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Regime classification and planform scaling for internally heated mantle convection

Internally heated 3-D mantle convection models in a spherical shell with temperature and pressure dependent viscosity have been performed to provide new insights into the various convection regimes, the transition from steady state convection to time-dependent convection and the associated convection pattern. The analysis of a total of 91 simulations reveals four regime types, i.e., a mobile-lid regime, a sluggish regime, a low-degree regime, and a stagnant-lid regime. The occurrence of these regimes depends on the viscosity contrast and the internal Rayleigh number. The low-degree regime occurs close to the boundary of the stagnant-lid regime in case of temperature dependent viscosity. In case of additional pressure dependence, the range of the low-degree regime is smaller and a narrow range of the sluggishlid regime exists in the weakly convecting part. Furthermore, the transition to the stagnant-lid regime occurs at a lower viscosity contrast. For the stagnant-lid regime we have derived a scaling law describing the heat transport. Similar scalings could not be obtained for the other regimes as this seems to require also a correlation of the convective pattern with the internal Rayleigh number. Such a relation is only given for the stagnant-lid regime in case of 3D spherical geometry. The stagnant-lid cases in steady state show a minimal possible degree of the convective pattern that is independent on the pressure dependence of viscosity and remains constant until time-dependent convection sets in with increasing Ra. At this stage, the dominant degree of the convective pattern increases with increasing internal Ra but the slope varies with the pressure dependence of the viscosity. ' ' ' ' 0

Introduction

The temporal and spatial evolution of mantle convection strongly depends on the mantle rheology, and in particular the viscosity (e.g., [START_REF] Christensen | Convection in a variable-viscosity fluid: Newtonian versus power-law rheology[END_REF]Christensen, 1984a;[START_REF] Christensen | 3D convection with variable viscosity[END_REF][START_REF] Giannandrea | Variable viscosity convection experiments with a stress-free upper boundary and implications for the heat transport in the Earth's mantle[END_REF][START_REF] Hansen | High Rayleigh number regime of temperature-dependent viscosity convection and the Earth's early thermal history[END_REF][START_REF] Ratcliff | Three-dimensional variable viscosity convection of an infinite Prandtl number Boussinesq fluid in a spherical shell[END_REF][START_REF] Roberts | Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy[END_REF]Tackley, 2000a;Tackley, 2000b;[START_REF] Weinstein | The effect of a deep mantle endothermic phase change on the structure of thermal convection in silicate planets[END_REF][START_REF] Zebib | Linear and weakly nonlinear variable viscosity convection in spherical shells[END_REF][START_REF] Zhu | The patterns of high-degree thermal free convection and its features in a spherical shell[END_REF]. One first order effect is the temperature dependence of the viscosity. For temperature variations typical in the terrestrial planets the viscosity varies by several orders of magnitude. The consequences of this strong viscosity variation on the mantle dynamic has been examined with experimental and numerical studies for about three decades (e.g., Christensen, 1984a;[START_REF] Davaille | Transient high Rayleigh number thermal convection with large viscosity variations[END_REF][START_REF] Giannandrea | Variable viscosity convection experiments with a stress-free upper boundary and implications for the heat transport in the Earth's mantle[END_REF][START_REF] Grasset | Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary thermal evolution[END_REF][START_REF] Honda | Local Rayleigh and Nusselt numbers for cartesian convection with temperature-dependent viscosity[END_REF][START_REF] Moresi | Numerical investigation of 2D convection with extremely large viscosity variations[END_REF][START_REF] Morris | A boundary-layer analysis of Benard convection in a fluid of strongly temperature-dependent viscosity[END_REF][START_REF] Reese | Scaling laws for time-dependent stagnant lid convection in a spherical shell[END_REF][START_REF] Reese | Stagnant lid convection in a spherical shell[END_REF][START_REF] Richter | Experiments on the stability of convection rolls in fluids whose viscosity depends on temperature[END_REF][START_REF] Richter | A parameterized model for the evolution of isotopic heterogeneities in a convecting system[END_REF][START_REF] Solomatov | Scaling of temperature-and stress-dependent viscosity convection[END_REF]. One important finding is the change in surface mobility and the development of three different regimes depending on the viscosity contrast (e.g., Ratcliff et al., 1996a;[START_REF] Ratcliff | Transitions in thermal convection with strongly variable viscosity[END_REF][START_REF] Solomatov | Scaling of temperature-and stress-dependent viscosity convection[END_REF]:

The mobile-lid regime is typical for iso-viscous convection and convection with extremely low viscosity contrasts where the surface is fully mobile. The sluggish-lid regime, sometimes called transitional regime, is typical for convection with moderate viscosity contrasts (10 2 -10 4 ). The surface velocity is strongly reduced due to high viscosities of the cold material close to the surface. The stagnant-lid regime occurs with strong temperature-dependent viscosity (for viscosity contrasts larger than ~ 10 4 -10 5 ) as the surface completely stagnates and does not participate in convection. The heat transport within this lid is only by conduction.

Transition into the different regimes has also been associated with changes in the degree of convective pattern. For instance, for a moderate viscosity contrast, i.e., the sluggish-lid regime, the convection structure can become large-scale (e.g., [START_REF] Mcnamara | Degree-one mantle convection: Dependence on internal heating and temperature-dependent rheology[END_REF]Tackley, 1996b;[START_REF] Yoshida | Low-degree mantle convection with strongly temperature-and depth-dependent viscosity in a three-dimensional spherical shell[END_REF] whereas convection under the stagnant lid is typically characterized by small-scale convection [START_REF] Reese | Scaling laws for time-dependent stagnant lid convection in a spherical shell[END_REF][START_REF] Reese | Stagnant lid convection in a spherical shell[END_REF].

