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Abstract

In generator and pump rotors installed in powentslathe rotating mass unbalance and the differenions of the rotor support
are among the main sources of flexural vibratidiss work aims to observe the dynamic behaviorroba-board rotor subject
to rigid support movements. The modeling takes iatcount six types of support deterministic motignstational and
translational motions) when the kinetic and stramergies in addition to the virtual work of the atitg flexible rotor
components are calculated. The finite element nikthapplied using the Timoshenko beam theory. fitoposed on-board
rotor model considers the rotary inertia, the gygogéc inertia, the shear deformation of shaft ak agethe geometric asymmetry
of shaft and/or rigid disk of the rotor. By commgithe Rayleigh damping coefficients, the effectaibr internal damping is
included in the study. The Lagrange’s equationsiaegl to obtain the differential equations of hierin bending relative to the
rigid support which forms a noninertial referencanfe. The equations of motion exhibit periodic paettic coefficients due to
the asymmetry of the rotor and time-varying paraimetoefficients due to the support rotations. he presented applications,
the rotor mounted on rigid/elastic linear bearirggexcited by a rotating mass unbalance combindl simusoidal oscillations of
the rigid support. The dynamic behavior of the rascanalyzed by means of rotor orbits and fastrieotransforms (FFTSs).

Keywords Rotordynamics, asymmetric rotor, on-board rdiiaite element method, elastic bearing, supportiompparametric excitation.

1. Introduction

Many industrial applications include rotating maws in which the rotor plays a dominant role. Threeemany
studies concerning the prediction of dynamics @breystems mounted on elastic bearings in the oa$xed
support [1,2]. Some studies observed the instglifitsystems subjected to parametric excitatiogsang et al.
[4] employed the Timoshenko beam finite elementsnimdeling asymmetric rotor-bearing systems. Sothero
works concentrated on the behavior of a rotor uniderseismic excitations [5-7]. Subbiah et al. $8)died the
response of rotor systems under random supportagioris using modal analysis methods. Lee et afofused on
the experimental behavior of a rotor under supgloock excitation. Da Silva Tuckmantel et al. [1&pnesented the
supporting structure (foundation) of a rotatingteys by coupled as well as uncoupled modes for tdlog the
system response. In [11], experimental tests haen kshown for a flexibly supported undamped rigiock
foundation in rotating machinery. Duchemin et d2][ observed the stability of a simple rotor modeder a
support sinusoidal rotation. Driot et al. [13] ddsed the orbits of a rotor induced by a supportitanic rotational
movement. El-Saeidy and Sticher [14] obtained #sponses of a rigid rotor-bearing system subjeitadtating
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mass unbalance plus support harmonic excitatioas. & al. [15] investigated the active vibratiomtcol of a
flexible rotor system excited by mass unbalance pewodic rotational motion of the support. Amonly tae
literature mentioned above, there are referenesb/stg support-excited rotor systems and whosevierks dealt
with the harmonically excited on-board rotors [18}-IMoreover, these references concentrated omthastigation
of dynamic behavior of either simple rotors or retsupported by elastic bearings with constant degnpnd
stiffness coefficients or rotors excited by supmimple motions. As a consequence, the applicafiwoposed in
these works are not suitable for realistic ones.this paper, an improved model is presented. Namety
asymmetric rotor is discretized using the finiteneént method based on the Timoshenko beam theowynted on
hydrodynamic bearings linearized with damping atiffness coefficients calculated using the Reynadsiation
[16], and excited by different motions of its supgpd he rotary and gyroscopic inertias, shaft stkdiormation and
rotor geometric asymmetry are taken into accouht Tlinear equations of motion point out periodicapaetric
terms due to the rotor geometric asymmetry and -tiarging parametric terms due to the support roteti
excitations. In the presented examples, the rotmunted on rigid or elastic linear bearings is sot@é to rotating
mass unbalance combined with support sinusoidatiootal motions. Numerical solutions are computed a
analyzed by means of orbits of the rotor as wefaasFourier transforms (FFTSs).

