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Abstract This paper is devoted to the construction and to the identification of a probabilistic model of
random fields in presence of modeling errors, in high stochastic dimension and presented in the context
of computational structural dynamics. Due to the high stochastic dimension of the random quantities
which have to be identified using statistical inverse methods (challenging problem), a complete method-
ology is proposed and validated. The parametric-nonparametric (generalized) probabilistic approach
of uncertainties is used to perform the prior stochastic models: (1) system-parameters uncertainties
induced by the variabilities of the material properties are described by random fields for which their
statistical reductions are still in high stochastic dimension and (2) model uncertainties induced by the
modeling errors are taken into account with the nonparametric probabilistic approach in high stochas-
tic dimension. For these two sources of uncertainties, the methodology consists in introducing prior
stochastic models described with a small number of parameters which are simultaneously identified
using the maximum likelihood method and experimental responses. The steps of the methodology are
explained and illustrated through an application.

Keywords High stochastic dimension · Structural dynamics · Random fields · Model uncertainties ·
Nonparametric probabilistic approach

1 Introduction

We are interested in the response of dynamical systems for which the parameters of the materials
are variable and not perfectly known. This situation induces uncertainties in the material properties,
which are mainly due to the manufacturing process of materials and structural elements, due to the
assembly of the structure and finally, due to the life cycle of this structure. The estimation of the
responses in the very low-frequency range (the first two or three resonances) is generally robust with
respect to uncertainties in the material properties (but is sensitive to other sources of uncertainties
such as uncertainties in the boundary conditions). Nevertheless, the sensitivity of the dynamical re-
sponse with respect to materials uncertainties becomes non negligible when the frequency increases in
the low-frequency range and in particular, in the medium-frequency range which contains numerous
elastic modes which are very sensitive to uncertainties. Nevertheless, this type of uncertainties, which
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corresponds to system-parameters uncertainties, cannot explain all the differences between experi-
mental measurements and the predictions performed with the computational models. The modeling
errors appear during the construction of the nominal computational model (mathematical-mechanical
modeling) and depend on the accuracy which is chosen for constructing the computational model.
Modeling errors induce model uncertainties which have to be taken into account in order to obtain
robust predictions.

Concerning system-parameters uncertainties, the main method is based on the use of the para-
metric probabilistic approach which allows the uncertain system parameters of the nominal model to
be taken into account through the introduction of prior probability models of uncertain parameters
(see for instance [10; 20; 25; 26; 32]). Such an approach consists (1) either in directly constructing the
probability distributions of the random quantities using the available information and the Maximum
Entropy Principle (MaxEnt) introduced by Jaynes [16] in the context of Information Theory developed
by Shannon [28] (see for instance [18; 17]), (2) or in constructing an adapted representation based on
polynomial chaos extensions of the random quantities (see for instance [10; 19] and for an application
to random fields of material properties [4; 6; 36]). It should be noted that the methodologies which
are useful to construct polynomial chaos expansions of random fields have been introduced in [10; 34]
and have also been analyzed in [30; 39; 38] for arbitrary measures. The polynomial chaos expansions
of random fields, and application to stochastic boundary value problems, have generated many works
in the last decade (see for instance [5; 8; 9; 11; 13; 21; 23; 26; 40]).

There are two main methods to take into account model uncertainties induced by modeling errors.
(1) The first one consists in introducing a probabilistic model of the output-prediction error which is
the difference between the real system output and the model output. A posterior probabilistic model
can be constructed using, for instance, the Bayesian approach (see for instance [2]) but in such a case,
experimental data are absolutely required. (2) The second one is based on the nonparametric proba-
bilistic approach of modeling errors which has been introduced in [29] (see Appendix A) as another
possible way to the use of the output-prediction-error method in order to take into account modeling
errors. The nonparametric probabilistic approach consists in directly constructing the stochastic mod-
eling of the operators of the nominal computational model and can be used even if no available data
are available.

The objective of this work is to propose a methodology for a statistical inverse problem, in high
stochastic dimension, related to uncertain computational models in structural dynamics. Due to the
high stochastic dimension of the random quantities which have to be identified through a computational
model, this challenging problem is very difficult to solve. The novelty of this work is to propose a
complete methodology which is adapted to the high stochastic dimension for computational models in
structural dynamics and which consists in constructing prior stochastic models described with a small
number of parameters and then, to identify these parameters using the maximum likelihood method
and experimental responses of the dynamical system.

At the knowledge of the authors, this is the first work which is devoted to such a case consist-
ing in constructing and in identifying the stochastic model of random fields in presence of modeling
errors taken into account with the nonparametric probabilistic approach, for the high stochastic di-
mension case. The two sources of uncertainties are the system-parameters uncertainties and the model
uncertainties induced by modeling errors. The generalized probabilistic approach of uncertainties has
recently been proposed in order to take into account these two sources of uncertainties. In the ap-
plication presented in [32], the uncertain system parameters are homogeneous material properties
modeled by random variables (therefore the stochastic dimension of the probabilistic model of the
uncertain system-parameters is very low). In this paper, the first objective is to construct a prior
probabilistic model of uncertainties using the generalized probabilistic approach and for which the
uncertain system-parameters are material properties fields modeled by random fields for which their
statistical reductions stay in high stochastic dimension. The second objective is to propose a global
uncertainty quantification in identifying the parameters of the probabilistic model constructed using
the parametric-nonparametric probabilistic approach, called the generalized probabilistic approach.
Unlike the method adopted in [32], the parameters relative to system-parameters uncertainties and
parameters relative to model uncertainties are identified in a single step using all the information given
by the experimental responses. The last objective is to analyze the role played by mass modeling er-
rors in the medium-frequency range through the development of an application. Concerning the field
of the framework related to computational structural dynamics, the methodology proposed is adapted
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to the low- and medium-frequency ranges. The medium-frequency dynamical analysis is of primary
importance in many industrial application fields such as the vibration analysis of launch vehicles, the
vibroacoustic analysis of automotive vehicles, etc. In this paper, the different steps and the feasibility
of the methodology proposed are illustrated through an application but the methodology is general
and can be applied to more complex structures.

