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Abstract 

The geomagnetic field is a fundamental property of our planet: its study would allow us to 

understand those processes of Earth’s interior, which act in its outer core and produce the main 

field. Knowledge of whether the field is ergodic, i.e., whether time averages correspond to phase 

space averages, is an important question since, if this were true, it would point out a strong spatio-

temporal coupling among the components of the dynamical system behind the present geomagnetic 

field generation. Another consequence would be that many computations, usually undertaken with 

many difficulties in the phase space, can be made in the conventional time domain. We analyse the 

temporal behaviour of the deviation between predictive and definitive geomagnetic global models 

for successive intervals from 1965 to 2010, finding a similar exponential growth with time. Also 

going back in time (at around 1600 and 1900 by using the GUFM1 model) confirms the same 

findings. This result corroborates previous chaotic analyses made in a reconstructed phase space 

from geomagnetic observatory time series, confirming the chaotic character of the recent 

geomagnetic field with no reliable prediction after around 6 years from definitive values, and 

disclosing the potentiality of estimating important entropic quantities of the field by time averages. 

Although more tests will be necessary, some of our analyses confirm the efforts to improve the 

representation of the geomagnetic field with more detailed secular variation and acceleration.  
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1. Introduction 

The geomagnetic field is an important property of our planet: its study allows us to understand some 

processes in Earth’s interior, especially in the outer fluid core, where the main field (MF) is 

produced by turbulent motions of a liquid iron alloy conductive material. A conventional way to 

study the geomagnetic field at a certain epoch is the Spherical Harmonic Analysis (SHA) that 

consists of expanding the geomagnetic field potential outside the planet in spherical harmonics as 

solutions of the Laplace’s equation. The result of the analysis is expressed with a set of Gauss 

coefficients m
ng  and m

nh  that completely characterise the corresponding model at each epoch. Then, 

one can look at the behaviour in time of m
ng  and m

nh to follow the geomagnetic field dynamics. As 

pointed out by De Santis and Qamili (2010), this conventional analysis, although powerful, has the 

main drawback that most of the static and dynamical features are obscured by the large contribution 

of the geomagnetic dipole. An alternative analysis that has been introduced in the recent years is the 

nonlinear chaotic analysis (NCA): this analysis is expressed mainly in terms of a nonlinear 

forecasting approach (e.g. Barraclough and De Santis, 1997; De Santis et al., 2002) and is based on 

the study of the exponential divergence of some prediction from the real signal in the phase space. 

Indeed, the cornerstone of this analysis is the reconstruction of a pseudo-phase space, taking 

advantage of a mathematical theorem (Takens, 1981) that establishes a direct way to do it from the 

time delays of the experimental signal (e.g. Kantz and Schreiber, 1997). A way to connect SHA and 

NCA has been the introduction of another kind of NCA, directly performed in the usual time 

domain: this analysis is based on the configurational Shannon Entropy (or its negative quantity, the 

Shannon Information or Information Content). This quantity can be simply expressed by the Gauss 

coefficients of the SHA (De Santis et al., 2004; De Santis, 2007, 2008), and its (negative) time 

derivative is, for chaotic signals, the Kolmogorov entropy K (Wales, 1991). The latter aspect of 

NCA, to be rigorous, needs the signal under study to satisfy some important properties, the most 

important of which is its ergodicity, i.e. when time averages are equivalent to phase space averages 

(e.g. Eckmann and Ruelle, 1985). Therefore, it is an important issue to know whether the field is 
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ergodic or not, since if this were true, many computations, usually undertaken with many 

difficulties in the phase space (e.g. Hongre et al., 1999), would be more easily made in the 

conventional time domain (De Santis and Qamili, 2010). In addition, ergodicity would be a further 

evidence for the strong spatio-temporal coupling among the contributions composing the dynamical 

system that produces and sustains the geomagnetic field (Hongre et al., 1999; De Santis et al., 

2003). The strong coupling is typical of many spatio-temporal chaotic phenomena (e.g. Cross and 

Hohenberg, 1994; Egolf, 2000). 

This paper deals with the verification of geomagnetic field ergodicity. In particular it will show that 

the same kind of chaos, already found in the phase-space reconstruction from several geomagnetic 

observatory time series (Barraclough and De Santis, 1997; De Santis et al., 2002), also appears in 

the conventional time domain in terms of an exponential divergence with time between predictive 

and definitive global geomagnetic field models, thus finding the same results. This outcome will be 

considered an empirical evidence for the ergodicity of the recent geomagnetic field, so disclosing 

the potentiality of estimating important entropic quantities by means of time averages.  