In this paper, we present a systematic study of internally heated convection in a spherical shell with varying viscosity contrast and Rayleigh number for either purely temperature dependent viscosity or temperature and pressure dependent viscosity. To our knowledge, the only studies for internally heated three-dimensional spherical shells have been performed by [START_REF] Reese | Scaling laws for time-dependent stagnant lid convection in a spherical shell[END_REF][START_REF] Reese | Stagnant lid convection in a spherical shell[END_REF], and cover only a narrow parameter range within the stagnant-lid regime and do not study the transition between the regimes or structural aspects in detail. Here, we have performed 91 simulations to provide new insight into the transition to the stagnant-lid regime, the transition from stationary to time-dependent convection, the associated convection patterns and the ratio of lateral to radial viscosity contrast. For the stagnant-lid regime, we have derived a scaling law for the heat transport and the dominant degree of the convective pattern depending on the internal Rayleigh number as well as a scaling law for the lateral viscosity contrast depending on the radial viscosity contrast.

Numerical Model

The numerical model is based on a simulation code by (Hüttig and Stemmer, 2008a;2008b) that is able to handle fully spatial viscosity variations up to several orders of magnitude. The mantle convection is numerically treated as thermal convection in a 3-D spherical shell (with a core-to-surface radius ratio of 0.55) of a Boussinesq fluid with infinite Prandtl number. We apply free-slip boundary conditions, volumetric heating and surface cooling. The set of conservation equations then reads:
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The above parameters with an apostrophe are non-dimensional scaled parameters, where ' v is velocity, T' is temperature, ' η is viscosity, { }

T is vector transpose, r e is the radial unity vector, t' is time, p' is pressure and Ra 0 is the Rayleigh number at the reference viscosity 0 η (here it is the surface viscosity). This Rayleigh number is defined as
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where ρ is the density, g is the acceleration of gravity, κ is the thermal diffusivity, k is the thermal conductivity, H is the volumetric heat production rate, and d is the layer thickness.

The following scaling has been used to derive the non-dimensional parameters: '
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with T s the surface temperature.

The Rayleigh number together with the varying viscosity acts as a driving term for thermal convection. The viscosity itself is described by the Arrhenius law [START_REF] Karato | Diffusion creep in perovskite: Implications for the rheology of the lower mantle[END_REF][START_REF] Karato | Rheology of the upper mantle: A synthesis[END_REF] and here approximated by a linearized Frank-Kamentskii approach [START_REF] Frank-Kamenetskii | Diffusion and heat transfer in chemical kinetics[END_REF]. This approach is based on the constant rheological gradient γ that describes the dependence on T' and -in case of pressure dependence -a pressure dependent part
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where r' is the radius (r'=r/d) and ' 0 r is the outer radius.

The rheological gradient is defined as

ln ' ' T η γ ∂ = -∂ (0) 
In the present study, Ra 0, defined at the surface, and γ have been varied between 1 and 10 6 and 0 and 120, respectively, with either All runs were simulated until they reached the quasi-steady state, meaning that surface heat flow and mean velocities oscillate around a constant value for a sufficiently long time. The discrete base is a grid with 32-48 shells (depending on the strength of convection) and laterally divided icosahedra with 5 iterations, leading to 10.240 nodes per shell.

The following diagnostic (output) parameters for the present study have been calculated for each model:

1) The internal temperature ' 5

2) The viscosity contrast in a convecting system is described by the viscosity of the convecting interior

' 0 ' i η η η ∆ = (0)
where ' i η is the viscosity at the interior temperature at ' i T . Note that, in contrast to bottom heated convection, the viscosity contrast is an output parameter.

3) The internal Rayleigh number, based on the viscosity of the convecting interior 5 ,
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4) The structural complexity of convection can be obtained by transforming the temperature field of a certain radius into spherical harmonics. The strength or energy of each degree of convective pattern , referred to as 'degree' here after, represents the temperature variation corresponding for this specific wavelength on the sphere. The higher the energy in high degrees, the more complex is the convective pattern. This in turn reflects the amount of upand down-wellings in the spherical shell. The resulting power spectrum l λ determines the energy of each degree of the convective pattern at radius r. The sum in radius of these power spectra provides a one-dimensional spectrum of degrees that reflects the complexity of convection of the entire spherical shell and is given by: , r r

λ λ = (0)
The dominant degree, or the degree with the highest energy, is usually considered to classify the structural regime and is the degree with the maximum energy. However, to obtain a single parameter to describe the structural complexity of the convecting system other than the dominant degree, a weighted degree ω is also calculated to account for multiple occurrences of strong degrees. This method is similar to the robust-localization method (Kertz, 1973;Buttkus, 2000):

λ ϖ λ = (0)
5) The thermal boundary layer (TBL) is the region within the convecting system that determines the transition from conductive to convective heat transport. A bottom-heated convection system consists of two such thermal boundary layers; purely internally heated convection as in our case has only the top boundary layer. The details like thickness and depth of this layer also determine the heat-flow of the convecting system; the depth of the center of this region ( 0 δ ) is directly related to the surface heat flow, expressed as the Nusselt number, while the temperature difference across the TBL reflects the rheological gradient γ [START_REF] Grasset | Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary thermal evolution[END_REF]. The following parameters have been obtained for each run. Their definition is illustrated in figure 1. 

Results

The convection pattern and its temporal evolution change with increasing internal Rayleigh number or viscosity contrast. Two different categories can be distinguished. One category classifies the temporal evolution and differentiates between stationary convection and timedependent / turbulent convection and is called time . The central parameter of influence is the Rayleigh number. We further distinguish the spatial properties of the flow such as structure and surface mobility. The spatial properties are influenced mainly by the viscosity contrast and the applied rheology. This is called convective regime.

