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Introduction

Transition to turbulence in non-rotating pipe flows is triggered by finite-amplitude perturbations [START_REF] Hof | Scaling of the Turbulence Transition Threshold in a Pipe[END_REF], and the coherent structures observed at the transitional stage are in the form of localized patches known as puffs and slug structures [START_REF] Wygnanski | On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug[END_REF][START_REF] Wygnanski | On transition in a pipe. Part 2. The equilibrium puff[END_REF]. Puffs are spots of vorticity localized near the pipe axis surrounded by laminar flow, whereas slugs expand through the entire crosssection of the pipe while developing along the streamwise direction. Recent theoretical studies related slug flows to quasi-inviscid solutions of the Navier-Stokes (NS) equations. In particular, for non-axisymmetric flows [START_REF] Smith | Amplitude-Dependent Neutral Modes in the Hagen-Poiseuille Flow Through a Circular Pipe[END_REF] revealed the existence of nonlinear neutral structures localized near the pipe axis (centre modes) that are unstable equilibrium states [START_REF] Walton | The stability of nonlinear neutral modes in Hagen-Poiseuille flow[END_REF]. [START_REF] Walton | The stability of developing pipe flow at high Reynolds number and the existence of nonlinear neutral centre modes[END_REF] found the axisymmetric analogue of these inviscid traveling waves by studying the the nonlinear stability of impulsively started pipe flows to axisymmetric perturbations. Walton's modes are similar to the inviscid axisymmetric slug structures proposed by [START_REF] Smith | On Displacement-Thickness, Wall-Layer and Mid-Flow Scales in Turbulent Boundary Layers, and Slugs of Vorticity in Channel and Pipe Flows[END_REF].

Recently Fedele (2012) investigated the dynamics of non-rotating axisymmetric pipe flows in terms of travelling waves of nonlinear soliton bearing equations. He showed that at high Reynolds numbers, the dynamics of small long-wave perturbations of the laminar flow obey a coupled system of nonlinear Korteweg-de Vries-type (KdV) equations. These set of equations generalize the one-component KdV model derived by [START_REF] Leibovich | Axially-symmetric eddies embedded in a rotational stream[END_REF]) (see also [START_REF] Leibovich | Wave motion and vortex breakdown[END_REF], [START_REF] Leibovich | Vortex stability and breakdown -Survey and extension[END_REF]) to study propagation of waves along the core of concentrated vortex flows (see also [START_REF] Benney | Long non-linear waves in fluid flows[END_REF]) and vortex breakdown [START_REF] Leibovich | Vortex stability and breakdown -Survey and extension[END_REF]). Fedele's coupled KdV equations support inviscid soliton and periodic wave solutions in the form of toroidal vortex tubes, hereafter referred to as vortexons, which are similar to the inviscid nonlinear neutral centre modes found by [START_REF] Walton | The stability of developing pipe flow at high Reynolds number and the existence of nonlinear neutral centre modes[END_REF]. Fedele's vortical structures eventually slowly decay due to viscous dissipation on the time scale t ∼ O(Re 6.25 ) (Fedele 2012). The vortexon, Walton's neutral mode and the inviscid axisymmetric slug proposed by [START_REF] Smith | On Displacement-Thickness, Wall-Layer and Mid-Flow Scales in Turbulent Boundary Layers, and Slugs of Vorticity in Channel and Pipe Flows[END_REF] are similar to the slugs of vorticity that have been observed in both experiments [START_REF] Wygnanski | On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug[END_REF] and numerical simulations [START_REF] Willis | Turbulent dynamics of pipe flow captured in a reduced model: puff relaminarization and localized 'edge' states[END_REF]. As discussed by [START_REF] Walton | The stability of developing pipe flow at high Reynolds number and the existence of nonlinear neutral centre modes[END_REF], these inviscid structures may play a role in pipe flow transition as precursors to puffs and slugs, since most likely they are unstable to non-axisymmetric disturbances [START_REF] Walton | The stability of nonlinear neutral modes in Hagen-Poiseuille flow[END_REF].