In Section 2, the objectives and main steps of the methodology we propose in this paper are summa-
rized. Section 3 is devoted to the presentation of the reduced nominal computational model. In Section
4, the stochastic computational model is constructed using the reduced nominal computational model
and a generalized probabilistic approach of uncertainties. Section 5 deals with the identification of the
parameters of the stochastic computational model. Finally, in Section 6, we apply the methodology to
a computational model related to a beam structure for which the bulk modulus and the shear modulus
are random fields.

2 Objectives and methodology.

In this paper, we are interested in a computational model in structural dynamics which requires
stochastic models in high stochastic dimension for
- uncertain system parameters (such as a random field for which its statistical reduction stays in high
stochastic dimension).
- model uncertainties induced by modeling errors (such as ten thousands independent random variable
for instance).
These two sources of uncertainties have to be taken into account in order to predict the dynamical re-
sponses of the computational model with a good robustness. We then propose an adapted methodology
for identifying the stochastic models of uncertainties which is relevant of statistical inverse problems in
high stochastic dimension. It should be noted that uncertainties relative to the external loads are not
taken into account. If existed, the stochastic modeling of such uncertain external loads could be carried
out using the usual parametric approach and could be added without difficulties. The methodology
proposed can be summarized in four steps.
- Step 1: Construction of a prior probabilistic model of uncertainties depending on a small number of
unknown parameters which have to be identified. Consequently, the prior stochastic model must be
carefully constructed using all the information available for the problem. Due to the small number of
parameters which control the stochastic models of uncertainties and which have to be identified, the
statistical inverse problem can effectively be solved even in the high stochastic dimension context.
-Step 2: Due to the presence of high stochastic dimension random quantities inducing high computa-
tional cost and due to the use of the nonparametric probabilistic approach of model uncertainties, it is
necessary to construct a reduced-order computational model deduced from the computational model.
-Step 3: Choice and construction of a stochastic solver. There are two classes of stochastic solvers. The
first class of techniques rely on spectral stochastic methods such as the polynomial chaos expansion
(see [10; 19]) or alternative methods such as the optimal separated representations (see [22]) and gen-
eralized spectral decomposition method (see [24]). Taking into account the high stochastic dimension
case of the problem under consideration, these techniques cannot easily be used at the present time
and still require additional researches. Consequently, we propose to use the second class of techniques
based on sampling method such as the Monte Carlo method whose convergence is independent of the
stochastic dimension.
-Step 4: Solving the statistical inverse problem which is then equivalent to identify the optimal values
of the parameters of the prior probabilistic model of uncertainties constructed in Step 1, using the
stochastic reduced-order model constructed in Step 2, the maximum likelihood method and the Monte
Carlo method as stochastic solver.
If a large amount of experimental data was available, a posterior probabilistic model of uncertainties
could be constructed using, for instance, the Bayesian approach. We do not consider such a case in the
present paper.

The four steps are detailed in Sections 4 and 5.
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3 Reduced nominal computational model

3.1 Nominal computational model

We are interested in the dynamical response of a three-dimensional damped structure having a linear
behavior and subjected to external forces.

The structure is made up of a linear dissipative elastic medium (viscoelastic medium with instan-
taneous memory) occupying an open bounded domain Ω of R3, with boundary ∂Ω = Γ0 ∪ Γ , in a
Cartesian frame (Ox1x2x3). Let x = (x1, x2, x3) be any point in Ω. The external unit normal to
∂Ω is denoted by n = (n1, n2, n3). The boundary value problem is formulated in the frequency do-
main with the Fourier transform convention g(ω) =

∫
R e

−iωt g(t) dt in which i =
√
−1 and where ω

is the real frequency (in rad/s). Let u(x, ω) = (u1(x, ω), u2(x, ω), u3(x, ω)) be the displacement field
defined on Ω with values in C3. On part Γ0 of the boundary, there is a Dirichlet condition u = 0.
Consequently, there will be no rigid body displacements. This hypothesis can be released in the devel-
opments presented in this paper. A surface force field, f surf(x, ω) = (f surf

1 (x, ω), f surf
2 (x, ω), f surf

3 (x, ω))
with values in C3, is applied to part of Γ on the boundary. In addition, there is a volume force field,
f vol(x, ω) = (fvol

1 (x, ω), fvol
2 (x, ω), fvol

3 (x, ω)) with values in C3, applied in Ω. We are interested in the
linear response around a static equilibrium considered as the reference configuration defined by Ω. It
is assumed that there is no prestress. The boundary value problem in the frequency domain is written,
for all real ω, as

−ω2ρu− divσ = f vol in Ω ,
u = 0 on Γ0 ,

σ n = f surf on Γ ,
(1)

where ρ(x) is the mass density which is assumed to be a positive-valued bounded function on Ω,

σ(x, ω) is the second-order stress tensor, in which {divσ(x, ω)}j =
∑3

k=1 ∂σjk(x, ω)/∂xk and where

{σ(x, ω)n}j =
∑3

k=1 σjk(x, ω)nk(x). Let ε(x, ω) be the strain tensor defined by

εjk(x, ω) =
1

2

(
∂uj(x, ω)

∂xk
+
∂uk(x, ω)

∂xj

)
. (2)