:

To achieve convection for a given viscosity contrast, the internal Rayleigh number must be larger than a critical value. For Rayleigh numbers just above the critical value, convection sets in and reaches a stationary in which the convection pattern stays stationary. With increasing Rayleigh number, time-dependent convection sets in where all measurable output parameters fluctuate over time (e.g., [START_REF] Bottaro | Onset and two-dimensional patterns of convection with strongly temperature-dependent viscosity[END_REF][START_REF] Busse | Non-linear properties of thermal convection[END_REF][START_REF] Craik | Transitions between roll patterns in thermal convection[END_REF][START_REF] Hansen | Numerical and dynamical stability of convection cells in the Rayleigh number range 103-8.105[END_REF][START_REF] Hansen | Time-dependent thermal convection -a possible explanation for a multiscale flow in the Earth's mantle[END_REF]Hansen and Yuen, 1990;[START_REF] Hansen | High Rayleigh number regime of temperature-dependent viscosity convection and the Earth's early thermal history[END_REF]Hansen et al., 1990;Hansen et al., 1992a;Hansen et al., 1992b;[START_REF] Krishnamurti | On the transition to turbulent convection, Part 2: The transition to time-dependent flow[END_REF][START_REF] Tang | Temporal, spatial and thermal features of 3-D Rayleigh-Be?nard convection by a least-squares finite element method[END_REF][START_REF] Travis | Transition from two-dimensional to threedimensional planforms in infinite-Prandtl-number thermal convection[END_REF]. If the output parameters are independent of the initial condition and fluctuate around their temporally averaged value, it is called the quasi-stationary or timedependent convection.

The time dependence of the flow depends mostly on the internal Rayleigh number as it determines the vigor of convection. To classify the time dependence of convection, a criterion is required that is sensible to temporal fluctuations of control variables, i.e., the maximal velocity max v . The (quasi-) stationary part of a simulation was used to calculate the mean maximal velocity max v and finally the M 0 indicator that determines the standard deviation of max v relative to max v :

max max o v M v σ =
. This is equivalent to the average fluctuation in percent of max v .

Cases with a value of M 0 smaller than 1.5% are considered as stationary. For values of M 0 larger than 1.5%, the convective pattern is time-dependent. Between the stationary and timedependent flows, we observe some intermediate cases in which the flow pattern is periodic.

We included these cases as time-dependent because they have values of M 0 larger than 1.5%.

A sharp boundary for the transition from steady state to time-dependent convection could only be identified for stagnant-lid cases (see classification of the stagnant-lid regime below) and is at Ra H,i ~2 10 6 for TC, similar to observation by Hansen et al. (1990), and ~6 10 5 for TPC (Figure 2). The boundary for non-stagnant-lid cases is rather wide and between 10 5 and 2 10 6 for all cases.

Convection regimes

To distinguish the convection regimes, in particular the transition to the stagnant-lid regime, most studies have used the averaged surface velocity top v (e.g., [START_REF] Davaille | Transient high Rayleigh number thermal convection with large viscosity variations[END_REF][START_REF] Hansen | High Rayleigh number regime of temperature-dependent viscosity convection and the Earth's early thermal history[END_REF][START_REF] Solomatov | Scaling of temperature-and stress-dependent viscosity convection[END_REF]Tackley, 2000c;Trompert and Hansen, 1998).

Two such mobility definitions are [START_REF] Solomatov | Parameterization of temperature-and stress-dependent viscosity convection and the thermal evolution of Venus. Flow and creep in the solar system: observations[END_REF]. Figure 3 shows the distinct behavior between Nu and rh δ for the stagnant and non-stagnant-lid regime. Scaling laws, as those presented in the next section, highlight the differences between those regimes.

The correlation of the boundary layer thickness in relation to the Nusselt number can be used for an alternative mobility definition in the form of

1 rh M Nu δ =
, as it defines a useful boundary for the stagnant-lid regime with M 1 < 0.6. The advantage of this definition is the absence of any velocity component. Figure 4 shows the three different definitions derived from [START_REF] Solomatov | Three regimes of mantle convection with non-Newtonian viscosity and stagnant lid convection on the terrestrial planets[END_REF] and Tackley (2000c) as well as the just described M 1 for all cases. A comparison of the three definitions indicates that the transition to stagnant-lid convection can be best distinguished with our new mobility definition M 1 . According to this definition, the stagnant-lid regime is observed for a viscosity contrast larger than 1.3 10 4 within the convecting system for purely temperature-dependent viscosity cases. The relative error on this value is less than 5% because the transition is valid for all relevant parameter values. The transition into the stagnant-lid regime for pressure dependent viscosity starts at a lower viscosity contrast of about 10 3 (with the exception of case #83 that will be discussed below). It is interesting to note that in contrast to the bottom-heated case, our experiments indicate that for an internally heated fluid, the critical viscosity contrast for the stagnant-lid regime is smaller when the pressure dependence of viscosity is accounted for as well [START_REF] Bunge | Effect of depth-dependent viscosity on the planform of mantle convection[END_REF]1997). We will demonstrate and discuss below that the transition into the stagnant-lid regime is accompanied and can also be identified with an increase in the dominant degree of convection and a rapid decrease of the ratio of lateral to radial viscosity.

For lower values of viscosity contrast, i.e., lower than the critical value at which stagnant-lid convection occurs, we distinguish three other regimes, i.e., the mobile-lid regime, the sluggish regime and the low-degree regime (Fig. 5). This is different to earlier studies that only distinguish between the mobile and the sluggish regime [START_REF] Solomatov | Three regimes of mantle convection with non-Newtonian viscosity and stagnant lid convection on the terrestrial planets[END_REF]. In the present classification of the regimes we consider the dominant degree of convection in addition to surface mobility to highlight structural differences as well.