In this paper, we extend Fedele's analysis and show that the axisymmetric NS equations for non-rotating pipe flows can be reduced to a set of soliton bearing equations of Camassa-Holm type [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF], Dullin, et al. 2003). These support smooth and inviscid solitary waves that are numerically computed using the Petviashvili method ( [START_REF] Petviashvili | Equation of an extraordinary soliton[END_REF], see also [START_REF] Pelinovsky | Convergence of Petviashvili's iteration method for numerical approximation of stationary solutions of nonlinear wave equations[END_REF][START_REF] Lakoba | A generalized Petviashvili iteration method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity[END_REF][START_REF] Yang | Nonlinear Waves in Integrable and Nonintegrable Systems[END_REF])) confirming the validity of the theoretical solutions derived by Fedele (2012) for long-wave disturbances. Moreover, inviscid singular solitary waves in the form of peakons are numerically discovered, and the interpretation of the associated vortical structures are discussed. Finally, the evolution of a perturbation to the laminar state is investigated within the framework of the proposed soliton equations.

Camassa-Holm type equations for pipe flows

Consider the axisymmetric flow of an incompressible fluid in a pipe of circular cross section of radius R driven by an imposed uniform pressure gradient. Define a cylindrical coordinate system (r, θ, z) with the z-axis along the streamwise direction, and (u, v, w) as the radial, azimuthal and streamwise velocity components. The time, radial and streamwise lengths as well as velocities are rescaled with T ,R and U 0 respectively. Here, T = R U 0 is a convective time scale and U 0 is the maximum laminar flow velocity. The Stokes streamfunction ψ of a perturbation u = -r -1 ∂ z ψ, w = r -1 ∂ r ψ to the laminar base flow W 0 (r) = 1r 2 satisfies the nonlinear equation [START_REF] Itoh | Nonlinear stability of parallel flows with subcritical Reynolds numbers. Part 2. Stability of pipe Poiseuille flow to finite axisymmetric disturbances[END_REF])

∂ t Lψ + W 0 ∂ z Lψ - 1 Re L 2 ψ = N (ψ), (2.1) 
where the nonlinear differential operator

N (ψ) = - 1 r ∂ r ψ∂ z Lψ + 1 r ∂ z ψ∂ r Lψ - 2 r 2 ∂ z ψLψ, the linear operator L = L + ∂ zz , L = ∂ rr - 1 r ∂ r = r∂ r 1 r ∂ r ,
and Re is the Reynolds number based on U 0 and R. The boundary conditions for (2.1) reflect the boundedness of the flow at the centerline of the pipe and the no-slip condition at the wall, that is ∂ r ψ = ∂ z ψ = 0 at r = 1. Drawing from (Fedele 2012), the solution of (2.1) can be given in terms of a complete set of orthonormal basis {φ j (r)} as

ψ(r, z, t) = ∞ j=1 φ j (r)B j (z, t), (2.2) 
where B j is the amplitude of the radial eigenfunctions φ j , which satisfy the Boundary Value Problem (BVP) [START_REF] Fedele | Revisiting the stability of pulsatile pipe flow[END_REF], Fedele 2012)

L 2 φ j = -λ 2 j Lφ j , (2.3) 
with r -1 φ j and r -1 ∂ r φ j bounded at r = +0, and φ j = ∂ r φ j = 0 at r = 1. Since φ j satisfies the pipe flow boundary conditions a priori, so does ψ of (2.2). Note that the vorticity of the velocity field associated to the truncated expansion for ψ is divergence-free. The positive eigenvalues λ j are the roots of J 2 (λ j ) = 0, where J 2 (r) are the Bessel functions of first kind of second order (see [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF]). The corresponding eigenfunctions

φ n = √ 2 λ n r 2 - rJ 1 (λ n r) J 1 (λ n ) ,
form a complete and orthonormal set with respect to the inner product

⟨ϕ 1 , ϕ 2 ⟩ = - 1 0 ϕ 1 Lϕ 2 r -1 dr = 1 0 ∂ r ϕ 1 ∂ r ϕ 2 r -1 dr.
A Galerkin projection of (2.1) onto the vector space S spanned by the first N least stable modes {φ j } N j=1 yields a set of coupled Camassa-Holm (CH) type equations [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF], Dullin et al. 2003, Dullin, et al. 2004)