Ergodicity is important not only in geomagnetism but also in other fields. For instance, in 

geomorphology the ergodic assumption allows to perform spatial analyses as if they were in time, 

looking at the temporal cumulated effects on the space, and so without waiting millennia or more to 

perform the analyses (e.g. Paine, 1985). In engineering seismology, the use of empirical ground 

motion attenuation relations for site-specific seismic hazard assessment implicitly appeals to the 

ergodic assumption (e.g. Woo et al., 2006), although there are some techniques that try to overcome 

this limitation (e.g. Anderson and Brune, 1999; Chen and Tsai, 2002). Ergodicity is also 

fundamental for studies of some seismic sequences in the time domain where they appear as a 

chaotic point-process (e.g. De Santis et al., 2010) so that the statistical time analyses can be 

considered as valid as in the phase space. For many types of laboratory experiments (e.g. low-

intensity interference; Buonomano and Bartmann, 1986) assuming the ergodicity from some 

theoretical ground simplifies most of the computations. Therefore, even though our analysis is 
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restricted to the geomagnetic field, the methodology, in principle, can be also extended to other 

disciplines. 

This paper is organized as follows: next section is dedicated to the NCA in the phase space; then we 

define ergodicity more in detail. The successive section describes the temporal behaviour of the 

errors between several predicted and definitive global geomagnetic models and how the results are 

connected with the important question of the ergodicity of the geomagnetic field. Finally, we 

discuss the results in terms of their significance. 

 

2. Theory  

 

2.1 Nonlinear chaotic analysis of the geomagnetic field in the phase space 

The concept of phase space is a powerful tool for characterizing the dynamical system under study. 

Let us think of a physical system whose states can be represented by a series of sequential points in 

a finite-dimension space mℜ , i.e. the phase space whose coordinates are all those variables that, at 

any moment, describe completely the state of the system. During its time evolution, the transition 

1 2t tT →  from a state 1( )x t
�

 at time 1t  to state 2( )x t
�

 at time 2t  can be expressed by the equation of 

motion: 

 ( ) ( ( )),  tx t F x t= ∈� �� �  (1) 

named flow for the continuous time, or by  

 1 ( ),  nn nx f x+ = ∈�  (2) 

the so-called map for discrete case, where ( ), .m
nx t x ∈ℜ�

 A dynamical system is realized by the 

above equations. 

The study of a dynamical system implies the description of the dynamics of the points ( )x t
�

 in the 

phase space. So, for instance, considering the solution of the discrete case (2) with the initial 

(condition) state 0 ,x  the sequence of points 0( )n
nx f x= in the phase space is called a trajectory. 
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Trajectories can run to infinity or stay confined in a finite volume as time goes on: regularity in 

their behaviour depends on the form of F (or f for discrete time) and on the chosen initial 

conditions. 

Some studies have shown that the recent geomagnetic field is chaotic (Barraclough and De Santis, 

1997; De Santis et al., 2002). This means that any small change ε of the initial orbit in the phase 

space propagates exponentially with time, i.e. ε(t) � ε0 eKt where K is the Kolmogorov Entropy (with 

K>0), characterising the degree of chaos of the phenomenon under study (e.g. Schuster, 1992). This 

exponential divergence of close orbits must not be taken in strict sense, but in statistical terms and 

for short times (theoretically t�0). Then we can introduce the mean time <T> after which no 

reliable prediction can be performed, such as <T>=1/K. According to the time delays theorem 

(Takens, 1981) we do not have to measure all the phase space variables of the dynamical system. 

