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Abstract 

In generator and pump rotors installed in power plants, the rotating mass unbalance and the different motions of the rotor support 
are among the main sources of flexural vibrations. This work aims to observe the dynamic behavior of an on-board rotor subject 
to rigid support movements. The modeling takes into account six types of support deterministic motions (rotational and 
translational motions) when the kinetic and strain energies in addition to the virtual work of the rotating flexible rotor 
components are calculated. The finite element method is applied using the Timoshenko beam theory. The proposed on-board 
rotor model considers the rotary inertia, the gyroscopic inertia, the shear deformation of shaft as well as the geometric asymmetry 
of shaft and/or rigid disk of the rotor. By computing the Rayleigh damping coefficients, the effect of rotor internal damping is 
included in the study. The Lagrange’s equations are used to obtain the differential equations of the rotor in bending relative to the 
rigid support which forms a noninertial reference frame. The equations of motion exhibit periodic parametric coefficients due to 
the asymmetry of the rotor and time-varying parametric coefficients due to the support rotations. In the presented applications, 
the rotor mounted on rigid/elastic linear bearings is excited by a rotating mass unbalance combined with sinusoidal oscillations of 
the rigid support. The dynamic behavior of the rotor is analyzed by means of rotor orbits and fast Fourier transforms (FFTs). 
 

Keywords: Rotordynamics, asymmetric rotor, on-board rotor, finite element method, elastic bearing, support motion, parametric excitation. 

1. Introduction 

Many industrial applications include rotating machines in which the rotor plays a dominant role. There are many 
studies concerning the prediction of dynamics of rotor systems mounted on elastic bearings in the case of fixed 
support [1,2]. Some studies observed the instability of systems subjected to parametric excitations [3]. Kang et al. 
[4] employed the Timoshenko beam finite elements for modeling asymmetric rotor-bearing systems. Some other 
works concentrated on the behavior of a rotor under the seismic excitations [5-7]. Subbiah et al. [8] studied the 
response of rotor systems under random support excitations using modal analysis methods. Lee et al. [9] focused on 
the experimental behavior of a rotor under support shock excitation. Da Silva Tuckmantel et al. [10] represented the 
supporting structure (foundation) of a rotating system by coupled as well as uncoupled modes for calculating the 
system response. In [11], experimental tests have been shown for a flexibly supported undamped rigid block 
foundation in rotating machinery. Duchemin et al. [12] observed the stability of a simple rotor model under a 
support sinusoidal rotation. Driot et al. [13] described the orbits of a rotor induced by a support harmonic rotational 
movement. El-Saeidy and Sticher [14] obtained the responses of a rigid rotor-bearing system subjected to rotating 
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mass unbalance plus support harmonic excitations. Das et al. [15] investigated the active vibration control of a 
flexible rotor system excited by mass unbalance and periodic rotational motion of the support. Among all the 
literature mentioned above, there are references studying support-excited rotor systems and whose few works dealt 
with the harmonically excited on-board rotors [12-15]. Moreover, these references concentrated on the investigation 
of dynamic behavior of either simple rotors or rotors supported by elastic bearings with constant damping and 
stiffness coefficients or rotors excited by support simple motions. As a consequence, the applications proposed in 
these works are not suitable for realistic ones. In this paper, an improved model is presented. Namely, an 
asymmetric rotor is discretized using the finite element method based on the Timoshenko beam theory, mounted on 
hydrodynamic bearings linearized with damping and stiffness coefficients calculated using the Reynolds equation 
[16], and excited by different motions of its support. The rotary and gyroscopic inertias, shaft shear deformation and 
rotor geometric asymmetry are taken into account. The linear equations of motion point out periodic parametric 
terms due to the rotor geometric asymmetry and time-varying parametric terms due to the support rotational 
excitations. In the presented examples, the rotor mounted on rigid or elastic linear bearings is subjected to rotating 
mass unbalance combined with support sinusoidal rotational motions. Numerical solutions are computed and 
analyzed by means of orbits of the rotor as well as fast Fourier transforms (FFTs). 

