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Double-diffusiv e conv ection in a rotating cylindrical annulus with conical caps

R adostin D. S imitev

School of Mathematics and Statistics, University of Glasgow – Glasgow G12 8QW, UK, EU

Abstract

Double-diffusiv e conv ection driv en by both th ermal and compositional buoyancy in a rotating cylindrical annulus with conical caps

is considered with th e aim to establish wh eth er a small fraction of compositional buoyancy added to th e th ermal buoyancy (or v ice

v ersa) can sig nifi cantly reduce th e critical R ayleig h number and amplify conv ection in planetary cores. I t is sh own th at th e neutral

surface describing th e onset of conv ection in th e double-buoyancy case is essentially different from th at of th e well-studied purely

th ermal case, and does indeed allow th e possibility of low-R ayleig h number conv ection. In particular, isolated islands of instability

are formed by an additional “ double-diffusiv e” eig enmode in certain reg ions of th e parameter space. H owev er, th e amplitude of

such low-R ayleig h number conv ection is relativ ely weak . A t similar fl ow amplitudes purely compositional and double-diffusiv e

cases are ch aracteriz ed by a strong er time dependence compared to purely th ermal cases, and by a prog rade mean z onal fl ow near

th e inner cylindrical surface. Implications of th e results for planetary core conv ection are briefl y discussed.

Keywords: double-diffusiv e conv ection, buoyancy-driv en instabilities, planetary core

1 . I n tro d u ctio n

C onv ection in th e cores of th e E arth and th e terrestrial planets

is of sig nifi cant interest as it driv es th e dynamo processes th at

g enerate and sustain th e g lobal mag netic fi elds of th ese bod-

ies ( K ono and R oberts, 2 0 0 2 ; J ones, 2 0 0 7 ) . C ore conv ection

is a double-diffusiv e process driv en by density v ariations due

to non-uniform temperature and composition (B rag insk y and

R oberts, 1 9 9 5 ) . W h ile ouble-diffusiv e ph enomena are well-

studied in oceanog raph y, metallurg y, mantle conv ection and

oth er contex ts ( H uppert and Turner, 1 9 8 1 ; Turner, 1 9 7 4 , 1 9 8 5 ;

S ch mitt, 1 9 9 4 ) , th eir manifestations in core conv ection remain

poorly understood. It is th oug h t th at th ermal and compositional

buoyancy in th e E arth ’s core h av e comparable streng th ( L is-

ter and B uffett, 1 9 9 5 ; N immo, 2 0 0 7 ) , and th at temperature and

concentration of lig h t elements h av e widely different molecu-

lar diffusiv e time scales, boundary conditions and source-sink

distributions (B rag insk y and R oberts, 1 9 9 5 ) . Y et, most plane-

tary and g eo-dynamo models consider only th ermal conv ection

or, at best, lump temperature and concentration into a sing le

“ codensity” v ariable. Th e last approach is poorly justifi ed, as

it is only v alid for eq ual diffusiv ities and identical boundary

conditions. Indeed, wh ile eddy diffusiv ities due to small-scale

turbulent mix ing tend to attain similar v alues, th e turbulence in

many cases, e.g . weak ly-conv ecting stratifi ed layers, may not

be as fully dev eloped to wipe out th e larg e differences in mole-

cular diffusiv ities ( B usse and S imitev , 2 0 1 1 ) . A t th e same time,

relativ ely small v ariations in diffusiv ity ratios may h av e sig -

nifi cant dynamical effects (e.g . S imitev and B usse, 2 0 0 5 ) . S o

far, only few studies h av e been publish ed wh ere th ermal and
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compositional buoyancy are considered separately. C ardin and

O lson (1 9 9 2 ) performed an ex perimental inv estig ation of th er-

moch emical conv ection in rotating sph erical sh ell. A double-

diffusiv e numerical dynamo model with a partly stable th ermal

g radient and destabiliz ing compositional component h as been

recently studied by M ang lik et al. ( 2 0 1 0 ) , as a situation lik ely

applicable to M ercury. V arious driv ing scenarios wh ere th ermal

and compositional g radients are both destabiliz ing h av e been

ex plored numerically by B reuer et al. ( 2 0 1 0 ) . A ll of th ese pa-

pers report sig nifi cant differences in th eir results to th e sing le-

diffusiv e (codensity) case and emph asiz e th e need for furth er in-

v estig ation. Th e onset of double-diffusiv e conv ection in an ax -

isymmetric rotating system h as been studied by B usse (2 0 0 2 b)

in certain asymptotic limits, and it was found th at a small frac-

tion of compositional buoyancy could sig nifi cantly reduce th e

critical R ayleig h number, and th us amplify core conv ection.