Mobile-lid regime:

This regime is characterized by a full mobile surface and a dominant degree of the convective pattern larger than two. It includes isoviscous convection and convection with low viscosity contrasts up to 10. The absence of low degree convection in the present isoviscous cases is due to the chosen radius ratio. An increased core-to-surface radius ratio leads to higher minimal degrees [START_REF] Jarvis | Effects of curvature on two-dimensional models of mantle convection: cylindrical polar coordinates[END_REF][START_REF] Jarvis | The unifying role of aspect ratio in cylindrical models of mantle convection with varying degrees of curvature[END_REF][START_REF] Jarvis | Effects of curvature, aspect ratio and plan form in two-and three-dimensional spherical models of thermal convection[END_REF][START_REF] Travnikov | On the Rayleigh number dependence of convection with a strongly temperature-dependent viscosity[END_REF]. An increase in the surface Rayleigh number generally results in an increase of the degree, although no tendency could be observed for increased internal Rayleigh numbers with increasing γ . The velocity increases and the flow become turbulent while maintaining a relatively low dominant degree. Sluggish-lid regime: This regime is characterized by strongly reduced velocity at the surface and a dominant degree which is larger than two. In this study, it has been only observed in a small parameter range of the TPC cases. Due to the relatively low Rayleigh numbers and viscosity contrast, the patterns are comparable with laboratory and theoretical experiments in the plain layer [START_REF] Busse | SQUARE-PATTERN CONVECTION IN FLUIDS WITH STRONGLY TEMPERATURE-DEPENDENT VISCOSITY[END_REF][START_REF] Oliver | PLANFORM OF CONVECTION WITH STRONGLY TEMPERATURE-DEPENDENT VISCOSITY[END_REF][START_REF] White | THE PLANFORMS AND ONSET OF CONVECTION WITH A TEMPERATURE-DEPENDENT VISCOSITY[END_REF]. Low-degree regime: This regime is characterized by a full mobile surface (in few cases close to the transition of the stagnant-lid regime a reduced surface velocity has also been observed) and a dominant low degree of the convective pattern of one or two. In both cases, TC and TPC, starting from isoviscous convection, an increase in the viscosity contrast leads to a drop in the dominant degree for 5 0 10 Ra < and increases rather abruptly while passing the stagnant-lid boundary. Within the , H i Ra and η ∆ parameter space, this low-degree region has the shape of a trapezoid and therefore depends on both parameters, as illustrated in figure 5 with a degree-marker over the observed parameter space.

For TPC (Fig. 5b), one case (#83 in the appendix, also L in figure 6) produces a convective pattern of degree one without a stagnant lid but with a viscosity contrast larger than the critical value of 10 3 . This case indicates that the transition to the stagnant-lid regime is not purely bound by the viscosity contrast, as indicated already by earlier studies [START_REF] Grasset | Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary thermal evolution[END_REF][START_REF] Solomatov | Three regimes of mantle convection with non-Newtonian viscosity and stagnant lid convection on the terrestrial planets[END_REF]. We have therefore considered in Figure 5b a small area of the low-degree regime that is located above the critical viscosity contrast although the exact position is not well constrained due to lack of data.

For all four regimes, a typical convection structure, temperature power-spectra for degrees up to 30 over depth and a velocity profile are presented in figure 6.

Scaling laws

Wavelength scaling

The dominant degree of the convective pattern indicates the structural complexity and is directly associated with the number of convective up-and down-wellings. Within the stagnant-lid regime, and only in the stagnant-lid regime, a strong correlation exists between the degree of convective pattern and the internal Rayleigh number (Fig. 7). This was already expected from previous studies for both bottom and internally heated convection (e.g., Ratcliff et al., 1996a;[START_REF] Reese | Scaling laws for time-dependent stagnant lid convection in a spherical shell[END_REF][START_REF] Stemmer | A new method to simulate convection with strongly temperature-and pressure-dependent viscosity in a spherical shell: Applications to the Earth's mantle[END_REF][START_REF] Zhong | A benchmark study on mantle convection in a 3-D spherical shell using CitcomS[END_REF] because it was observed that the degree of convective pattern increases with increasing driving forces.

Due to the large number of cases in our study, we derive for the first time a scaling law to describe the correlation between the convective pattern and the internal Rayleigh number.

We use the weighted degree ϖ instead of the dominant degree as for the former the correlation between the internal Ra and the convective pattern is stronger. The following fitting formula has been derived:

, , min ( , ) ln( ) ln( ) step S T H i H i S T P Ra Ra m Ra Ra m ϖ ϖ ϖ - - ∆ = - + + (0)
where

S T
Rais the internal Rayleigh number at which the transition to the time-dependent convection occurs, m is the slope in the time-dependent part,

step ϖ ∆ is the observed increase at , H i S T Ra Ra - =
, min ϖ is a minimal possible degree, and P is the incomplete gamma function [START_REF] Furman | A monotonicity property of the composition of regularized and inverted-regularized gamma functions with applications[END_REF] to describe the transition from stationary to time-dependent convection with a step function.

The minimal possible degree min ϖ occurs for the stationary cases, i.e., small Rayleigh numbers, and remains constant until the transition to time-dependent convection. This minimal degree has a relatively large error because multiple possible degrees may exist for the same , H i Ra in the stationary convection depending on the initial condition of the temperature field (e.g., [START_REF] Ratcliff | Three-dimensional variable viscosity convection of an infinite Prandtl number Boussinesq fluid in a spherical shell[END_REF]Ratcliff et al., 1996b;[START_REF] Ratcliff | Transitions in thermal convection with strongly variable viscosity[END_REF][START_REF] Zhong | A benchmark study on mantle convection in a 3-D spherical shell using CitcomS[END_REF]. To account for this uncertainty, an error of plus-minus two degrees is expected for min ϖ . Note that the minimal degree also depends on the assumed core-to-surface radius ratio.

The transition from stationary to time-dependent convection is accompanied by a step step ϖ ∆ towards higher degrees, i.e., the complexity of the flow pattern increases. At this transition, the degree increases linearly with increasing Rayleigh number (Fig. 7a). The fitting parameters for the stagnant-lid regime are summarized in table 1.