The stress tensor σ(x, ω) will be related to the strain tensor ε(x, ω) by a constitutive equation which
is written for a nonhomogeneous anisotropic dissipative elastic medium as

σh�(x, ω) = ah�jk(x) εjk(x, ω) + iω bh�jk(x) εjk(x, ω) , (3)

in which ah�jk(x) and bh�jk(x) are the fourth-order real tensors related to the elastic and dissipative
parts and which must satisfy symmetry and positiveness properties. Some of the system parameters
such as, for example, the mass density, the elastic and dissipative material properties represented by
tensor-valued fields ah�jk and bh�jk can be uncertain. Let x �→ h(x) denote the vector field with values
in Rnp whose components are the np uncertain system parameters. Note that, the elasticity and dissi-
pative tensor-valued fields which are represented by 2× 2 real-valued fields for an isotropic dissipative
material and by 2 × 21 real-valued fields for an anisotropic material, are rewritten as a vector-valued
fields denoted by {h(x),x ∈ Ω}.

The computational model is constructed using the finite element (FE) method applied to the weak
formulation of the boundary value problem defined by Eqs. (1) to (3). Let x1, . . . ,xN be the set
of the N integration points of the finite elements. The vector-field h(x) is then discretized in the
integration points. Let be nd = N × np. Let h = (h(x1), . . . ,h(xN )) ∈ Rnd be the vector of the
discretized uncertain system parameters. The structure is analyzed on the frequency band of analysis
B = [0, ωmax]. Therefore, for all ω ∈ B, the vector y(ω) of the m degrees-of-freedom is the solution of
the following matrix equation

(−ω2[M(h)] + iω[D(h)] + [K(h)])y(ω) = f̃ (ω) , (4)

in which [M(h)], [D(h)] and [K(h)] are the (m ×m) mass, damping and stiffness matrices and where

f̃(ω) is the vector of the external forces.
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3.2 Reduced-order nominal computational model

It is assumed that there is no rigid body displacements (this hypothesis can be released without
difficulties). The reduced nominal computation model is constructed using the modal analysis. Let Ch
be the admissible set for the vector h. Then for all h in Ch, the n first eigenvalues 0 < λ1(h) ≤ λ2(h) ≤
. . . ≤ λn(h) associated with the elastic modes {φ1(h), φ2(h), . . . , φn(h)} are solutions of the following
generalized eigenvalue problem

[K(h)]φ(h) = λ(h)[M(h)]φ(h) . (5)

The reduced-order nominal computation model is obtained by projecting the nominal computation
model on the subspace spanned by the n first elastic modes calculated using Eq. (5). Let [Φ(h)] be
the m× n matrix whose columns are the n first elastic modes. We then introduce the approximation
y(n)(ω) of y(ω) which is written as

y(n)(ω) = [Φ(h)]q(ω) , (6)

in which the vector q(ω) is the vector of the n generalized coordinates and is the solution of the
following reduced matrix equation

(−ω2[M(h)] + iω[D(h)] + [K(h)])q(ω) = f(ω;h) , (7)

in which [M(h)] = [Φ(h)]T [M(h)] [Φ(h)], [D(h)] = [Φ(h)]T [D(h)] [Φ(h)] and [K(h)] = [Φ(h)]T [K(h)] [Φ(h)]
are the n×n mass, damping and stiffness generalized matrices, and where f(ω;h) = [Φ(h)]T f̃(ω) ∈ Rn

is the vector of the generalized forces.
The dimension n of the reduced-order computational model is fixed to the value for which a good

convergence of y(n)(ω) is reached for all ω in frequency band B and for all h in Ch.

4 Stochastic reduced-order computational model

The stochastic reduced-order computational model is constructed using the generalized probabilistic
approach of uncertainties introduced in [32]. This approach allows both system-parameters uncertain-
ties and uncertainties due to modeling errors (model uncertainties) to be taken into account.

4.1 Prior probabilistic model for system-parameters uncertainties

The material property fields of the dynamical system are modeled by random fields which means that
the vector-field {h(x),x ∈ Ω} is modeled by the random vector-field {H(x),x ∈ Ω}. There are different
ways to construct the prior stochastic model of random field H:

– (1) Using an algebraic stochastic representation of random field H which is written, for all x in Ω,
as H(x) = f(G(x)) in which f is a given nonlinear deterministic mapping and where {G(x),x ∈ Ω}
is a given random field for which the probability law (system of marginal probability distributions)
is completely defined and for which a generator of independent realizations is available (see for
instance [31; 35] for tensor-valued random fields adapted to Elasticity Theory).

– (2) If the mean function and the covariance function of random field H are known (that is the
case if an algebraic stochastic representation of H has been constructed or if experimental data
are available for estimating these two functions with a sufficient accuracy), then, under certain
hypotheses, a statistical reduction can be constructed using the Karhunen-Loeve expansion. Let
E{.} be the mathematical expectation and let H(x) = E{H(x)} be the mean function. The random
field H(x) can then be written as H(x) = H(x) +

∑μ
j=1

√
γj ηj ψ

j(x), in which γ1, . . . , γμ are the

eigenvalues and ψ1(x), . . . , ψμ(x) are the associated eigenvectors of the covariance operator defined
by the covariance function CH(x,x

′) = E{(H(x) − H(x)) (H(x′) − H(x′))T }, where η1, . . . , ημ are
uncorrelated second-order centered random variables and where μ is the order of the statistical
reduction whose value is determined by a convergence analysis. The random vector η = (η1, . . . , ημ)
(which is not Gaussian) can be represented using a polynomial chaos expansion (see for instance
[4; 6; 10; 12; 19]).
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In this paper, we use an algebraic stochastic representation as a prior stochastic model. The vector-
valued random field {H(x),x ∈ Ω} is then completely defined and is discretized at the same in-
tegration points as the vector-valued field {h(x),x ∈ Ω} . We then introduce the random vector
H = (H(x1), . . . ,H(xN )) with values in Rnd , defined on a probability space (Θ, T ,P) and for which
the prior probability density function p