2. Preliminary calculations

Three principal frames of reference shown in Fe.ate introduced to take into consideration the enwant of
the rotor rigid support. They are linked with thregndR?, the rigid supporR and the moving rotdR.

The rotational motions of the rotor support arerdef by the angular velocity vector componentsew’ andw?
of the rigid supporR with respect to the grour® projected in the framR. The translational motions of the rotor
support are defined by the coordinagsyo andz, of the position vecto©0 expressed in the frame attached to
the supporR. The Euler angleg, 6 and ¢ (see Fig. 1b) allow defining the orientation oé ttotorR with respect to

its supportR. The angular velocity vector of the rot@rwith respect to the grourf measured in the franf@ is
defined by [12]:

| T
of =0t +of :<w*,wy,w&> | 1)
R

whereT is a matrix transpose. The componer{t&%‘I (a)yI W3 ) are formulated as a function af,¢, ¢) and their
time derivative as well ass{,»”,»?. The rotor is supposed to rotate at a constaaed. So the spinning angle

is replaced byt and its derivativep by Q (+ denotes differentiation with respect to tie Let us consider a
generic pointC® along the elastic line of the nondeformed shast.cbordinates in the franf are (Qy,0). It is

interesting to study the translational displacemery,f) andw(y,) of the pointC® due to bending expressed
respectively with respect to tii& andOz axes of the framB.
3. Energy and virtual work computations

The energies are measured from the ground andténgis are written relative to the frame fixedhe support.
3.1.Disk

Since the disk is considered to be rigid, onlkitetic energyly is calculated as follows [12]:

=g

2 1 r\ R ; —di mo di mo di
+o(oF ) 1nof with 1, =dag[ipe g 1 e ] 2

wheremy is the mass of the disk/,g? is the translational velocity vector of its cenaexd |, is its principal inertia

tensor. I,Th" and are used to distinguish the effects due to thennmeertia of the disk mass and those due to the

I di
My
inertia modeling the disk geometric asymmetry.ddition, I,¥‘1 is the inertia of the disk mass about @waxis.
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Fig. 1. (a) Frames of reference for the on-boatorrgb) Euler angles.

The translational velocity vector componenis, v, and W, of the disk center are functions of (v’,0%) and

(Xo,Yor20)- The final expression of the kinetic energy & thisk having a mass center placed at the arbiatasgissa
yq relative to the fram® is given by [12]:

T, :%(u; +V + W )+—;( Im°(a)“+a)i )+ 1 wh 2+ |r;‘(a)“—w‘12)) 3)

3.2.Shaft

Since the shaft is assumed to be flexible, it igrabterized by the kinetic and strain energiesrandeled by
beam elements. The kinetic energy of a shaft canbt@ned by taking a shaft elementary volume wluah be
considered as a disk of thickneks Thus the kinetic energy of a shaft has the faltmaform [12]:

Ish

lsh
=28 o) 00 el oz, o o) of o

wherepg, S andlg, are respectively the density, the cross-sectiahtae length of the shaftlg:’ and |gsih are

respectively the mean inertia of the cross-sediwh the inertia characterizing the asymmetry ofstiegft. The rigid
support motion relative to the ground has no inftteeon the strain energy of the shaft becausesttésgy depends
only on the stresses and therefore on the shafvesise deflection relative to the rotor supporin addition to the
bending deformation, the shear effects highlighteg Timoshenko and the geometric stiffening effects
corresponding to the centrifugal stressing dudéostupport rotations are taken into account. Tiznsenergy of a
shaft is given by:

SRSl )
—Gshkﬂ‘hsshllh[(g—;+wj2—(a—vv —eﬂdy] cog20Q ﬁ—( E, £ j 0y 09 (5)

ay oy 0y
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where Eg, and Ggp, are respectively the Young’s modulus and the sheadulus of the shaftkl® and dh are
respectively the mean shear coefficient and tharsteefficient relative to the section asymmetryhef shatft.