For the models with pressure dependent viscosity (TPC), the slope is less steep than for the TC cases resulting in lower degrees of the convective pattern, as predicted by [START_REF] Bunge | Effect of depth-dependent viscosity on the planform of mantle convection[END_REF]. However, the minimal degree min ϖ for stationary convection is not influenced by the pressure dependence of the viscosity.

As a consequence of the increase in the degree after the transition from stationary to timedependent convection, the observed temporal standard deviation of the velocity (M o indicator) has to show a significant increase for

min step ϖ ϖ ϖ > + ∆
, as demonstrated in figure 7b. This leads to the conclusion that beyond 10 ϖ ≥ , convection is always time-dependent in the stagnant-lid regime.

Lateral viscosity contrast

Figure 8 shows the relation between the lateral to radial viscosity contrast of the convecting system for the purely temperature-dependent cases and the pressure-dependent cases. For non-stagnant-lid cases with purely temperature-dependent viscosity, the lateral viscosity contrast is similar to the radial viscosity contrast ( )

lat η η ∆ ∆ .
In contrast for non-stagnantlid cases with pressure-dependent viscosity, the lateral viscosity contrast is much larger than the radial viscosity contrast and a relation of 

Rheological constant

In the stagnant-lid regime, the convective system is separated into two parts, i.e., the convecting interior and the stiff upper part (the stagnant-lid) that is mainly controlled by conductive heat transport. Part of the convecting interior and just beneath the stagnant lid is the upper thermal boundary layer (TBL). The temperature drop within the TBL can be described by the rheological gradient γ and the constant rh a :

rh rh rh i L a T T T T γ ∆ ∆ = = - (0) 
where ( )

L l
T T δ = is defined as the temperature at the base of the stagnant lid and ( )

i b T T δ = is
the internal temperature at the bottom of the TBL. This relation has been already suggested by [START_REF] Solomatov | Parameterization of temperature-and stress-dependent viscosity convection and the thermal evolution of Venus. Flow and creep in the solar system: observations[END_REF]1995), later proven in laboratory experiments for internally heated convection by [START_REF] Davaille | Transient high Rayleigh number thermal convection with large viscosity variations[END_REF] and further confirmed by [START_REF] Grasset | Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary thermal evolution[END_REF] and [START_REF] Reese | Scaling laws for time-dependent stagnant lid convection in a spherical shell[END_REF][START_REF] Reese | Stagnant lid convection in a spherical shell[END_REF] with numerical simulations.

The thickness of the stagnant lid l δ is not clearly defined and different approaches exist in the literature to constrain its value. Some refer to a non-eroded stagnant lid [START_REF] Deschamps | Inversion of two-dimensional numerical convection experiments for a fluid with a strongly temperature-dependent viscosity[END_REF], where advective forces are low enough to guarantee that material in the lid remains within this region. This has been approximated by a threshold in the radially averaged velocity profile. The thickness of the lid is then equal to the depth where the velocity profile reaches the value of the expected numerical error in the velocity. Even though this is the most plausible definition of a stagnant lid as it really defines a 'stagnant' lid, it is also very volatile because the velocity profile has a rather smooth logarithmic transition towards zero, so small variations in the threshold value have a great impact on the thickness of the lid. Another widely used method consists of exploiting the tangent through the inflexion point of the velocity profile within the TBL [START_REF] Grasset | Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary thermal evolution[END_REF], as illustrated in figure 1b.

Assuming that rh a is constant, we have benchmarked the different methods of determining the lid thickness to check which method leads to the least standard deviation of rh a . Our results show that the method using the tangent through the inflexion point of the velocity profile is most suitable to obtain the least standard deviation. The average value is rh a 2.88 ± 0.04 (table 2). The discrepancy between our value and previous estimates of 3.1 [START_REF] Reese | Scaling laws for time-dependent stagnant lid convection in a spherical shell[END_REF], 2 [START_REF] Davaille | Transient high Rayleigh number thermal convection with large viscosity variations[END_REF], 2.2 [START_REF] Davaille | Onset of thermal convection in fluids with temperaturedependent viscosity: application to the oceanic mantle[END_REF][START_REF] Grasset | Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary thermal evolution[END_REF] and 2.4 [START_REF] Solomatov | Scaling of time-dependent stagnant lid convection: Application to small-scale convection on the Earth and other terrestrial planets[END_REF] is mainly due to the insensitivity of this parameter within the heat-flow scaling law as explained in the next section.

Nusselt number

The convecting interior below the stagnant lid consists of small lateral and radial viscosity variations (see lateral viscosity scaling above) and can be considered as isoviscous (e.g., [START_REF] Grasset | Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary thermal evolution[END_REF]. The Nu-Ra scaling relation for isovisous convection is given by

Nu a Ra β = (0)
where a and β are constants. This relation is only valid for the convecting region, therefore, the Rayleigh number, which is based on the interior viscosity i η and the internal temperature ( )

5 1 1 0 1 l i Ra Ra δ η - = - (0) 
as well as the internal temperature:
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For purely internally heated convection, the internal temperature i T is directly related to the Nusselt number and therefore related to the heat-flow [START_REF] Reese | Stagnant lid convection in a spherical shell[END_REF]. The Nusselt number is the ratio of the theoretical non-dimensionalized maximal conductive temperature c T to the internal temperature

C i T Nu T = (0)
This relation allows modifying the equation 15 to

1 1 T a Ra β - = (0) 
The constants a and β have been obtained by fitting the internal temperature to the calculated stagnant-lid cases for both the stationary and the time dependent convection (table 3). Figure 9 shows further the relation between 1 T and 1

Ra for all the stagnant-lid cases with time dependent convection using the constants in table 3. The fitting constants of the timedependent part of TC are very similar (less than 3e-3 difference in β ) to those observed by [START_REF] Parmentier | Turbulent 3-D thermal convection in an infinite Prandtl number, volumetrically heated fluid: implications for mantle dynamics[END_REF], who studied isoviscous three-dimensional Cartesian internally heated convection with no-slip boundaries. Our results are also close to the results obtained by [START_REF] Grasset | Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary thermal evolution[END_REF] in their 2D study (see table 3). This confirms the assumption that convection beneath the stagnant lid can be treated as isoviscous [START_REF] Davaille | Transient high Rayleigh number thermal convection with large viscosity variations[END_REF][START_REF] Grasset | Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary thermal evolution[END_REF][START_REF] Reese | Scaling laws for time-dependent stagnant lid convection in a spherical shell[END_REF][START_REF] Solomatov | Stagnant lid convection on Venus[END_REF] and further that the boundary to the stagnant lid is close to a no-slip boundary condition.

