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CAMASSA–HOLM EQUATIONS AND VORTEXONS FOR

AXISYMMETRIC PIPE FLOWS

FRANCESCO FEDELE∗ AND DENYS DUTYKH

Abstract. In this paper, we study the nonlinear dynamics of an axisymmetric dis-

turbance to the laminar state in non-rotating Poiseuille pipe flows. In particular, we

show that the associated Navier-Stokes equations can be reduced to a set of coupled

Camassa-Holm type equations. These support inviscid and smooth localized travelling

waves, which are numerically computed using the Petviashvili method. In physical space

they correspond to localized toroidal vortices that concentrate near the pipe boundaries

(wall vortexons) or wrap around the pipe axis (centre vortexons) in agreement with

the analytical soliton solutions derived by Fedele (2012) for small and long-wave distur-

bances. Inviscid singular vortexons with discontinuous radial velocities are also numeri-

cally discovered as associated to special traveling waves with a wedge-type singularity, viz.

peakons. Their existence is confirmed by an analytical solution of exponentially-shaped

peakons that is obtained for the particular case of the uncoupled Camassa–Holm equa-

tions. The evolution of a perturbation is also investigated using an accurate Fourier-type

spectral scheme. We observe that an initial vortical patch splits into a centre vortexon

radiating vorticity in the form of wall vortexons. These can under go further splitting

before viscosity dissipates them, leading to a slug of centre vortexons. The splitting

process originates from a radial flux of azimuthal vorticity from the wall to the pipe axis

in agreement with Eyink (2008). The inviscid and smooth vortexon is similar to the

nonlinear neutral structures derived by Walton (2011) and it may be a precursor to puffs

and slugs observed at transition, since most likely it is unstable to non-axisymmetric

disturbances.
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1. Introduction

Transition to turbulence in non-rotating pipe flows is triggered by finite-amplitude
perturbations (Hof, et al. 2003), and the coherent structures observed at the transitional
stage are in the form of localized patches known as puffs and slug structures (Wygnanski
& Champagne 1973, Wygnanski, et al. 1975). Puffs are spots of vorticity localized near
the pipe axis surrounded by laminar flow, whereas slugs expand through the entire cross-
section of the pipe while developing along the streamwise direction. Recent theoretical
studies related slug flows to quasi–inviscid solutions of the Navier–Stokes (NS) equations.
In particular, for non-axisymmetric flows Smith & Bodonyi (1982) revealed the existence of
nonlinear neutral structures localized near the pipe axis (centre modes) that are unstable
equilibrium states (Walton 2005). Walton (2011) found the axisymmetric analogue of
these inviscid traveling waves by studying the the nonlinear stability of impulsively started
pipe flows to axisymmetric perturbations. Walton’s modes are similar to the inviscid
axisymmetric slug structures proposed by Smith, et al. (1990).

Recently Fedele (2012) investigated the dynamics of non-rotating axisymmetric pipe
flows in terms of travelling waves of nonlinear soliton bearing equations. He showed
that at high Reynolds numbers, the dynamics of small long-wave perturbations of the
laminar flow obey a coupled system of nonlinear Korteweg–de Vries-type (KdV) equations.
These set of equations generalize the one-component KdV model derived by Leibovich
(1968) (see also Leibovich (1969), Leibovich (1984)) to study propagation of waves along
the core of concentrated vortex flows (see also Benney (1966)) and vortex breakdown
(Leibovich 1984). Fedele’s coupled KdV equations support inviscid soliton and periodic
wave solutions in the form of toroidal vortex tubes, hereafter referred to as vortexons,
which are similar to the inviscid nonlinear neutral centre modes found by (Walton 2011).
Fedele’s vortical structures eventually slowly decay due to viscous dissipation on the time
scale t ∼ O(Re6.25) (Fedele 2012). The vortexon, the Walton’s neutral mode and the
inviscid axisymmetric slug proposed by Smith et al. (1990) are similar to the slugs of
vorticity that have been observed in both experiments (Wygnanski & Champagne 1973)
and numerical simulations (Willis & Kerswell 2009). As discussed by Walton (2011), these
inviscid structures may play a role in pipe flow transition as precursors to puffs and slugs,
since most likely they are unstable to non-axisymmetric disturbances (Walton 2005).