2. Preliminary calculations 

Three principal frames of reference shown in Fig. 1a are introduced to take into consideration the movement of 
the rotor rigid support. They are linked with the ground Rg, the rigid support R and the moving rotor Rl. 

The rotational motions of the rotor support are defined by the angular velocity vector components ωx, ωy and ωz 
of the rigid support R with respect to the ground Rg projected in the frame R. The translational motions of the rotor 
support are defined by the coordinates xO, yO and zO of the position vector OgO expressed in the frame attached to 
the support R. The Euler angles ψ, θ and φ  (see Fig. 1b) allow defining the orientation of the rotor Rl with respect to 

its support R. The angular velocity vector of the rotor Rl with respect to the ground Rg measured in the frame Rl is 
defined by [12]: 

g g l l l

l l
l

T
R R R x y z

RR R R
, ,ω ω ω= + =ω ω ω   (1) 

where T is a matrix transpose. The components (
lxω ,

lyω ,
lzω ) are formulated as a function of (ψ,θ,φ ) and their 

time derivative as well as (ωx,ωy,ωz). The rotor is supposed to rotate at a constant speed Ω. So the spinning angle φ  

is replaced by Ωt and its derivative φɺ  by Ω (• denotes differentiation with respect to time t). Let us consider a 

generic point C0 along the elastic line of the nondeformed shaft. Its coordinates in the frame R are (0,y,0). It is 
interesting to study the translational displacements u(y,t) and w(y,t) of the point C0 due to bending expressed 
respectively with respect to the Ox and Oz axes of the frame R. 

3. Energy and virtual work computations 

The energies are measured from the ground and their terms are written relative to the frame fixed to the support. 

3.1. Disk 

Since the disk is considered to be rigid, only its kinetic energy Td is calculated as follows [12]: 

( )2 1
with diag

2 2

g g g

l l l
d d d d d d d

T
R R R mo di y mo did

d m m m m m m mO R R

m
T I I I I I = + = + − v ω I ω I  (2) 

where md is the mass of the disk, 
g

l

R

O
v  is the translational velocity vector of its center and 

dmI  is its principal inertia 

tensor. 
d

mo
mI  and 

d

di
mI  are used to distinguish the effects due to the mean inertia of the disk mass and those due to the 

inertia modeling the disk geometric asymmetry. In addition, 
d

y
mI  is the inertia of the disk mass about the Oy axis. 
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(a) (b)  

Fig. 1. (a) Frames of reference for the on-board rotor, (b) Euler angles. 

The translational velocity vector components lO
uɺ , lO

vɺ  and lO
wɺ  of the disk center are functions of (ωx,ωy,ωz) and 

(xO,yO,zO). The final expression of the kinetic energy of the disk having a mass center placed at the arbitrary abscissa 
yd relative to the frame R is given by [12]: 

( ) ( ) ( )( )2 2 2 2 2 2 2 21

2 2

l l l l l

l l l
d d d

mo x z y y di x zd
d m m mO O O

m
T u v w I I I= + + + + + + −ω ω ω ω ωɺ ɺ ɺ  (3) 

3.2. Shaft 

Since the shaft is assumed to be flexible, it is characterized by the kinetic and strain energies and modeled by 
beam elements. The kinetic energy of a shaft can be obtained by taking a shaft elementary volume which can be 
considered as a disk of thickness dy. Thus the kinetic energy of a shaft has the following form [12]: 

( ) ( ) ( )2 2 2 2 2 2 2 2

0 0 0 0

1
2

2 2

sh sh sh sh
l l l l l

l l l
sh sh sh

l l l l
mo x z mo y di x zsh sh

sh sh S sh S sh SO O O

S
T u v w dy I dy I dy I dy

 
= + + + + + + −  

 
∫ ∫ ∫ ∫

ρ ρ ω ω ρ ω ρ ω ωɺ ɺ ɺ  (4) 

where ρsh, Ssh and lsh are respectively the density, the cross-section and the length of the shaft. 
sh

mo
SI  and 

sh

di
SI  are 

respectively the mean inertia of the cross-section and the inertia characterizing the asymmetry of the shaft. The rigid 
support motion relative to the ground has no influence on the strain energy of the shaft because this energy depends 
only on the stresses and therefore on the shaft transverse deflection relative to the rotor support R. In addition to the 
bending deformation, the shear effects highlighted by Timoshenko and the geometric stiffening effects 
corresponding to the centrifugal stressing due to the support rotations are taken into account. The strain energy of a 
shaft is given by: 

