at compile time.

The firing rules of the composite of the higher hierarchy

are the firing rules of the same instances connected in

the lower hierarchy. These firing rules are only based

on the presence of a number of tokens on the input of

the composite node.

5.3 Static scheduling of actors in composite nodes

The objective of the static scheduling step is to deter-

mine the optimum firing order for all instances in the

14 Jérôme Gorin et al.

Dataflow Network

Run-time environment

Processing Unit

while true
 if A fireable then
 fire A x 10
 fire B
 fire C x 3
end

Process 1

while true
 if D fireable then
 fire D
 end
end

Processing Unit

Process 2

Hierarchical scheduling

A B D

C

(1,1)

(2,1)

10

5

2

1
Composite node

Fig. 12 Clustering execution of a configuration network
where actor A, B and C have SDF MoCs and actor D is
dynamic. The first process fires sequentially: 10 times A, one
time B and, three times C, if A is detected fireable. Repe-
tition factors (×10and ×3) are implemented using for loops.
The second process continuously tests fireability of a dynamic
actor, D, and fires when D is fireable.

composite node. It exists a large number of scheduling

strategies for static actors [6,7,47,49,37] based on dif-

ferent optimization criteria. In the case of an execution

on a single processing unit, these criteria are structured

around the minimization on the number of instructions

to schedule a configuration or around the minimization

of the memory allocated to produce the communication

FIFOs in the run-time environment.

In an adaptive decoding context, the dynamic com-

piler has strong constraints on the size of code to be gen-

erated as it introduces a delay before the execution of

the configuration. We thus favor the Single-Appearance

Scheduling (SAS) [36] strategy, as it represents the op-

timum strategy for code minimization where all repeti-

tions of a same instance can be found side by side. As

represented in Fig. 12, the code generated from SAS can

make an extensive use of for loops for each repetition

factor.

SAS aims at determining the minimum periodic se-

quence of firing for an instance actors in a composite

node, so that the execution of a configuration intro-

duces no deadlock. This sequence is defined by a repeat

vectorq = (q1, q2, · · · , qn) where each qi is the number

of firing of the instance i in the composite node.

The deadlock-free calculation between two instances

x and y on an arc e = (x, y) must respect the following

equality:

π(e)q(x)− χ(e)q(y) = 0 (13)

In order to incorporate all the pairs (x, y) from the

composite node, this equation can be represented as a

matrix of consumption/production called matrix topol-

ogy. It is defined by Γ = (γi,j)1≤i≤m,1≤j≤n for a com-

posite node that consists of m instances and n connec-

tions where:

γi,j = γ+i,j − γ
−
i,j (14)

with:

γ+i,j =

{
π(i) if src(i) = j

0 otherwise
γ−i,j =

{
χ(i) if dst(i) = j

0 otherwise

(15)

The resulting matrix topology defines a set of bal-

ance equations q = 0 with an infinite number of so-

lutions. The minimal positive solution is a set of in-

tegers that defines the Basis Repetition Vector(BRV)

qBRV = (q1, q2, · · · , qn) for the m instances of a com-

posite graph. Determining a BRV can take place with

Gaussian elimination on the topology matrix as de-

scribed in [39]. The final step is to define a chronological

order to apply BRV on each instance. This topologi-

cal order crosses over the graph of the composite node

through its entry point and assigns an increasing weight

to each instance crossed. The corresponding scheduler is

finally generated from the lowest weight to the highest,

with its corresponding BRV. As all consumptions and

productions from the instances of a configuration are

determined, the size of each FIFO can be determined.
The resulting composite node is thus optimized in terms

of scheduling and memory space compared to an imple-

mentation following the DPNs’ rules introduced previ-

ously.