In this paper, we extend Fedele’s analysis and show that the axisymmetric NS equa-
tions for non-rotating pipe flows can be reduced to a set of soliton bearing equations of
Camassa–Holm type (Camassa & Holm 1993). These support smooth and inviscid solitary
waves that are numerically computed using the Petviashvili method ((Petviashvili 1976),
see also (Pelinovsky & Stepanyants 2004, Lakoba & Yang 2007, Yang 2010)) confirming the
validity of the theoretical solutions derived by Fedele (2012) for long-wave disturbances.
Moreover, inviscid singular solitary waves in the form of peakons are numerically discov-
ered, and the interpretation of the associated vortical structures are discussed. Finally,
the evolution of a perturbation to the laminar state is investigated within the framework
of the proposed soliton equations.
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2. Camassa–Holm type equations for pipe flows

Consider the axisymmetric flow of an incompressible fluid in a pipe of circular cross
section of radius R driven by an imposed uniform pressure gradient. Define a cylin-
drical coordinate system (r, θ, z) with the z-axis along the streamwise direction, and(u, v,w) as the radial, azimuthal and streamwise velocity components. The time, radial
and streamwise lengths as well as velocities are rescaled with T ,R and U0 respectively.
Here, T = R/U0 is a convective time scale and U0 is the maximum laminar flow velocity.
The Stokes streamfunction ψ of a perturbation (u = −r−1∂zψ,w = r−1∂rψ) to the laminar
base flow W0(r) = 1 − r2 satisfies the nonlinear equation (Itoh 1977)

∂tLψ +W0∂zLψ − 1

Re
L
2ψ = N(ψ), (2.1)

where the nonlinear differential operator

N(ψ) = −1
r
∂rψ∂zLψ + 1

r
∂zψ∂rLψ − 2

r2
∂zψLψ,

the linear operator

L = L + ∂zz, L = ∂rr − 1

r
∂r = r∂r (1

r
∂r) ,

and Re is the Reynolds number based on U0 and R. The boundary conditions for (2.1)
reflect the boundedness of the flow at the centerline of the pipe and the no-slip condition
at the wall, that is ∂rψ = ∂zψ = 0 at r = 1.

Drawing from (Fedele 2012), the solution of (2.1) can be given in terms of a complete
set of orthonormal basis {φj(r)} as

ψ(r, z, t) = ∞∑
j=1

φj(r)Bj(z, t), (2.2)

where Bj is the amplitude of the radial eigenfunctions φj, which satisfy the Boundary
Value Problem (BVP) (Fedele, et al. 2005, Fedele 2012)

L2φj = −λ2jLφj, (2.3)

with r−1φj and r−1∂rφj bounded at r = +0, and φj = ∂rφj = 0 at r = 1. Since φj satisfies the
pipe flow boundary conditions a priori, so does ψ of (2.2). Note that the vorticity of the
velocity field associated to the truncated expansion for ψ is divergence-free. The positive
eigenvalues λj are the roots of J2(λj) = 0, where J2(r) are the Bessel functions of first kind
of second order (see (Abramowitz & Stegun 1972)). The corresponding eigenfunctions

φn =
√
2

λn
[r2 − rJ1(λnr)

J1(λn) ] ,
form a complete and orthonormal set with respect to the inner product

⟨ϕ1, ϕ2⟩ = −
1

∫
0

ϕ1 Lϕ2 r
−1 dr =

1

∫
0

∂rϕ1 ∂rϕ2r
−1 dr.
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A Galerkin projection of (2.1) onto the vector space S spanned by {φj}Nj=1, with N ≤ J ,
yields a set of coupled Camassa–Holm (CH) type equations (Camassa & Holm 1993)