Th is prediction is potentially v ery important, as it may sh ed

lig h t on th e th ermodynamic state of th e core and th e energ y

budg et of th e g eodynamo. H owev er, concerted numerical sim-

ulations h av e so far failed to confi rm it ( B reuer et al., 2 0 1 0 ) .

W ith th is motiv ation, th e g oals of th is letter are to establish

th e possibility of low-R ayleig h number double-diffusiv e con-

v ection, and to elucidate th e mech anisms by wh ich th ermal and

compositional buoyancy interact. To th is end, a simple model

of a rotating cylindrical annulus with conical end caps is con-

sidered h ere. Th is model h as been v ery useful in capturing th e

basic beh av iour of nearly g eostroph ic conv ection in th e eq ua-

torial reg ions of planetary cores ( B usse, 2 0 0 2 a; J ones, 2 0 0 7 )

and offers sig nifi cant math ematical and computational adv an-

tag es. Th e attention is restricted h ere to th e effects induced

by th e difference in diffusiv ity v alues, wh ile th e more realistic

cases of distinct boundary conditions and source-sink distribu-
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F igure 1: Sketch of the rotating cylindrical annulus with conical end caps. Note

that the sketch is not to scale with the limits of a small gap and a small angle of

inclination of the conical caps.

tions are disregarded at present. The mathematical formulation

and the methods of solution are presented in Section 2. Sec-

tions 3 and 4 describe linear and finite-amplitude properties of

double-diffusive convection. Conclusions and possible impli-

cations for planetary cores are discussed in Section 5.

2. Formulation and methods of solution

A cylindrical annulus with conical caps full of a two-

component fluid, and rotating about its axis of symmetry with

an angular velocityΩ is considered. The configuration is shown

in figure 1, and a mathematical formulation of the problem

given earlier by Busse (1986 , 2002b) is adopted. In particular,

the inner and outer cylindrical walls are kept at constant tem-

peratures T0∓∆T/2, and at constant values of the concentration

of the light element C0 ∓ ∆C/2, respectively, such that a den-

sity gradient opposite to the direction of the centrifugal force is

established as the basic state of the system. The effect of the

centrifugal force is similar to that of gravity in self-gravitating

spheres and shells in that the buoyancy-driven motions occur in

the same way as in the case when the force and the gradients of

temperature and concentration are reversed. This formulation

has the important advantage of being amenable to experimental

realizations (e.g., Busse and Carrigan, 1974). The gap width

d of the annulus is used as a length scale, d2/ν – as the time

scale, and ν∆T/κ and ν∆C/κ – as the scales of temperature and

concentration of light material, respectively. Here ν is the kine-

matic viscosity, and κ is the thermal diffusivity. A small-gap

approximation, d/r0 � 1, is assumed, where r0 is the mean ra-

dius. This makes it possible to neglect the spatial variations of

the centrifugal force, and of the temperature and concentration

gradients of the static state, and to introduce a Cartesian system

of coordinates with the x-, y-, and z-coordinates in the radial,

azimuthal and axial directions, respectively. The Boussinesq

approximation is adopted, in that the variation of density,

ρ = ρ0

(

1 − γt∆T (x − Θ/P) − γs∆C(x − Γ/L)
)