2 2 2 2 2 2

0 0 0

2 2

1

2 2 2

sh sh sh

sh

sh

l l lmo mo
sh S dish sh sh

sh sh S

di
sh sh sh

E I G k S u w
U dy dy E I dy

y y y y y y

u w
G k S

y y

                ∂ ∂ ∂ ∂ ∂ ∂     = + + + + − − −                ∂ ∂ ∂ ∂ ∂ ∂                

   ∂ ∂− + − −   ∂ ∂   

∫ ∫ ∫
ψ θ ψ θψ θ

ψ θ ( )

( ) ( ) ( )

0 0

2 2

2 2 2 2

0 0

2

2
4

sh sh

sh

sh sh

l l
di

sh S

l l
di x zsh sh

sh sh sh sh

dy cos t E I dy
y y

u w S u w
G k S dy sin t l y dy

y y y y

   ∂ ∂  −    ∂ ∂  

       ∂ ∂ ∂ ∂
 − + − + − + +        ∂ ∂ ∂ ∂        

∫ ∫

∫ ∫

ψ θΩ

ρψ θ Ω ω ω

 (5) 
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where Esh and Gsh are respectively the Young’s modulus and the shear modulus of the shaft. mo
shk  and di

shk  are 

respectively the mean shear coefficient and the shear coefficient relative to the section asymmetry of the shaft. 

3.3. Mass unbalance 

Let us consider a concentrated mass unbalance mmu positioned at a point Pmu of the disk (ymu=yd) with a distance 
rmu from the shaft geometric center. Its initial angle with the Oz axis of the frame R at rest is ηmu. The components of 

the mass unbalance translational velocity vector 
g

mu

R
Pv  are functions of (ωx,ωy,ωz) as well as (xO,yO,zO) and are used in 

the kinetic energy which characterizes the mass unbalance [12]: 

2

2

g

mu

Rmu
mu P

m
T = v   (6) 

3.4. Bearing 

Fig. 2a shows a simple diagram of a hydrodynamic bearing which is composed of a fixed journal containing a 
rotating shaft. The points O and Ol=Csep represent respectively the bearing center and the shaft geometric center. The 
radius, length and clearance of the bearing are respectively rbe, lbe and cbe=rbe-rsh where rsh is the shaft radius. At a 
constant rotor speed Ω and for a constant static load Wr created by the rotor weight, the shaft center Csep in the 
bearing holds a static equilibrium position defined by the vector δbe,sep=<ube,sep,wbe,sep>R

T expressed in the frame R or 

equivalently by the eccentricity be be,sepe = δ  of the shaft center in the journal and the attitude angle φbe between the 

Wr load direction and the line of centers OCsep. In the present study, the short bearing theory is considered             
(lbe/dbe≤1/8 where dbe=2rbe) and the static solution can be obtained using the following formulations deduced from 
the Reynolds equation with the Gümbel boundary conditions [16]: 

( )( )
( )

( )

1
2 2 2 2 2 2 2

22

16 1 1
with

41

be be be bebe be
r be be be

be be bebe

r l
W r l tg

c d

ε ε π ε επµ Ω ϕ
εε

+ − −   
= =   

−   
 (7) 

where εbe is the relative eccentricity (εbe=ebe/cbe) and µ is the fluid film dynamic viscosity. The nonlinear Eq. (7) is 
solved by an iterative Newton-Raphson method and provides the eccentricity εbe and then the static radial 
displacement ebe of the shaft center. The components of the vector δbe,sep are obtained by a classical change of basis. 
The hydrodynamic fluid forces Fbe=<Fbe

u,Fbe
w>R

T produced by the bearings and expressed in the frame R can be 
obtained by integration of the fluid film pressure (Reynolds equation in the dynamic regime) over the bearing. In 
order to apply the Lagrange’s equations, the virtual work δWbe of these forces has to be established: 