∂tBj + cjm∂zBm + βjm∂zzzBm +αjm∂zztBm +Njnm(Bn,Bm) + λ
2

jBj

Re
= 0, (2.4)

where j = 1, . . . ,N , the nonlinear operator

Njnm(Bn,Bm) = FjnmBn∂zBm +Gjnm∂zBn∂zzBm +HjnmBn∂zzzBm, (2.5)

the coefficients cjm, βjm, αjm, Fjnm, Gjnm, Hjnm are given in A and summation over
repeated indices n and m is implicitly assumed. A physical interpretation of the CH
equations (2.4) is as follows: the perturbation is given by a superposition of radial struc-
tures (the eigenmodes φj) that nonlinearly interact while they are advected and dispersed
by the laminar flow in the streamwise direction.

Note that CH type equations arise also as a regularized model of the 3-D NS equations
(Chen, et al. 1999, Domaradzki & Holm 2001, Foias, et al. 2001, Foias, et al. 2002), the
so called Navier–Stokes-alpha model.

As Re → ∞, Fedele (2012) showed that the nonlinear dynamics of a small long-wave

perturbation bj = εBj , with ε ∼ O(Re−2/5), can be reduced to that on the slow manifold of
the laminar state spanned by the first few N least stable modes, and the higher damped
modes (j > N) are neglected. This is legitimate as long as the amplitudes Bj remain small
for all time and the non-resonant condition

λ2i1 + λ2i2 + . . . λ2iJ ≠ λ2j (2.6)

is satisfied for any permutation {i1, i2, . . . , iJ} of size J ≤ N drawn from the set j =
1, . . . ,N (de la Llave 1997). For the BVP of (2.3) the relation (2.6) is verified numerically
to hold up to N ≅ 104. For time scales much less than t ∼ O(ε−2.5) ≅ O(Re6.25), the
nonlinear dynamics of (2.4) is primilary inviscid and obeys a set of coupled KdV equations
(Fedele 2012)

∂τbj + β̃jm∂ξξξbj + F̃jnmbn∂ξbm = 0, (2.7)

defined on the stretched reference frame

ξ = ε1/2(z − V t), τ = ε3/2t,
where the tensors β̃jm, F̃jnm are given in Fedele (2012) and the celerity V is, with good
approximation, the average of the eigenvalues of cjm. The nonlinear system (2.7) support
analytical travelling waves (TW), for example,

b
(tw)
j (ξ, τ) = k2xj [−2M2 − 1

3M2
+ 2

cn(kξ)] , (2.8)

where cn(ζ) is the Jacobi elliptic function with modulus 0 ≤ M ≤ 1, k and M are free
parameters and {xj} ∈ RJ is the intersection point of J hyperconics Γj given by

−12M2β̃jjxj + F̃jnmxnxm = 0, j = 1, . . . ,N.
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For M → 1, (2.8) reduces to the family of localized sech-type solitary waves

b
(s)
j (ξ, τ) = −13k2xj + k2xjsech2(kξ). (2.9)

In physical space, (2.8) and (2.9) represent respectively localized and periodic toroidal
vortices, which travel slightly slower than the maximum laminar flow speed U0, viz. V ≈
0.77U0. For N = 2, the vortical structures are localized near the wall (wall vortexon, x1
and x2 have same sign) or wrap around the pipe axis (centre vortexon, x1 and x2 have
opposite sign). They have a non-zero streamwise mean, but they radially average to zero
to conserve mass flux through the pipe. Vortexons may be related to the inviscid neutral
axisymmetric slug structures discovered by Walton (2011) in unsteady pipe flows, which
are similar to the centre modes proposed by Smith et al. (1990).

In the following we will compute numerically TWs of the inviscid CH-type equations
(2.4) and discuss the vortical structure of the associated disturbances.