∂ t B j + c jm ∂ z B m + β jm ∂ zzz B m + α jm ∂ zzt B m + N jnm (B n , B m ) + λ 2 j B j Re = 0, (2.4) 
where j = 1, . . . , N, the nonlinear operator

N jnm (B n , B m ) = F jnm B n ∂ z B m + G jnm ∂ z B n ∂ zz B m + H jnm B n ∂ zzz B m , (2.5) 
the coefficients c jm , β jm , α jm , F jnm , G jnm , H jnm are given in A and summation over repeated indices n and m is implicitly assumed. A physical interpretation of the CH equations (2.4) is as follows: the perturbation is given by a superposition of radial structures (the eigenmodes φ j ) that nonlinearly interact while they are advected and dispersed by the laminar flow in the streamwise direction. Note that CH type equations arise also as a regularized model of the 3-D NS equations [START_REF] Chen | The Camassa-Holm equations and turbulence in pipes and channels[END_REF], Domaradzki & Holm 2001[START_REF] Foias | The Navier-Stokes-alpha model of fluid turbulence[END_REF][START_REF] Foias | The Three Dimensional Viscous Camassa-Holm Equations, and Their Relation to the Navier-Stokes Equations and Turbulence Theory[END_REF], the so called Navier-Stokes-alpha model.

Is there wave dispersion in axisymmetric Navier-Stokes flows?

The Galerkin projection described above yields the dispersive CH type equations (2.4) for the space-time evolution of the streamfunction ψ. The term ∂ txx ψ arises also in the Benjamin-Bona-Mahony (BBM) equation [START_REF] Benjamin | Model equations for long waves in nonlinear dispersive systems[END_REF]). It has the property to suppress dispersion, attenuating the dispersive effects induced by the KdV term ∂ xxx ψ. Indeed, consider the linear equation with both BBM and KdV dispersion

A t -αA xxt + cA x + γA xxx = 0.
The associated linear phase speed of a Fourier wave e i(kx-ωt) is

C(k) = ω k = c -γk 2 1 + αk 2 , and as k → ∞, C 0 → -γ α.
This implies that Fourier waves with large wavenumbers tend to travel at the same speed, that is dispersion is suppressed at high k's, if α ≠ 0. As a result, self-steepening induced by nonlinearities can become dominant and blow-up is possible in finite time, or the two contrasting effects can balance each other leading to a peakon solution (Dullin, et al. 2001, Dullin et al. 2003). The extreme case of dispersion suppression is when there is no dispersion, that is C(k) = c, as in the dispersionless CH equation, which also admits peakons [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF]. Clearly, if one adds a fifth-order dispersion term A xxxxx , then C(k) will grow as k → ∞, and peakons do not exist since dispersion is too strong.

The CH/KdV dispersion is associated to a hidden 'elastic energy' that has no counterpart in axisymmetric Navier-Stokes flows, which are essentially two-dimensional (2-D) since vortex stretching is absent. To understand the physical origin of such wave dispersion, we consider the 2-D Euler equations for an inviscid fluid over the domain Ω in cartesian coordinates. The divergent-free velocity field is given by

v = - ∂ ψ ∂y , ∂ ψ ∂x ,
where ψ is the streamfunction and the vorticity

ω = △ψ.
The equation of motion is

∂ ω ∂t = -v ⋅ ∇ω = -[ψ, ω], (3.1) 
where the commutator

[f, g] = ∂ f ∂x ∂ g ∂y - ∂ f ∂y
∂ g ∂x It will be useful to consider the Hamiltonian formulation of (3.1). Following [START_REF] Morrison | Hamiltonian description of the ideal fluid[END_REF], this is given by

∂ ω ∂t = {ω, H} , (3.2) 
where

H = 1 2 Ω ∇ψ 2 dΩ = - 1 2 Ω ωψ dΩ.
is the kinetic energy of the system and the non-canonical Lie-Poisson bracket is defined as