By way of example, the topology matrix from the

composite node on Figure 12 is of size m = 3 and n = 2

is as follows:(
(1, 1) −10 0

(2, 1) 0 −5

)
The resolution of this matrix by the method of

Gaussian elimination gives a BRV q of size m = 3

where:

q =

5 (×2)

1

5


This example lands on the specific case of CSDF,

the first row of the topological matrix, which repre-

sents consumption/production of A, must be set to the

Optimized dynamic compilation of dataflow representations for multimedia applications 15

full period of firing, 2 and 3 for (1, 1) and (2, 1)) re-

spectively. The resulting BRV, for A the first line, must

then be multiplied by the length of the firing period

(×2).

The SAS strategy has been designed to be used

on a single processing unit. However, algorithms exist

that can map and schedule SDF graphs, which in our

case can come from any composite nodes onto multi-

processors in linear time with respect to the number

of instances and processors [39]. These algorithms can

be used to extend the proposed clustering to specific

processing units such as a DSP or GPU.

6 Applications and results

The two presented optimization algorithms were im-

plemented in an open-source adaptive decoder called

JADE, which is a part of the Open RVC-CAL Com-

piler (Orcc) project. This adaptive decoder is based

on the Low-Level Virtual Machine (LLVM) [27] and

can thus process a Just-In-Time compilation of con-

figuration information on a wide range of platforms

(X86-64, PowerPC, ARM...). All the results presented

in this section are reproducible by downloading this

project and the associated library of coding tools from

http://orcc.sf.net. The reader can refer to [21] to find

information about this adaptive decoder and to [20] to

find information about the actor representation it uses.

The two optimizations are tested on two dataflow

representations of decoders standardized in MPEG

RVC. The first representation corresponds to the Sim-

ple Profile (SP) specification of the MPEG-4 part 2

standard and the second representation corresponds to

Constrained Baseline Profile (CBP) specification of the

MPEG-4 part 10 Advance Video Coding (AVC) stan-

dard. Details of these two dataflow representations are

given in [18].

Two other dataflow representations of decoders are

also used to valid the partial recompilation process.

The first representation is a proprietary specification

from Ericsson [42] of the MPEG-4 SP standard and the

second representation is the MPEG RVC specification

of the Fidelity Range Extensions (FRExt) profile from

MPEG-4 part 10 AVC. All these four representations

can be download from http://orc-apps.sourceforge.net.

Finally, the test sequences used are the valida-

tion sequences provided by the MPEG consortium. For

MPEG-4 part 2 SP, it is the sequence foreman of

size CIF (352 × 288) composed of 300 frames at 30

frame/sec. For MPEG-4 AVC CBP, it is sequence com-

bine of size QCIF (176×144) composed of 1700 frames

at 30 frame/sec. The testing results are taken from an

Table 1 Gain of configuration optimization: a full dynamic
compilation and a partial dynamic recompilation are applied
when switching from/to standard (stand.) and proprietary
(prop.) dataflow representations of a same MPEG-4 part 2
Simple Profile; and when switching between two profiles of
the same standard MPEG-4 part 10 AVC, namely, the Con-
strained Baseline Profile (CBP) and Fidelity Range Exten-
sions (FRExt) profile.

Compilation Dynamic Partial Gain

MPEG part 2 Simple Profile

Stand. to prop. 1188 ms 380 ms 3

Prop. to stand 1141 ms 375 ms 3

MPEG part 10 AVC profiles

CBP to FRExt prof. 4734 ms 3343 ms 1.4

FRExt prof. to CBP 3313 ms 1610 ms 2

Intel E6600 Core2 Duo processor at 2.40 GHz running

on Windows XP.

6.1 Optimizing configuration of dataflow

representations with two reconfiguration use cases

Table 1 shows the practical impacts of using the config-

uration optimization when switching from a standard-

ized to a proprietary implementation of the Simple Pro-

file specification in MPEG-4 part 2; and when switch-

ing from one profile to another profile from the same

MPEG-4 part 10 AVC standard.

The dataflow representation of the MPEG-4 part

2 Simple Profile standardized in MPEG RVC uses 31

actors, which are instantiated in 51 instances in the

configuration network of the decoder. The proprietary

dataflow representation of the same profile uses in its
configuration 30 actors on 60 instances. Thirty-seven in-

stances, which is approximately 60% of all the instances

in both configurations, were reused by switching from

one representation to the other.