3. Regular and Singular Vortexons

Consider the inviscid three-component CH equations (2.4) with N = 3, and an ansatz for
the wave amplitudes of the form Bj = q+Fj(z−ct), where q is a free parameter and c is the
velocity of the TW. The associated nonlinear steady problem for Fj (in the moving frame
z − ct) is solved using the Petviashvili method (Petviashvili 1976), see also (Pelinovsky
& Stepanyants 2004, Lakoba & Yang 2007, Yang 2010). This numerical approach has
been successfully applied to derive TWs of the spatial Dysthe equation (Fedele & Dutykh
2011) and the compact Zakharov equation for water waves (Fedele & Dutykh 2012a).
To initialize the iterative process, the initial guess for the wave components Bj is set
equal to the analytical cnoidal TW of the uncoupled KdV equations associated to (2.4),
viz. cjm ≈ cjj, Fjnm ≈ Fjjj, and αjm = Gjnm = Hjnm = 0. Then, a converged solution is
numerically continued by varying the parameters c or q. Note that the parameter that
controls the strength of the nonlinearity in the truncated Camassa–Holm equations is the
travelling wave amplitude.

The numerical basin of attraction of the Petviashvili scheme to localized TWs (solitons
or solitary waves) is very sparse over the parameter space (c, q). The generic topology
of the flow structure associated to converged smooth TWs is the same as that of the
theoretical counterpart derived by Fedele (2012): toroidal tubes of vorticity localized
near the pipe boundaries (wall vortexons) or that wrap around the pipe axis (centre
vortexons). In particular, wall vortexons are found in parameter window c ∼ [0.58,0.66]
and q = 0, however the Petviashvili scheme did not converge for q > 0. For example,
for c = 0.65 the wave components Bj are shown in Figure 1 and the streamlines of the
associated flow perturbation are reported in the top panel of Figure 2. The perturbed
flow (laminar plus vortexon) is shown in the bottom panel of the same Figure. Note that
wave components of higher modes have smaller amplitudes as an indication that their
effects may vanish as N increases, but a more systematic numerical study of this trend is
required. We believe that the regular vortexons of the truncated Camassa-Holm equations
(2.4) are approximations of exact invariant axisymmetric solutions of the Navier-Stokes
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equations. However, a rigorous proof of this statement is far beyond the scope of this
work, and we just point out that the proper theoretical framework for such a proof is
provided by slow-manifold type theorems and normal hyperbolicity in dynamical systems
(de la Llave 1997).

Convergence to inviscid wall vortexons also occurred in the range of c ∼ [0.762,0.79]
and q = 0 (it did not converge for q > 0). For c = 0.78 the corresponding vortical structure
is shown in Figure 3. Centre vortexons converged for c ∼ [0.82,0.90] and q = 0 as depicted
in Figure 4 (c = 0.86). In this range of values of c we note that as q increases from zero,
the smooth centre vortexon bifurcates to a traveling wave with a wedge-type singularity,
viz. peakon, as shown in Figure 5 for c = 0.90, q = 0.025. In physical space the peakon
corresponds to a localized vortical structure with discontinuous radial velocity u across
z−ct = 0 (see Figure 6), but continuous streamwise velocity w since the mass flux through
the pipe is conserved. As a result, a sheet of azimuthal vorticity is advected at speed
c. The Petviashvili method also converged to singular wall vortexons in the window
c ∼ [0.69,0.71] and only q = 0 as shown in Figure 7 for the case of c = 0.70. The existence
of singular vortexons is confirmed by an analytical solution of peakons obtained for the
uncoupled version of the CH equations (2.4), viz.