Instead, we can reconstruct an equivalent phase space using appropriate successive time delays for 

each axis, i.e. the so-called embedding space or pseudo-phase space. This procedure allows a one-

dimensional time series to be converted to a m-dimensional representation in order to reveal 

potential properties of stability or instability of the signal under consideration, such as noise, 

periodicity or chaos. When the time series is rather short (say, composed of less than 1000 data 

points) we can apply a nonlinear forecasting approach that consists of subdividing the time series in 

two equal parts and using the first half to predict the second one in the phase space: no matter the 

used technique, the way our prediction deviates from the real observation establishes the possible 

chaoticity of the process related to the studied signal (e.g. Sugihara and May, 1990), and can even 

allow to quantify it. According to Wales (1991), there is a relation between the Kolmogorov 

Entropy K and the correlation coefficient r between prediction and actual signal in the form:  

 ( ) pln 1     r q KTα− = +  (3) 

where Tp is the prediction time in the future, q and α are two empirical constant parameters, with 

α=1 for 1-D series, α=2 for very short multi-dimensional series. De Santis et al. (2002) applied this 
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technique to the geomagnetic field secular variation (SV) observed over the past 100 years in 14 

observatories non-uniformly distributed over the Earth’s surface. They found that the East 

component of geomagnetic field SV (i.e. the least contaminated by external fields) behaves as a 

chaotic phenomenon with <T> = 1/K � 6 years, in the sense that no reliable predictions of future 

geomagnetic field can be made after around 6 years (Barraclough and De Santis, 1997; De Santis et 

al., 2002). 

 

2.2. Ergodicity and invariant measures 

A dynamical system is dissipative when, after a transient behaviour, the volume of the phase space 

containing the initial conditions is contracted by the dynamics, in the sense that as t → ∞  the points 

asymptotically visited by the system will be concentrated on a sub-set of mℜ  of null Lebesgue 

measure named attractor (Eckmann and Ruelle, 1985). Since the system does not visit the points on 

the attractor with the same frequency, a corresponding measure must be introduced. We define the 

measure ( )x dxρ � �  as the average time a typical trajectory spends in the elementary volume dx
�

 of the 

phase space. Since it can have several solutions strongly depending on the initial conditions, in 

order to characterize a dynamical system it is necessary to make use of quantities that do not derive 

from particular realizations of the dynamics. For this purpose, we can observe that there exist 

subsets mU ⊃ ℜ  that are invariant, meaning that they are mapped onto themselves by f (or F)  

 ( ) ,f x U x U∈ ∀ ∈  (4) 

when every point in the invariant subset is mapped forward in time by the dynamics (Kantz and 

Schreiber, 1997). This way the system is characterized by the long term behaviour of its orbit on 

one of the many invariant subsets, and not by all orbits possibly emerging from all its initial 

conditions.  

Another element of universality comes from the existence of at least one invariant measure inside 

each set. An invariant measure is such that 
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 1( ( )) ( ),  0f U U tρ ρ− = >  (5) 

where mU ⊃ ℜ  and 1( )f U−  is the set obtained by evolving back in time each point x U∈  

(Eckmann and Ruelle, 1985). The above equation means that if we have a huge number of points on 

the invariant subset distributed according to this invariant measure and we apply the time evolution 

operator f on them, the measure will be exactly reproduced (Kantz and Schreiber, 1997). 

All above definitions and concepts are used in order to study dynamical systems and they are part of 

a general theory named Ergodic Theory (e.g. Asonov, 2001; Walters, 1982).  

In general, in this framework, each invariant measure ρ is decomposable into several different 

pieces. When the measure ρ is no longer decomposable, it is called ergodic. According to the 

ergodic theorem, for every continuous function ϕ  we have: 

 0
0

1
lim ( ) ( ) ( )

T
t

T
f x dt dx x

T
ϕ ρ ϕ

→∞
� � =� �� �  (6) 

 i.e. a dynamics is called ergodic for almost all initial conditions 0x  if a time average along a semi-

infinite trajectory is identical to space average (Eckmann and Ruelle, 1985); the space average is 

weighted by the invariant measure ρ. 

An equivalent definition of ergodicity is that property of a dynamical process that allows the related 

system to reach any state starting from any other, in the course of its evolution over time; or, in 

other words, “a system is ergodic if the infinite-time of an observable is independent of the initial 

condition (except for a set of initial states of measure zero)” (Egolf, 2000). 

An important requirement to apply the above concepts is the identification of the invariant set, i.e. 

the volume of the phase space that remains constant after time evolution: an irreducible attractor, 

i.e. one composed by one invariant subset only, is what satisfies our request. But in that case the 

dynamical system has to be dissipative. 

We have defined the measure ( )x dxρ � �  as the average time a typical trajectory spends in the 

elementary volume dx
�

 of the phase space. If this measure is independent of initial conditions then 
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ergodicity is certain and so space averages computed with respect to ( )x dxρ � �  equals time averages 

taken over a typical trajectory. Relationship (6) is the so called Birkhoff's “ergodic theorem” 

(Walters, 1982): statistically speaking, the system that evolves for a long time "forgets" its initial 

state.  