( )T
be be be be beW ,= F δ δ δδ δɺ   (8) 

If the lateral dynamic displacements δbe=<ube,wbe>R
T of the shaft elastic line are assumed to be small in the 

vicinity of the static position δbe,sep, the linear analysis can be used by constructing a first order Taylor expansion of 

the fluid film forces ( )be be be,F δ δɺ  in the vicinity of the static hydrodynamic forces ( )be be,sep,F δ 0  as follows: 

( ) ( )be be be be be,sep be be be be, ,= − −F δ δ F δ 0 c ∆δ k ∆δɺ ɺ   (9) 

with 

;
xx xz xx xz
be be be be

be bezx zz zx zz
be be be be

c c k k

c c k k

   
= =   
   

c k   (10) 
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(a) (b)  

Fig. 2. (a) Sketch of a hydrodynamic bearing, (b) Bearing damping and stiffness coefficients. 

and 

;be be be,sep be be= − =∆δ δ δ ∆δ δɺ ɺ   (11) 

where cbe and kbe are the damping and stiffness matrices of the linearized hydrodynamic bearing (see Fig. 2b) whose 
analytical expressions can be found in [16]. 

4. Equations of motion 

The finite element method is chosen for discretizing the rotor and describing its flexural motion as a function of 
the nodal displacement vector defined by δ

n=<un,wn,θn,ψn>R
T, i.e., the rotor has two translations and two rotations at 

each node. The finite element used for the shaft modeling has two nodes and the shape functions are based on the 
Timoshenko beam theory. The linear equations of motion of the finite element rotor model are obtained after 
applying the Lagrange’s equations to the energies for the disk, the shaft finite element and the mass unbalance as 
well as to the virtual work of the hydrodynamic bearing and assembling appropriately the produced matrices and 
vectors. They are written with respect to the noninertial reference frame connected to the rotor rigid support R: 

( ) ( ) ( ) ( ) ( )r r r r r r r be r ,sep be r ,sept t t t ,+ + = + +M δ C δ K δ F F δ 0 K δɺɺ ɺ  (12) 

where M r(t), Cr(t) and K r(t) are the parametric matrices of mass, damping and stiffness of an asymmetric rotating 

rotor on moving support. rδ
ɺɺ , rδ
ɺ  and rδ  are the acceleration, velocity and displacement vectors of dimension 

4(nesh+1)×1 hence nesh is the number of shaft finite elements. Fr(t) is the external force vector. Fbe(δr,sep,0) is the 
hydrodynamic force vector caused by the bearing in the static case which opposes the rotor weight rW

d ,shF . In addition, 

δr,sep is the static solution vector of the rotor due to the hydrodynamic bearing. 
The matrices of Eq. (12) are expressed in what follows: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 2

2 2

2 2

2 2

2 2

2 2

y

y y

x

c s
r d ,sh d ,sh d ,sh

g ,c g ,sid g re, y
r be d ,sh d ,sh d ,sh d ,sh d ,sh,su

e,c e,se re, y re, y
r be sh sh sh d ,sh,su d ,sh ,su

re,
d ,sh,su

t cos t sin t

t cos t sin t

t cos t sin t

ω

ω Ωω

ω

Ω Ω

Ω Ω Ω Ω Ω ω

Ω Ω ω Ωω

= + +

= + + + + +

= + + + + +

+

M M M M

C C C C C C C

K K K K K K K

K

ɺ
ɺ

( ) ( )2 2 2 2 2

2 2 2
2 2 2 2 2

2 2 2

2 2 2

x y z z x z

y y x y z

gse, x re, y re, gse, z re, x z
d ,sh ,su d ,sh,su d ,sh,su d ,sh ,su d ,sh,su

re, ,c re, ,c re, ,c re , ,c re, ,cy y x y z
d ,sh,su d ,sh,su d ,sh,su d ,sh,su d ,sh,su d