3.3.Mass unbalance

Let us consider a concentrated mass unbalapgositioned at a poir,,, of the disk ¥,.~Yyq) with a distance
rmu from the shaft geometric center. Its initial angjiéh theOz axis of the fram® at rest isjm, The components of

the mass unbalance translational velocity veMEg:ur are functions ofd*,«”,w”) as well asxo,Yo,20) and are used in
the kinetic energy which characterizes the masslanie [12]:

vi I (6)

mu

mu

T :&
2

3.4.Bearing

Fig. 2a shows a simple diagram of a hydrodynamaribg which is composed of a fixed journal containa
rotating shaft. The point andO'=Csep represent respectively the bearing center andliaft geometric center. The
radius, length and clearance of the bearing amentiselyry,, ly,e andc,—rpersh Whererg, is the shaft radius. At a
constant rotor spee@ and for a constant static lo&tl created by the rotor Welght the shaft cergy, in the
bearing holds a static equilibrium position defilBgdthe vectoBpe seg<Upe,sepWoe, Se,?R expressed in the frankeor

equivalently by the eccentricitg, = Habe,smu of the shaft center in the journal and the atgtadglep,. between the

W, load direction and the line of cente@®C, In the present study, the short bearing theorgassidered
(I,ddwe<1/8 wheredy=2r,e) and the static solution can be obtained usingidhewing formulations deduced from
the Reynolds equation with the Guimbel boundary itimms [16]:

1
re 2 | o ? 88(16828_'_77-2(1_828))5 . ]T 1- ‘Ee

whereey, is the relative eccentricityd=e,dC,e) andy is the fluid film dynamic viscosity. The nonlinekq. (7) is
solved by an iterative Newton-Raphson method amiliges the eccentricity,e and then the static radial
displacemeng, of the shaft center. The components of the veiog,are obtained by a classical change of basis.
The hydrodynamic fluid forceBy=<Fpe',Foe>r' produced by the bearings and expressed in theefRucan be
obtained by integration of the fluid film pressyfeynolds equation in the dynamic regime) overlibaring. In
order to apply the Lagrange’s equations, the Vinuak 6\W, of these forces has to be established:

e

Mbe = F-tl)—e(ﬁ be’é" b&) 56 b (8)

If the lateral dynamic displacemenig=<u,W,e>r Of the shaft elastic line are assumed to be sinathe
vicinity of the static positiody. scp the linear analysis can be used by constructifigstaorder Taylor expansion of

the fluid film forcesF,, (5be,5 be) in the vicinity of the static hydrodynamic forcég, (5be,sepo) as follows:

Fbe(abe!S be) = Fbe(6 be,sep)_c ‘&5 tEk 4@ (9)
with
Ge Coe| . o | Ko ki
P Kpe= 10
o L;: c;;} - {k;: k;:} 1)
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(a) (b)
Fig. 2. (a) Sketch of a hydrodynamic bearing, (baBng damping and stiffness coefficients.

and

A6bezsbe_sbe,sep ’ A6 bezs t (11)

wherec,. andkpe are the damping and stiffness matrices of thatized hydrodynamic bearing (see Fig. 2b) whose
analytical expressions can be found in [16].

4. Equations of motion

The finite element method is chosen for discregjzime rotor and describing its flexural motion afsiaction of
the nodal displacement vector defineddy<u”w",6",y">¢', i.e., the rotor has two translations and twotiots at
each node. The finite element used for the shaftelimg has two nodes and the shape functions aedban the
Timoshenko beam theory. The linear equations ofianobf the finite element rotor model are obtairedter
applying the Lagrange’s equations to the energeshie disk, the shaft finite element and the magsalance as
well as to the virtual work of the hydrodynamic beg and assembling appropriately the produced iogstrand
vectors. They are written with respect to the nertial reference frame connected to the rotor rigigportR:

M, (1)8, +C, (1)8, +K, (1)5 =F (t)+F, (8, p.0) + Kyd (12)

be” r,sep

whereM,(t), C,(t) andK,(t) are the parametric matrices of mass, dampingstiffdess of an asymmetric rotating
rotor on moving supporté‘ir, Sr and §, are the acceleration, velocity and displacemewtore of dimension
4(nesit1)x1 henceng, is the number of shaft finite elemenEs(t) is the external force vectoF,dd,sep0) is the
hydrodynamic force vector caused by the bearirthdrstatic case which opposes the rotor Welfmp. In addition,