In the case of the geomagnetic field, the invariant measures are the K-entropy and its reversal 

<T>=1/K, i.e. the limiting mean time of prediction. An outstanding role in ergodic theory and its 

applications to stochastic processes is played by the various notions of entropy for dynamical 

systems. If we find that the geomagnetic field is ergodic, this result, in turn, will allow us to 

simplify most operations related to estimations of its entropy. 

 

3. Data analyses and results  

Global models of the geomagnetic field are, at the same time, important products and sources of 

study of the recent and past geomagnetic field. Most of them are made performing a SHA on 

different magnetic field data, providing sets of Gauss coefficients m
ng and m

nh  at successive epochs 

or some temporal functions of them. The models may also provide a set of predictive coefficients to 

estimate close future values of the field.  

In the following we will use a technique based on the comparison between predicted and definitive 

values of the field in a certain period of time. To estimate these values, we will use some different 

global models, that we will briefly describe below. 

The IGRF model (International Geomagnetic Reference Field; Maus et al., 2005; Finlay et al., 

2010; internet link: http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html) is a series of mathematical 

models of the Earth's MF and its SV in terms of a spherical harmonic expansion of the geomagnetic 

potential. This model comes from a refined combination of some different candidates that are based 

on diverse criteria of selection among observatory and satellite data from 1900 to 2010. The core 

field is represented by a set of Gauss coefficients given at 5-year intervals, with a degree n (and 

order m) up to a maximum index N=10 (from 1965 to 1995) and 13 (from 2000) and SV up to 
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degree N=8. In our analyses we use the 10th generation of IGRF (Maus et al., 2005), although a 

more recent version (the 11th generation) already exists (Finlay et al., 2010). 

WMM (World Magnetic Model; Mclean et al., 2004; internet link: 

http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml) is an analogous large spatial-scale 

SH representation of the Earth's magnetic field. It consists of a degree and order 12 spherical 

harmonic expansion of the potential of the geomagnetic MF. The model has also an equal number 

of spherical harmonic SV coefficients predicting the temporal evolution of the field over the 

upcoming 5-year epoch. 

CM4 (Comprehensive Model; Sabaka et al., 2004; http://core2.gsfc.nasa.gov/CM/) is based on 

observatory hourly means measurements close to 01:00 LT on the quietest day of each month for 

the period 1960-2000 and every 2 hours for the quietest days during which POGO, MAGSAT, 

CHAMP and Ørsted satellites flew. The latter satellite data, properly selected, are then included in 

the model. The internal (core and lithospheric) fields are represented by a degree and order up to N 

= 65 internal spherical harmonic expansion. The temporal changes of the coefficients up to degree 

N= 13 are described by cubic B-splines (Sabaka et al., 2004). The model takes also into account 

external ionospheric and magnetospheric fields which are not considered in the present work.  

POMME models, versions 3.0 (Maus et al., 2006) and 6.0 (Maus et al., 2010; 

http://www.geomag.us/models/pomme6.html), are MF models based on CHAMP satellite magnetic 

measurements (Ørsted and SAC-C satellite data were used only to verify the accuracy of the 

model). The corresponding input data span from 2000.6 to 2005.7, centered at 2003.0, for the 

version 3.0 and from 2000.6 to 2009.7, centered at 2005, for the version 6.0. These models reach a 

maximum degree N=60 and include an instantaneous SV and a second time derivative, the so called 

secular acceleration (SA), both to degree 16. 

CHAOS spherical harmonic models, first version (here called CHAOS-1; Olsen et al., 2006) and 

second version (CHAOS-2; Olsen et al., 2009), are based on high-precision geomagnetic 

measurements from Ørsted, CHAMP and SAC-C satellites. CHAOS-1 is based on data taken 
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between March 1999 and December 2005 centered at 2002.5 whilst CHAOS-2 is an update to 

2009.5. CHAOS-1 reaches a maximum degree N=50 and includes an instantaneous SV up to degree 

N=18 and a SA up to degree 14; CHAOS-2 reaches a maximum degree N=60 and includes an 

instantaneous SV up to degree N=20 without including a SA. In order to consider the MF only, in 

this paper we limit both CHAOS-1 and CHAOS-2 expansions up to N=14. 