{F, G} = Ω ω δF δω , δG δω dΩ,
where δ denotes variational derivative. Clearly, H is an invariant of motion becuase of the anti-symmetry of the Poisson bracket, i.e. {F, G} = -{G, F }. The Hamiltonian structure of (3.2) yields a physical interpretation of the fluid motion in terms of a deformation of a 2-D membrane. Indeed, the Hamiltonian H can be interpreted as the elastic energy of a membrane subject to tensional forces. The surface ψ(x, y) represents the displacements of the deformated membrane and the vorticity ω is proportional to the mean curvature κ of ψ. This changes according to (3.2), while the elastic energy H is kept invariant. As the curvature κ evolves in space and time, viz. vorticity is swept around Ω and changes in time, the surface ψ locally bends sharply if κ increases, or flattens if κ decreases. Since the velocity streamlines are the contours of ψ, this implies that the vortical flow intensifies (attenuates) in regions of high (low) curvature of ψ.

The wave dispersion associated to the 'elastic energy' H can be revealed if we express (3.1) solely in terms of ψ, that is

∂ t ∆ψ = -∂ y ψ∂ x ∆ψ + ∂ x ψ∂ y ∆ψ.
Here, the left-hand side yields the terms ∂ txx ψ and ∂ tyy ψ that are typical of the CH equation. They indicate that as the vorticity changes in time, so does the curvature κ of the surface ψ, which elastically deforms while the 'energy' is conserved. If the velocity field is given by the sum of a base flow and a perturbation, then KdV type dispersive terms ∂ xxx ψ and ∂ yyy ψ arise from the convection of the perturbation by the mean flow.

The Navier-Stokes-alpha model can be interpreted in a similar manner [START_REF] Foias | The Navier-Stokes-alpha model of fluid turbulence[END_REF]. This is given by

∂ t V + U ⋅ ∇V + ∇U T ⋅ V + ∇p = ν∆V ∇ ⋅ U = 0, and V = (1 -α 2 ∆)U.
The typical Camassa-Holm terms arise from ∂ t ∆U. If U is the sum of a base flow and a perturbation, then KdV type dispersive terms arise as well.

Long-wave limit and KdV vortexons

As Re → ∞, Fedele (2012) showed that the nonlinear dynamics of a small long-wave perturbation b j = εB j , with ε ∼ O(Re -2 5 ), can be reduced to that on the slow manifold of the laminar state spanned by the first few N least stable modes, and higher damped modes are neglected. This is legitimate as long as the amplitudes B j remain small for all time and the non-resonant condition

λ 2 i 1 + λ 2 i 2 + . . . λ 2 i k ≠ λ 2 j (4.1)
is satisfied for any permutation {i 1 , i 2 , . . . , i k } of size k ≤ N drawn from the set j = 1, . . . , N (de la Llave 1997). For the BVP of (2.3) the relation (4.1) is verified numerically to hold up to N ≅ 10 4 . For time scales much less than t ∼ O(ε -2.5 ) ≅ O(Re 6.25 ), the nonlinear dynamics of (2.4) is primilary inviscid and obeys a set of coupled KdV equations (Fedele 2012)

∂ τ b j + βjm ∂ ξξξ b j + Fjnm b n ∂ ξ b m = 0, (4.2) 
defined on the stretched reference frame

ξ = ε 1 2 (z -V t), τ = ε 3 2 t,
where the tensors βjm , Fjnm are given in Fedele (2012) and the celerity V is, with good approximation, the average of the eigenvalues of c jm . The nonlinear system (4.2) support analytical travelling waves (TW), for example,

b (tw) j (ξ, τ ) = k 2 x j - 2M 2 -1 3M 2 + 2 cn(kξ) , (4.3) 
where cn(ζ) is the Jacobi elliptic function with modulus 0 ≤ M ≤ 1, k and M are free parameters and {x j } ∈ R J is the intersection point of J hyperconics Γ j given by