To derive a complete scaling law, the non-dimensionalized temperature (scaled with 2 Hd k ρ ) at the base of the lid can be derived from the conductive temperature profile for a volumetric heat source in spherical geometry with r i as the inner and r 0 as the outer radius:

2 3 2 1 2 2 ( ) 6 i o o T r r r r r r - = -+ + + (0) 
This equation also leads to the maximal conductive temperature ( )

C i T T r = in the spherical
shell, which is needed to obtain the Nusselt number. Inverting equation 20 yields the radius for the temperature within the conducting lid that can be exploited to retrieve the lid depth based on a known lid temperature with ( )

l L d T δ = .
Besides using the parameter rh a obtained from the tangent method (table 2) and the associated parameters a and β (table 3), the large number of runs allows to fit all three parameters directly. To provide a better understanding of the dependence of all three parameters, a was varied over a reasonable range between 1 and 10 while the remaining two parameters were fitted. The parameter fit is shown in figure 10a and the standard deviation in figure 10b for time-dependent TC cases. It is interesting to note that for a wide range of parameters the error remains almost constant. While a is in the range between ~1 and ~4.5, the resulting standard deviation is very small and does not change significantly. This puts rh a in a possible range between 0.5 and 7, and β between 0.21 and 0.26, respectively. The values for β are approximately in between the two theoretical values for internally heated convection with free-slip (-0.25) and no-slip (-0.2) boundaries (Schubert et al., 1990a). This is evident from the definition of rh a itself; a higher value yields a more eroded stagnant-lid that gives the convection below an interface definition towards a no-slip upper boundary while lower values provide a more free-slip boundary through the shear effects of an increased local radial viscosity contrast. Therefore, it is possible to choose the erosion level with the choice of rh a and of the associated best-fits for a and β . However, the lowest error was found for the time-dependent stagnant-lid regime at 3.57, 5.64 . 2 , 0 2 rh a a

β = - = =
, which is marked by the vertical dashed line in figure 10.

In the present parameter study, we performed internally heated 3-D mantle convection models in a spherical shell with temperature and pressure dependent viscosity. We have identified and classified four convection regimes, i.e., mobile-lid regime, sluggish regime, low-degree regime, and stagnant-lid regime that develop depending on the viscosity contrast and the internal Rayleigh number. In contrast to earlier work [START_REF] Moresi | Numerical investigation of 2D convection with extremely large viscosity variations[END_REF][START_REF] Solomatov | Three regimes of mantle convection with non-Newtonian viscosity and stagnant lid convection on the terrestrial planets[END_REF][START_REF] Tackley | Effects of strongly temperature-dependent viscosity on time-dependent, three-dimensional models of mantle convection[END_REF]Tackley, 1996a), we consider also the dominant degree of the convective pattern to highlight structural differences.

A significant difference to other publications is the absence of the typical sluggish regime for temperature-dependent viscosity (TC cases) and only a narrow range of the sluggish regime for temperature and pressure-dependent viscosity (TPC cases). The sluggish regime should occur after Christensen (1984b) and [START_REF] Moresi | Numerical investigation of 2D convection with extremely large viscosity variations[END_REF] for a viscosity contrast between 10 2 and 10 4 , and is further confirmed from other studies in 2D and 3D boxed simulations with internal heating and/or bottom heating (e.g., [START_REF] Carey | Variable viscosity effects in several natural convection flows[END_REF][START_REF] Hansen | High Rayleigh number regime of temperature-dependent viscosity convection and the Earth's early thermal history[END_REF][START_REF] Hirayama | Thermal convection of a fluid with temperaturedependent viscosity[END_REF][START_REF] Ogawa | Numerical simulations of 3-D thermal convection of a strongly temperature-dependent viscosity fluid[END_REF]. The absence of the sluggish regime for our TC cases and the small range observed for the TPC cases is mainly a consequence of the full 3D spherical treatment of the convection. This is the first study in a spherical shell to simulate mantle convection with purely internal heating for a large parameter range.

For the transition into the stagnant-lid regime we have proposed an alternative mobility definition in the form of 1 rh M Nu δ = , which defines the boundary into the stagnant-lid regime with M 1 < 0.6. According to this mobility definition the stagnant-lid regime is observed for a viscosity contrast larger than 1.3•10 4 within the convecting system for purely temperaturedependent viscosity cases. The transition into the stagnant-lid regime for pressure dependent viscosity starts at a lower viscosity contrast of about 10 3 . An alternative boundary to the stagnant-lid regime that depends not only on the viscosity contrast can possibly be obtained if the surface Rayleigh number exceeds the critical Rayleigh number of the convecting system.

This has been suggested already by [START_REF] Stengel | ONSET OF CONVECTION IN A VARIABLE-VISCOSITY FLUID[END_REF], [START_REF] Richter | HEAT-TRANSFER AND HORIZONTALLY AVERAGED TEMPERATURE OF CONVECTION WITH LARGE VISCOSITY VARIATIONS[END_REF] and [START_REF] Deschamps | Inversion of two-dimensional numerical convection experiments for a fluid with a strongly temperature-dependent viscosity[END_REF]. We have also identified one specific case for which the transition occurs indeed for a larger viscosity contrast (figure 5b). A detailed study of this alternative boundary requires, however, much more model runs with high viscosity contrasts and Rayleigh numbers that is beyond the scope of our paper.