H
(h) with respect to dh is known. For any realization H(θ) of

the random vector H, with θ in Θ, the realizations [Mpar(θ)], [Dpar(θ)] and [Kpar(θ)] of the (n × n)
random generalized mass, damping and stiffness matrices [Mpar], [Dpar] and [Kpar] are then defined
(for A denoting M , D or K) by

[Apar(θ)] = [A(H(θ))] . (8)

By construction, each matrix [Mpar(θ)], [Dpar(θ)] or [Kpar(θ)] is positive definite and therefore, the
Cholesky decomposition yields (for A denoting M , D or K),

[Apar(θ)] = [LA(θ)]
T [LA(θ)] . (9)

The prior probability density function p
H
(h) of the random vector H depends on parameters such

as the mean values and the coefficients of variation of the components of H. Let αpar be the vector
whose components are the parameters of the prior probability density function which is rewritten as
p

H
(h;αpar) and which has to be identified using experimental responses. As explained in Section 2,

the size of vector αpar is small by construction of the prior stochastic model even if the statistical
reductions of the random vector H is still in high stochastic dimension. For instance, the components
of αpar are the correlation lengths, the dispersion parameters controlling the statistical fluctuations
levels, etc.

4.2 Prior probabilistic model of model uncertainties

Let (Θ′, T ′,P ′) be another probability space. As explained in [32], the dependent random matrices
[Mpar], [Dpar] and [Kpar] are replaced by the dependent random matrices [M], [D] and [K], defined
on a probability space (Θ ×Θ′, T ′ ⊗ T ′,P ⊗ P ′), such that, for A denoting M , D or K, one has

[A] = [LA]
T [GA][LA] , (10)

in which the probability distributions of the random matrices [GM ], [GD] and [GK ] defined on
(Θ′, T ′,P ′), are explicitly given in [29] in the context of the nonparametric probabilistic approach of
uncertainties. The nonparametric probabilistic approach of uncertainties is summarized in Appendix
A. The probability distributions of the random matrices [GM ], [GD] and [GK ] depends on the disper-
sion parameters δM , δD, δK respectively. We introduce the vector αmod of the dispersion parameters
such that αmod = (δM , δD, δK). The prior probabilistic model of model uncertainties is then completely
defined by vector αmod which has to be identified using experimental responses. For θ in Θ and θ′ in
Θ′, the realizations [M(θ, θ′)], [D(θ, θ′)] and [K(θ, θ′)] of the random generalized mass, damping and
stiffness matrices [M], [D] and [K] are, if A denotes M , D or K, such that

[A(θ, θ′)] = [LA(θ)]
T [GA(θ

′)] [LA(θ)] . (11)

The prior probabilistic model of model uncertainties is represented by 3n(n+1)/2 independent random
variables (see Appendix A), therefore, its stochastic dimension is high. Nevertheless, the identification
of the prior probabilistic model of model uncertainties will be facilitated by the fact that it is completely
defined by vector αmod which is of small dimension.

4.3 Random responses of the stochastic reduced-order computational model

For all ω in B, for all θ in Θ and for all θ′ in Θ′, the realization Y(ω; θ, θ′) of the random response
Y(ω) of the stochastic reduced-order computational model, is written as

Y(ω; θ, θ′) = [Φ(H(θ))]Q(ω; θ, θ′) , (12)



7

in which the realization Q(ω; θ, θ′) of the random vector Q(ω) of the random generalized coordinates,
is the solution of the following deterministic reduced-order matrix equation,

(−ω2[M(θ, θ′)] + iω[D(θ, θ′)] + [K(θ, θ′)])Q(ω, θ, θ′) = f(ω;H(θ)) . (13)

With the above construction, it can be proven that {Y(ω), ω ∈ B} is a second-order stochastic process.

5 Global Identification of the stochastic reduced-order computational model parameters

The prior probabilistic model of system-parameters uncertainties depends on parameter αpar and the
prior probabilistic model of model uncertainties depends on parameter αmod. We propose to simul-
taneously identify the parameters αpar and αmod using νexp experimental observations related to the
frequency responses corresponding to νexp experimental configurations of the real dynamical system.

For each experimental configuration, the response is measured for nobs degrees-of-freedom at nfreq

frequencies belonging to frequency band B. For each frequency ωi with i = 1, . . . , nfreq, we introduce
the random response vector Yobs(ωi) = (log10(|Yj1(ωi))|, . . . , | log10(Yjnobs

(ωi))|) and the random ob-

servation vector Zobs = (Yobs(ω1), . . . ,Y
obs(ωnfreq

)) with values in Rnobs×nfreq . The corresponding νexp
experimental observation vectors are denoted by zexp1 , . . . , zexpνexp .

The parameters αpar and αmod are identified using the maximum likelihood method with the
experimental responses [27; 33; 37]. Let C

par
and C

mod
be the admissible spaces for parameters αpar

and αmod. The optimal values αopt
par and αopt

mod are solution of the following optimization problem

(αopt
par ,α

opt
mod) = arg max

(αpar,αmod)∈Cpar×C
mod

L(αpar,αmod) , (14)

with

L(αpar,αmod) =

νexp∑
�=1

log(p
Zobs

(zexp� ;αpar,αmod) , (15)

where p
Zobs

(z;αpar,αmod) is the probability density function of the random vector Zobs. As proposed

in [32], this probability density function is estimated using a statistical reduction of the random vector
Zobs.