, (1)

is only taken into account in connection with the body forces

acting on the fluid. Here, γt and γs are the coefficients of ther-

mal and chemical expansion, and the other symbols are de-

fined below. The linear dependence on x is unrealistic for the

concentration as it requires zero-concentration boundary con-

ditions (5). A more realistic zero-flux condition would make

the problem rather involved (Braginsky and Roberts, 1995) and

will divert from the main focus of this paper which is to inves-

tigate the influence of diffusivities isolated from the effects of

boundary conditions. A discussion of different types of bound-

ary conditions related to core convection and the geodynamo

can be found, for example, in (Kutzner and Christensen, 2002;

Busse and Simitev, 2006 ). Assuming a small angle of inclina-

tion of the conical end caps with respect to the equatorial plane,

and taking into account that the annulus is rotating, the velocity

obeys approximately the Proudman-Taylor theorem and can be

described in first approximation by its geostrophic part

u = ∇ × kψ(x, y, t) + O(η0), (2)

where η0 � 1 is the tangent of the said angle. Averaging over

z, the governing equations for the leading order of the dimen-

sionless deviations of the temperature Θ, the concentration Γ,

and the stream function ψ from the static state of no flow can be

written in the 2D cartesian form (Busse, 2002b)

(

(∂t − ∇
2) +Jψ

)

∇2ψ − η∗∂yψ + ∂y(RtΘ + Rs Γ) = 0,

P
(

∂t +Jψ
)

Θ − ∇2
Θ + ∂yψ = 0, (3)

P
(

∂t +Jψ
)

Γ − L−1
∇

2
Γ + ∂yψ = 0,

where Jψ = (∂yψ)∂x − (∂xψ)∂y, and the definitions of the rota-

tion rate, Prandtl, Lewis, thermal and compositional Rayleigh

numbers η∗, P, L, Rt, and Rs are

η∗ =
4η0Ωd3

hν
, P =

ν

κ
, L =

κ

D
, (4)

Rt =
γtd

3g∆T

νκ
, Rs =

γsd
3g∆C

νκ
,

respectively. Here, D is the diffusivity of the light material, h

is the axial length of the annulus, and g = Ω2r0 is the average

centrifugal acceleration analogous to gravitational acceleration.

F ixed temperature and concentration, and stress-free BCs for

the velocity are assumed at x = ±1/2,

ψ = ∂2
xψ = Θ = Γ = 0 at x = 1/2, (5)

while periodicity is imposed in the y-direction. F or further de-

tails on the assumptions and for evidence of the utility of this

model to capture the dynamics of convection in rotating spheri-

cal shells, the reader is referred to the reviews of Busse (2002a);

Jones (2007) and the references cited therein.

The linearized version of equations (3) allows an analytical

solution. The nonlinear equations (3) are solved numerically

by a modification of the G alerkin spectral method used previ-

ously by Or and Busse (1987); Schnaubelt and Busse (1992).

The dependent variables ψ, Θ and Γ are expanded in functions

satisfying the boundary conditions
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.

After projecting equations (3) onto the respective expansion

functions, a system of nonlinear ordinary differential equations
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Figure 2: The critical Rayleigh number Rt,crit of purely-thermal convection as

a function of the radial wave number l for α = 5, η∗ = 600, Rs = 0, and

P = 10−2, 10−1, 1, 10, 102 (from bottom to top). The solid circles indicate the

preferred values of l.

is obtained for the unknown coefficients âln(t), ǎln(t), b̂ln(t),

b̌ln(t), ĉln(t) and čln(t). The system is integrated in time by a

combination of an Adams-Bashforth scheme for the nonlinear

terms and a Crank-Nicolson scheme for the diffusion and the

other linear terms. A truncation scheme must be introduced in

practice: the equations and the corresponding coefficients are

neglected when l > Nx and n > Ny, where the truncation para-

meters Nx and Ny must be sufficiently large so that the physical

properties of the solution do not change significantly when their

values are increased. The computations reported in the follow-

ing have been done with β = 1, Nx = 35 and Ny = 55.