ω ω ω ω ω ω

ω Ωω ω ω ω

ω ω ω ω ω

ω Ωω ω ω ω

+ + + + +

+ + + + + +

K K K K K

K K K K K Kɺ
ɺ( ) ( )

( ) ( )

2

2 2
2 2 2 2 22 2

2

2

x z

y y x y x z

re, ,c x z
,sh,su

re, ,s re, ,s re, ,s re, ,s re, ,sy y x y x z
d ,sh,su d ,sh ,su d ,sh,su d ,sh,su d ,sh,su

cos t

sin t

ω ω

ω Ωω ω ω ω ω

ω ω Ω

ω Ωω ω ω ω ω Ω+ + + + +K K K K Kɺ
ɺ

 (13) 
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The subscripts “d”, “ sh”, “ be” and “su” refer respectively to the disk, shaft, bearing as well as support and 
express the contribution to the phenomenon represented by the corresponding matrix. The superscripts “c2” and “s2” 
denote the geometric asymmetry of the rotor expressed in terms of the time-varying trigonometric functions 
cos(2Ωt) and sin(2Ωt). The superscript “id” stands for the rotor internal damping introduced by estimating the 
Rayleigh damping coefficients, “g” for the rotor gyroscopic effect, “e” for the shaft elasticity corresponding to the 
bending and shear deformations, “re” for the rotational effects due to the support rotations (these effects come from 
the kinetic energies of the disk and the shaft) and “gse” for the geometric stiffening effects corresponding to the 
centrifugal stress due to the support rotations. 

The vector Fr(t) is defined as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

(

2 2

1 1

2 2 2
1 1 1 1 1

2 2

2 2 2

2 2r

r

y y x y z x z

W c s
r d ,sh mu mu,su d ,sh,su d ,sh,su d ,sh,su

W c s
d ,sh r mu mu

,c ,c ,c ,c ,c ,cy y x y z
mu,su mu,su mu,su mu,su mu,su mu ,su

t t t t t cos t t sin t

W cos t sin t

ω Ωω ω ω ω ω ω

Ω Ω

Ω Ω Ω Ω

ω Ωω ω ω ω

= + + + + +

= − + +

+ + + + + +

F F F F F F F

V V V

V V V V V Vɺ
ɺ ) ( )

( ) ( )

( ) ( ) ( )( )

1

2 2 2
1 1 1 1 1 12 2 2

2 22 2

2 2

y y x y z x z

x z

,s ,s ,s ,s ,s ,sy y x y z x z
mu,su mu,su mu,su mu ,su mu,su mu,su

u y z y x z z x y y z
d ,sh,su O O O O O O

w x
d ,sh,su O O O

cos t

sin t

x z y z y x

z y x

ω Ωω ω ω ω ω ω

ω ω Ω

ω Ωω ω ω ω ω ω Ω

ω ω ω ω ω ω ω ω ω ω

ω ω

+ + + + + +

− + − + + − − − +

− + −

V V V V V V

V

V

ɺ
ɺ

ɺ ɺɺɺ ɺɺ

ɺ ɺɺɺ ( ) ( ) ( )( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )2

2

2 2

2 2

2

y x y z y x z x y
O O O

yw x y z yu z x y x y z z x y
d ,sh,su d ,sh,su d ,sh,su d ,sh,su

,cy x x y y z y z x z y z
d ,sh,su d ,sh,su d ,sh,su

,c z x
d ,sh,su

y x z

cos t

θ ψ

θψ θ

ψ

ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω ω ω ω ω

Ωω ω ω Ωω ω ω ω Ωω ω ω Ω

ω Ωω ω

+ + − − − +

− + + − − + − −

− + + + − − −

+ + +

V V V V

V V V

V

ɺ ɺ

ɺ ɺ ɺ ɺ

ɺ

ɺ( ) ( ) ( ) ( )
( ) ( )

2

2

2 2 2

2 2

,sx y x z y z
d ,sh,su

,s z x x y
d ,sh,su

cos t sin t

sin t

ψ

θ

ω Ω ω Ωω ω ω Ω

ω Ωω ω ω Ω

+ − −

+ + +

V

V

ɺ

ɺ

 (14) 

where Vmu (Fmu(t)), Vd,sh,su (Fd,sh,su(t)) and Vmu,su (Fmu,su(t)) are the load vectors (force vectors) associated respectively 
with the mass unbalance, the inertia force due to support motions and that due to coupling between both phenomena. 
The superscripts “c1” and “s1” signify the components of the mass unbalance force expressed in terms of the time-
varying trigonometric functions cos(Ωt) and sin(Ωt). The superscripts u, w, ψ and θ denote the direction of the action 
force components associated with the rotor support motions. 