For the stagnant-lid regime, we have derived a scaling law for the Nusselt number in the convecting interior similar to [START_REF] Grasset | Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary thermal evolution[END_REF]. We confirm the assumption that the convection below the stagnant-lid can be treated and scaled as an isoviscous fluid. The exponent β in the Nu-Ra scaling is 0.23 and consistent to earlier studies assuming internal heating [START_REF] Parmentier | Turbulent 3-D thermal convection in an infinite Prandtl number, volumetrically heated fluid: implications for mantle dynamics[END_REF]. This study also shows results for the rheological constant that associates the temperature drop in the TBL with the rheological gradient. A complete inversion of the three parameters, that was possible due to the large number of cases, shows the weak dependence of the rheological constant on the two remaining fitting parameters, i.e. a and β . A Nu-Ra scaling law for non-stagnant-lid cases as given by [START_REF] Moresi | Numerical investigation of 2D convection with extremely large viscosity variations[END_REF] could not be established. This is most likely due to the used spherical geometry, which results in a large variation in the degree of the convective pattern. The scaling laws of [START_REF] Moresi | Numerical investigation of 2D convection with extremely large viscosity variations[END_REF] have been constrained from 2D boxed simulations. These models do not show a large variation in the degree of the convective pattern because the degree is limited by the chosen geometry. Our finding suggests that not only the Rayleigh number and the applied rheology account for the cooling behavior of a convecting system but also the degree of the convective pattern. This conclusion is confirmed by the wavelength scaling presented:

only for the regime where a relation exists between the input parameters and the degree of convective pattern, i.e., the stagnant-lid regime, a scaling relation for the heat flow can be obtained. For the mobile-lid and the sluggish-lid regime the dominant degree of the convective pattern is unpredictable. Furthermore the influence of the convective pattern on the heat-flow is expected to be greatest if the degree is low. Therefore, small changes within the low-degree regime have a large effect on the heat flow and hence prevent scaling laws for the low-degree regime.

The spectral analysis especially for the time-dependent low-degree cases reveals embedded high-degree convection within the low degree. Thus, the 'overlap' of the dominant low degree with the embedded high-degree convection could further explain the lack of simple scaling relations. Furthermore, this specific pattern of the low-degree convection let us suggest that the stagnant-lid regime could also be seen as embedded high-degree convection but within outer "degree-0" convection that transports heat solely by conduction (spherically symmetric flow does not affect radial heat transport and is here a synonym for convection-free).

For time-dependent cases in the stagnant-lid regime, a relation between the internal Rayleigh number and a structural indicator, the weighted degree of the convective pattern, has been identified: The weighted degree increases linearly with the internal Rayleigh number. This behavior is similar for both models with and without pressure dependence in the viscosity.

However, the increase of the degree is weaker for the pressure dependence, i.e., for equivalent internal Rayleigh number the degree is smaller in contrast to cases with purely temperature dependent viscosity. In comparison to isoviscous convection, the same internal Rayleigh number produces in the presence of a stagnant lid flow structures with higher degrees. This seems to be valid for all heating modes (e.g., [START_REF] Reese | Scaling laws for time-dependent stagnant lid convection in a spherical shell[END_REF][START_REF] Stemmer | A new method to simulate convection with strongly temperature-and pressure-dependent viscosity in a spherical shell: Applications to the Earth's mantle[END_REF][START_REF] Zhong | A benchmark study on mantle convection in a 3-D spherical shell using CitcomS[END_REF]. For stationary convection, degree five seems to be the lowest possible degree beneath the stagnant lid. This limit is not affected by the presence of pressure dependence in the viscosity but is bound to the used core-to-surface radius ratio of 0.55 and is likely to be lower with a smaller core (e.g., [START_REF] Mcnamara | Degree-one mantle convection: Dependence on internal heating and temperature-dependent rheology[END_REF]. The reason for the lower limit of degree five in the stagnant-lid regime is due the reduced thickness of the convecting layer and an indirect change in the upper boundary condition. The stagnant lid alters the surface free-slip boundary condition towards a no-slip boundary condition, further hindering lowdegree convection to develop. [START_REF] Tackley | Effects of strongly temperature-dependent viscosity on time-dependent, three-dimensional models of mantle convection[END_REF] observed low degrees caused by bottom heated convection in a 3D box and ascribed it to the influence of the boundary condition. He argued that with a free-slip boundary condition the flow would choose a preferably long wavelength in this scenario. The transition of the boundary condition from free-slip in the mobile and low-degree regime to the no-slip boundary condition of the stagnant-lid regime is probably responsible for the observed minimal degree. These results differ from the results of [START_REF] Bunge | Effect of depth-dependent viscosity on the planform of mantle convection[END_REF]1997) and [START_REF] Harder | Mantle convection and the dynamic geoid of Mars[END_REF]. These authors have shown that a modest increase in the mantle viscosity with depth has a remarkable effect on the convection pattern, resulting in a long-wavelength structure up to degree-one flow. However, in their models the viscosity was only dependent on pressure and the temperature dependence was neglected, i.e., they did not consider the stagnant-lid regime.

The convection pattern described by its dominant degree is an important parameter to constrain convection models of the terrestrial planets as it can be observed for instance by seismic tomography and also indirectly from the structures at the planet's surface.