What is common in all above models is that any extrapolation of their calculated geomagnetic field 

outside the typical time of validity would cause very large errors. How these errors behave in time 

is important to understand the intrinsic dynamics of the geomagnetic field and its main source, i.e. 

the outer terrestrial core. We can estimate the errors ε from predictive and definitive model Gauss 

coefficients (Maus et al., 2008): 

2

1 0

( 1) ( ) ( )
N n

m m
n predictive n definitive

n m

n c cε
= =

� �= + −� �� �                                                   (7) 

where 222 )()()( m
n

m
n

m
n hgc +=  . 

Figure 1 shows the errors as estimated from equation (7) for eight temporal segments numbered in 

progressive order, as taken from the differences between predicted and definitive global 

geomagnetic models in the period 1965-2010. In this figure we have built the same Figure 1 of 

Maus et al. (2008) just by digitising all curves. The considered predictive models were WMM for 

1975-2010 and IGRF for 1965-2010. As definitive models we considered the CM4 for 1965-2000 

and the POMME-3.0 model (Maus et al., 2006) for 2000-2010, with maximum degree 13 and 16, 

respectively. 

Figs. 2a and 2b redraw the same errors for IGRF and WMM, respectively, labelled according to the 

numbers of Fig.1, but imposing for convenience the same initial time for a better visual inspection 

and comparison. It is straightforward to see that if we impose the same initial value for both 

predicted and definitive models, each exponential growth has an offset equal to -ε0 that must be 

taken into account. Thus, all segments can be represented by an exponential function s(t) such as  

s(t) = ε0et/τ− ε0= ε0 (et/τ− 1)                                                               (8)  
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where ε0 is an appropriate constant and τ is the characteristic time of growth: the former is a 

measure of the initial difference between prediction and actual value, while the latter, in case of an 

ergodic and chaotic system, is related to K-entropy. As the equation of close but diverging orbits in 

the phase space, also eq. (8) must be taken in its statistical meaning so that we can write <τ > �1/K, 

where <τ > is the mean value of the characteristic time over many realisations of (8).  

For each best-fit curve we indicate the corresponding value of τ with the associated statistical error 

(standard deviation). Please note that this error estimation is usually over-optimistic, being 

internally evaluated among all points of each diverging curve. To have more realistic estimates we 

calculate mean value and associated standard deviation from all best-fit τ values for each coherent 

analysis. In particular, for IGRF τ has a mean value <τ> = 5.2 years (median 5.4 years) with 

uncertainty (±standard deviation) of ±2.3 years (Fig.2a), while for WMM we obtain <τ> = 7.9 ±3.7 

years (median 7.6 years; Fig.2b). The larger uncertainty of WMM could be due to some less 

accuracy of this model with respect to IGRF or, at least, to a more variable accuracy over the time 

of validity.  

If the system is chaotic we will expect an exponential behaviour also for “retrodictions”, i.e. when, 

using the SV at a certain time, the predictive model is forecasted backward in time. To verify this, 

we reproduced part of the Figure 8 of Maus et al. (2008) where we considered the misfit between 

the POMME 3.0 (including its SA) and CM4 models, when the former was extrapolated backward 

from 2002 to 1990. Once referred the time with respect to the epoch 2002 (Fig.3), this segment can 

be represented by an exponential growth in the reverse time (t � –t), i.e. by an exponential 

decaying function s’(t) in the natural time, such as s’(t)= s(-t)= ε0(e-t/τ− 1),  with τ = 5.4 ±0.5 years. 

Also here τ is the characteristic time associated to the chaotic character of the field.  

At this point, a possible criticism could be that the compared (predictive and definitive) models are 

quite diverse and that their exponential divergence could be just due to the difference between 

IGRF or WMM model and CM4: this difference becomes obvious in Fig.1, where the estimated 
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model errors for the initial times vary significantly. To avoid the problem of the evident model 

heterogeneity we finally resorted to two couples of more homogeneous models, in terms of model 

construction and data selection. In particular, we analysed the differences between POMME 3.0 and 

POMME 6.0 (Maus et al., 2006; 2010) and between CHAOS-1 and CHAOS-2 from 2006 to 2010 

(Olsen et al., 2006; 2009), where the older versions of each couple of models acts as a predictive 

model and the most recent one as the definitive one; POMME models and CHAOS-1 model include 

their MF, SV and SA terms, so we considered, together with MF and SV terms, all SA terms (case a 