The transient dynamic motion of the rotor is then obtained by solving Eq. (12) by means of the implicit Newmark 
scheme based on the average acceleration. The static equilibrium position δr,sep is used to initialize the transient 
dynamic problem. The final integration time is chosen such that the transient effects have disappeared and the 
steady-state regime has been reached. 

5. Results and discussion 

The symmetric rotor-rigid/elastic linearized bearing system presented in Fig. 3 is assumed to be subjected to 
rotating mass unbalance as well as to support harmonic rotation around the Ox axis given by ωx=ωx,acos(Ωxt) in 
rad/s. The physical properties as well as the geometry of the rotor and the bearings are given in Table 1. The shaft is 
discretized into eight equal length 2-node Timoshenko beam finite elements. The disk is located at node 5 and the 
bearings # 1 and # 2 are respectively placed at nodes 1 and 9. The rotor is operated at a constant speed of rotation 
Ω=1200 rpm (20 Hz=mass unbalance frequency). The static equilibrium position of the shaft geometric center in the 
fluid film bearings is given by δbe,sep=<-5.71×10-5,-1.76×10-4>R

T m. The bearing damping and stiffness matrices are 
expressed in what follows: 

3 4 6 6

4 4 6 7

3 50 10 1 08 10 1 30 10 1 32 10
N m s ; N m

1 08 10 7 57 10 6 30 10 1 94 10
be be

. . . .

. . . .

   × × × ×
= =   × × × ×   

c k  (15) 

The rotor system is supported either by rigid bearings or hydrodynamic bearings leading in the case of fixed 
support either to symmetric damping and stiffness matrices with isotropic diagonal and cross-coupling terms or to 
nonsymmetric matrices respectively. 
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Fig. 3. Description of the on-board rotor system for numerical examples. 

Table 1. Details of the investigated rotor system with hydrodynamic bearings 

Density of both disk and shaft material 

Radius, thickness and location of the disk 

shaft material (Esh, νsh) 

Radius and length of the shaft 

Mass unbalance 

7800 kg/m3 

0.15 m, 0.03 m, 0.2 m 

2×1011 N/m2, 0.3 

0.04 m, 0.4 m 

1500 g mm, 0° 

Radius and length of the bearings 

Locations of the bearings 

Radial clearance of the bearings 

Oil film dynamic viscosity 

0.04 m, 0.01 m 

0 m, 0.4 m 

2×10-4 m 

288×10-4 Pa s 

  
Fig. 4 shows the classical disk orbit due to the mass unbalance for rigid bearings and a fixed support. Since the 

matrices of the rotor-bearing system are symmetric and skew-symmetric with isotropic diagonal and cross-coupling 
components, the dynamic behavior is symmetric and the orbit is circular. Its center coincides with the point O 
(bearing center). FFT shows that the rotor displacement has an amplitude almost of order 1×10-7 m and the same 
mass unbalance frequency (20 Hz). 

 

 

Fig. 4. Mass unbalance orbit and z-FFT of the rotor lateral displacements at the disk for rigid bearings and fixed support. 

Fig. 5 gives the disk orbit and FFT of rotor vibrations due to the mass unbalance and the support rotation around 
the Ox axis. This rotation generates vectors corresponding to force components acting respectively in the Ox 

O 
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direction (due to the Coriolis acceleration, i.e., the term y x
d ,sh,su

ψ Ωω−V  in Eq. (14)) and in the Oz direction (due to the 

tangential acceleration, i.e., the terms yw x
d ,sh,suω−V ɺ  and x

d ,sh,su
θ ω−V ɺ  in Eq. (14)). The two transverse displacements 

associated with these force components are different and this breaks the asymmetry of the rotor behavior. For the 
selected speed of rotation of the rotor, the z-amplitude is very higher than the x-amplitude which remains mostly the 
same. FFT exhibits two frequency components due to the mass unbalance excitation (20 Hz) and to the support 
harmonic motion (80 Hz). 