3. The linear onset of double-diffusiv e conv ection

Without loss of generality, small perturbations about the state

of no motion can be assumed to take the form

(ψ,Θ, Γ)T
= (ψ̃, Θ̃, Γ̃)T sin

(

lπ(x + 1/2)
)

eiαy+λt, (7)

where α and l denote the azimuthal and the radial wave num-

bers, λ = σ + iω, with σ ∈ R and ω ∈ R being the growth

rate and the frequency of oscillations, respectively. The su-

perscript T denotes transposition, and (ψ̃, Θ̃, Γ̃)T is a constant

component vector. Then, the linearised version of equations (3)

reduces to a matrix eigenvalue problem for λ and (ψ̃, Θ̃, Γ̃)T,
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, (8)

where a2
= l2π2

+ α2. In the rest of this section attention is

restricted to a single-roll convective structure in radial direction

by setting l = 1. Equatorially-attached “multicellular” thermal

convection has been previously found in shells and annuli of

finite gaps and convexly curved caps (e.g. Ardes et al., 1997;

Plaut and Busse, 2005). However, these geometries are quite

different from the small-gap limit considered here as they pro-

vide radially inhomogeneous conditions for convection. Figure

2 demonstrates that, in the small-gap limit and for the parame-

ter values discussed below, l = 1 is always the preferred radial

mode for the onset of thermal convection; the nonlinear results

of section 4 further confirm the l = 1 assumption.

The solution to problem (8) can be found in analytical form,

and figure 3 shows the growth rate of the perturbations, σ =

Re(λ), as a function of the thermal Rayleigh number Rt for

fixed values of the other parameters. The eigenmodes of purely

thermal convection are also shown in the figure for compari-

son. Because the matrix in (8) is of size 3 × 3, it can have

up to three distinct eigenmodes for typical parameter values.

The analogous eigenvalue problem for purely thermal convec-

tion has a matrix of size 2× 2 that can have up to 2 eigenmodes

at most. Thus, a basic distinction between purely thermal and

double-buoyancy convection is the appearance of an additional

“double-diffusive” eigenmode. The remaining two modes are

analogous to the two possible modes of purely thermal con-

vection, as figure 3 clearly demonstrates. In figure 3 and in

the following, these three possible modes are denoted by aD D

(additional Double-Diffusive mode), uTL (unstable Thermal-

Like mode), and sTL (stable Thermal-Like mode). The aD D

mode becomes unstable for smaller values of Rt compared to

the uTL mode. This provides a possibility for low-Rayleigh

number convection as suggested by Busse (2002b). The growth

rate of the aD D mode is a non monotonic function of Rt, and it

is remarkable that in the case of a destabilizing compositional

gradient (Rs > 0), the aD D mode regains stability before the

uTL mode becomes unstable. This limits the parameter space

where low-Rayleigh number convection occurs, and indicates

the existence of isolated regions of instability.

The regions of linear stability (σ <0) and instability (σ > 0)

in the parameter space are separated from each other by a neu-

tral surface. It is defined in implicit form by the characteristic

equation of the eigenvalue problem (8) where σ = 0,

(iωP + a2)(iωP + a2/L)
(

(iω + a2)a2
+ iαη∗

)

(9)

−α2Rt(iωP + a2/L) − α2Rs(iωP + a2) = 0.

Following Busse (2002b), this equation is split into real and

imaginary parts from which the frequency of oscillations ω and

the critical value of any parameter of the problem as a func-

tion of the remaining ones can be found in explicit analytical

form. Here, the thermal Rayleigh number Rt is chosen as the

principal control parameter, because it offers the possibility of

direct comparison with the well-studied purely thermal case.

The five-dimensional neutral surface, Rt = Rt(P, η
∗, L,Rs, α), is

represented graphically by its projections (neutral curves) onto

the planes α − Rt, Rs − Rt, η
∗ − Rt, and P − Rt in panels (a,

b, c, d) of figure 4 respectively, for fixed values of the remain-

ing parameters of the problem. The dependence on the Lewis

number L is shown in the form of contour lines in this figure

thus exhausting all possible parameter dependencies. The same

approach is adopted to represent the corresponding frequency

ω = ω(P, η∗, L,Rs, α) in figure 5, where |ω| is plotted instead

to allow visualisation of finer details in the plots. The most

3
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Figure 3: (Color online.) The growth rates, σ = Re(λ), of the eigenmodes of double-diffusive convection in the rotating annulus geometry as a function of the

thermal Rayleigh number Rt at P = 1, η∗ = 400, α = 4, L = 20, Rs = 500 (solid red line) of Rs = −500 (dashed blue line). The three possible modes are denoted

by aDD, uTL, and sTL in the example of Rs = 500. The basic state of no flow is linearly stable in the shaded region where the growth rate is negative. Convection

sets in the non-shaded region. The green dotted lines correspond to the well-studied purely thermal modes of convection e.g. (Busse, 1986) at the same parameter

values (and Rs = 0, L - arbitrary). The right panel is identical to the left one, only the scale of the y axis is enlarged to show finer details.