– empty squares in Fig.4) or without them (case b –empty circles in Fig.4) for POMME analyses, 

and all SA terms for CHAOS analysis (case c- full squares in Fig.4). Both analyses of  POMME 

models (cases a and b) were extended up to N=10, but no significant change appears with lower and 

higher degrees (verified for N=8 and 16); the analysis of CHAOS models was limited to N=14. Also 

in all these cases we find an exponential growth of the corresponding differences, in particular with 

characteristic times τ =5.2±0.1 (case a), 4.9±0.1 (case b) and 5.1±0.1 (case c) years, which are all in 

agreement with the result from the IGRF analyses (Fig.2a). We notice that when we use POMME 

3.0 without its SA terms (case b in Fig.4), we find a comparable characteristic time but the initial 

error ε0 is almost doubled  with respect to the case  a with all SA terms. Apparently, this result 

indicates that any effort to improve the predictive SV with degree higher than N=8 is worth doing, 

although the intrinsic chaotic nature of the SV field does not allow to maintain the same accuracy 

further into the future. About this argument some other discussions have been recently posed by 

Silva et al. (2010).  

Two important questions arise: i) Was this exponential divergence (possibly implying ergodicity 

and chaos) between predicted and actual geomagnetic field values already present in an epoch older 

than 1965? ii) How can present conclusions about this predictability limitation to a few years be 

drawn only from instantaneous variation estimates? That is, could it be possible that some, say, 

decadal average would give some kind of better predictability? Perhaps short term fluctuations 

cannot be predicted accurately, but maybe there is a general long-term regularity (periodicity?) so 
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that the system is not ergodic on longer time scales. To answer these questions we now consider a 

longer-term model, i.e. GUFM1 (Jackson et al., 2000): this model is based on a SHA of all available 

historical ground and marine data from 1590 to 1990. 

Figure 5 shows the same kind of analysis applied this time to the GUFM1 model for the periods 

1600-1610 and 1900-1910, with the main difference that now we consider decadal SV averages. In 

both cases we first estimated the SV coefficients from the field coefficients in the 10 years prior 

each considered epochs, i.e. 1590-1600 and 1890-1900, respectively. Then, on the basis of this 

averaged SV, we produced the prediction field values for subsequent 10 years and compared them 

with the real GUFM1 field values for the same period of time. Also in these cases clear exponential 

growths are evident (τ =7.3 and 9.7 with the same theoretical uncertainty of ±0.1 years).  

Taking into account all cases analysed so far, i.e. a total of 20 cases, we can find an overall 

unweighted mean value <τ>all of 6 years with an uncertainty of around 3 years; also the median of 

5.7 years confirms the robustness of this estimation.  

The divergence of the error in all analysed cases is evidence for a chaotic geomagnetic field as 

deduced from a time domain analysis. Within the uncertainty, the mean value <τ>  (overall mean 

value, but also both mean values from IGRF and WMM analyses) agrees very well with the 

characteristic time <T> =1/K� 6 years after which no reliable prediction can be made, as found 

from the nonlinear analyses of the geomagnetic field performed by De Santis et al. (2002) in the 

phase space. While the slightly larger τ values of WMM and GUFM1 analyses could be ascribed to 

statistical fluctuations around the theoretical value (even if, perhaps, the largest value for GUFM1 

analysis at 1900 could be due to some inability of this model to represent the real field at that 

epoch), their larger uncertainty, associated to the mean values of the characteristic time, is probably 

due to a different quality of the analysed models over the considered time.  

The close agreement between the results from the two separate and independent analyses, i.e. 

<τ> deduced from the time error analysis and <T> from the NCA in the phase space, can be 
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considered an empirical proof of the geomagnetic field ergodicity. From the analyses with GUFM1, 

it is possible to infer that this property can be extended from 1600 to the present. 