0, sepiS the static solution vector of the rotor du¢hte hydrodynamic bearing.
The matrices of Eq. (12) are expressed in whabvi|
M, (t) =M, +M % cos(2Q9)+M 2% sif{229)
C, (t)=C, +C§ ,,+C% 2 +Co2Qcos(220) +Co3 @ sif(22 ) +C° @)
K () =K o K 5, 5 cos(229 4 57 sif22 ) K 5, 4" K {5 Qu”

2 2 2 22 2 ’ 13
+(Kre.w‘ +Kgsew" )w*2+K Eje‘as)':ys@)ﬂ_'_(K et g gse )6‘_)2-;}( W‘}%)SF‘F,’S)U&) z ( )

d,sh,su d,sh,su d,sh,su d,sh d

red” G ;- re 2w’ G % rew? g, x2 re’? g, ,y2 rew? g 122 re e’ G , X, 17
+(Kd,sh,sua)y+K _QC() +K d,sh,stp‘) +K d,sh,sgd -'K d,sh,grf K ww CO#Z.Qt)

d,sh,su ,shgu

+(Kre.d)y sy +K re 2w’ 2 0w’ +K r:u;jp)xzﬂ( reg”? 2ngyZ_IK rew? ZZL)XC()Z) sin(Z.Qt)

d,sh,su d,sh,su d,sh, d,sh,st
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The subscripts d”, “sh’, “be’ and “su’ refer respectively to the disk, shaft, bearingvasl as support and
express the contribution to the phenomenon repteddry the corresponding matrix. The superscripfsdnd “s,”
denote the geometric asymmetry of the rotor expikda terms of the time-varying trigonometric fuoos
coq2Qt) and sin(2Qt). The superscriptid” stands for the rotor internal damping introdudad estimating the
Rayleigh damping coefficientsg™ for the rotor gyroscopic effectge” for the shaft elasticity corresponding to the
bending and shear deformationge™for the rotational effects due to the supporatmns (these effects come from
the kinetic energies of the disk and the shaft) ‘age¥ for the geometric stiffening effects correspondinghe t
centrifugal stress due to the support rotations.

The vectorF(t) is defined as follows:

F(t) =R +F () +F o ot) +F g {t) + Foy o (t) cos(2@ ) +F>  (§) sif(22 )
= VILW, +V 5,07 cof 2] +V 107 sirf2 }

( mu, sua)y V f’IC:J)ySl?'wa +V mel Céé() . +V w)r/TZ]LI,(iSG)yZ +V wzlz'nqungz-'V o p w )Coqg t)
( mu, sua)y +V _?ncll) SL?'wa +V &)ITILI zé()xz +V &) ﬁ)yz +V &) ggzz +V “ wmuyas&)xw Z) Sln(Qt)

iedtorzrer-2rurs lorsond sfo-on) o)

20 2507 2500 3y (0 + 00) = (07 00 2 (0% + %))

J (14)
_deslh su(w + wywz) +V gush s(wz_ w &) ))_V gd ,sh (LF() + w &) )_V Y d,sh(sg) = w &) y

(

(

-V Qaﬁ+a)a)y)+vffh5(9a) +a)ya)z) -V dsh(@*—Zsz—w&))cos(ZQt)

d,sh,su

+\V¥ &

d,sh,su

G +200" + e’ ) cos(2Q 1) + VI 5 @ - 20w - ww? sin( 22 )

d,sh,su

V5 @ + 200"+ w'w?)sin(221)
whereVn, (Fmdt)), Vashsu(Fashst)) andVmusu(Fmus(t)) are the load vectors (force vectors) associsgepectively
with the mass unbalance, the inertia force dueppasrt motions and that due to coupling betweeh pbenomena.
The superscriptsc;” and “s,” signify the components of the mass unbalanceefexpressed in terms of the time-
varying trigopnometric functionsoq@t) andsin(©t). The superscripts, w, v andd denote the direction of the action
force components associated with the rotor suppotions.