prominent feature of the neutral curves is that they are multi-

valued, and may split into closed, entirely isolated branches.

This can be understood from the fact that the dispersion rela-

tion (9) is a linear equation in Rt, and a cubic equation in ω, so

it has either one, two or three real roots as its discriminant takes

negative, zero and positive values when parameter values are

continuously varied. The stability of the basic state in the vari-

ous regions formed thereby can be determined from the sign of

the growth rate σ as described in relation to figure 3. For exam-

ple in the case L = 30 of figure 4, convection occurs within the

regions that have been shaded.

The topology of the neutral curves of double-diffusive con-

vection is essentially different from that in the case of purely

thermal convection, also shown in figure 4. While in the lat-

ter case for fixed values of the other parameters there is one

and only one critical value of Rt above which convection oc-

curs, in the former case up to three values of Rt are needed

to specify stability criteria due to the multi-valued nature of

the neutral curves. Note that the critical wave numbers asso-

ciated with each of the three distinct critical values of Rt are

also different as seen in figure 4(a). Occurrence of isolated

regions of secondary instability has been reported in the case

of quasi-geostrophic purely thermal convection by Plaut and

Busse (2002). Note, that this is quite different from the isolated

regions of primary instability discussed in this paper. It is likely

that the double-diffusive case will exhibit even more complex

behaviour in its transition to tertiary states, and this will be sub-

ject for future study. Neutral curves with similar complex topol-

ogy have been previously reported in unrelated situations, e.g. a

differentially heated inclined box (Hart, 1971), quiescent lay-

ers with density dependent on two or more stratifying agencies

with different diffusivities (Pearlstein, 1981), isothermal shear

flows (Meseguer and Marques, 2002), buoyancy-driven flows in

an inclined layer (Chen and Pearlstein, 1989), and penetrative

convection in porous media (Straughan and Walker, 1997).

It is of interest to discuss the expressions

R
(1)
t =















a6

α2
+

1

a2

(

η∗P

1 + P

)2














−
a2R2

s

η∗ 2P
−

2PRs

1 + P
, (10)

ω(1)
= −

η∗α

a2(1 + P)
+

aRs

η∗P
,

and

R
(2)
t =

a6

α2
−

a2

η∗ 2P
R2

s , (11)

ω(2)
= −

αRs

η∗P

[

1 +
a2Rs(1 + P)

η∗ 2P

]

,

derived by Busse (2002b) as solutions to the dispersion relation

(9) in the asymptotic limit of large L. The first root corresponds

to the well-studied thermal Rossby waves, (e.g. Busse, 1986),

modified by the presence of the second buoyancy component

and describes the onset of the uTL mode. The physical na-

ture of the second root (“the slow mode”) can be understood

from the observation that in the limit of large η∗ the second

term in (11) vanishes and the critical Rayleigh number for the

onset of Rayleigh-Bénard convection in a non-rotating plane

layer is recovered (Busse, 2002b). Thus, the additional buoy-

ancy provided by the compositional gradient, Rs∂yΓ, counter-

acts the unbalanced part of the convection-inhibiting Coriolis

force, η∗∂yψ, in equations (3). Expressions (10) and (11) are

shown in figures 4 and 5, and it can be seen that they provide a

good approximation to some pieces of the neutral curves even

for moderate and small values of L and η∗. It has been implic-

itly assumed by Busse (2002b) that there is a unique critical

Rayleigh number above which convection sets in. This led to

the conclusion that the slow mode is the one preferred at onset,

as R
(2)
t is always smaller than R

(1)
t . The presented results show

that this assumption is not always correct, and that the multi-

valued nature of the neutral curves must be taken into account.
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For example, when the concentration gradient is destabilizing,

R
(2)
t is, actually, the value at which convection decays as Rt is

increased.