6 Application

As explained in Section 1, the paper presents a methodology for identifying random parameters of a
linear dynamical system in presence of modeling errors. The random parameters are not a few real
random variables, but are two random fields. The main objective of the application is to demonstrate
the capability of the proposed methodology using a case for which there are modeling errors and
for which the statistical fluctuations of the random fields have significant influences on the stochastic
dynamical responses. Typically, this kind of situation can be found in micromechanics of heterogeneous
composites for which a mesoscale modeling is performed. This is the reason why a three-dimensional
slender elastic body has been chosen for generating the simulated experiments because, it is known that
the use of the beam theory for modeling such a system collapses when frequency increases. With such
an application, modeling errors exist and then, the validation of the identification procedure of random
fields is carried out in a correct framework. Since the response is analyzed on a large frequency band
and not only for the first two or three elastic modes, the application proposed is representative of more
complex mechanical systems with respect to the identification procedure in the area of linear structural
dynamics with many elastic modes. Consequently, the simulated experiments of the mechanical system
considered allow us to carry out a clear validation of the identification procedure for linear dynamical
systems for which the random fields properties have a significant impact on the random responses and
for which the computational model of the dynamical system exhibits modeling errors.
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6.1 Real system and generation of random experimental responses

The real system is a slender cylindrical bounded domain Ωexp, with a rectangular section, given
in a cartesian coordinate system (Ox1x2x3). This real system has length 10 m, width 1.1 m and
height1.6 m. The two end sections are located at x1 = 0 and x1 = 10. The origin O is in the corner
of the end section and Ox1 is parallel to the cylinder axis. Axis Ox2 is the transversal axis along
the width and Ox3 is the lateral axis along the height (see Fig.1). The neutral line has for equation
{0 ≤ x1 ≤ 10;x2 = 0.550;x3 = 0.800}. Concerning the boundary condition, the displacement fields
is zero on the two end sections. The frequency band of analysis is B = [0, 1200] Hz. The domain
Ωexp of the real system is made up of two subdomains Ωexp

1 and Ωexp
2 . Subdomain Ωexp

1 is defined by
{0 ≤ x1 ≤ 3.75} and subdomain Ωexp

2 is defined by {3.75 ≤ x1 ≤ 10}. In this model, the material is
isotropic with homogeneous mass density 1600 Kg/m3. The damping rate is 0.01. The bulk modulus
and the shear modulus are variable following x1 direction and are modeled by random fields. In Ωexp

1 ,
the bulk modulus {x1 �→ Kexp

1 (x1)} is a Gamma random field with mean value 5.56 × 109 N/m2,
coefficient of variation 0.2 and correlation length 0.375 m and the shear modulus {x1 �→ Gexp

1 (x1)} is
a Gamma random field with mean value 4.17× 109 N/m2, coefficient of variation 0.09 and correlation
length 0.375 m. In Ωexp

2 , the bulk modulus {x1 �→ Kexp
2 (x1)} is a Gamma random field with mean value

6.67 × 109 N/m2, coefficient of variation 0.2 and correlation length 0.625 m and the shear modulus
{x1 �→ Gexp

2 (x1)} is a Gamma random field with mean value 5.0×109 N/m2, coefficient of variation 0.09
and correlation length 0.625 m. Random fields Kexp

1 , Gexp
1 ,Kexp

2 and Gexp
2 are statistically independent.

The reasons for such a construction of random fields Kexp
1 , Gexp

1 , Kexp
2 and Gexp

2 can be found in [14]
in which the statistically dependence between the components of the random elasticity tensors that
exhibit some given material symmetries is characterized.

With such a construction, the random tensor related to the elastic part of the elasticity tensor is
written as ah�jk(x1) = Kexp

1 (x1)δh�δjk+G
exp
1 (x1)((δhjδ�k+δhkδ�j)−2δh�δjk/3) in Ω

exp
1 and ah�jk(x1) =

Kexp
2 (x1)δh�δjk+G

exp
2 (x1)((δhjδ�k+δhkδ�j)−2δh�δjk/3) in Ω

exp
2 , in which δij is the Kronecker symbol.

The tensor related to the dissipative part of the elasticity tensor bh�jk(x) is deterministic.
The random Young modulus fields in Ωexp

1 and in Ωexp
2 are written as Eexp

1 = 9Kexp
1 Gexp

1 /(3Kexp
1 +

Gexp
1 ) and Eexp

2 = 9Kexp
2 Gexp

2 /(3Kexp
2 + Gexp

2 ), and the Poisson ratio fields are written as N exp
1 =

0.5×(3Kexp
1 −2Gexp

1 )/(3Kexp
1 +Gexp

1 ) andN exp
2 = 0.5×(3Kexp

2 −2Gexp
2 )/(3Kexp

2 +Gexp
2 ). Random fields

Eexp
1 , Eexp

2 , N exp
1 and N exp

2 are statistically dependent. Using a Karhunen-Loève decomposition, each
random field Kexp

1 , Gexp
1 , Kexp

2 and Gexp
2 can be expressed by 30 (for an accuracy 10−2) uncorrelated

random variables. Therefore, the stochastic dimension concerning the system-parameter uncertainties
is 120 which is a very high stochastic dimension with respect to the state-of-the art for the stochastic
solvers based on the stochastic spectral methods.