The CBP profile from MPEG-4 part 10 AVC uses

56 actors on 105 instances in the configuration network.

The FRExt profile uses 74 actors on 128 instances.

Eighty-five instances, which is 66% of the FRExt con-

figuration, were reused between the two configurations.

The gain factor introduced by the partial recompila-

tion highlights that reconfiguration is more suitable for

fine grain variations in the dataflow representation. In-

deed, the weakest gain (1.4) comes from profile reconfig-

uration where the monolithic parsers (1/3 of the source

lines of code of the overall decoder) are not reused be-

tween the CBP and the FRExt profile. Conversely, the

proprietary and standard representation of MPEG-4

part 2 SP uses the same parser. This use scenario high-

lights the needs of supporting the Bitstream Syntax

Description Language (BSDL) [12], also standardized

16 Jérôme Gorin et al.

Table 2 Impact on decoding performance of clustering with
Single-Appearance Scheduling and Round-Robin scheduling
(RR + SAS) compared to an entire Round-Robin (RR)
scheduling. The sequence used are combine (CIF) for MPEG-
4 part 2 SP standard and foreman (QCIF) for MPEG-4 part
10 CBP standard.

Strategies RR RR + SAS Gain

SP (RVC) 144 fps 180 fps 1.25

AVC (RVC) 50 fps 81.5 fps 1.63

in MPEG RMC, in order to describe the behavior of

the parser. This language can significantly reduce the

granularity of a parser description and thus, should give

the opportunity to obtain a more fine grained reconfig-

uration on this particular actor.

6.2 Optimizing execution of dataflow representations

for single process execution

Table 2 highlights the practical impact on decoding

performance by using the proposed execution optimiza-

tions on several dataflow representations and with a sin-

gle execution process. A round robin-strategy is applied

as a run-time scheduling strategy on the entire dataflow

representation in the first case. In the second case, a

mixed round-robin strategy is used for the higher-level

hierarchy of the clustered dataflow representation and

SAS scheduling is applied inside the composite nodes.

Dataflow representations from MPEG-4 part 2 SP

standard have a more coarse-grain description in ac-

tors. There exist only a single locally static region that

corresponds to the Inverse Discrete Cosine Transfor-

mation (IDCT). Only eight instances of the IDCT were

clustered into one single composite node. Despite these

small clusters, SAS scheduling on this composite node

shows an increase of performance of up to 25% com-

pared to a round-robin strategy applied to the entire

representation.

The dataflow representation from the MPEG-4 AVC

CBP standard has a more fine-grain description of the

decoder with as many twice instances in the configura-

tion network. Thirty instances are clustered into com-

posite nodes with a gain of up to 50% in decoder per-

formance.

The time to process the clustering on both dataflow

representations is minimal (300 ms) compared to the

dynamic compilation process, which is 4 seconds in the

worst case.

These results show that, generally speaking, clus-

tering has a significant impact on performance, partic-

ularly for fine grain dataflow representations. However,

this gain can be increased by (1) rewriting actors from

dataflow representations to expose more static behav-

iors and (2) extending the clustering to a wider class of

MoC, such as the Quasi-Static actors [9].

7 Related work

This article extends the work presented in [19], which

gives the complete translation process to obtain a DPN

implementation from an RVC-CAL actor. A concrete

implementation of this process is given using the LLVM

paradigm.

Wipliez et al. present a new compilation frame-

work to automatically translate a dataflow representa-

tion into C/C++ [53]. This automatic translation has

been extend in [45] to hardware platform by providing

HDL representation of dataflow decoder. On the other

hand, Richardson et al. implement a Fully Configurable

Video Coding (FCVC) framework [43] that uses the

Universal Video Decoder (UVD) to process the adap-

tive decoding. Our contribution is a merging of these

two approaches. It provides an automatic translation

of dataflow representations following the adaptive de-

coding process. This contribution is a direct application

of the work initiated in MPEG RVC [33].