4. Double-diffusive convection at fi nite amp litudes

The linear results of section 3 demonstrate that low-Rayleigh

number convection is indeed possible albeit the situation is

more complicated. Below, the question whether such low-

Rayleigh number flows are sufficiently vigorous to generate

magnetic field is addressed and finite-amplitude properties of

double-diffusive convection are explored. Finite-amplitude so-

lutions are characterized by their mean zonal flow, stream func-

tion, temperature and concentration perturbations, defined as

v0(x, t) = 〈∂xψ〉 = ∂xΨ0, Θ0(x, t) = 〈Θ〉, Γ0(x, t) = 〈Γ〉,

where 〈 f (y)〉 = L−1
y

∫ Ly

0
f (y)dy and Ly = 2π/β is the basic peri-

odicity length, and by the amplitude of convection

A2
=

Nx ,Ny
∑

l=1,n=1

(

â2
ln + ǎ2

ln

)

.
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Figure 6: (Color online.) (a) The time-averaged amplitude of convection 〈A〉t as a function of the thermal Rayleigh number Rt in the case P = 10, L = 20, η∗ = 600,

and Rs = 500 (red) and Rs = −500 (blue). In the case Rs = 500, the region where convection occurs is shaded. For values of Rt outside this region A is a decaying

function of Rt, and the decay has been followed to values of A smaller than 10−20 in all cases. The numbers shown near the onset of convection indicate the

preferred wavenumber α in each case. (b) The amplitude of convection for P = 10, L = 20, η∗ = 600 and Rt = 14050, Rs = 0 (Case I, red dash-dotted line), Rt = 0,

Rs = 17000 (Case II, blue dashed line) and Rt = Rs = 9100 (Case III, green solid line).

Figure 6(a) shows the time-averaged flow amplitude, 〈A〉t, of a

sequence of cases with increasing value of the thermal Rayleigh

number Rt and fixed values of the remaining parameters. In

full agreement with the linear theory, two regions of convection

are found, labeled I1 and I2 in this figure. They are separated

by a region of vanishing flow. The amplitude of convection

in region I1 is more than an order of magnitude smaller then

that of the flow in region I2. Comparison with figure 3 indi-

cates that the low-amplitude flow in I1 is associated with the

aDD modes which are characterised by relatively small values

of σ, while the high-amplitude convection in I2 is likely asso-

ciated with the uTL modes. Because of its small amplitude,

low-Rayleigh number double-diffusive convection in region I1

is unlikely to be able to generate and sustain magnetic fields

on its own as will be further discussed below. Within region

I1 all computed solutions are stationary, and for this reason not

illustrated, while as Rt is increased in region I2 a sequence of

stationary, time-periodic, quasi-periodic and chaotic solutions

similar to those described in previous studies of purely thermal

convection, e.g. (Brummell and Hart, 1993), is observed.

The additional physics introduced by the second buoyancy

force makes it difficult to compare directly double-diffusive

convection to the much-better studied purely thermal case. A

meaningful approach for comparison is to consider cases with

equally large amplitudes. This is suggested by self-consistent

MHD dynamo simulations where it has been established that

sufficiently vigorous turbulent flow is the primary condition for

generation of self-sustained magnetic fields e.g. (Simitev and

Busse, 2005; Kutzner and Christensen, 2002). For a compre-

hensive comparison the amplitude of the flow as a function, for

instance, of the thermal and compositional Rayleigh numbers

need to be computed. Then a contour plot of the data A(Rs,Rt)