The external load is a point load applied at the point (x1 = 4.250, x2 = 1.100, x3 = 0.800) and
its Fourier transform is a vector valued function ν �→ (0,−1lB(ν), 0) in which 1lB(ν) = 1 if ν belongs
to B and 1lB(ν) = 0 otherwise. The finite element mesh of the real system is made up of 5, 760
three-dimensional 8-nodes solid elements (see Fig.1) and the finite element model has 25, 095 degrees-
of-freedom. We are interested in the random transversal displacement along Ox2 in the plane Ox1x2
of the neutral line at four observation points P1, P2, P3 and P4 belonging to the neutral line for which
x1 are 1.875, 3.125, 4.250 and 6.375 m. We then have nobs = 4.

A total of νexp = 200 experimental configurations have been simulated. For each experimental
configuration �, the observation vector zexp� is calculated using the modal analysis for which the number
of elastic modes is 180 that is sufficient to ensure a good mean-square convergence in the frequency
band of analysis B = [0, 1200] Hz.

6.2 Nominal computational model and reduced-order nominal computational model

The nominal computational model is made up of a damped Timoshenko elastic beam with length
L1 = 10 m, clamped at x1 = 0 and x1 = 10. The section of the beam is the same as the section of
the real system presented in Section 6.1. The domain Ω of the beam is still made up of two subdo-
mains Ω1 and Ω2. Subdomain Ω1 is defined by {0 ≤ x1 ≤ 3.75} and subdomain Ω2 is defined by
{3.75 ≤ x1 ≤ 10}. In this nominal computational model, the material is isotropic with homogeneous
mass density 1600 Kg/m3. The damping rate is 0.01. The bulk modulus and the shear modulus are
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Fig. 1 Domain Ωexp of the real system, coordinate system and finite element mesh of the real system.

variable following x1 direction. In Ω1, the bulk modulus {x1 �→ k1(x1)} is 5.56×109 N/m2 and the shear
modulus {x1 �→ g1(x1)} is 4.17×109 N/m2. In Ω2, the bulk modulus {x1 �→ k2(x1)} is 6.67×109 N/m2

and the shear modulus {x1 �→ g2(x1)} is 5.0 × 109 N/m2. The external load is a point load applied
at the point x1 = 4.250 and its Fourier transform is a vector valued function ν �→ (0,−1lB(ν), 0). The
finite element mesh is made up of 240 Timoshenko beam elements and the finite element model has
1, 434 degrees-of-freedom. It should be noted that the finite elements used do not take into account
the rotational inertia. Consequently, the error on the kinetic energy is larger than if it had been taken
into account. Therefore, the dispersion parameter, δM , which controls the level of modeling errors will
be larger. This choice is intentional in order to generate modeling errors which allow us to validate the
identification procedure of the random fields in presence of significant modeling errors.

The frequency response functions (FRF) are calculated using the reduced-order nominal computa-
tional model presented in Section 3.2 with n = 61. In the frequency band B = [0 , 1200] Hz, there are
51 elastic modes and in the frequency band [1200 , 1400] Hz, there are 9 elastic modes. Figures 2 to
5 display the comparisons between the experimental FRF and the FRF computed with the reduced-
order nominal computational model for the transversal displacements at observation points P1, P2, P3

and P4. The objective of the comparison is to analyze the robustness of the reduced-order nominal
computational model as a function of the frequency and to highlight the need to construct a stochastic
reduced-order computational model to improve the robustness Concerning the experimental FRF, the
figures display the confidence regions which have been estimated with a probability level Pc = 0.95.
Figures 2 to 5 clearly show that the low-frequency band is [0 , 550] Hz while the medium-frequency
band is [550 , 1200] Hz. The very low-frequency band can be identified as [0 , 180] Hz (the first three
elastic modes) for which the frequency responses are very robust with respect to uncertainties while
the frequency responses in the low-frequency-band [180 , 550] Hz are sensitive to uncertainties. In the
medium-frequency band, the responses strongly depends on uncertainties.

6.3 Stochastic reduced-order computational model

The stochastic reduced-order computational model is constructed as explained in Section 4.

6.3.1 System-parameters uncertainties and random responses

Concerning system-parameters uncertainties, the deterministic bulk moduli k1, k2 and shear moduli g1,
g2 are modeled by the independent random fieldsK1,K2, G1 and G2. The prior probabilistic models are
defined as follows. Let β > 0 be an updating parameter. The bulk modulus {x1 �→ K1(x1)} is a Gamma
random field with mean value β × 5.56× 109 N/m2, coefficient of variation 0.2 and correlation length
0.375 m. The shear modulus {x1 �→ G1(x1)} is a Gamma random field with mean value 4.17×109 N/m2,
coefficient of variation 0.09 and correlation length 0.375 m. The bulk modulus {x1 �→ K2(x1)} is a
Gamma random field with mean value β× 6.67× 109 N/m2, coefficient of variation 0.2 and correlation
length 0.625 m and the shear modulus {x1 �→ G2(x1)} is a Gamma random field with mean value
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Fig. 2 FRF computed with the reduced-order nominal computational model (thick solid line). Experimental
FRF: Confidence region (upper and lower thin solid lines) and mean response (thin dashed line). Observation
point P1.
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Fig. 3 FRF computed with the reduced-order nominal computational model (thick solid line). Experimental
FRF: Confidence region (upper and lower thin solid lines) and mean response (thin dashed line). Observation
point P2.

5.0 × 109 N/m2, coefficient of variation 0.09 and correlation length 0.625 m. Random fields K1, G1,
K2 and G2 are independent. The prior probabilistic models of system-parameters uncertainties are
completely defined and depend on the parameter β. Consequently, the parameter αpar introduced in
Section 4.1 is such that αpar = (β). It should be noted that for β = 1, the random fields of the stochastic
reduced-order computational model are identical to the random fields we have used to generate the
experimental configurations. These random fields are discretized in the 240 integration points (reduced
integration, see [15]).