The transient dynamic motion of the rotor is thétamed by solving Eq. (12) by means of the imphgwmark
scheme based on the average acceleration. The statilibrium positiond, s¢p iS used to initialize the transient
dynamic problem. The final integration time is olossuch that the transient effects have disappeamddthe
steady-state regime has been reached.

5. Results and discussion

The symmetric rotor-rigid/elastic linearized begrisystem presented in Fig. 3 is assumed to be ctebjdo
rotating mass unbalance as well as to support h@omotation around th©x axis given byw =« °coqQt) in
rad/s. The physical properties as well as the gégnoé the rotor and the bearings are given in &bl The shatft is
discretized into eight equal length 2-node Timog&loelbeam finite elements. The disk is located aten®dand the
bearings # 1 and # 2 are respectively placed aési@dand 9. The rotor is operated at a constardspkrotation
0=1200 rpm (20 Hz=mass unbalance frequency). Thie stquilibrium position of the shaft geometric tamin the
fluid film bearings is given byibeysep—-<-5.71><10r’,-l.76><10“>RT m. The bearing damping and stiffness matrices are
expressed in what follows:

_[350x16 108 16 .. _[138 f0o 130 §
Cbe{l.Oled 75% 10} N/m/s kbe{ 630 f0 .194 £N/m (13)

The rotor system is supported either by rigid beggior hydrodynamic bearings leading in the caséxefl
support either to symmetric damping and stiffnesdgrices with isotropic diagonal and cross-coupliegns or to
nonsymmetric matrices respectively.
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Fig. 3. Description of the on-board rotor systemrfomerical examples.

Table 1. Details of the investigated rotor systeith Wwydrodynamic bearings

Density of both disk and shaft material 7800 kg/ni
Radius, thickness and location of the dis®.15 m, 0.03 m, 0.2 m

shaft materialEsp, vsn)

2x10" N/n?, 0.3

Radius and length of the shaft 0.04m,04m
Mass unbalance 1500 g mm, 0°
Radius and length of the bearings 0.04m, 0.01 m
Locations of the bearings 0m,0.4m
Radial clearance of the bearings 2x10*m

QOil film dynamic viscosity 288x10" Pa s

Fig. 4 shows the classical disk orbit due to thessnanbalance for rigid bearings and a fixed supj®inice the
matrices of the rotor-bearing system are symmainit skew-symmetric with isotropic diagonal and sfosupling
components, the dynamic behavior is symmetric dnedarbit is circular. Its center coincides with theint O
(bearing center). FFT shows that the rotor dispte® has an amplitude almost of order I%10 and the same

mass unbalance frequency (20 Hz).

x10”

w (m)
=)

OO0

'
ﬁt'\

4 2 0 -2 -4
u (m)

%
x107

0 DU I A
Frequency (Hz)

100

Fig. 4. Mass unbalance orbit ar@FT of the rotor lateral displacements at the fskigid bearings and fixed support.

Fig. 5 gives the disk orbit and FFT of rotor vilwats due to the mass unbalance and the suppotioroaround
the Ox axis. This rotation generates vectors corresp@ndinforce components acting respectively in e

-7-
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direction (due to the Coriolis acceleration, ithe term —def’;hysuQa)x in Eq. (14)) and in th®zdirection (due to the

tangential acceleration, i.e., the term¥y%, @ and -V7_ (& in Eq. (14)). The two transverse displacements

associated with these force components are diffened this breaks the asymmetry of the rotor bedrafor the
selected speed of rotation of the rotor, Zkamplitude is very higher than tlxeamplitude which remains mostly the
same. FFT exhibits two frequency components duthéomass unbalance excitation (20 Hz) and to tippat
harmonic motion (80 Hz).

w (m)
=3

6 4 2 0 2 4 -6 I
u (m) x107 Frequency (Hz)

Fig. 5. Disk orbit an@-FFT of the flexural vibrations for rigid bearingad a support harmonic rotatian*=5x10? rad/s and2*=80 Hz.