can be a useful comparison map as cases located on the same

energy level are expected to have similar ability for magnetic

field generation. However, the practical computation of such

a surface has proven too expensive even for the relatively sim-

ple annulus model considered here. For this reason, the atten-

tion is restricted below to a comparison of three representative

cases: a purely thermal case, a purely compositional case, and

a mixed double-diffusive case, henceforth Cases I, II and III,

respectively. The time-averaged amplitudes of convection in

Cases I, II and III are 〈A〉t = 0.42, 0.42, 0.43, respectively. Al-

though the values are not strictly equal, additional simulations

suggest that such small differences in amplitude are not essen-

tial for the intended comparison. The three cases have destabi-

lizing thermal and compositional gradients, which is thought to

be appropriate for the Earth’s core. Purposefully, the cases are

moderately rather than strongly driven to illustrate how simple

known properties are affected by the presence of a second buoy-

ancy. At these amplitudes the flows considered are associated

with the uTL modes discussed previously, rather than with the

newly-found aDD mode. This choice is justified as the aDD

modes do not produce sufficiently vigorous flows with interest-

ing structure, as already discussed in relation to figure 6(a).

Figure 6(b) demonstrates that for comparable time-averaged

amplitude, the purely compositional Case II and the mixed Case

III have a highly chaotic time dependence while the purely ther-

mal Case I is stationary. The spatial properties of convection

are shown in figure 7 where the streamlines of the flow are plot-

ted for the three cases along with the fluctuating parts of the

temperature perturbation Θ − Θ0 and the concentration pertur-

bation Γ − Γ0. The plots represent snapshots at fixed moments

in time but they have been found to be representative for the

three cases. The purely thermal Case I shows a regular roll-

like pattern which does not change in time, while the struc-

tures corresponding to Cases II and III are irregular and no pe-

riodic behaviour of the patterns in time can be detected. These

differences may be explained by the fact that Case I with ra-
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Figure 7: (Color online.) The non-axisymmetric parts of the streamlines ψ − Ψ0 = const. (contour lines, first row), the temperature perturbation Θ − Θ0 (density

plot, second row) and the concentration perturbation Γ − Γ0 (density plot, third row). The first, second and third columns correspond to the purely thermal Case I,

to the purely compositional Case II, and to the double diffusive Case III, described in the caption of figure 6(b).

tio Rt/Rt,crit = 1.52 is far less supercritical than Case II where

Rs/Rs,crit = 17.84. The predominant wave number of convec-

tion appears to be the same in all three Cases, and remains equal

to 7 throughout the simulations. In comparison with the temper-

ature perturbation that shows relatively broad roll structures, the

concentration perturbation forms thinner plume-like structures,

consistent with the smaller compositional diffusivity. The time-

and azimuthaly-averaged properties of convection in the three

cases are compared in figure 8. The most obvious difference is

observed in the profiles of the time-averaged mean zonal flow

and the Reynolds stress. These quantities are, indeed, related in

that the mean flow is generated primarily by the Reynolds stress

(e.g. Plaut et al., 2008; Busse, 2002b). While in the purely

thermal Case I the mean flow is symmetric with respect to the

mid-channel x = 0, and retrograde at its ends x = ±1/2, in the

purely compositional Case II it is asymmetric with respect to

x = 0, retrograde at x = 1/2 and prograde at x = −1/2. This

asymmetry can be explained by the property that, unlike in the

purely thermal case, the value of Rs in the compositional case

is beyond the onset of the mean-flow instability (Or and Busse,

1987). The mean flow in the mixed Case III appears similar to

the purely compositional case. The remaining panels in figure

8 show that the mean properties of the mixed case are simi-

lar to the corresponding ones of the pure cases. In summary,

it appears that double diffusive convection associated with the

uTL modes can be understood on the basis of the correspond-

ing single-diffusive cases, and that purely-thermal convection

is more efficient in imprinting its properties on the overall flow

even when less supercritical. This conclusion is confirmed by

the experimental results of Cardin and Olson (1992) who stud-

ied thermochemical convection in rotating spherical shells and

found that the structure of thermochemical flows is more like

that of purely thermal convection.