-12M 2 βjj x j + Fjnm x n x m = 0, j = 1, . . . , N.
For M → 1, (4.3) reduces to the family of localized sech-type solitary waves b (s)

j (ξ, τ ) = - 1 3 k 2 x j + k 2 x j sech 2 (kξ). (4.4) 
In physical space, (4.3) and (4.4) represent respectively localized and periodic toroidal vortices, which travel slightly slower than the maximum laminar flow speed U 0 , viz. V ≈ 0.77U 0 . For N = 2, the vortical structures are localized near the wall (wall vortexon, x 1 and x 2 have same sign) or wrap around the pipe axis (centre vortexon, x 1 and x 2 have opposite sign). They have a non-zero streamwise mean, but they radially average to zero to conserve mass flux through the pipe. Vortexons may be related to the inviscid neutral axisymmetric slug structures discovered by [START_REF] Walton | The stability of developing pipe flow at high Reynolds number and the existence of nonlinear neutral centre modes[END_REF] in unsteady pipe flows, which are similar to the centre modes proposed by [START_REF] Smith | On Displacement-Thickness, Wall-Layer and Mid-Flow Scales in Turbulent Boundary Layers, and Slugs of Vorticity in Channel and Pipe Flows[END_REF].

In the following we will compute numerically TWs of the inviscid CH-type equations (2.4) and discuss the vortical structure of the associated disturbances.

Regular and Singular Vortexons

Consider the inviscid three-component CH equations (2.4) with N = 3, and an ansatz for the wave amplitudes of the form B j = q + F j (zct), where q is a free parameter and c is the velocity of the TW. The associated nonlinear steady problem for F j (in the moving frame zct) is solved using the Petviashvili method [START_REF] Petviashvili | Equation of an extraordinary soliton[END_REF]), see also [START_REF] Pelinovsky | Convergence of Petviashvili's iteration method for numerical approximation of stationary solutions of nonlinear wave equations[END_REF][START_REF] Lakoba | A generalized Petviashvili iteration method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity[END_REF][START_REF] Yang | Nonlinear Waves in Integrable and Nonintegrable Systems[END_REF]). This numerical approach has been successfully applied to derive TWs of the spatial Dysthe equation (Fedele & Dutykh 2011) and the compact Zakharov equation for water waves (Fedele & Dutykh 2012). To initialize the iterative process, the initial guess for the wave components B j is set equal to the analytical cnoidal TW of the uncoupled KdV equations associated to (2.4), viz. c jm ≈ c jj , F jnm ≈ F jjj , and α jm = G jnm = H jnm = 0. Then, a converged solution is numerically continued by varying the parameters c or q. Note that the parameter that controls the strength of the nonlinearity in the truncated Camassa-Holm equations is the travelling wave amplitude.

The numerical basin of attraction of the Petviashvili scheme to localized TWs (solitons or solitary waves) is very sparse over the parameter space (c, q). The generic topology of the flow structure associated to converged smooth TWs is the same as that of the theoretical counterpart derived by Fedele (2012): toroidal tubes of vorticity localized near the pipe boundaries (wall vortexons) or that wrap around the pipe axis (centre vortexons). In particular, wall vortexons are found in parameter window c ∼ [0.58, 0.66] and q = 0, however the Petviashvili scheme did not converge for q > 0. For example, for c = 0.65 the wave components B j are shown in Figure 1 and the streamlines of the associated flow perturbation are reported in the top panel of Figure 2. The perturbed flow (laminar plus vortexon) is shown in the bottom panel of the same Figure. Note that wave components of higher modes have smaller amplitudes as an indication that their effects may vanish as N increases, but a more systematic numerical study of this trend is required.

Convergence to inviscid wall vortexons also occurred in the range of c ∼ [0.762, 0.79] and q = 0 (it did not converge for q > 0). For c = 0.78 the corresponding vortical structure is shown in Figure 3. Centre vortexons converged for c ∼ [0.82, 0.90] and q = 0 as depicted in Figure 4 (c = 0.86). In this range of values of c we note that as q increases from zero, the smooth centre vortexon bifurcates to a traveling wave with a wedge-type singularity, viz. peakon, as shown in Figure 5 for c = 0.90, q = 0.025. In physical space the peakon corresponds to a localized vortical structure with discontinuous radial velocity u across zct = 0 (see Figure 6), but continuous streamwise velocity w since the mass flux through the pipe is conserved. As a result, a sheet of azimuthal vorticity is advected at speed c.