For observation points P1, P2, P3 and P4 and for β = 1, the random frequency response functions
are displayed in Figs. 6 to 9. The confidence regions are estimated with a probability level Pc = 0.95
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Fig. 4 FRF computed with the reduced-order nominal computational model (thick solid line). Experimental
FRF: Confidence region (upper and lower thin solid lines) and mean response (thin dashed line). Observation
point P3.
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Fig. 5 FRF computed with the reduced-order nominal computational model (thick solid line). Experimental
FRF: Confidence region (upper and lower thin solid lines) and mean response (thin dashed line). Observation
point P4.

with 100, 000 Monte Carlo simulations.
Figures 6 to 9 clearly show that the introduction of the probabilistic models of the system-parameters
uncertainties improves the predictions in the low-frequency band [0 , 550] Hz (the confidence regions
predicted with the stochastic reduced-order computational model are close to the confidence regions
of the experiments). However, the predictions are not really improved in the medium-frequency band
[550 , 1200] Hz. The confidence regions of the experiments are not similar or are not included in the
confidence regions predicted with the stochastic reduced-order computational model. These results
confirm that the probabilistic parametric approach of uncertainties has not the capability to take into
account modeling errors and that this type of model uncertainties must be taken into account to
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improve the quality of the predictions in the high part of the low-frequency band and in the medium-
frequency band.
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Fig. 6 Random FRF computed with the stochastic reduced-order computational model only with system-
parameters uncertainties: Confidence region (upper and lower thick lines). Experimental FRF: Confidence
region (upper and lower thin lines). Observation point P1.
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Fig. 7 Random FRF computed with the stochastic reduced-order computational model only with system-
parameters uncertainties: Confidence region (upper and lower thick lines). Experimental FRF: Confidence
region (upper and lower thin lines). Observation point P2.
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Fig. 8 Random FRF computed with the stochastic reduced-order computational model only with system-
parameters uncertainties: Confidence region (upper and lower thick lines). Experimental FRF: Confidence
region (upper and lower thin lines). Observation point P3.
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Fig. 9 Random FRF computed with the stochastic reduced-order computational model only with system-
parameters uncertainties: Confidence region (upper and lower thick lines). Experimental FRF: Confidence
region (upper and lower thin lines). Observation point P4.

6.3.2 Model uncertainties and random responses

Concerning model uncertainties, it is assumed that the damping is certain (no uncertainties). Therefore,
the stochastic modeling of uncertainties due to modeling errors is constructed for the mass and stiffness
matrices only. The two parameters which must be identified are δM and δK and parameter αmod

introduced in Section 4.2 is such that αmod = (δM , δK).
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6.3.3 Global identification of the stochastic reduced-order computational model

We use the methodology presented in Section 5 for identifying the parameters αpar and αmod. The
optimization problem defined by Eq. (14) is solved using the trial method. The probability density
function p

Zobs
(zexp� ;αpar,αmod) is estimated with 10, 000 realizations of the random responses. The

optimal values are αopt
par = (0.7) and αopt

mod = (0.5, 0.2). The likelihood functions β �→ L(β, (δoptM , δoptK ))

and (δM , δK) �→ L(βopt, (δM , δK)) are plotted in Figs. 10 and 11. It can be viewed that δoptM is larger

than δoptK . For a Timoshenko beam model, the errors on the elastic energy grow more slowly than the
errors on the kinetic energy when the frequency increases, especially for the medium-frequency band.
It should be noted that the Timoshenko beam model we have used does not take into account the
rotation inertia of the beam section. This induces additional kinetic energy errors (then mass matrix
errors). It should be noted that for each value of (αpar,αmod), we have simulated 10, 000 realizations
of the random responses, that could seem as prohibitive if a very large computational model was
considered. Using less simulations (1, 000 realizations) provides the same results for αopt

par and αopt
mod,

but the estimated likelihood function is a little less smooth. Therefore, the identification method can
be applied using less than 10, 000 realizations for each value of (αpar,αmod).

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
−1.27

−1.265

−1.26

−1.255

−1.25

−1.245

−1.24

−1.235

−1.23

−1.225

−1.22
x 10

4

β

Li
ke

lih
oo

d

Fig. 10 Graph of function β �→ L(β, (δoptM , δoptK )).

6.3.4 Random frequency response functions predicted with the optimal stochastic reduced-order
computational model

For αpar = αopt
par and αmod = αopt

mod, the random frequency response functions for observation points P1,
P2, P3 and P4 are displayed in Figs. 12 to 15. The confidence regions are estimated with a probability
level Pc = 0.95 with 100, 000 Monte Carlo simulations. In the low-frequency band, it can be seen
that the confidence regions of the experimental responses are included in the confidence regions of the
random responses calculated with the optimal stochastic reduced-order computational model. In the
medium-frequency band, the confidence regions of the experimental responses are, for some frequencies,
not included in the confidence regions of the random responses calculated with the optimal stochastic
reduced-order computational model. This corresponds to the fact that the confidence regions have been
estimated with the probability level Pc = 0.95.
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Fig. 11 Graph of function (δM , δK) �→ L(βopt, (δM , δK)).
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Fig. 12 Random FRF calculated with the optimal stochastic reduced-order computational model: Confidence
region (upper and lower thick lines). Experimental FRF: Confidence region (upper and lower thin lines).
Observation point P1.

7 Conclusions

A methodology adapted to the high stochastic dimension has been presented for statistical inverse prob-
lems related to uncertain computational models in structural dynamics. This methodology consists (1)
in constructing a prior stochastic model of uncertainties described with a small number of parameters,
(2) in using a stochastic solver adapted to the high stochastic dimension and (3) in identifying an
optimal prior stochastic model using the maximum likelihood method, the stochastic computational
model and experimental responses. This methodology has been validated in high stochastic dimension
through a numerical application and can be applied to complex real dynamical structures.