 

 

Fig. 5. Disk orbit and z-FFT of the flexural vibrations for rigid bearings and a support harmonic rotation: ωx,a=5×10-2 rad/s and Ωx=80 Hz. 

Fig. 6 presents the disk orbit due to the mass unbalance effect in the presence of hydrodynamic bearings. The 
nonsymmetric damping and stiffness coefficients make the bearings anisotropic and the orbit elliptical with diagonal 
axes defining the phase between the mass unbalance excitation and the rotor response. The orbit center coincides 
with the point Csep (static position of the shaft center in the bearings). The orbit is large compared to that 
corresponding to rigid bearings because of the combination between the bending modes of the rotor and the rigid 
body modes relative to the rotor motion in the bearings. z-FFT indicates that the disk vibration has an amplitude of 
about 7×10-6 m and the same mass unbalance frequency (20 Hz). 

 

 

Fig. 6. Mass unbalance orbit and z-FFT of the rotor transverse displacements at the disk for flexible bearings and fixed support. 

Fig. 7 displays the disk orbits for hydrodynamic bearings during support rotational motions. The orbit 
characteristics (shape and magnitude) change with amplitude and frequency of the support harmonic excitation. For 
very small amplitudes and different frequencies, the orbit shapes become more complicated with respect to those 
obtained when the support is fixed (see Fig. 7a). It should be noted that the dynamic behavior is all the more 
modified as the frequency of the support excitation is high compared with the natural frequencies or the speed of 
rotation of the rotor. On the other hand, the support motion amplitudes change the x and z orbit magnitudes. FFTs 
exhibit two frequency components due to the mass unbalance excitation (20 Hz) and to the support harmonic 
motions (50 Hz and 80 Hz). Even if the support rotations have an influence on the mass unbalance excitation (see 
Eq. (14)), this influence does not appear clearly in FFTs of the rotor motion during the support harmonic rotation 
because its amplitude is very small compared to the speed of rotation of the rotor (mass unbalance frequency). 

 
 
 
 

Csep 
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Fig. 7. Disk orbits and z-FFTs of the lateral vibrations for flexible bearings and two amplitudes of support harmonic rotations: ωx,a= (a) 10-2 rad/s, 
(b) 5×10-2 rad/s, (Ωx=20 Hz, 50 Hz AND 80 Hz). 

6. Conclusions 

A finite element model is presented to analyze the dynamic behavior of a symmetric on-board rotor whose 
support is subjected to sinusoidal rotation. The rotational effects and the geometric stiffening effects relative to the 
centrifugal stressing due to the support rotations are taken into account. The support rotations create time-varying 
parametric coefficients which can lead to lateral dynamic instability. In the case of a rotor mounted on rigid bearings 
and running at the lower speeds of rotation, the support rotation around a transverse axis creates an orbit having its 
greatest magnitude in the perpendicular transverse direction. Unlike the previous case, the support rotation effects 
concern the two transverse directions when the rotor is carried by hydrodynamic bearings. It is noted that the shape 
and the magnitude of the orbits can be significantly affected by the support motion frequency and amplitude 
respectively. In the case of considerable rotation amplitude compared to the speed of rotation of the rotor, it is 
shown that the mass unbalance forces can depend on the support rotation around a transverse axis. The frequency 
components due to the mass unbalance excitation and to the support harmonic motions appear in FFTs of the rotor 
flexural vibrations. In the case of large orbits, the assumption of a linearized hydrodynamic bearing model is 
questionable. A nonlinear model is to be considered and the hydrodynamic bearings have to be treated as external 
nonlinear forces acting on the shaft. 
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(b) ωx,a=5×10-2 rad/s (a) ωx,a=10-2 rad/s 
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