The Petviashvili method also converged to singular wall vortexons in the window c ∼ [0.69, 0.71] and only q = 0 as shown in Figure 7 for the case of c = 0.70. The existence of singular vortexons is confirmed by an analytical solution of peakons obtained for the uncoupled version of the CH equations (2.4), viz.

∂ t B j + c jj ∂ z B j + β jj ∂ zzz B j + α jj ∂ zzt B j + N j (B j ) = 0, ( 5.1) 
where

N j (B j ) = F jjj B j ∂ z B j + G jjj ∂ z B j ∂ zz B j + H jjj B j ∂ zzz B j ,
and here no implicit summation over repeated indices is assumed. Note that equation (5.1) is the dispersive Camassa-Holm equation with KdV dispersion, which admits peakon solutions (Dullin et al. 2003). These are given by (see B for derivation)

B j (z, t) = a j e -γ j z-V j t , (5.2) 
where

a j = V j α jj -β jj H jjj , V j = c jj + β jj s 2 j 1 + α jj s 2 j , γ 2 j = - F jjj G jjj + H jjj .
Note that the peakon arises as a special balance between the linear dispersion terms ∂ zzz B j , ∂ zzt B j and their nonlinear counterpart B j ∂ zzz B j in (5.1). These three terms are interpreted in distributional sense because they give rise to derivatives of Dirac delta functions that must vanish by properly chosing the amplitude a j , thus satisfying the differential equation (5.1) in the sense of distributions. The associated streamfunction ψ (p) j is given by ψ (p) j (r, z, t) = a j e -γ j z-V j t φ j (r). For the least stable eigenmode B 1 , Figure 8 shows the remarkable agreement between the theoretical peakon (5.2) and the associated numerical solution obtained via the Petviashvili method. The associated vortical structure (streamlines) is shown in Figure 9 and it is similar to that of the numerical vortexons of Figures 6 and7.

Finally, note that viscous dissipation precludes the existence of peakons and slowly decaying smooth vortexons appear in the CH dynamics as discussed below.

Vortexon slugs

Hereafter, we investigate the dynamical evolution of a localized disturbance under the two-component CH dynamics with dissipation. To do so, we exploit a highly accurate Fourier-type pseudo-spectral method to solve the CH equations (2.4) as described in Fedele & Dutykh (2012)). For Re = 8000 Figure 10 depicts snapshots of the two-component CH solution at different times and the streamlines of the associated vortical structures are shown in Figure 11 . As time evolves, the waveform of each component steepens up and then splits into solitons and radiative waves as a result of the competition between the laminar-flow-induced wave dispersion and the nonlinear energy cascade associated to the CH nonlinearities. In physical space the initial vortical structure first compresses as a result of wave steepening and then splits into a centre vortexon and patches of vorticity in the form of wall vortexons. These may further split causing the formation of new centre and wall vortexons until viscous effects attenuate them and annihilate splitting on the time scale t ∼ O(Re 6.25 ) (Fedele 2012). The formation of a vortexon slug is clearly evident in Figure 12, in which we report the space-time plot of the difference β = B 1 -B 2 of the two wave components. Here, centre vortexons correspond to larger values of β (B 1 and B 2 have opposite sign), whereas smaller values of are associated to wall vortexons (B 1 and B 2 have the same sign). The centre vortexon arises due to a radial flux F (ω) θr ≃ uω θ of azimuthal vorticity ω θ from the wall to the pipe axis. This is the mechanism of inverse cascade of cross-stream vorticity in channel flows identified by Eyink (2008). Similar dynamics is also observed for long-wave disturbances associated to the KdV equations (4.2) [START_REF] Fedele | Vortexons in axisymmetric Poiseuille pipe flows[END_REF].

Note that a vortexon slug is similar to the spreading of puffs in pipe turbulence at transition [START_REF] Avila | The onset of turbulence in pipe flow[END_REF]), but they originate from different physical mechanisms. In realistic flows, a turbulent slug arises when new puffs are produced faster than their decay in the competition between puff decay (death) and puff splitting (birth) processes. Instead, a vortexon slug arises as an inviscid competition between dispersion and nonlinear steepening of radial structures that are advected in the streawise direction by the laminar flow.