For the application, the identified mass dispersion parameter is larger than the identified stiffness
dispersion parameter. This result is in agreement with the fact that for a Timoshenko beam modeling,
the errors on the elastic energy grow more slowly than the errors on the kinetic energy when the
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Fig. 13 Random FRF calculated with the optimal stochastic reduced-order computational model: Confidence
region (upper and lower thick lines). Experimental FRF: Confidence region (upper and lower thin lines).
Observation point P2.
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Fig. 14 Random FRF calculated with the optimal stochastic reduced-order computational model: Confidence
region (upper and lower thick lines). Experimental FRF: Confidence region (upper and lower thin lines).
Observation point P3.

frequency increases, especially in the medium-frequency range for which the kinetic energy errors
can be important. For the low- and medium-frequency ranges, the random responses are predicted
using the stochastic reduced-order computational model with the optimal prior stochastic models of
uncertainties. It should be noted that the implementation of a prior probabilistic model of modeling
errors allows the validity of the predictions of the computational model with random fields properties
to be extended to the medium-frequency range which is very sensitive to modeling errors. A validation
of the proposed methodology has been performed using simulated experiments. In practice, if no
experimental data are available, the prior stochastic models of uncertainties can be used to perform
a sensitivity analysis with respect to its parameters. If a few experimental data are available, these
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Fig. 15 Random FRF calculated with the optimal stochastic reduced-order computational model: Confidence
region (upper and lower thick lines). Experimental FRF: Confidence region (upper and lower thin lines).
Observation point P4.

parameters can be identified in order to obtain an optimal prior probabilistic model of uncertainties in
following the method proposed in the paper. For the particular cases for which a lot of experimental
data would be available, a posterior probabilistic model of system-parameters uncertainties could be
estimated using the Bayes method (if the stochastic dimension of the uncertain system parameters is
not too high) in presence of modeling errors.
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A Nonparametric probabilistic approach of uncertainties.

The nonparametric probabilistic approach of uncertainties of modeling errors has been introduced in [29] (see
for instance [1; 7] for experimental validations and uncertainty quantification) as a possible way to take into
account uncertainties induced by modeling errors. The nonparametric probabilistic approach consists in di-
rectly constructing the stochastic modeling of the operators of the nominal computational model and can be
used even if no available data are available. In the context of structural dynamics, this approach consists in
replacing the matrices of nominal reduced model by random matrices for which the probability distributions
are constructed by using the maximum entropy principle with constraints defined by the available information.
Therefore, the positive-definite symmetric (n× n) real matrices [M ], [D] and [K] of the reduced mean system
are replaced by the random matrices [M], [D] and [K] with values in the set of all positive-definite symmetric
(n× n) real matrices.

Let A denote M , D or K. Then, the Cholesky factorization of matrix [A] yields [A] = [LA]
T [LA]. Random

matrix [A] is then constructed such that [A] = [LA]
T [GA][LA]. Let E{.} be the mathematical expectation

and let 0 ≤ ε0 � 1 be a positive number as small as one wants. The random matrix [GA] is written as
[GA] =

1
1+ε0

{[G0] + ε0[ I ]} in which [ I ] is the (n × n) identity matrix and where the probability density

function of the random matrix [G0] is then constructed with the following available information. The random
matrix [G0] (1) must be positive definite almost surely, (2) has a mean value which is equal to the identity
matrix and (3) must verify the inequality |E{log(det[G0])}| < +∞ in order that the stochastic response of
the stochastic computational dynamical model be a second-order random stochastic process. The statistical
fluctuations of [G0] are controlled by the dispersion parameter δA which is defined by

δA =
{ 1

n
E{‖[G0]− [ I ]‖}2F

}1/2

, (16)
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and which must be chosen such that 0 < δA <
√
(n+ 1)/(n+ 5). The probability density function p[G0]([G ])

of the random matrix [G0] is then defined by

p[G0]([G ]) = 1l
�

+
n (�)

([G ]) ×CA × (
det [G ]

)n+1
2

(δ−2

A
−1) × e

−n+1
2

δ−2
A

tr[G ]
, (17)

in which the positive constant CA is such that

CA=(2π)−
n(n−1)

4

(
n+ 1

2δ2
A

)n(n+1)
2

δ−2
A

{
Πn

j=1Γ
(n+ 1

2δ2
A

+
1−j

2

)}−1

, (18)

where Γ (z) is the gamma function defined for z > 0 by Γ (z) =
∫+∞
0

tz−1 e−t dt. Note that Eq. (17) shows that
{[G]jk , 1 ≤ j ≤ k ≤ n} are dependent random variables. Concerning the generator of independent realization,
the random matrix [G0] is written as [G0] = [L]T [L], in which [L] is an upper triangular random matrix with
values in Mn(R) such that:
(1) the random variables {[L]jj′ , j ≤ j′} are independent;

(2) for j < j′, real-valued random variables [L]jj′ can be written as [L]jj′ = σmUjj′ in which σm = δA/
√
n+ 1

and where Ujj′ is a real-valued Gaussian random variable with zero mean and variance equal to 1;

(3) for j = j′, positive-valued random variables [L]jj can be written as [L]jj = σm

√
2Vj in which Vj is a

positive-valued gamma random variable whose probability density function pVj (v) with respect to dv is written
as

pVj (v) = 1l�+ (v)
1

Γ (n+1
2δ2

A

+ 1−j
2

)
v

n+1

2δ2
A

− 1+j
2

e−v , (19)

in which δA is the dispersion parameter defined by Eq. (16).
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