Gu et al. present a technique in [22] to recognize

a set of Statically Schedulable Regions(SSRs) within

a dynamic dataflow program. SSRs have sets of ports

which are statically coupled, i.e. the production of an

output port must matches the consumption of the input

port(s) it is connected to. However, this techniques has

never been used in an adaptive context.

Reconfiguration of dataflow program is widely used

for DSP processors [34] and FPGA devices [2]. Our con-

tribution differs from existing reconfiguring algorithms

by proposing a deliberately simple mechanisms that

consider the limited constraints of our decoder repre-

sentation and the limited computing capability of em-

bedded system.

Clustering is the obvious next step of the classifica-

tion method introduced in [55]. This method gives the

opportunity to apply a tradeoff between the efficiency

of a static scheduling strategy [55] and the expressive

power of a dynamic scheduling of DDF actors [38].

8 Conclusions

This paper proposes two optimization algorithms that

assert dataflow representations as suitable representa-

tions for configuration information in an adaptive de-

coding context. This approach is verified with experi-

ments on two decoders from the MPEG RMC standard.

The first optimization reduces the time to configure a

Optimized dynamic compilation of dataflow representations for multimedia applications 17

new decoder with already compiled algorithms from a

previous dataflow representation. The second optimiza-

tion shows the ability of a dataflow program execution

to be remodeled to enhance its execution according to

the computing resource of a given platform.

These optimizations are intended to fit current and

emerging architectures that will be incorporated in mul-

timedia terminals. Indeed, dataflow representations are

widely used across many application domains including

Digital Signal Processing, Graphics Processing Unit,

many-core and massively multi-core systems. In this

sense, work is currently in progress to extend these opti-

mizations to be used in GPU, DSP and Multi-Processor

System on Chip (MPSoC) systems. We target detect-

ing instances and composite node that have no state

dependencies between successive firings to obtain effi-

cient computations on large sets of data that fit highly

parallel processors. Another aim of the reconfiguration

optimization is to conceive multi-purpose systems for

FPGAs and ASICs, as depicted in [35]. The overall

approach of this paper is also not limited to video or

graphic decoding applications. The separation between

network and processing tools provides a useful abstrac-

tion to design any signal processing application. For

instance, dataflow representations from MPEG RMC

has already been extended to audio applications (Re-

configurable Audio Coding) and to cryptographic ap-

plications.

References

1. Amagbégnon, P., Besnard, L., Le Guernic, P.: Implemen-
tation of the data-flow synchronous language signal. In:
ACM SIGPLAN Notices, 6, pp. 163–173. ACM (1995)

2. Athalye, A., Hong, S.: Mapping of partial reconfigurable
data flows to Xilinx FPGAs. In: SOC Conference, 2005.
Proceedings. IEEE International, pp. 111–112 (2005)

3. Atkinson, D., Griswold, W.: Implementation techniques
for efficient data-flow analysis of large programs. In:
Software Maintenance, 2001. Proceedings. IEEE Inter-
national Conference on, pp. 52–61. IEEE (2001)

4. Besseron, X.: Fault tolerance and dynamic reconfigura-
tion for large scale distributed applications. Ph.D. the-
sis, Institut National Polytechnique de Grenoble-INPG
(2010)

5. Bhattacharyya, S., Eker, J., Janneck, J., Lucarz, C., Mat-
tavelli, M., Raulet, M.: Overview of the MPEG reconfig-
urable video coding framework. Journal of Signal Pro-
cessing Systems 63(2), 251–263 (2011)

6. Bhattacharyya, S., Murthy, P., Lee, E.A.: Renesting Sin-
gle Appearance Schedules to Minimize Buffer Memory.
Tech. Rep. UCB/ERL M95/43, EECS Department, Uni-
versity of California, Berkeley (1995)