Interestingly, for Earth, Mars and the Moon a low-degree convection pattern seems likely. For the Earth, this has been indicated by seismic tomography models [START_REF] Grand | Global seismic tomography: A snapshot of convection in the earth[END_REF][START_REF] Masters | A shear-velocity model of the mantle[END_REF]. Moreover, the formation of supercontinents on the Earth suggests that an even lower degree flow structure than observed today may have once existed in the past [START_REF] Gurnis | Large-scale mantle convection and the aggregation and dispersal of supercontinents[END_REF][START_REF] Zhong | Modeling the dynamics of a free boundary on turbulent thermal convection[END_REF]. For both Mars and the Moon, even a degree-one mantle flow structure (consisting of one upwelling and one downwelling) may have existed on these bodies, resulting in the observed hemispherical crustal dichotomy and the Tharsis rise on Mars [START_REF] Roberts | Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy[END_REF]Schubert et al., 1990b;[START_REF] Wise | Tharsis province of Mars: Geologic sequence, geometry, and a deformation mechanism[END_REF][START_REF] Zhong | Degree-1 mantle convection and the crustal dichotomy on Mars[END_REF] and the hemispherical distribution of Mare basalts on the Moon [START_REF] Stegman | An early lunar core dynamo driven by thermochemical mantle convection[END_REF][START_REF] Zhong | A dynamic origin for the global asymmetry of lunar mare basalts[END_REF]. Considering that the Moon and Mars are in the stagnant-lid regime, the convection patterns underneath the stagnant lid obtained with the present models seem to be inconsistent with the planetary observations.

In case of the Moon, the core-to-surface radius ratio of the convecting mantle of around 0.2 [START_REF] Wieczorek | The Constitution and Structure of the Lunar Interior[END_REF]) may be sufficiently small to obtain a low-degree convection to explain the hemispherical distribution of Mare basalts on the Moon. For Mars, with a radius ratio of about 0.5 (e.g., Sohl and Spohn, 1997), the situation is different. According to our results, the convection pattern below the stagnant lid is larger than about degree five, even for a strong pressure dependence of the viscosity. Thus, possible low-degree convection requires additional constraints on the parameters influencing the convection pattern. For instance a stratified viscosity profile can result in a low degree convection structure [START_REF] Keller | Towards self-consistent modeling of the martian dichotomy: The influence of one-ridge convection on crustal thickness distribution[END_REF][START_REF] Roberts | Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy[END_REF][START_REF] Zhong | Degree-1 mantle convection and the crustal dichotomy on Mars[END_REF], but phase transitions in the Martian mantle may cause a low degree pattern as well [START_REF] Harder | Phase transitions and the three-dimensional planform of thermal convection in the Martian mantle[END_REF][START_REF] Harder | A one-plume model of martian mantle convection[END_REF][START_REF] Weinstein | The effect of a deep mantle endothermic phase change on the structure of thermal convection in silicate planets[END_REF].

4.

The table A1 summarizes the most important measurements conducted with each case. All values are or base on non-dimensionalized measurements. The symbols have the following meaning:

Case A number to identify the case following two characters to classify the case. The lowest temperature at mid-radius ,max r

T

The highest temperature at mid-radius ) ( l σ δ The spatial standard-deviation of the lid-thickness lat η ∆

The maximal lateral viscosity contrast 

  viscosity contrast of 100). While the viscosity contrast due to pressure p η ∆ is directly specified, the contrast due to temperature is an output parameter. Both setups, i.e., with or without pressure dependence, took approximately half of all runs. In the following, models with only temperature-dependent viscosity have the symbol TC and models with temperature and a pressure dependence viscosity throughout the shell of two orders of magnitude TPC. The appendix provides a detailed overview on all cases.

iTr

  , which is defined as the laterally averaged temperature in the convecting mantle. It is best described by the laterally averaged temperature at the depth the inner radius and ' r v the radial velocity.

0 δδδ

 0 Depth of the center of the TBL b Depth of the bottom boundary of the TBL l Depth of the upper boundary of the TBL equivalent to the thickness of the stagnantlid, determined with the method illustrated in fig. 1b

  [START_REF] Solomatov | Three regimes of mantle convection with non-Newtonian viscosity and stagnant lid convection on the terrestrial planets[END_REF] with rh δ being the thermal boundary layer thickness. Here, we propose an alternative approach based on a well-defined correlation between the Nusselt number and the heat flux in the mobile-lid regime in the

  constant. For TC this value is about 30 and for TPC it increases to 130 (Fig.8). This increase in lat η ∆ depends solely on the pressure dependence of the viscosity p η ∆ . To obtain a relationship between the lateral and radial viscosity contrast for temperature and pressure dependent viscosity models, we have considered three additional stagnant-lid cases assuming

iT

  , need to be rescaled with the effective non-dimensionalized thickness of the convecting interior

First

  character: Time-dependency, S = stationary, T = time-dependant Second character: Convective regime: S = stagnant-lid, L = low-degree, M = mobile,

  

  

  

Table 2 .

 2 The results for with a lid defined as the root of the tangent through the inflexion point of the velocity profile, separated for different regimes and compared to previous studies.

		Steady state convection	Time-dependent convection
	TC	5.04 / 0.3 / 1.84e-2 (5)	2.34 / 0.231 / 1.6e-3 (24)
	Grasset 98		2.38 / 0.227 /	?
	Parmentier 94		? / 0.2338 / 1.9e-3 (4)
	TPC	5.18 / 0.31 / 5e-2 (3)	1.02 / 0.178 / 3e-3 (17)
	Table3. The result of the iso-viscous fit of equation 19 in the stagnant-lid regime. The values are a / / (no. of cases)
	Grayed values indicate possibly wrong values due to insufficient data.	

Table1. The result of a complete inversion of stagnant-lid cases for equation 12. Grayed values indicate fixed values from TC due to insufficient data.
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Highlights

> Internally heated 3-D mantle convection models in a spherical shell with temperature and pressure dependent viscosity have been performed to provide new insights into the various convection regimes.

>We were able to predict the pattern of convection (dominant degree) for high Rayleigh numbers in the stagnant-lid regime.

>A case study of 91 3D simulations helped to identify a low-degree regime close to the border to the stagnant-lid regime.

>We were able to determine the rheological constant through full inversion.