 

4. Conclusions 

The exponential temporal divergence of the errors between several couples of predictive and 

definitive global geomagnetic models agrees very well with the results obtained from a previous 

NCA (e.g. Barraclough and De Santis, 1997; De Santis et al., 2002), thus confirming the present 

state of a chaotic geomagnetic field with no reliable prediction after around 6 years. The empirical 

evidence for the ergodicity of the geomagnetic field given by the present work indicates a strong 

spatio-temporal coupling among the unknown components of the dynamical system behind the 

geomagnetic field generation, as it was already found independently by analysing the spatial and 

temporal spectra of global models and geomagnetic observatory time series, respectively (De Santis 

et al., 2003). The disclosed ergodicity implies that we can simplify many geomagnetic field 

analyses for estimating some ergodic measures, such as the information content or various kinds of 

entropies. For instance, instead of constructing the dynamical orbit in the phase space and 

estimating some kinds of entropy (e.g. Shannon and Kolmogorov Entropies) from successive time 

delays, we can resort to time averages of the quantity, as proposed by Baranger et al. (2002) in 

another context. An application of this approach in geomagnetism has been recently shown by De 

Santis et al. (2004, 2009), De Santis (2007, 2008) and De Santis and Qamili (2010) whose results 

provide new insights of the present geomagnetic field and its possible evolution into the future.  

In addition, three practical considerations can be made. The first concerns with the question that 

some efforts to improve the representation of the SV (and SA), for instance increasing the 

maximum index N of their SH expansions, are worth doing (see also Silva et al., 2010), although 

the intrinsic chaotic nature of the field will not allow the models to maintain the same accuracy for 

some years into the future. The second consideration regards the geodynamo simulations: it would 

be really interesting to study the effect of imposing the presence of ergodicity in some geodynamo 
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simulations, especially if one of the objectives is to make predictions of the geomagnetic field for 

the close future. The third consideration concerns with the times when the geomagnetic field 

models appear more or less chaotic (less or more predictable) than in other epochs: our opinion is 

that the way of proceed in comparing provisional and definitive global models could be useful to 

detect and, possibly, confirm the presence of geomagnetic jerks (e.g. Mandea et al., 2010), when we 

expect the geomagnetic field is less predictable than usual, so more chaotic, i.e. with smaller 

characteristic time τ. 

More studies are needed to verify the important property of ergodicity of the present geomagnetic 

field also prior to 1600, and to explore the three additional considerations about global models with 

more detailed SV and SA terms, ergodic geodynamos and jerks detection. 
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Figure 1. Errors for eight temporal segments numbered in progressive order, estimated from 

the differences between predicted  (IGRF and WMM models) and definitive global 

geomagnetic models in the period 1965-2010, (adapted from Fig.1 of Maus et al., 2008). For 

the used definitive models see the text for the details. 
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Figure 2. Errors for a) IGRF and b) WMM models, as Fig.1 but imposing the same initial time for 

a better visual convenience and comparison. All segments (numbered according to the same order 

of Fig.1) show an exponential growth with characteristic time τ : in particular, <τ > =5.2 ± 2.3 

(standard deviation) years (median of 5.4 years) for the IGRF model and <τ > =7.9 ± 3.5 years 

(median of 7.6 years) for WMM model. Within the estimated uncertainty, these values confirm the 

characteristic time T as found from the geomagnetic field chaotic analysis made in the phase space 

by De Santis et al. (2002) and, thus, it empirically proves the ergodicity of the recent geomagnetic 

field. 
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Figure 3. Misfit between CM4 and POMME 3.0 (backward extrapolated from 2002 to 1990) that 
shows an exponential decay with characteristic time τ =5.4 ± 0.5 years.  
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Figure 4. Misfits between POMME 3.0 and POMME 6.0 (N=10) over the period 2006-2010 for 
both models with MF, SV and SA included (empty squares; case a) and without  for POMME 3.0 
(empty circles; case b). Both curves follow an exponential growth with characteristic time τ of 
around 5 years. With N=8 and 16, τ does not change significantly within the estimated uncertainty. 
The case of POMME 3.0 without SA presents a lower quality (higher initial error ε0).  Case c (full 
squares) concerns with the analysis of CHAOS-1 and CHAOS-2 differences. Also here we find  a 
characteristic time τ of around 5 years. 
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Figure 5. Misfits from GUFM1 model at epochs 1600-1610 (a) and 1900-1910 (b). Both show an 
exponential growth with characteristic time τ =7.3 (± 0.1) and 9.7 (± 0.1) years, respectively. See 
text for more details. 
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Highlights 
> Ergodic property of the recent geomagnetic field is investigated. > Time 
deviations between predictive and definitive global models are analyzed. > The 
results confirmed a chaotic Main Field and highlighted its ergodic character. > 
The results would allow the estimation of entropic field quantities by time 
averages. > Potential use of the method for improving geodynamo simulations and 
jerks detection.  

 
 