7. Bhattacharyya, S.S., Murthy, P.K., Lee, E.A.: APGAN
and RPMC: Complementary heuristics for translating
DSP block diagrams into efficient software implementa-
tions. Journal of Design Automation for Embedded Sys-
tems. In: DSP Block Diagrams into Efficient Software
Implementations, DAES, pp. 33–60 (1997)

8. Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.:
Cyclo-static data flow. In: icassp, pp. 3255–3258. IEEE
(1995)

9. Boutellier, J., Lucarz, C., Lafond, S., Gomez, V., Mat-
tavelli, M.: Quasi-static scheduling of CAL actor net-
works for reconfigurable video coding. Journal of Signal
Processing Systems pp. 191–202 (2011)

10. Buck, J., Ha, S., Lee, E., Messerschmitt, D.: Ptolemy: A
framework for simulating and prototyping heterogeneous
systems. International Journal of Computer Simulation
4, 155–182 (1994)

11. Buck, J., Lee, E.: Scheduling dynamic dataflow graphs
with bounded memory using the token flow model. In:
Acoustics, Speech, and Signal Processing, 1993. ICASSP-
93., 1993 IEEE International Conference on, vol. 1, pp.
429–432. IEEE (1993)

12. De Schrijver, D., De Neve, W., De Wolf, K., De Sutter,
R., Van de Walle, R.: An optimized MPEG-21 BSDL
framework for the adaptation of scalable bitstreams. J.
Vis. Comun. Image Represent. 18(3), 217–239 (2007)

13. Dennis, J.B.: First version of a data flow procedure lan-
guage. In: Proceedings of the Colloque sur la Program-
mation, Lecture Notes in Computer Science, vol. 19, pp.
362–376. Springer (1974)

14. Edwards, S.: Kahn Process Networks. Languages for Dig-
ital Embedded Systems pp. 189–195 (2000)

15. Eker, J., Janneck, J.: CAL Language Report. Tech. Rep.
ERL Technical Memo UCB/ERL M03/48, University of
California at Berkeley (2003)

16. Engels, M., Bilson, G., Lauwereins, R., Peperstraete, J.:
Cycle-static dataflow: model and implementation. In:
Signals, Systems and Computers, 1994. 1994 Conference
Record of the Twenty-Eighth Asilomar Conference on,
vol. 1, pp. 503–507. IEEE (1994)

17. Fan, C.: Fast 2-dimensional 4× 4 forward integer trans-
form implementation for H. 264/AVC. Circuits and Sys-
tems II: Express Briefs, IEEE Transactions on 53(3),
174–177 (2006)

18. Gorin, J., Raulet, M., Cheng, Y., Lin, H., Siret, N., Sug-
imoto, K., Lee, G.: An RVC dataflow description of the
AVC Constrained Baseline Profile decoder. In: Image
Processing (ICIP), 2009 16th IEEE International Con-
ference on, pp. 753–756. IEEE (2009)

19. Gorin, J., Raulet, M., Preteux, F.: MPEG Reconfigurable
Video Coding: from specification to a reconfigurable im-
plementation. In: (To appears) Special Issue on Recon-
figurable Media Coding (2012)

20. Gorin, J., Wipliez, M., Preteux, F., Raulet, M.: A
portable Video Tool Library for MPEG Reconfigurable
Video Coding using LLVM representation. In: Design and
Architectures for Signal and Image Processing (DASIP),
2010 Conference on, pp. 183–190. IEEE (2010)

21. Gorin, J., Wipliez, M., Raulet, M., Preteux, F.: An
LLVM-based decoder for MPEG Reconfigurable Video
Coding. In: IEEE Workshop on Signal Processing Sys-
tems (SiPS 2010), Washington, D.C., USA, pp. 281–286
(2008)

22. Gu, R., Janneck, J., Bhattacharyya, S., Raulet, M.,
Wipliez, M., Plishker, W.: Exploring the concurrency of
an MPEG RVC decoder based on dataflow program anal-
ysis. IEEE Transactions on Circuits and Systems for
Video Technology 19(11) (2009)