Clearly, vortexon slugs are not the realistic slugs observed in experiments, which also have a non-axisymmetric component. However, similarly to the inviscid neutral modes found by [START_REF] Walton | The stability of developing pipe flow at high Reynolds number and the existence of nonlinear neutral centre modes[END_REF], centre vortexons most likely are unstable to non-axisymmetric disturbances, and may persist viscous attenuation as precursors to puffs and slugs.

Finally, we note that observed vortex compression/splitting is also evident in the numerical simulations of the propagation of nonlinear Kelvin waves and fronts on the equatorial thermocline [START_REF] Fedorov | Propagation and Breaking of Nonlinear Kelvin Waves[END_REF][START_REF] Fedorov | Kelvin Fronts on the Equatorial Thermocline[END_REF]. This is expected since the geostrophic flow is two dimensional in nature and the associated dynamical equations can be reduced to KdV/CH-type models [START_REF] Benney | Long non-linear waves in fluid flows[END_REF]).

Conclusions

We have shown that the axisymmetric Navier Stokes equations for non-rotating Poiseuille pipe flows can be reduced to a set of coupled Camassa-Holm type wave equations. These support inviscid and regular traveling waves that are computed numerically using the Petviashvili method. The associated flow structures are localized toroidal vortices or vortexons that travel slightly slower than the maximum laminar flow speed, in agreement with the theoretical predictions by Fedele (2012). The vortical disturbance can be localized near the wall (wall vortexon) or wrap around the pipe axis (centre vortexon). Moreover, we also discovered numerically special traveling waves with wedge-type singularities, viz. peakons, which bifurcate from smooth solitary waves. In physical space they correspond to localized toroidal vortical structures with discontinuous radial velocities (singular vortexon). The existence of such singular solutions is confirmed by an analytical solution of exponentially shaped peakons of the uncoupled wave equations. Clearly, the inviscid singular vortexon could be an artefact of the Galerkin truncation of the axisymmetric Euler equations that are projected onto the function space spanned by the first few Stokes eigenmodes. Viscous dissipation rules out the existence of peakons and the Camassa-Holm dynamics involves only regular vortexons. Indeed, we found numerically that an initial perturbation evolves into a vortexon slug, viz. a solitonic sea state of centre vortexons that split from patches of near-wall vorticity due to an inverse radial flux of azimuthal vorticity from the wall to the pipe axis in agreement with the cross-stream vorticity cascade of Eyink (2008).

Finally, we wish to emphasize the relevance of this work to the understanding of transition to turbulence. For chaotic dynamical systems the periodic orbit theory (POT) in [START_REF] Cvitanović | Periodic orbit expansions for classical smooth flows[END_REF] and [START_REF] Cvitanović | Dynamical averaging in terms of periodic orbits[END_REF] interpret the turbulent motion as an effective random walk in state space where chaotic (turbulent) trajectories visit the neighborhoods of equilibria, travelling waves, or periodic orbits of the NS equations, jumping from one saddle to the other through their stable and unstable manifolds [START_REF] Wedin | Exact coherent structures in pipe flow: travelling wave solutions[END_REF][START_REF] Kerswell | Recent progress in understanding the transition to turbulence in a pipe[END_REF][START_REF] Gibson | Visualizing the geometry of state space in plane Couette flow[END_REF]). Non-rotating axisymmetric pipe flows do not exibhit chaotic behaviour (see, e.g., [START_REF] Patera | Finite-amplitude stability of axisymmetric pipe flow[END_REF][START_REF] Willis | Coherent Structures in Localized and Global Pipe Turbulence[END_REF])), and so the associated KdV or CH equations (even with dissipation). 

c jm = - 1 0 W 0 φ j Lφ m r -1 dr, α jm = - 1 0 φ j φ m r -1 dr, β jm = - 1 0 W 0 φ j φ m r -1 dr, F jnm = - 1 0 φ j ∂ r φ n Lφ m -∂ r (Lφ n ) φ m + 2r -1 Lφ n φ m r -2 dr,
H jnm = - 1 0 φ j φ m ∂ r φ n r -2 dr, G jnm = - 1 0 φ j -φ m ∂ r φ n + 2r -1 φ n φ m r -2 dr.