5 . C onclusion

Convection driven by density variations due to differences

in temperature and concentration diffusing at different rates in

a rotating cylindrical annulus with conical end caps has been

studied. It is shown by a linear analysis that the neutral surface

describing the onset of convection in this case has an essentially

different topology from that of the well-studied purely ther-

mal case. In particular, due to an additional “double-diffusive”

eigenmode (aDD), neutral curves are typically multi-valued

and form regions of instability in the parameter space which

may be entirely disconnected from each other. It is confirmed

that the asymptotic expressions for the critical Rayleigh num-

ber and frequency derived by Busse (2002b) describe the onset

of convection over an extended range of non-asymptotic para-

meter values but do not capture the full complexity of the neu-

tral curves. The results necessitate a revision of the assumption

that there is a unique critical value of the control parameter,

e.g. Rt, and call for a better appreciation of the multivalued na-

ture of the critical curves. It is been found that finite-amplitude

low-Rayleigh number convection due to aDD modes is possible

over a wide parameter range. However, the resulting flow am-

plitudes are significantly lower than those of due to the familiar

uTL modes of convection. For this reason, low-Rayleigh num-

ber flows are unlikely to be able to generate and sustain mag-

netic fields on their own. In order to address a more geophys-

ically relevant situation, the nonlinear properties of convec-

tion are then investigated in the case when both driving agen-

cies are destabilizing and produce sufficiently vigorous flow. It

is proposed that a meaningful approach for direct comparison

of finite-amplitude double-diffusive convection and the better

studied single-diffusive case is to compare flows with equally

large kinetic energies. U sing this criterion the characteristics of

a purely thermal case, a purely compositional case and a mixed

driving case are compared. As similar flow amplitudes purely

compositional and double-diffusive cases are characterized by
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Figure 8: (Color online.) Profiles of the time-averaged (a) mean velocity 〈v0〉t , (b) Reynolds stress 〈vu〉t , (c) mean temperature perturbation 〈Θ0〉t , and (d) the mean

concentration perturbation 〈Γ0〉t . Red dash-dotted lines indicate Case I, blue dashed lines indicate Case II, and green solid lines indicate Case III, described in the

caption of figure 6(b).

a stronger time dependence compared to purely thermal cases,

and by prograde mean zonal flow near the inner cylindrical sur-

face. It is argued that double-diffusive cases may be understood

on the basis of purely driven ones.

Although, its low amplitude is likely to prevent double-

diffusive convection at values of the Rayleigh number signif-

icantly lower than those for single-diffusive convection from

generating magnetic fields in the bulk of planetary cores, it is

tempting to speculate that this type of flow may have impor-

tant effects in stratified layers located just under the core-mantle

boundary. Several mechanisms have been suggested for the for

the possible formation such layers, including the build-up of

light elements released during inner core solidification (Bra-

ginsky, 2006), and thermal or chemical interaction between the

mantle and the core (Fearn and Loper, 1981; Lister and Buf-

fett, 1995; Buffett and Seagle, 2010). Crucially, evidence for

stratification has been recently reported in seismic observations

of the outer core (Helffrich and Kaneshima, 2010). Models of

inert stably stratified outer layers have been found to produce

magnetic fields with morphology rather dissimilar to that of the

observed field because of a thermal wind that produces unfa-

vorable zonal flows throughout the core (Stanley and Moham-

madi, 2008). Inert layers, have also been found to behave like a

no-slip virtual boundary for the convective motion underneath

(Takehiro et al., 2010). This last finding imposes a significant

constraint on the flow, as it is well known that convection struc-

tures and the morphology of the magnetic field crucially depend

on the boundary conditions (Simitev and Busse, 2005; Kutzner

and Christensen, 2002; Sakuraba and Roberts, 2009) The situ-

ation may be significantly different if the stratified layer is con-

vecting (even weakly) rather than inert and the low-Rayleigh

number regime I1 found here offers one such possibility. This

possibility will be subject of future research. In addition, it will

be of interest to investigate whether the results reported in this

paper hold in the more realistic case of a spherical shell. In par-

ticular, the spherical case may allow the aDD modes to grow to

a much larger amplitude, because geostrophy is not hard-wired

into the formulation of the spherical model as it is in the annulus

case. If this should be the case, low Rayleigh-number convec-

tion may have a more significant role in core dynamics. The

influence of imposed magnetic fields and the general parameter

dependences of the problem must also be studied in more de-

tail to explore scaling relationships and the possibility of further

interesting dynamics.
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