23. Hong, S., Kim, J., Shin, J., Moon, S., Oh, H., Lee, J.,
Choi, H.: Java client ahead-of-time compiler for embed-
ded systems. In: ACM SIGPLAN Notices, 7, pp. 63–72.
ACM (2007)

18 Jérôme Gorin et al.

24. Janneck, J., Mattavelli, M., Raulet, M., Wipliez, M.: Re-
configurable video coding: a stream programming ap-
proach to the specification of new video coding standards.
In: Proceedings of the first annual ACM SIGMM confer-
ence on Multimedia systems, pp. 223–234. ACM (2010)

25. Kahn, G.: The semantics of a simple language for parallel
programming. In: J.L. Rosenfeld (ed.) Information pro-
cessing, pp. 471–475. North Holland, Amsterdam, Stock-
holm, Sweden (1974)

26. Kannangara, C., Philp, J., Richardson, I., Bystrom, M.,
de Frutos Lopez, M.: A Syntax for Defining, Communi-
cating, and Implementing Video Decoder Function and
Structure. Circuits and Systems for Video Technology,
IEEE Transactions on 20(9), 1176–1186 (2010)

27. Lattner, C., Adve, V.: LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In: Pro-
ceedings of the 2004 International Symposium on Code
Generation and Optimization (CGO’04). Palo Alto, Cal-
ifornia (2004)

28. Lee, E., Messerschmitt, D.: Synchronous data flow. Pro-
ceedings of the IEEE 75(9), 1235–1245 (1987)

29. Lee, E.A., Messerschmitt, D.G.: Static scheduling of syn-
chronous data flow programs for digital signal processing.
IEEE Trans. Comput. 36(1), 24–35 (1987)

30. Lee, E.A., Parks, T.M.: Dataflow Process Networks. Pro-
ceedings of the IEEE 83(5), 773–801 (1995)

31. Lee, S., Lim, T., Jang, E., Lee, J., Lee, S.: MPEG Re-
configurable Graphics Coding framework: Overview and
applications. In: Visual Communications and Image Pro-
cessing (VCIP), 2011 IEEE, pp. 1–4. IEEE (2011)

32. Lucarz, C., Mattavelli, M., Thomas-Kerr, J., Janneck, J.:
Reconfigurable Media Coding: A new specification model
for multimedia coders. In: Signal Processing Systems,
2007 IEEE Workshop on, pp. 481–486. IEEE (2007)

33. Mattavelli, M., Amer, I., Raulet, M.: The Reconfigurable
Video Coding Standard [Standards in a Nutshell]. Signal
Processing Magazine, IEEE 27(3), 159 –167 (2010)

34. Neuendorffer, S., Lee, E.: Hierarchical reconfiguration of
dataflow models. In: Formal Methods and Models for
Co-Design, 2004. MEMOCODE’04. Proceedings. Second
ACM and IEEE International Conference on, pp. 179–
188. IEEE (2004)

35. Nezan, J., Siret, N., Wipliez, M., Palumbo, F., Raffo,
L.: Multi-purpose systems: A novel dataflow-based gen-
eration and mapping strategy. In: Circuits and Systems
(ISCAS), 2012 IEEE International Symposium on, pp.
3073–3076. IEEE (2012)

36. Oh, H., Dutt, N., Ha, S.: Single appearance schedule
with dynamic loop count for minimum data buffer from
synchronous dataflow graphs. In: Proceedings of the
2005 international conference on Compilers, architectures
and synthesis for embedded systems, pp. 157–165. ACM
(2005)

37. Oh, H., Dutt, N., Ha, S.: Memory optimal single appear-
ance schedule with dynamic loop count for synchronous
dataflow graphs. In: ASP-DAC ’06: Proceedings of the
2006 conference on Asia South Pacific design automation,
pp. 497–502 (2006)