Fig. 6 presents the disk orbit due to the mass lanba effect in the presence of hydrodynamic beariffhe
nonsymmetric damping and stiffness coefficients endde bearings anisotropic and the orbit elliptigéth diagonal
axes defining the phase between the mass unbageegation and the rotor response. The orbit ceabémcides
with the point Cs, (static position of the shaft center in the begs)n The orbit is large compared to that
corresponding to rigid bearings because of the auaibon between the bending modes of the rotor thedrigid
body modes relative to the rotor motion in the b zFFT indicates that the disk vibration has an amgé of
about 7x16 m and the same mass unbalance frequency (20 Hz).

- all

w10

AT Sug

g :

F 1y L
Csep

2 4 6 3 0
4 (m) N0

T e W w
Frequency (Hz)

Fig. 6. Mass unbalance orbit ar€FT of the rotor transverse displacements at ilefdr flexible bearings and fixed support.

Fig. 7 displays the disk orbits for hydrodynamicabegs during support rotational motions. The orbit
characteristics (shape and magnitude) change wiflitade and frequency of the support harmonictaticin. For
very small amplitudes and different frequencieg, thbit shapes become more complicated with redpetttose
obtained when the support is fixed (see Fig. 7ashbuld be noted that the dynamic behavior isttal more
modified as the frequency of the support excitai®high compared with the natural frequenciesher ¢peed of
rotation of the rotor. On the other hand, the suppwtion amplitudes change tlkeandz orbit magnitudes. FFTs
exhibit two frequency components due to the madsalamce excitation (20 Hz) and to the support haimo
motions (50 Hz and 80 Hz). Even if the supporttiotes have an influence on the mass unbalanceagixtit(see
Eq. (14)), this influence does not appear clearlf-FTs of the rotor motion during the support hammaotation
because its amplitude is very small compared tepleed of rotation of the rotor (mass unbalanaguieacy).
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(a) **=10%rad/s (b) @*?*=5x10? rad/s

o all’ o all

110 N0

=20 Hz

.QX

W (m) x10” Ty e e x10° W e W m
Frequency (Ha) Frequency (Hz)

o all’ ol
w0

1 17 3

=50 Hz
w (m)
w (m)

-1.§

QX

s s : : . s : : :
x10 N e 0 N m 10 N e 0 N m
Frequency (Hz) Frequency (Hz)

. o all’

w0t

-17)

-1.§

Q=80 Hz
w (m)
w (m)

s b . . 1 " .
x10 L 10 N e 0w m
Frequency (Hz) Frequency (Hz)

Fig. 7. Disk orbits and-FFTs of the lateral vibrations for flexible beaginand two amplitudes of support harmonic rotatiarig&= (a) 10 rad/s,
(b) 5%10° rad/s, £2*=20 Hz, 50 Hz AND 80 Hz).

6. Conclusions

A finite element model is presented to analyze dgramic behavior of a symmetric on-board rotor vehos
support is subjected to sinusoidal rotation. Thatronal effects and the geometric stiffening efeelative to the
centrifugal stressing due to the support rotatiarestaken into account. The support rotations eréate-varying
parametric coefficients which can lead to latesalamic instability. In the case of a rotor mountedrigid bearings
and running at the lower speeds of rotation, thgpett rotation around a transverse axis createsfaibhaving its
greatest magnitude in the perpendicular transwdireetion. Unlike the previous case, the suppaiation effects
concern the two transverse directions when the istoarried by hydrodynamic bearings. It is notiegt the shape
and the magnitude of the orbits can be signifigaafifected by the support motion frequency and &oge
respectively. In the case of considerable rotatiomplitude compared to the speed of rotation ofrtiter, it is
shown that the mass unbalance forces can depetite@support rotation around a transverse axis. fidggiency
components due to the mass unbalance excitationoatig support harmonic motions appear in FFThefrotor
flexural vibrations. In the case of large orbitsg tassumption of a linearized hydrodynamic bearmagel is
guestionable. A nonlinear model is to be considered the hydrodynamic bearings have to be treatezkternal
nonlinear forces acting on the shatft.
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