Appendix B. Peakons of the dispersive CH equation

To simplify the analysis, we drop the subscripts in (5.1) and consider

B t + αB xxt + cB x + βB xxx + F BB x + GB x B xx + HAA xxx = 0. (B.1)
The ansatz for a peakon is

B = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ae -γs(x-V t) , s = 1, x > V t, ae -γs(x-V t) , s = -1, x < V t,
Substituting this into (B.1) yields e -γs(x-V t) W 1 + e -2γs(x-V t) W 2 = 0, s = ±1, where the coefficients W j do not depend on s and are given by

W 1 = -c + V -γ 2 (β -αV ), W 2 = F + γ 2 (G + H).
Imposing W 1 = 0 and W 2 = 0 yield

V = c + βγ 2 1 + αγ 2 , γ 2 = - F G + H .
Peakons exist if γ 2 > 0, but we still need to find their amplitude a. To do so, let us consider the general ansatz where R follows from (B.1) and it satisfies -V R ξ -αV R ξξξ + cR ξ + βR ξξξ + F RR ξ + GR ξ R ξξ + HRR ξξξ = 0, and subscripts denote derivatives with respect to ξ. This can be written as

B = R(ξ) = R(x -V t),
(c -V )R + (β -αV + HR)R ξξ + F R 2 2 + (G + H)R 2 ξ 2 ξ = 0. (B.2)
Clearly, if a peakon exists the term (β -αV + HR)R ξξ must vanish at ξ = 0, or x = V t, because it is the only distributional term in (B.2) that yields derivatives of Dirac functions. Thus, the peakon amplitude a = R(ξ = 0) = V α-β H . 
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 31 Figure 1. Inviscid regular wall vortexon: wave components B 1 , B 2 and B 3 of the CH equations (c = 0.65, q = 0).

Figure 2 .

 2 Figure 2. Inviscid regular wall vortexon: (top) streamlines of the three-component CH solution of Fig. 1 and (bottom) velocity profiles of the perturbed (solid) and laminar (dash) flows (c = 0.65, q = 0).

Figure 3 .

 3 Figure 3. Inviscid regular wall vortexon: (top) streamlines of the three-component CH solution for c = 0.78, q = 0, and (bottom) velocity profiles of the perturbed (solid) and laminar (dash) flows.

Figure 4 .

 4 Figure 4. Inviscid regular centre vortexon: (top) streamlines of the three-component CH solution for c = 0.86, q = 0, and (bottom) velocity profiles of the perturbed (solid) and laminar (dash) flows.
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 35 Figure 5. Inviscid singular vortexon: wave components B 1 , B 2 and B 3 of the CH equations (c = 0.90, q = 0.025).

Figure 6 .

 6 Figure 6. Inviscid singular vortexon: streamlines of the three-component CH solution of Fig. 5 for c = 0.90, q = 0.025.

Figure 7 .

 7 Figure 7. Inviscid singular vortexon: (top) streamlines of the three-component CH solution for c = 0.70, q = 0, and (bottom) velocity profiles of the perturbed (solid) and laminar (dash) flows.

Figure 8 .

 8 Figure 8. Analytical inviscid CH peakon (solid line) and numerical solution (dashed line) obtained by the Petviashili method (dimensionless velocity c = V 1 ≈ 0.63).

Figure 9 .Figure 10 .

 910 Figure 9. Inviscid singular vortexon associated to the peakon of Fig. 8: streamlines of the perturbation.

Figure 11 .

 11 Figure 11. Long-time evolution of a perturbation under the viscous CH dynamics: streamlines of the vortical structures associated to the wave components of Fig. 10.

Figure 12 .

 12 Figure 12. Space-time evolution of β = B 1 -B 2 for Re = 8000, speed of the reference frame c = 0.75. Large values of β trace centre vortexons (B 1 and B 2 have opposite sign), whereas smaller values are associated to wall vortexons (B 1 and B 2 have same sign).
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