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A multidisciplinary study of the volcanoclastic deposit named “Chiancone”, ��

inland and offshore, in the frame of the evolution of volcanism in the Etna area  ��

Santo La Delfa*, Maria Giovanna Camuti and Giuseppe Patanè ��

Dipartimento di Scienze Geologiche, Università di Catania, Corso Italia, 56 I-95129 Catania-Italy ��

Abstract ��

In this work a detailed study about the volcanoclastic deposit pyroclastic cone called Chiancone is carried out by 98 ��

Vertical Electrical Soundings (VES) and by analysis of the surface morphology made by two Digital Elevation Model 	�

(DEM) with high resolution. The results seem to confirm what has been suggested by other researchers and shed some 
�

light on some dark aspects of this volcanoclastic deposit. In particular it was found that the Chiancone is quite a ���

complex geologic formation, whose deposition took place in several steps, filling in depressions of various conductive ���

substrate to depths of at least 300 m below the sea level. The conductive substrate generally shows a higher resistivity ���

than a clay one and is strongly tectonized and eroded. The multibeam surveys carried out offshore in the Ionian Sea, ���

allow us to idetify the geolithological nature of the substrate, never before detected in the past. They show the existence ���

of an outcrop of a large cone-shaped submarine pyroclastic body, about 600 m deep, covered, near the coast, by ���

Chiancone deposits. The authors believe therefore that this pyroclastic body may form "inland" the conductive substrate ���

of the formations outcropping in the studied area (lava and Chiancone) and representing the product of the demolition ���

of one or more existing volcanic apparatuses prior to the Trifoglietto and Mongibello, which was given, in the past, the �	�

name of Ancient Etna. �
�
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 ���

1. Introduction ���

In the past, Etna has been the subject of countless geophysical and geo-structural surveys and can be considered one of ���

the most studied volcanoes. It arose and grew along the eastern edge of Sicily, at the crossing point of two regional ���

tectonic structures (Fig. 1), which have aided magmatic migration within the crust and the formation of eruptive ���

apparatuses with a central rising axis, over a period of at least 150  ky B.P..  In this time interval several volcanic ���

edifices have developed, overlaying and juxtaposing on the ruins of previous ones. The deep geodynamic causes which �	�

determined the successive periods of growth and demolition of the various eruptive apparatuses are still not clear, but �
�

nonetheless the vast depressions called calderas represent the proof of a past dynamism, at times violent, in the Etna ���

area (Bousquet and Lanzafame, 2004; Branca et al., 2004). There were probably many types of phenomena which ���

caused the partial destruction of the various volcanoes and they developed over longer or shorter time frames.  They ���

were followed by the removal in various different ways of the volcaniclastics deposit as well as its depositing in the ���
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eastern sector of Etna. The volcanoclastics formed several fans of which the best known and most studied, in that they ��

still outcrop, are those called Chiancone (CH). This is a formation mostly constituted of an alluvial fan-shaped body ��

made up of debris flows and fluvial deposits, with differing degrees of compactedness, which occupy an area of about ��

25 km2 according to Kieffer (1985) or about 40 km2 according to Calvari and Groppelli (1996). The CH has a maximum ��

outcrop thickness of 30 m which can be seen along the Ionian coast (Olmo cliff) and a general slope of 3-4° eastwards. ��

The various calculations of its real volume and its extension are still under way and are based on data which are ��

sometimes unpublished hydrogeological surveys searching for water, and various types of onshore and offshore ��

geophysical surveys. The study of this geoformation is of notable scientific importance to explain the origin and 	�

evolution of the Valle del Bove, an ancient collapse depression formed following the destruction of various alkaline 
�

centres which existed before the Mongibello (AA VV, 1979). ���

According to Kieffer (1985) there are 4 opening phases of the Valle del Bove; the first two happened about  50 ky B.P. ���

and 35 ky B.P. and the lahars situated in the Macchia stream between Milo and Moscarello can be attributed to them. ���

According to Duncan et al. (1984), Guest el al., (1984), Chester et al., (1987), these lahars are probably associated with ���

the lower tephra (AA VV, 1979), dated around 26-20 ky B.P. and linked to the first event of  the Valle del Bove ���

opening.  The formation of the Chiancone in a strict sense, is instead associated to the last two phases which occurred in ���

the time frames  14-10 ky B.P. and 8-3 ky B.P.. Calvari and Groppelli (1996) hold that the Chiancone was deposited ���

during the life-span of the Ellittico volcano (40-15 ky B.P.) and so, the first event of the opening of the Valle del Bove ���

was much older than 5 ky B.P. as proposed by  Romano (1982), Cortese et al. (1988). In this work the authors studied �	�

the three-dimensional geostructural set-up of the pyroclastic body which crop out at medium-low altitudes of the eastern �
�

sector of Etna by studying the interpretation of 98 Vertical Electrical Soundings. This sector has been analysed in the ���

past by other researchers using various other geological and geophysical methodologies. The analysis carried out with ���

geo-electrics shows the existence under the CH of a conductive body which, in the past, researchers attributed to ���

sedimentary rocks. The interpretation of the apparent resistivity curves and the geostructural surveys suggest that this ���

conductor emerges in the southern zone of the area under study and is dislocated by various faults and should instead be ���

associated to some pyroclastic formations mostly cropping out along the surface of fault between Acireale and S. Tecla.  ���

The authors hold that this pyroclastic formation, older than the CH, might have been produced by the demolition of the ���

volcanic apparatuses which pre-existed the Ancient Alkaline Centres and the Trifoglietto, in agreement with Kieffer ���

(1985). �	�

 �
�

2. Tectonic and geomorphological features. ���

On the lower eastern side of Etna the largest volcaniclastic sequence in this sector of Sicily is exposed, whose geo-���

lithological and structural evolution is directly linked to the dynamism of the volcanism and tectonics.  This deposit, ���

mainly made up of volcaniclasts, which are called the Chiancone (CH), was deposited in a large depression generated at ���

the meeting point of two huge structures on a regional scale, oriented NNE-SSW (Messina-Giardini fault system) and ���

NNW-SSE (Ibleo-Maltese escarpment) (Fig. 1), (Cristofolini et al., 1979; Lentini, 1982; Monaco et al., 1995; ���

Lanzafame et al., 1996). It lies in an area bordered on the South by the S. Tecla fault oriented NW-SE (Fig. 2, faults a) ���

and to the North by the Macchia-Riposto fault (Fig. 2, fault i) oriented NE-SW, which are two seismically very active ���

volcanic-tectonic structures (Patanè and Imposa, 1995; Montalto et al., 1996; La Delfa et al., 2007). Moreover the CH is �	�
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cut across by various faults oriented NNW-SSE named the Timpe Fault System (TFS) (Fig. 2, faults c,d,e,f,l,m,n,p,q) ��

considered to be the inland extension of the Ibleo-Maltese escarpment; the TFS to the North shows mostly fragile type ��

deformations and also creep to the South (Stewart et al., 1993 a b; La Delfa et al., 2007). Along the southern edge of the ��

CH, a fault outcrops oriented NE-SW (Fig. 2, b) which has been historically active (Patanè and Imposa, 1995), but does ��

not appear on the geological map of Etna (AA.VV., 1979). On the Northern side two larger mesoseismic areas have ��

been found (Fig. 2, r,s) (Baratta, 1901), whose seismic-genetic axes are linked, respectively, to a non-outcropping ��

structure oriented roughly E-W (Fig. 2, g) and to the Macchia-Riposto fault (Fig. 2, i); this latter is shown by the ��

alignment of morphological  escarpments, by the unusual orientation of a lava flow and by checking the flow direction, 	�

roughly NE-SW, of the Macchia torrent (Fig. 2, i; Fig. 3). Finally, the NE extremity of the CH shows two 
�

morphological lineaments oriented NNW-SSE and NNE-SSW (Fig. 2, h,o), formed by small escarpments and by ���

sudden changes in the streams aligned along the two above-mentioned directions.  From a geological and genetic point ���

of view Rittmann (1973), McGuire (1982), and Romano (1982), considered the CH to have been formed by mud flows ���

associated with phreatomagmatic or phreatic explosive activity. According to Kieffer (1969, 1970, 1985), the CH is ���

mainly an alluvial deposit located on the top of mud flows; Di Grande and Di Maggio (1988) describe this formation as ���

an alluvial deposit more or less compacted and stratified. Guest et al. (1984) and Borgia et al. (1992), consider this ���

deposit as the product of erosion and landslides or dyke intrusion and lava overload which generate gravitational ���

instability, respectively. Along the Northern edge of the CH, the most ancient volcanics which outcrop are the lavas of ���

the Ancient Alkalic Centres (AAC) which lie under the  lower tuffs correlated to the Trifoglietto (AA.VV., 1979), the �	�

lavas of the Ancient Mongibello (Ellittico), the pyroclasts of the CH and the historical lavas (Fig. 3).  To the West, �
�

along the Northern edge of the Moscarello fault (Fig. 2, c; Fig 3), the Trifoglietto Unit lavas outcrop, which  lie under ���

the pyroclasts of the Ancient and Recent  Mongibello, the CH and historical lavas (Fig. 3). To the South between ���

S.Venerina and S.Tecla there are mostly outcrops of the Recent Mongibello and the historical lavas. Only along the S. ���

Tecla fault (Fig. 2, a) and along the escarpment East of Acireale, do the lavas associated with the AAC outcrop again. ���

On top of these latter lie the lavas, the lower tuffs and lahars of theTrifoglietto Unit (AA.VV., 1979), which are covered ���

on the top of the Recent and historical lavas of the Mongibello (Fig. 3). In the Digital Elevation Model (DEM) shown in ���

figure 4, two morphologically different zones can be distinguished which have been indicated as A and B. Zone A is ���

included in a triangular area whose corners are at the town of S. Venerina in the West and, in the East at two points ���

corresponding to the mouth of the Fago stream and at the southern-most tip of the town of Torre Archirafi, respectively. �	�

This area is particularly disturbed by faults oriented NNW-SSE which outline Graben structures (Fig. 2: faults c and d, e �
�

and f) and Horsts (Fig. 2: faults d and e) and is affected by various lava flows from the Recent Mongibello (Fig. 3). To ���

the East instead, there are some morphological structures , which have been described as a result of faulting, like the ���

sudden change in direction of the talweg of the Fago stream (Fig. 2, fault l; Fig. 4) and the escarpment at Praiola (Fig. 2, ���

fault m). Furthermore, Zone A has a hydrographic network made up of a few sub parallel streams oriented mostly ���

WNW-ESE. The talwegs show several interruptions in their stream probably caused by tectonic disturbances and the ���

various rectilinear stretches of drainage are often less than 2 km long. The water courses break off suddenly to the ���

WNW cut off by theTFS, or near a stream oriented about E-W, which crosses the whole CH and flows out north of ���

Priaola Piccola (Fig. 4). Slightly further north, oriented almost E-W, a watershed separates the drainage lines of Zone A ���

from those of Zone B, which is also triangular in shape (Fig. 4). In this latter zone there are many more small water �	�

courses which fan out and are generally oriented from WSW to ENE. In the eastern zone of Zone B, some stretches of �
�

drainage are often rectilinear, short, oriented E-W, WNW-ESE and NE-SW and are probably associated to tectonic ���
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structures oriented in the same directions. Along the coast, between Torre Archirafi and Riposto, the mouths of the ��

various water courses are at sea level. However, about 300 metres south of Praiola, the easternmost tip of the talweg of ��

a perched stream is at a height of 8 m a.s.l.. The largest value for this difference in height is about 20 m in a perched ��

stream located not far from Praiola Piccola, where the Olmo cliff (Fig. 3) is at its highest.  Further north the difference ��

in height of another perched stream reduces and reaches a height of about 8 m. According to Del Negro and Napoli ��

(2002) the settling of the CH took place in two different events. In the first one the volcaniclastic deposit filled the ��

trough south of a morphologic sedimentary high. In the second period, the volcaniclastic deposit filled another trough ��

located north of this morphologic high where it reached its maximum thickness (Fig. 4, B Zone). 	�

3. Lithological features of the Chiancone 
�

Various detailed surveys have been carried out on the granulometry of the volcaniclasts, on the means of transportation ���

and on the ages of some volcaniclastic deposits of the CH, through radiocarbon analysis (Kieffer,1985; Chester el al., ���

1987; Calvari andGroppelli,1996; Calvari et al., 2004). ���

Kieffer (1985) distinguishes between three main facies in the section of the Olmo cliff which runs along the Ionian Sea ���

coast (Fig. 3): ���

� a basal conglomerate (facies 1a) formed by little blunt lava blocks more than 1 m3  in size, immersed in an ���

abundant and compact reddish-brown matrix; this lithological facies which is considered as a layering of ���

different lahars, emerges for a few metres above sea level between Riposto and Torre Archirafi, and even ���

reaches a thickness of 3 metres to the south of this second town; 1 km south of Torre Archirafi it dips �	�

progressively below the overlying layer and re-emerges north of Praiola afterwards; �
�

� over this lies a conglomerate (facies 2a) made up of heterometrical lithological elements (from a few ���

centimetres to several metres in diameter), well blunt and immersed in an abundant matrix made up of ���

yellowish ash; this outcrops mainly south of Torre Archirafi as far as Praiola, and its thickness varies from 15 ���

to 20 m and has a fluvial type of stratification;  ���

� on the roof of this second facies lies a darker conglomerate (facies 3a) made up of black and grey but rarely ���

yellowish volcanic ashes, which contain mainly rounded pebbles of different sizes from a few centimetres to a ���

few decimetres and, sometimes, there are also some big blocks. This is formed by numerous stratified fluvial ���

deposits and is 10 m thick, 1 km north of Praiola; it is considered the result of the demolition and the ���

subsequent deposition of the underlying formation which, to the West, crop out at higher elevations.  �	�

 �
�

  Calvari and Groppelli (1996) have studied the CH sequence in detail from the stratigraphic, sedimentological and ���

petrographic points of view and have distinguished between 5 lithofacies: basal mud flow (lithofacies 1), debris flows ���

(lithofacies 2a), fluvial floods (lithofacies 2b), fluvial clast coarse grained (lithofacies 3), fluvial sand, silt, clay fine ���

grained and scattered lava clast (lithofacies 4), and pyroclastic fall and flow (lithofacies 5). The lithofacies 1 and 2a, the ���

lithofacies 2b and 3, the lithofacies 4 and 5, correspond respectively to the first, second and third facies proposed by ���

Kieffer (1985). Overall, if the thicknesses of the various layers are considered, the basal mud flow is only 5% of the ���

exposed lithologies. However this lithofacies, even though it outcrops discontinuously along the Olmo cliff, shows a ���

much greater thickness than the overlying ones, as the results of the geo-electric survey illustrated in paragraph 5 show. ���

 �	�
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 ��

  ��

4. Vertical Electrical Soundings ��

To obtain a detailed definition of the relationships between the various types of volcanic products and the sedimentary ��

basement, some geo-electric surveys and original sampling carried out in the Chiancone area by some geophysics ��

companies like the C.G.G., the C.M.P., the Universities of Catania, Milan and Palermo and Milan’s Geolab, ��

respectively, were taken into consideration. Overall the apparent resistivity curves of 98  Vertical Electrical Soundings ��

(VES) were analysed, which cover almost uniformly the area under study (Fig. 5). The VES were carried out using the 	�

classic type of electrode configuration as proposed by Schlumberger, with a maximum distance between current 
�

electrodes of 4000 meters. These soundings were performed after considering the morphology, geology and structural ���

lineaments of the area to minimize the effects due to strong lateral variation of resistivity, as well as to respect the ���

theoretical geometry configuration of the assemblage. The apparent resistivity curves have been grouped according to ���

the classification criteria of Hummell (1929) into six types, referred to as K, HK, KQ, QQ, KQQ and KHAK (Fig. 6,a). ���

Their features are typically those found in the Etna area and correspond to layers of more or less high resistivity, i.e. ���

volcanic products, superimposed on a conductive layer generally identified as sedimentary basement. The apparent ���

resistivity data were processed to obtain single-dimensional models (1D) of the real resistivity distribution and thickness ���

of each VES using Marquardt’s (1963) analytical technique. It consists of generating the best fit of experimental values ���

of apparent resistivity, thus giving a theoretical curve to which the best model of electric layers with various resistivity �	�

and thickness are associated (Fig. 6,b). Equivalent models are calculated through the theorem of constant transversal �
�

resistivity within the limits defined by the theoretical curve and that of the apparent resistivity. The resistivity anomalies ���

found in the experimental curve were then eliminated as they could mistakenly be interpreted as layers but which do not ���

actually exist. This was done through calculations of a matrix of coefficients, resulting from a combination of resistivity ���

and thickness. This procedure leads to a considerable reduction of error for the thickness, and makes possible a ���

comparison between the electrical and geological stratigraphy. In the area under study the lavas represent the least ���

common lithotype, while strong layers of both primary pyroclastic deposits and reworked volcanoclastics outcrop. ���

The resistivity of the lavas varies according to the degree of alteration, fracturing, porosity and the presence or absence ���

of water. The pyroclastic and volcanoclastic deposits show differing resistivities according to their granulometry (from ���

1 mm to a few metres or more), to their mineralogical make-up, to the degree of alteration and of humidity. The huge �	�

variability both laterally and in depth of the physio-chemical conditions of the two lithotypes in the sites where the VES �
�

were carried out, influenced the values of resistivity derived from the interpretation of the experimental electrical ���

curves. To correlate the various lithotypes to different classes of resistivity, a cumulative curve was preferred which ���

expresses as a percentage the number of times the resistivity values were measured (Fig. 7). Basically the curve shows 4 ���

classes of values and the relative frequency percentage:  � � 1200 ohm m,    1200 > � � 320 ohm m,   320 > � � 140 ���

ohm m,   � < 140 ohm m. The first one (� � 1200 ohm m), shows quite a low frequency percentage, and has higher ���

values for compact and/or fractured, porous lavas with low humidity; these are generally Recent Mongibello lavas. The ���

average and low resistivity values are associated instead with Recent or Ancient Mongibello lavas which are deeper, ���

altered and more humid. The second class of values (1200 > � � 320 ohm m), is found in the most superficial zone of ���

the CH. The highest values of resistivity are attributed to the presence of lava blocks bigger than 1 m3, very frequent, �	�

immersed in a fine grain matrix. The lowest values are associated to a fine grain matrix, mostly on larger lithological �
�
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elements with a higher degree of humidity. This class of resistivity thus corresponds to the second facies proposed by ��

Kieffer (1985). The third class of resistivity (320 > � � 140 ohm m), is mostly associated to the deepest layer of the CH, ��

where there are abundant fine grain volcaniclasts with high humidity. This class corresponds to the first facies of ��

Kieffer (1985) and of Calvari and Groppelli (1996), less superficial, which discontinuously outcrops along the Olmo ��

cliff. However the interval of resistivity of the third class can also correspond to the more superficial layers of ash fall ��

and reshuffled volcaniclasts which correspond to Kieffer’s third facies  (1985). Finally, the fourth class of resistivity (� ��

< 140 ohm m), is associated to a deeper conductive formation (Table I) which, according to some researchers, ��

corresponds to sedimentary rocks like, for example, clay (Del Negro and Napoli, 2002). The correspondence between 	�

the various classes of resistivity and the above-mentioned lithofacies was obtained by means of carrying out calibration 
�

VES readings near boreholes up to 300 m deep, of which there are many in the area under study and of which the ���

detailed stratigraphy is well-known. VES readings taken near faults and deep incisions in the Chiancone and the ���

surrounding area were also taken into account. Here there is a clear stratigraphy of the Chiancone which was used to ���

calibrate and correlate correctly the resistivity parameter with the various lithofacies. Moreover, the optimal area ���

distribution of the VES, which take readings in numerous geologically significant points, makes the extrapolation of the ���

relationships between lithofacies and classes of resisitivity to the whole area under study reliable.  The methodology ���

used is the most common and the most appropriate one for exploring the geolithological features of an area, in this case ���

the Chiancone, using the results of the apparent resisitivity soundings in situ. Obviously the transfer of the geo-electrical ���

information to the various lithological and structural aspects of the area under study was carried out also bearing in �	�

mind the relationships of the overlapping and juxtaposition of the different outcropping geological formations, and that �
�

the various classes of resisitivity have been recognised in volcanic formations other than that of the Chiancone, as can ���

be seen from the geological map of Mount Etna (AA. VV. 1979) and other detailed scientific studies.  ���

 ���

 ���

5. Analysis of the results ���

To further analyse the geometric relationships which exist between the various classes of resistivity and thus, the ���

relationships of overlaying and juxtaposition of the lithofacies associated to these classes, the spatial trend of resistivity ���

and thicknesses relative to the 73 VES was represented through five profiles. Four mostly cut the CH in a NNE-SSW ���

(A,B,C) and ENE-WSW direction (D), the fifth (E) in direction NNE-SSW cuts across the S.Tecla fault and only �	�

marginally includes the CH (Fig. 5).  Along profile A (Fig. 8), the CH is mostly represented by the 3rd class of �
�

resistivity values which lies directly on the conductive substratum (4th class). Proceeding from the SSW to the NNE, in ���

the first half of the profile, the 1st class, attributed to the lavas, lies directly on the conductive substratum or on the 3rd ���

class of resistivity. It is on this latter, in the second half of the profile,that the CH terrains attributed to the 2nd class ���

mostly lie, but they are not very thick, generally less than 40 metres. The trend of the roof of the conductive substratum ���

(4th class) is very variable and shows a sharp downward dislocation towards the NNE of the profile. In profile B (Fig. ���

8), oriented like the previous one, the 3rd  and 4th  classes show the same overlapping observed in profile A. In the ���

second half of the profile, towards the NNE, the 4th class (conductive substratum) is noticeably dislocated downwards ���

and its roof reaches a depth of 160 m b.s.l.. The roof of the 3rd class however, stays above sea level and on it lie the ���

electrostrata belonging to the other three classes of resistivity. The 2nd class is more frequent and shows thicker �	�
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electrostata compared to those of profile A. The northernmost tip of profile C (VES 1-9; Fig. 8) includes the remains of ��

an ancient volcanic apparatus located north of Macchia (Cristofolini et al. 1982) made up of alternating lavas and ��

pyroclasts (1st, 2nd and 3rd classes of resistivity) which lie on the conductive (4th resistivity class) most probably formed ��

by sedimentary terrains. The roof of the conductive dips down towards the SSW to a depth of about 400 m b.s.l.. This ��

depth varies a lot and remains below sea level at the town of S. Venerina (Fig. 8), where the zone of lava invasion starts ��

(Fig. 3). To the South, the conductive rises above sea level. The 3rd class of resistivity, associated with the deepest ��

facies of the CH, shows a greater thickness along the tract of the profile between Macchia and S. Venerina (VES 10-��

22), to the SSW of VES22, the thickness of the electrostratum relative to this class is notably reduced and in many VES 	�

results does not appear. The CH terrains associated to the 2nd class are more frequent and, in many VES, are thicker than 
�

those found in profiles A and B, when they lie directly on the conductive stratum. Profile D (Fig. 8), goes from WSW to ���

ENE and its conductive substratum has a very variable depth. Between the two classes of resistivity associated with the ���

CH, the most common is the 3rd, while the 2nd narrows noticeable from west to east.  The lavas, 1st class, sporadically ���

appear at the WSW tip of the profile. Lastly, profile E cuts across the S. Tecla fault (Fig. 8). NE of this structural ���

discontinuity the 1st, 2nd, 3rd and 4th classes of resistivity become prevalent, the latter of these classes outcrops at the ���

base of the escarpment of the above mentioned fault. To the SW again the three above mentioned classes prevail ���

showing, however, much greater thicknesses. The 3rd class is less frequent and along with the 2nd class are probably ���

associable to different pyroclasts from those outcropping in the CH, ascribable to the Trifoglietto (AA. VV., 1979). ���

After having correlated the four classes of resistivity to the lithological facies along these profiles, the relationship �	�

which exists between these latter in three-dimensional space was studied. For this the VES results not yet included, �
�

because they were too far from the previously analysed five profiles, were taken into consideration. Later three 2D and ���

3D sketches were reconstructed (Fig. 9:1,2,3). In particular the figure 9:1 shows the surface morphology of the studied ���

area in which lavas and Kieffer’s 2nd and 3rd facies outcrop (Kieffer, 1985); the deepest level of the CH (Kieffer’s 1st ���

facies, 1985) and the basal conductive formation are respectively shown on figure 9:2,3. Moreover, on both the 2D and ���

the 3D sketches, the outcropping and two buried active faults linked to the 18-19 July 1865, 27 July 1979 (Baratta, ���

1901), earthquakes and the morphological alignments are shown (see also Fig. 2). The 3D sketch in figure 9 clearly ���

shows that the flow of the pyroclasts and lavas happened along two main directions indicated by the grey arrows (Fig. ���

9:1). The morphological trend of the surface of the deepest layer of the CH (Fig. 9:2), mirrors that of the surface ���

topography and so the flow of pyroclasts associated to this facies follows that of the lithofacies nearer the surface. This �	�

movement seems to be conditioned by the unique morphology of the conductive substratum which shows some quite �
�

deep depressions west of Torre Archirafi and of Pozzillo, separated by a watershed oriented roughly E-W located ���

slightly north of Pozzillo (Fig. 9:3,H). These depressions were filled by the deepest facies of the CH which climb over ���

the morpho-tectonic steps near and under the present day coastline (Fig 9:3) pouring out into the Ionian Sea. Overall, ���

there is a total inversion of the morphological relief and a complete masking of the morphology of the conductive ���

substratum. A detailed analysis of the relationship of the overlaying and juxtaposition between the four electrostrata was ���

carried out considering seven sections: four are oriented in a roughly N-S direction (Fig. 9:2,3; Fig.10,A,B,C,D) and ���

three in a roughly E-W direction (Fig. 9:2,3; Fig.10,E,F,G). The traces of these sections were also transferred to ���

geological maps (Fig.3) so as to correlate spatially the various electrostratigraphs and the corresponding outcropping ���

volcanological formations. The lavas (1st class of resistivity) are in the southern zone (Fig. 3; Fig. 10,B,C,D) and the �	�

western one (Fig. 3; Fig. 10,E,F,G) of the area under study, lying mostly on the CH and at times on the conductive �
�

substratum; these become thicker towards the W and generally fill the morphological lows. The stratigraphic sequences ���
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revealed in the three wells located respectively at S.Venerina (350 m a.s.l.), 1 km to the SW and 2 Km SE of the same ��

location, are in accordance with the interpretation of the VES, clearly show that the lava covering is generally thin, little ��

more than 80 metres thick, and that below it the CH extends down for at least another 60 metres. The facies of the CH, ��

made up of fine grain, large volcaniclasts (2nd class of resistivity), becomes ever thicker (from a few tens to a hundred ��

or so metres) from East to West and mostly outcrops in the area under study and along the coast (Olmo cliff). It is often ��

dislocated by faults as shown in the various sections of figure 10. The deepest facies of the CH (3rd class of resistivity), ��

where there are abundant fine grain volcaniclasts, shows very variable thicknesses due to the very uneven morphology ��

of the conductive substratum. This facies reaches up to 400 metres thick west of Torre Archirafi (Fig. 10,B), and is full 	�

of morphological lows and narrows from N to S. It is dislocated by most of the faults found on the surface (continuous 
�

lines) and by others which do not crop out (dashed line) hypothesized on the basis of the rather complex trend of the ���

two surfaces which distinguish its top and bottom (Fig. 10). At the Olmo cliff it outcrops discontinuously with a ���

thickness of a few metres and (Kieffer, 1985; Calvari and Groppelli, 1996). Finally, the conductive substratum (4th class ���

of resistivity) shows a rather rough surface formed by horsts, with very steep walls and grabens that are at times deep ���

and narrow. This morphology, in our opinion, was determined by intense erosion, which has operated over a long time ���

period, modelling it together with the volcani-tectonic activity in this area. The conductive substratum rises up again ���

near the North of Torre Archirafi, Praiola North forming morpho-structural steps  (Fig. 10,E,F) and outcrops near ���

S.Tecla dislocated by a fault (Fig. 9:3, fault b; Fig.10,B, fault b). Quite a deep excavation carried out in this latter ���

location showed the presence of a very fine grain, dark red pyroclastic formation, (dark red because it is very oxidized), �	�

with a resistivity of less than 140 ohm m associable to the conductive substratum of an indefinite thickness, at least in �
�

this area. In accordance with Del Negro and Napoli (2001), under the less thick CH, to the NW of Pozzillo and near ���

S.Venerina (Fig. 10,B,C,D), the substratum rises up again. This latter, according to the two researchers, should be ���

formed by clay. In our opinion, instead, it may be formed by the above-mentioned pyroclastic formation with low ���

resistivity, represented by the 4th class which extends towards the North.  ���

 ���

6. Conclusions ���

The detailed geo-lithological and electrical study of the volcanic formations (lavas and pyroclasts) cropping out in the ���

triangle formed by the towns of S.Tecla, S.Venerina and Giarre-Riposto, was fundamental to improving our knowledge ���

of the evolution of volcanism in the Etna area. The geo-lithological, sedimentological and textural analyses of the CH’s �	�

uppermost layers which crop out, clearly show that it was formed during successive episodes with various modes of �
�

genesis and transport of the volcaniclasts (Kieffer, 1985; Calvari and Groppelli, 1996) and its formation required overall ���

a period of 40-50 ky. Del Negro and Napoli (2002), during an onshore magnetic soundings  found a morphological ���

high, oriented E-W, of the sedimentary substratum. This high borders two troughs: the southern shallower one was ���

filled by the CH mostly masked by the Mongibello lavas, while the northern one, which is deeper, seems to have been ���

filled in later. The geoelectric soundings carried out in this study confirms what Del Negro and Napoli (2002) state. ���

However, it highlights that the conductive substratum (which is sedimentary according to Del Negro and Napoli, 2002) ���

shows a rather complex morphology determined by strong erosive processes and by frequent faulting, which give it ever ���

deeper horsts and grabens going from South to North (Fig. 10,B,C,D). Moreover the CH’s surface morphological ���

characteristics analysed with a DEM show the existence of two zones A and B which are susbstantially different.  Zone �	�

A is affected by relatively few sub parallel streams where the water run-off was interrupted or drastically reduced due to �
�



  


�

�

lava invasions uphill of these watercourses. The notable dynamics of the faults oriented NNW-SSE and the pyroclasts ��

deposited later further North, in area B, where the flow lines are more numerous, must have also played a determining ��

role: the dynamics of the faults contributed to deviating the water drainage, both the pyroclasts and the lava flows ��

partially invaded the hydrographic network of the valleys in Zone A, filling it up.  This succession of events suggests ��

the hypothesis that the surface pyroclastic facies of the CH were laid down at different times, first in the South and later ��

in the North. A similar conclusion can be reached by observing that the eastern side of the Etna Caldera shows a breach ��

to the SE (AA.VV. 1979). It is indeed possible that the various pyroclastic flows were channelled through this opening ��

towards the SSE and were deposited first in Zone A,  in front of the opening itself and later in Zone B. Moreover the 	�

conductive substratum morphology, affected by various grabens North and South of the watershed H oriented ESE-
�

WNW (Fig 9:3) in our opinion, contributed to the above-mentioned depositing of the pyroclastic flows. Lastly, the ���

overlapping found between the body of Zone B and that of Zone A is highlighted by the geometry of the offshore ���

border between the two bodies (Fig.11), which seems to be further confirmation of what has been previously asserted.  ���

The slower water run-off towards the sea, moreover, determined a reduction in erosion in Zone A, which is slowly ���

uplifting. So along the coast, between the mouth of the Fago stream and Praiola Piccola (Fig. 4) where the Olmo cliff ���

has quite a high wall, there are several talwegs of watercourses, perched at different heights above sea level. The drastic ���

reduction in erosion must have begun about 13,000±2,600 years BP, if we consider the maximum difference in height ���

of 20 metres of one of the watercourses and an average uplift (rise) of 1.5 mm/year (between 1.0 and 2.1 mm/year ���

according to Monaco et al., 1995). According to Kieffer (1985) between 14,180 years (age determined by C14) and �	�

12,000/10,000 years BP, the Ellittico Crater was formed, the penultimate phase in the opening of the Valle del Bove �
�

occurred together with the subsequent deposition of the outcropping lowest CH levels. The above mentioned time span ���

overlays, surprisingly, the one found during the drastic decreasing in the erosive phenomena. It is plausible, therefore, ���

that the different hydrographies of Zones A, B and to the South of the Fago stream were determined by a strong ���

volcanic-tectonic dynamism of Etna in this period. North of Praiola Piccola the coast becomes quite low, probably due ���

to the fact that the volcanic-tectonic phenomena, and subsidence caused by the great thickness of the CH, work against ���

the general uplifting of the area.  A crucial point in this study was that of determining the geo-lithological nature of the ���

conductive substratum which is often considered a non-volcanic sedimentary deposit (Bousquet et al., 1998; Del Negro ���

and Napoli, 2002), probably clay. In all the geognostic surveys deeper than 200 m whose results are known to the ���

authors, no clay has ever been found, only pyroclasts. Moreover, the interpretation of the experimental curves of �	�

apparent resistivity rarely give values around 2 ohm m or, however, very low ones typical of clays. In any case, �
�

resistivity values lower than 10 ohm m can also be attributed to levels of fine grain pyroclasts, which are much altered ���

and/or very humid. An unhoped for solution to this problem comes from the offshore multibeam surveys, carried out ���

near the Ionian coast of Etna, within the “Campagna Oceanografica 1908, Progetto V36 Etna”, in which researchers ���

from the Universities of Rome, Calabria, Palermo and Catania (INGV) took part and whose results were partially ���

published in a degree thesis written for the Department of Geological Science of the University of Catania (Cavallaro, ���

2005-2006). Figure 11 clearly shows that offshore there is a geological fan-shaped body, indicated as C, underlying the ���

CH and with a main flow axis independent of those indicated as a and b onshore. In the same zone, Del Negro and ���

Napoli (2002) found a volcaniclast body which they considered still part of the CH (Fig. 12). In particular the pyroclasts ���

in Zone B, to the South lie on the geological body C as can be seen from the reciprocal contact between the two �	�

offshore formations. Instead to the North, again offshore, they cover the sedimentary rocks, partially filling a morpho-�
�

tectonic depression oriented NE-SW (Riposto Canyon). The CH in Zone A and the lavas further south cover most of the ���
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body C onshore. In our opinion, the pyroclasts of the body C are genetically different from those of the CH, because ��

they lie from a stratigraphical point of view under this latter and show a sharply lower resistivity, less than 140 ohm m. ��

Such a low value can be associated to a much altered pyroclastic formation, rich in fluids and probably, very old. This ��

latter statement is supported by the consideration that, onshore, the surface morphology of the body C, identified in this ��

study as the conductive basement, is very rough due to erosion and tectonic phenomena which have been operating for a ��

long time. Finally, the top of the conductive substratum found under the southern edge of Zone A (Fig. 9,H) and ��

situated slightly further north of Pozzillo, corresponds, in our opinion, to the top of the pyroclastic body C (Fig. 11). It ��

was this latter that guided the flow of the CH’s volcaniclasts towards Zones B and A. To the South it also controlled the 	�

flow of the lava towards S.Tecla. Offshore, the pyroclastic body C reached a depth of 500 m b.s.l. banking up against 
�

the  ancient underwater volcanic apparatus (Patanè et al., 2009). This bank can be seen in the differences in the sea-floor ���

morphology around the edges of bodies C and D (Fig. 11,D). ���

On the basis of these considerations, various conclusions can be drawn.   ���

� In the CH’s pyroclasts there are various lithological facies which were generated 50-40 Ky B.P., in particular ���

violent geodynamic manifestations of the volcano (various opening episodes of the  Valle del Bove, strong ���

hydromagmatic, strombolian explosions, etc.). ���

� In various phases, the CH’s volcaniclasts have occupied some Grabens of the pyroclastic body C, which is in ���

southern zone of the area studied (La Delfa et al., 2007). In the northern zone, a tectonic depression as deep as ���

400 m and oriented WNW-ESE (Fig. 9:3), accommodated most of the pyroclastic flows. The North face of this �	�

ditch, towards Giarre-Riposto seems to be made up of non-volcanic sedimentary rocks, while the South face is �
�

formed by the pyroclasts from the geological body C, as the offshore multibeam surveys show (Fig. 11). ���

� The CH’s pyroclasts poured into the sea reaching a maximum depth of 100 m b.s.l. (surveys by the “Istituto ���

Idrografico della Marina”, 1993), near Torre Archirafi, overcoming two morpho-tectonic steps: the ���

sedimentary one North of Torre Archirafi (Fig. 9:3; Fig. 10,E) and the pyroclastic one (body C), South of ���

Torre Archirafi, near Praiola Piccola (Fig. 4). In accordance with our results, Loddo et al. (1989) using deep ���

dipole measurements found a rise in the non-eruptive substratum in the same area along the coast.  ���

� Considering the presence of morpho-structural steps near the coast and the different depth of the base of the ���

CH to the west (about 300 m, below the sea level) and to the east, off the coast line (at about 100 m below the ���

sea level) of these steps, the possibility that the impact of the mass of the detritus, although quite modest, �	�

falling into the Ionian Sea may have caused a tsunami wave (Pareschi et al., 2006) big enough to affect the �
�

central-eastern Mediterranean about 8 000 years B.P. is excluded, in our opinion.  Indeed, as is known, the ���

CH’s pyroclasts were deposited in various successive episodes, over quite a long time frame (40-50 ky) and ���

considering the particular morphology of the conductive substratum in the area under study, they mostly filled ���

the various existing depressions to the west of these steps, interacting only a bit with the waters of the Ionian ���

Sea.   ���

Instead, in our opinion, what is much more interesting is the existence of the pyroclastic body C which extends out into ���

the Ionian as far as 5 km from the coast and which forms, onshore, most of the conductive substratum under the CH. ���

This latter, on the basis of the morpho-structural and geo-electrical analyses carried out, is completely distinct from the ���
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underlying fan-shaped geological body indicated as C. The authors of this study hold that it may have had a similar ��

origin to the CH and that it is the product of the demolition of one or more eruptive apparatuses which pre-existed the ��

Trifoglietto volcano. In fact, according to Kieffer (1985) between 150,000 and 70,000 ky B.P. there was an “Etna ��

ancient” which evolved in two phases. During the first phase which lasted about 50 ky, a vast, quite flat apparatus built ��

up followed by its partial destruction, as a system of calderas formed. During the second phase, which lasted about 30 ��

ky, a large new apparatus built up with much more explosive activity and later it was partially destroyed. Following this ��

violent activity many lahars were deposited on the eastern side of the volcano, outcropping along the Acireale and S. ��

Tecla Timpas due to very frequent uprising and faulting phenomena in the area under study.  The lithotype outcropping 	�

around S.Tecla (Fig. 5) and found also in profile E of figure 8 to the South of Pozzillo, with resistivity lower than 140 
�

ohmm (4th class), seems mostly to be made up of these lahars. These make up the conductive substratum of the CH, ���

corresponding to the 4th class of resistivity (�< 140 ohmm). It is therefore possible that the fan-shaped structure found in ���

the Ionian Sea was formed between 100,000 and 70,000 ky B.P. from the product of the demolition of the "Etna ���

ancient”. This time span also ties in with the dating carried out by Corsaro et al. (2002), on various pyroclastic bodies ���

outcropping in the Acireale and S. Tecla Timpa, which are aged between 125 and 65 ky B.P. Finally, the underwater ���

volcanic apparatus in front of the Ionian coast of Etna (Patanè et al. 2009) acted as a impediment to the pyroclasts flux ���

of the body C (Fig. 10; Fig. 11), which partially overlaid the western flank of this apparatus. Thus it is held that it may ���

be the same age the “Etna ancient” or that it may, however, be older than 100 ky B.P.  ���
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Figure captions ��

Fig. 1 - Sketch map of Sicily: the main regional structures are shown of the eastern edge of the island and the area of ��

Etnean volcanism  (A); the inset A shows the studied area (in grey) and the location of the Chiancone (CH). ��

Fig. 2 – Structural framework of eastern sector of Etna: a,b,c,d,e,f,m,n,p,q are dip-slip normal faults with a little strike-��

slip movements; l is a strike-slip fault; g is a buried fault, linked to mesoseismic area r of 18-19th July 1865 earthquake, ��

i is Macchia-Riposto fault linked to mesoseismic area s of 27th July 1879 earthquake (Baratta, 1901); h,o lineament with 	�

structural meanings. The Digital Elevation Model (DEM) 3D, has been made using a topographic map with 1:2000 
�

scale. ���

Fig. 3 – Geological sketch of the outcropping volcanic products, according to AA.VV. (1979): (1) lavas, tephra and ���

tuffaceous sediments from the Ancient Alkalic Centres; (2) lower tuffs (Trifoglietto Unit); (3) products of the Ellittico ���

and Leone eruptive centres (Ancient Mongibello). (4) Chiancone; (5) a) historical lavas of the Recent Mongibello, b) ���

not dated Ancient and Recent Mongibello lavas; (6) recent alluvium; (f) fault; (l) structural lineaments; the electro-���

stratigraphic sections A-G (see Fig 9 and 10) are drawn on the geological map to aid correlation between lithotypes and ���

electrostrata.  ���

Fig. 4  - Hydrography of the area where the Chiancone outcrops; a watershed separates  zone A, where the watercourses ���

are oriented WNW-ESE, from zone B, where the watercourses flow more in an ENE-WSW direction. �	�

Fig. 5 – The map shows the location of the 98 Vertical Electrical Soundings (VES) and of the resistivity profiles  �
�

A,B,C,D,E. ���

Fig. 6 – (a) Types of apparent resistivity curves; (b) best fit of experimental values of apparent resistivity (left) and best ���

model of electric layers associated (right) by using the technique of Marquard (1963). ���

Fig. 7 – Cumulative curve of resistivity values obtained through the interpretation of experimental curves; it shows ���

basically four classes of values with different frequency percentages (see text).   ���

Fig. 8 – The letters A,B,C,D,E and the numbers from 1 to 98 indicate, respectively, the resistivity profiles and the VES ���

shown on the map in Fig. 5; 1st, 2nd, 3rd, 4th classes are the resistivity classes obtained using the cumulative curve in Fig. ���

7. ���

Fig. 9 – (1) Morphology of the area under study, on the horizontal plane and in 3D: a,b,c,d,e,f,i,l,m,n traces of �	�

outcropping faults; g buried fault; h,o, structural lineaments (see also Fig.2); A and B, main lines of run-off of the most �
�

superficial lithofacies of the Chiancone indicated in the text as 2a and 3a (Kieffer, 1985); the white dashed line ���

separates the two zones with different run-off.  (2) Morphology on the horizontal plane and in 3D of the surface of the ���

Chiancone’s lithological facies 1a which is deeper and outcrops (Kieffer, 1985) correlated to the 3rd  resistivity class ���

(Fig. 8): the lower case letters a,b, etc. have the same meaning as those shown in point (1);  A,B,C,D,E,F,G, are the ���

traces of the sections shown in Fig.10. (3) Morphology on the horizontal plane and in 3D of the surface of the ���

conductive body which is considered the basal formation with 4th resistivity class  (Fig.8): the lower case letters a,b, etc. ���

have the same meaning as those shown in point (1); the two horizontal surfaces (2 and 3) shows the traces of the ���

sections A,B,C,D,E,F,G; the horizontal surface (3a) show the traces of the various types of fault and structural ���

lineaments (in white).  �	�

Fig. 10 – The sections oriented roughly N-S (A,B,C,D) and E-W (E,F,G) show the trend at depth of the various �
�

electrostrata and of the lithotypes correlated to these latter as follow: 1st class, electrostratum with �� 1200 ohm m ���

correlated to the lavas; 2nd class, electrostrata with 1200>��320 ohm m and 320>��140 ohm m, correlated to Kieffer’s ���

(1985) lithofacies 2a and 3a, respectively deeper and more superficial; cl.3, electrostratum with 320>��140 ohm m ���

correlated to Kieffer’s (1985) deepest lithofacies indicated with 1a; 4th class, electrostratum with �<140 ohm m ���



  

���

�

corresponding to the conductive substratum.  1) Remains of an eruptive apparatus located in the North-western sector of ��

the area under study; 2) SR, Sedimentary Rocks; SR?, Sedimentary Rocks or very altered and/or humid volcaniclasts; 3) ��

faults hypothesized on the basis of the morphology of the surfaces which border the electrostrata; a-m, outcropping ��

faults. The locations indicated in the sections are those located along the coast and easily allow correlation of the ��

variations of the geometry of the electrostrata in N-S and E-W directions.  ��

Fig. 11 – A and B are the areas of outcropping of the Chiancone inland and offshore; a and b (white arrows) represent ��

the main lines of flow off of the Chiancone’s volcaniclasts and of the overlaying lavas; C is the area of offshore ��

outcropping of the pyroclastic body underlying the Chiancone and the white arrow represents the corresponding main 	�

line of off flow of the volcanoclastic body in the area C; this line, inland, is that of the underground watershed H shown 
�

in Fig.9; D represents the NW flank of the underwater volcano (Patanè et al., 2009) which is 100,000 years B.P. older; ���

SR Sedimentary Rocks. ���

Fig. 12 – Inland and offshore deposits of the Chiancone according to Calvari and Groppelli (1996), Bousquet et al. ���

(1998), Del Negro and Napoli (2002).  ���

Table I -  Correlation between resistivity classes and lithofacies. ���
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 ��

On the basis of our considerations, various conclusions can be drawn.   ��

� In the CH’s pyroclasts there are various lithological facies which were generated 50-40 Ky B.P., in particular ��

violent geodynamic manifestations of the volcano (various opening episodes of the  Valle del Bove, strong ��

hydromagmatic, strombolian explosions, etc.). ��

� In various phases, the CH’s volcaniclasts have occupied some Grabens of the pyroclastic body C, which is in ��

southern zone of the area studied (La Delfa et al., 2007). In the northern zone, a tectonic depression as deep as ��

400 m and oriented WNW-ESE (Fig. 9:3), accommodated most of the pyroclastic flows. The North face of this 	�

ditch, towards Giarre-Riposto seems to be made up of non-volcanic sedimentary rocks, while the South face is 
�

formed by the pyroclasts from the geological body C, as the offshore multibeam surveys show (Fig. 11). ���

� The CH’s pyroclasts poured into the sea reaching a maximum depth of 100 m b.s.l. (surveys by the “Istituto ���

Idrografico della Marina”, 1993), near Torre Archirafi, overcoming two morpho-tectonic steps: the ���

sedimentary one North of Torre Archirafi (Fig. 9:3; Fig. 10,E) and the pyroclastic one (body C), South of ���

Torre Archirafi, near Praiola Piccola (Fig. 4). In accordance with our results, Loddo et al. (1989) using deep ���

dipole measurements found a rise in the non-eruptive substratum in the same area along the coast.  ���

� Considering the presence of morpho-structural steps near the coast and the different depth of the base of the ���

CH to the west (about 300 m, below the sea level) and to the east, off the coast line (at about 100 m below the ���

sea level) of these steps, the possibility that the impact of the mass of the detritus, although quite modest, �	�

falling into the Ionian Sea may have caused a tsunami wave (Pareschi et al., 2006) big enough to affect the �
�

central-eastern Mediterranean about 8 000 years B.P. is excluded, in our opinion.  Indeed, as is known, the ���

CH’s pyroclasts were deposited in various successive episodes, over quite a long time frame (40-50 ky) and ���

considering the particular morphology of the conductive substratum in the area under study, they mostly filled ���

the various existing depressions to the west of these steps, interacting only a bit with the waters of the Ionian ���

Sea.   ���

����

 ���




