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4Institute of Microelectronic, NCSR, Athena, Greece

(Received 10 October 2011; accepted 2 December 2011; published online 23 December 2011)

We discuss theoretically the simultaneous existence of phoxonic, i.e., dual phononic

and photonic, band gaps in a periodic silicon strip waveguide. The unit-cell of this

one-dimensional waveguide contains a hole in the middle and two symmetric stubs on

the sides. Indeed, stubs and holes are respectively favorable for creating a phononic

and a photonic band gap. Appropriate geometrical parameters allow us to obtain

a complete phononic gap together with a photonic gap of a given polarization and

symmetry. The insertion of a cavity inside the perfect structure provides simultaneous

confinement of acoustic and optical waves suitable to enhance the phonon-photon

interaction. Copyright 2011 Author(s). This article is distributed under a Creative

Commons Attribution 3.0 Unported License. [doi:10.1063/1.3675799]

I. INTRODUCTION

Phononic1, 2 and photonic crystals3, 4 have both received a great deal of attention during the last

two decades. These infinite 2D periodic structures, constituted by a periodical repetition of inclusions

in a matrix background, have opened up new avenues for controlling sound and light, leading to the

proposition of many novel acoustic5 and optical6 devices. The interest on these structures is partly

based on their ability to exhibit absolute band gaps and localized modes associated with defects

forming waveguides and cavities. The existence of band gaps and confined modes has especially

been investigated in photonic crystal slabs7, 8 and more recently in phononic crystal slabs,9–13

in particular in view of the technological realization of integrated structures for electronics and

telecommunications. A related structure, widely used in photonics, is constituted by a 1D narrow

strip waveguide, for instance a silicon waveguide, periodically drilled with holes. Such 1D photonic

crystals are recognized for their ability to manipulate light and are promising as interconnects for the

integration of optical functions on a chip.14–16 However, few studies have dealt with the phononic

properties of periodic strip waveguides.17

Following recent advances in nanotechnology fabrication, the simultaneous control of phonons

and photons in the same structure, with the aim of enhancing their interaction, has received a great deal

of attention during the last few years. Dual phononic-photonic (also called phoxonic) structures hold

promises for the simultaneous confinement and tailoring of sound and light waves, with potential

applications to acousto-optical devices and highly controllable phonon-photon interactions. The

existence of dual photonic and phononic band gaps has been investigated first in 2D infinite crystals

of air holes drilled in silicon,18, 19 lithium niobate,20 or sapphire matrices.21 Similar demonstrations

have been performed in 2.5D silicon crystal slabs with inclusions composed of holes,22, 23 pillars,24 or

“snow-flake” structures.25 The periodic slab is also used to design linear25–27 and cavity defects28, 29

in which the confinement of both excitations or the existence of slow waves is expected to strongly

enhance their interaction.
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FIG. 1. (a) Schematic view of the periodic silicon strip waveguide. (b) Representation of the unit cell which contains one

hole in the middle of the waveguide and two symmetric stubs on each side.

The enhancement of photon-phonon interaction has been also investigated in 1D strip waveg-

uides. Eichenfield et al.30, 31 proposed a 1D patterned optomechanical nanobeam made up of a

periodic array of rectangular shaped holes in a straight waveguide. Optically, the structure has a

complete photonic band gap, but not a mechanical gap. This makes the structure susceptible of

mechanical losses, especially when a cavity is inserted. It remains that, up to now, the theoretical

demonstration of a complete absolute phononic and photonic band gap in 1D nanobeam structure is

still missing.

The aim of this paper is to investigate both the acoustic and optical band structures, and in

particular the existence of dual phononic-photonic band gaps, in a model silicon strip waveguide

in which each unit cell contains one hole in the middle and two symmetric stubs on the sides. The

geometry of the structure is motivated by stubs and holes being favorable for the opening of phononic

and photonic gaps, respectively. In section II, we present the methods of calculations we have used,

namely the finite-element (FE) method for dispersion curves and the finite difference time domain

(FDTD) method for transmission spectra. In section III, we discuss the existence and evolution of

band gaps as a function of the geometrical parameters of the structure. Then, we show in section IV

the simultaneous confinement of phonons and photons when a defect cavity is inserted inside the

strip waveguide. Conclusions are presented in section V.

II. MODEL AND METHOD OF CALCULATION

Figure 1(a) depicts the periodical silicon strip waveguide made up of a straight waveguide

combined with symmetric stubs grafted on each side and circular holes drilled in the middle. The

choice of silicon is motivated both by its technological interest in electronics and telecommunications

and the fact that silicon strips are able to guide optical waves. Silicon is taken as a cubic material with

elastic constants C11=165.7 GPa, C12=63.9 GPa, C44=79.62 GPa, and mass density ρ=2331 kg/m3.

Silicon is optically isotropic with a refractive index of 3.47. In Figure 1(a), the z axis is directed

along the strip waveguide and defines the propagation direction. The y axis is chosen perpendicular

to the strip waveguide and parallel to the axis of the hole. The lattice period � can be considered as

the unit of length. Then, the geometrical parameters involved in the structure are the width of the

waveguide w=�, the length we and width wi of the symmetric stubs, the thickness h of the strip

and the diameter d=2r of the air hole. Figure 1(b) shows the elementary unit cell. Bloch-Floquet

periodic boundary conditions are applied on the sides of the unit cell that are orthogonal to the z

axis. In phononic calculations, stress-free boundary conditions are applied on all other surfaces of

the strip, since elastic waves cannot propagate in air. In photonic calculations, one has to consider a

large volume of air around the strip and artificial periodic boundary conditions are applied in the x

and y directions. The air thickness in each direction is taken as five times the lattice parameter �,

in order to ensure convergence of the dispersion diagram under the light cone. The guided photonic

modes and their associated band gaps are specifically searched for under the light cone, since above
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the light line modes can radiate in air. Due to small imperfections occurring during the fabrication of

actual samples, the guided modes may couple to leaky waves above the light line and thus become

lossy. Such radiation losses are, however, not considered in our calculations. The structure shown in

Fig. 1(a) possesses two symmetry planes, � (normal to y) and �′ (normal to x), so that all branches

in the dispersion curves can be labeled according to their symmetry (odd or even) with respect to

these planes.

In all band diagrams presented in this paper, frequencies are given in the dimensionless units

�=ω�/2πc, where c is either the velocity of light in vacuum for electromagnetic waves or the

transverse velocity of sound in silicon (ct=5844m/s) for elastic waves.

III. PHONONIC/PHOTONIC BAND GAPS

The purpose of this section is to find dual phononic and photonic band gaps in the structured

nanobeam of Fig. 1. Up to now, strip waveguides have been mainly studied in photonics where the

possibility of band gaps was demonstrated both in straight waveguides containing air holes14 and in

stubbed waveguides.16 Regarding elastic waves, Hsu et al.17 discussed the formation of phononic

band gaps in strip waveguides cut from a phononic crystal plate. Eichenfield et al.30, 31 studied

an optomechanical straight nanowire containing periodic rectangular holes supporting photonic

band gaps but no phononic band gaps. The demonstration of dual phononic-photonic gaps in strip

waveguides is therefore still missing and is the subject of the following investigation. The insertion

of periodical holes in the waveguide is actually sufficient to create a photonic band gap while the

stubbed waveguide supports phononic band gaps. For this reason, we propose to study the geometry

of Fig. 1 where each unit cell contains a combination of a hole and two symmetric stubs. By varying

the geometrical parameters, we shall show that the phononic band gap is mainly sensitive to the size

of the stubs whereas it is practically independent of the diameter of the hole. On the other hand, the

diameter of the hole plays the most significant role in the photonic dispersion curves.

Figure 2(a) displays the phononic dispersion diagram in the first Brillouin zone, for geometrical

parameters we/�=3.0, wi/�=0.5, h/�=0.44, and r/�=0.3. As expected, the band diagram of the

nanobeam shows four acoustic branches starting from the Ŵ point. At higher frequencies, a complete

phononic band gap is found in the reduced frequency range [0.306, 0.355]. In Figs. 2(b) to 2(e), we

show the evolution of this gap as a function of the geometrical parameters of the structure.

Figure 2(b) represents the band gap map for a variation of the full length we/� of the symmetric

stubs. The gap is opened in a large range of values of we, from 2.7� to 3.7�, with a decrease in the

central frequency of the gap as we increases. In Fig. 2(c), one can see that in order to open the gap,

the width of the stubs has to be larger than 0.3�. For a width wi≥0.5�, the width and frequency of

the gap remain almost constant. These trends support the fact that the geometrical parameters of the

stub affect very significantly the formation of the phononic gap. The evolution of the band gaps as

a function of the thickness of the strip is sketched in figure 2(d). As in the case of a phononic slab

drilled with holes,9 the thickness has to be close to half the lattice parameter. Finally, the band gap

is not very sensitive to the radius of the holes (Fig. 2(e)) and remains open for any radius ranging

from 0 to 0.45�.

Keeping the geometrical parameters of the stubs suitable for the opening of a phononic band gap

(wi/�=0.5 and we/�=3.0) and choosing a thickness h/�=0.44, we study in Fig. 3 the variations of

the photonic dispersion diagram as a function of the radius of the hole. Band diagrams are presented

for r/�=0.0, 0.3, and 0.45. By increasing the radius of the hole from zero, the branches under the

light cone, which represent guided modes of the strip, move upwards. Therefore, the number of

branches decreases in a large frequency range corresponding to �/λ smaller than 0.35. Although

there is no absolute photonic band gap for an arbitrary polarization of light, one can search for band

gaps for modes which are of a given symmetry with respect to the symmetry planes �′ and � of the

structure (see Fig.1).

A symmetry analysis can been conducted from the calculation of the electric and magnetic fields

associated with the branches in Fig. 3(b). For the lowest four branches, this assignment is supported

by the field maps in Fig. 4 of the x component of the electric field at the reduced wavenumber

k�/2π=0.414. The first and third branches have the same symmetry oe, namely odd with respect
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FIG. 2. (a) Phononic dispersion diagram for the stubbed waveguide of figure 1 with parameters we/�=3.0, wi/�=0.5,

h/�=0.44, and r/�=0.3. (b, c, d and e) Evolution of band gap edges as a function of each geometrical parameter, the others

being kept constant: (b) we/�, (c) wi/�, (d) h/� and (e) r/�. The vertical blue dashed lines give the values of the parameters

used in the calculation of the dispersion diagram presented in (a).
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FIG. 3. Photonic dispersion diagrams for the same parameters (h/�=0.44, wi/�=0.5 and we/�=3.0) as in figure 2(a), but

for three different radii: (a) r/�=0.0, (b) r/�=0.3 and (c) r/�=0.45. In figure (b), modes are labeled as odd (o) or even (e)

with respect to the symmetry planes �′ and � of the structure. The reduced frequency is given by �=ω�/2πc=�/λ, where

c is the velocity of light in vacuum.

to �′ and even with respect to �. The second and fourth branches are respectively ee and eo.

Therefore, there is a wide photonic gap with oe symmetry in the frequency range [0.270, 0.337]

between branches 1 and 3. Incident light with such symmetry can only excite the latter branches and

therefore cannot propagate in the range of the frequency range of the gap.

IV. PHONONIC/PHOTONIC CAVITY MODE

The strip waveguide defined in the previous section with geometrical parameters we/�=3.0,

wi/�=0.5, h/�=0.44, and r/�=0.3, presents a full phononic band gap and a photonic band gap of

a given symmetry. The aim of this section is to show the possibility of simultaneous confinement of
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FIG. 4. Map of the x component of the electric field for the lowest four modes in Fig. 3(b) at the reduced wavenumber

k�/2π=0.414.
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. (b) Phononic dispersion diagram along the ŴX direction of the

strip waveguide, for a cavity of length 
/�=0.4. (c) Modulus of the displacement field calculated at the points A, B, C, and

D of the dispersion curves.

phonons and photons in a cavity (Fig. 5(a)) inserted in the strip waveguide. The cavity is created by

simply changing the distance between two neighboring unit cells along the z direction, as depicted

in figure 5(a). The width of the cavity is characterized by the elongation parameter 
, i.e. 
=0

when the crystal is perfect.

We calculate the phononic band structure by FEM using a super-cell constituted of the cavity

surrounded by three periods of the phoxonic crystal strip on each side (Fig.5(a)). The separation

between two neighboring cavities is sufficient to avoid interaction between them. The dispersion

diagram is shown in Fig. 5(b) for a cavity of length 
/�=0.4. The white area representing the

band gap is delimited by the propagating bands (grey areas) of the perfectly periodic structure. The
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FIG. 6. (a) Schematic view of the (x,z) section of the structure used for the 3D-FDTD calculation of transmission, with


/�=0.4. (b) Left: Transmission coefficients for the electric and magnetic fields displaying a resonant peak inside the gap.

Right: Magnification of the resonant peak. The inset shows the evolution of the peak frequency as a function of 
.

insertion of a defect cavity introduces new branches inside the band gap corresponding to modes

confined inside the cavity. These branches move downwards and their number increases as the size

of the cavity increases.

The flatness of the branches is a signature of their confinement inside the cavity. To support this

statement, we display in Fig. 5(c) the modulus of the displacement field for the modes labeled A,

B, C and D in Fig. 5(b). Depending on the considered mode, the displacement field is essentially

localized inside the defect cavity and inside the first stubs surrounding the cavity.

On the photonic side, dispersion diagrams obtained with the super-cell method are not easily

interpreted. This is due to the many folding of the bands in the reduced Brillouin zone that is

associated to the super-cell, giving rise to a large number of branches above the light line. In this

case, it is more efficient to directly calculate the transmission coefficient when an incident wave is

launched towards the strip and to explore the possibility of a wave being confined inside the cavity.

This calculation is performed with the help of a homemade three-dimensional finite difference

time domain (3D-FDTD) code. The model is composed of a 3D-box made up of the silicon strip

waveguide embedded in air with perfect matching layers (PML) conditions applied at all boundaries.

The structure (figure 6(a)) is constituted by (i) an incoming straight waveguide where light is injected,

(ii) the periodic waveguide composed of eight unit cells and the central cavity, and (iii) an outgoing

straight waveguide where the output signal is detected. Space is discretized in both three directions

using a mesh interval equal to �/20. The equations of motion are solved with a time integration 
t

= 
x/(4c), where c is the velocity of light in vacuum, and a number of time step equal to 222, which

is the necessary time for a good convergence of the numerical calculation.

The injected pulse is generated at the left side of the 3D-box by a current source appropriate to

create the optical wave with the desired symmetry, which in our case should be respectively odd and

even with respect to the symmetry planes �′ and �. The transmitted signal, probed at the end of the

right part of the strip waveguide, is recorded as a function of time and finally Fourier transformed to

obtain the transmitted amplitude of the fields versus reduced frequency.

Figure 6(b) shows the amplitude of the transmitted electric and magnetic fields. In the presence

of the cavity, a sharp peak appears inside the band gap at the reduced frequency 0.3172. This peak

is magnified in the right part of figure 6(b). In the inset of the figure, we show the evolution of the

frequency of the peak as a function of the length 
/� of the cavity. This frequency decreases by

increasing 
, so the position of the resonant mode can be tuned inside the gap.
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FIG. 7. (a) Maps of the electric and magnetic fields in the strip waveguide structure containing a cavity with length 
/�=0.4

at the monochromatic frequency 0.3172. (b) 3D map of the magnetic field.

To give a better view of the confinement of the resonant mode, we show in Fig.7 the maps of

the electric and magnetic fields for a monochromatic excitation at the reduced frequency of the peak

(0.3172).

As a conclusion, the introduction of a cavity of length 
/�=0.4 in the strip waveguide allows

us to obtain simultaneous confinement of both acoustic and optical waves inside the cavity. A look

at the maps of the confined modes shows that the most significant overlap between both waves,

which is a necessary condition to enhance their interaction, is achieved with the acoustic cavity

mode named (A) in figure 5(c).

It is worthwhile noticing that in the above calculations the geometrical parameters were defined

in comparison with the period � of the structure taken as the unit of length. Therefore, the phenomena

described in this paper can be produced in different frequency ranges depending on the actual value of

�. If the working optical frequency is chosen to be at the telecommunication wavelength of 1550 nm,

then the geometrical parameters become �=500 nm, we=1500 nm, wi=250 nm, h=220 nm, r=150

nm and 
=200 nm. These parameters make the periodic strip waveguide technologically feasible.

In this case, the acoustic mode (A) of Fig. 5(c) has a resonance frequency of 3.7 GHz.

V. CONCLUSION

In this work, we have investigated theoretically a periodical silicon nanowire made up of a

straight waveguide combined with symmetric stubs grafted on each side and circular holes drilled in

the middle. Appropriate choices of the geometrical parameters have allowed us to obtain a complete
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phononic gap together with a photonic gap of a given polarization and symmetry. We have shown

that stubs and holes are respectively favorable for creating a phononic and a photonic band gap.

We have then investigated the possibility of confining modes inside a defect cavity inserted in the

phoxonic strip waveguide. Such a cavity can simultaneously confine phonons and photons, providing

with an overlap of their fields which can enhance their interaction. Finally, we have discussed actual

values of the geometrical parameters, compatible with technological fabrication constraints, in order

to find the photonic cavity mode in the range of telecommunication wavelengths, with the acoustic

frequencies falling in the gigahertz range.
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