38. Parks, T.: Bounded scheduling of process networks.
Ph.D. thesis, University of California (1995)

39. Pelcat, M.: Rapid prototyping and dataflow-based code
generation for the 3GPP LTE enodeb physical layer
mapped onto multi-core DSPs. Ph.D. thesis, Ph. D. dis-
sertation, Dissertation, INSA Rennes, 210 p (2010)

40. Pelcat, M., Blestel, M., Raulet, M.: From AVC decoder
to SVC: Minor impact on a data flow graph description.
In: Picture Coding Symposium (2007)

41. Pino, J., Lee, E., Bhattacharyya, S.: A hierarchical mul-
tiprocessor scheduling system for DSP applications. In:
asilomar, p. 122. Published by the IEEE Computer Soci-
ety (1995)

42. von Platen, C., Eker, J.: Efficient realization of a cal video
decoder on a mobile terminal (position paper). In: Signal
Processing Systems, 2008. SiPS 2008. IEEE Workshop
on, pp. 176–181. IEEE (2008)

43. Richardson, I., Kannangara, S., Bystrom, M., Philp, J.,
De Frutos Lopez, M.: Implementing fully configurable
video coding. In: Proceedings of the 16th IEEE inter-
national conference on Image processing, ICIP’09, pp.
765–768. IEEE Press, Piscataway, NJ, USA (2009)

44. Sarkar, V.: Partitioning and scheduling parallel programs
for multiprocessors. MIT press (1989)

45. Siret, N., Wipliez, M., Nezan, J., Rhatay, A.: Hardware
code generation from dataflow programs. In: Design and
Architectures for Signal and Image Processing (DASIP),
2010 Conference on, pp. 113–120. IEEE (2010)

46. Suganuma, T., Ogasawara, T., Takeuchi, M., Yasue, T.,
Kawahito, M., Ishizaki, K., Komatsu, H., Nakatani, T.:
Overview of the IBM Java just-in-time compiler. IBM
systems Journal 39(1), 175–193 (2000)

47. Sung, W., Kim, J., Ha, S.: Memory efficient software syn-
thesis from dataflow graph. In: ISSS ’98: Proceedings of
the 11th international symposium on System synthesis,
pp. 137–142 (1998)

48. Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt:
A language for streaming applications. In: Proceedings
of the 11th International Conference on Compiler Con-
struction, pp. 179–196. Springer-Verlag (2002)

49. Thies, W., Karczmarek, M., Sermulins, J., Rabbah,
R., Amarasinghe, S.: Teleport messaging for distributed
stream programs. In: PPoPP’05: Proceedings of the tenth
ACM SIGPLAN symposium on Principles and practice
of parallel programming, pp. 224–235 (2005)

50. Treleaven, P., Brownbridge, D., Hopkins, R.: Data-driven
and demand-driven computer architecture. ACM Com-
puting Surveys (CSUR) 14(1), 93–143 (1982)

51. Vetro, A., Wegand, T., Sullivan, G.: Overview of the
Stereo and Multiview Video Coding Extensions of the
H. 264/AVC Standard. Proceedings of the IEEE (2011)

52. Wipliez, M., Raulet, M.: Classification of Dataflow Actors
with Satisfiability and Abstract Interpretation. Interna-
tional Journal of Embedded and Real-Time Communica-
tion Systems (IJERTCS) 3(1), 49–69 (2012)

53. Wipliez, M., Roquier, G., Nezan, J.: Software code gen-
eration for the RVC-CAL language. Journal of Signal
Processing Systems pp. 203–213 (2011)

54. Yviquel, H., Casseau, E., Wipliez, M., Raulet, M.: Effi-
cient multicore scheduling of dataflow process networks.
In: Signal Processing Systems (SiPS), 2011 IEEE Work-
shop on, pp. 198 – 203. Liban (2011)

55. Zebelein, C., Falk, J., Haubelt, C., Teich, J.: Classifica-
tion of General Data Flow Actors into Known Models of
Computation. Proc. MEMOCODE, Anaheim, CA, USA
pp. 119–128 (2008)