∂tBj + cjj∂zBj + βjj∂zzzBj + αjj∂zztBj +Nj(Bj) = 0, (3.1)

where

Nj(Bj) = FjjjBj∂zBj +Gjjj∂zBj∂zzBj +HjjjBj∂zzzBj,

and here no implicit summation over repeated indices is assumed. For (3.1) exponentially
shaped peakons are derived of the form

Bj(z, t) = ajesj ∣z−Vjt∣, (3.2)

where

aj = Vjαjj − βjj
Hjjj

, Vj = cjj + βjjs
2

j

1 + αjjs
2

j

, s2j = − Fjjj

Gjjj +Hjjj

.

Note that the peakon arises as a special balance between the linear dispersion terms
∂zzzBj, ∂zztBj and their nonlinear counterpart Bj∂zzzBj in (3.1). These three terms are
interpreted in distributional sense because they give rise to derivatives of Dirac delta
functions that must vanish by properly chosing the amplitude aj, thus satisfying the
differential equation (3.1) in the sense of distributions. The associated streamfunction

ψ
(p)
j is given by

ψ
(p)
j (r, z, t) = ajes2j ∣z−Vjt∣φj(r).

For the least stable eigenmode B1, Figure 8 shows the remarkable agreement between the
theoretical peakon (3.2) and the associated numerical solution obtained via the Petvi-
ashvili method. The associated vortical structure (streamlines) is shown in Figure 9 and
it is similar to that of the numerical vortexons of Figures 6 and 7.

Finally, note that viscous dissipation rules out the existence of peakons and slowly
decaying smooth vortexons appear in the CH dynamics as discussed below.
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4. Vortexon slugs

Hereafter, we investigate the dynamical evolution of a localized disturbance under the
two-component CH dynamics with dissipation. To do so, we exploit a highly accurate
Fourier-type pseudo-spectral method to solve for the CH equations (2.4) as described
in Fedele & Dutykh (2012a)). For Re = 8000 Figure 10 depicts snapshots of the two-
component CH solution at different times and the streamlines of the associated vortical
structures are shown in Figure 11 . As time evolves, the waveform of each component
steepens up and then splits into solitons and radiative waves as a result of the competi-
tion between the laminar-flow-induced wave dispersion and the nonlinear energy cascade
associated to the CH nonlinearities. In physical space the initial vortical structure firs
compresses as a result of wave steepening and then splits into a centre vortexon and
patches of vorticity in the form of wall vortexons. These may further split causing the
formation of new centre and wall vortexons until viscous effects attenuate them and anni-
hilate splitting on the time scale t ∼ O(Re6.25) (Fedele 2012). The formation of a vortexon
slug is clearly evident in Figure 12, in which we report the space-time plot of the difference
β = ∣B1 − B2∣ of the two wave components. Here, centre vortexons correspond to larger
values of β (B1 and B2 have opposite sign), whereas smaller values of are associated to
wall vortexons (B1 and B2 have the same sign). The centre vortexon arises due to a

radial flux F
(ω)
θr ≃ uωθ of azimuthal vorticity ωθ from the wall to the pipe axis. This is

the mechanism of inverse cascade of cross-stream vorticity in channel flows identified by
Eyink (2008). Similar dynamics is also observed for long-wave disturbances associated to
the KdV equations (2.7) (Fedele & Dutykh 2012b).

Note that a vortexon slug is similar to the spreading of puffs in pipe turbulence at
transition (Avila, et al. 2011), but they originate from different physical mechanisms.
In realistic flows, a turbulent slug arises when new puffs are produced faster than their
decay in the competition between puff decay (death) and puff splitting (birth) processes.
Instead, a vortexon slug arises as an inviscid competition between dispersion and nonlinear
steepening of radial structures that are advected in the streawise direction by the laminar
flow.

Clearly, vortexon slugs are not the realistic slugs observed in experiments, which also
have a non-axisymmetric component. However, similarly to the inviscid neutral modes
found by Walton (2011), centre vortexons most likely are unstable to non-axisymmetric
disturbances, and may persist viscous attenuation as precursors to puffs and slugs.

Finally, we note that observed vortex compression/splitting is also evident in the numer-
ical simulations of the propagation of nonlinear Kelvin waves and fronts on the equatorial
thermocline (Fedorov & Melville 1995, Fedorov & Melville 2000). This is expected since
the geostrophic flow is two dimensional in nature and the associated dynamical equations
can be reduced to KdV/CH-type models (Benney 1966).

5. Conclusions

We have shown that the axisymmetric Navier Stokes equations for non-rotating Poiseuille
pipe flows can be reduced to a set of coupled Camassa–Holm type wave equations. These
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Figure 1. Inviscid regular wall vortexon: wave components B1, B2 and
B3 of the CH equations (c = 0.65, q = 0).

support inviscid and regular traveling waves that are computed numerically using the
Petviashvili method. The associated flow structures are localized toroidal vortices or vor-
texons that travel slightly slower than the maximum laminar flow speed, in agreement
with the theoretical predictions by Fedele (2012). The vortical disturbance can be lo-
calized near the wall (wall vortexon) or wrap around the pipe axis (centre vortexon).
Moreover, we also discovered numerically special traveling waves with wedge-type singu-
larities, viz. peakons, which bifurcate from smooth solitary waves. In physical space they
correspond to localized toroidal vortical structures with discontinuous radial velocities
(singular vortexon). The existence of such singular solutions is confirmed by an analyt-
ical solution of exponentially shaped peakons of the uncoupled wave equations. Clearly,
the inviscid singular vortexon could be an artefact of the Galerkin truncation of the ax-
isymmetric Euler equations that are projected onto the function space spanned by the
first few Stokes eigenmodes. However, it may be an approximation of singular solutions of
the Euler equations (see, for example, (Eyink 2008)) and susceptible to Kelvin–Helmholtz
type instability mechanisms. Viscous dissipation rules out the existence of peakons and
the Camassa–Holm dynamics involves only regular vortexons. Indeed, we found numeri-
cally that an initial perturbation evolves into a vortexon slug, viz. a solitonic sea state of
centre vortexons that split from patches of near-wall vorticity due to an inverse radial flux
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Figure 2. Inviscid regular wall vortexon: (top) streamlines of the three-
component CH solution of Fig. 1 and (bottom) velocity profiles of the per-
turbed (solid) and laminar (dash) flows (c = 0.65, q = 0).

of azimuthal vorticity from the wall to the pipe axis in agreement with the cross-stream
vorticity cascade of Eyink (2008).

Finally, we wish to emphasize the relevance of this work to the understanding of tran-
sition to turbulence. For chaotic dynamical systems the periodic orbit theory (POT)
in (Cvitanović & Eckhardt 1991) and (Cvitanović 1995) interpret the turbulent mo-
tion as an effective random walk in state space where chaotic (turbulent) trajectories
visit the neighborhoods of equilibria, travelling waves, or periodic orbits of the NS equa-
tions, jumping from one saddle to the other through their stable and unstable manifolds
(Wedin & Kerswell 2004, Kerswell 2005, Gibson, et al. 2008). Non-rotating axisymmetric
pipe flows do not exibhit chaotic behaviour (see, e.g., (Patera & Orszag 1981, Willis &
Kerswell 2008)), and so the associated KdV or CH equations (even with dissipation).
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Figure 3. Inviscid regular wall vortexon: (top) streamlines of the three-
component CH solution for c = 0.78, q = 0, and (bottom) velocity profiles of
the perturbed (solid) and laminar (dash) flows.

However, forced and damped KdV/CH equations are chaotic and the attractor is of finite
dimension (see, for example, (Cox & Mortell 1986, Grimshaw & Tian 1994)). Thus, the
study of the reduced KdV-CH equations associated to forced axisymmetric Navier–Stokes
equations using POT may provide new insights into understanding the nature of slug flows
and their formation.

Acknowledgements

F. Fedele acknowledges the travel support received by the Geophysical Fluid Dynam-
ics (GFD) Program to attend part of the summer school on “Spatially Localized Structures:

Theory and Applications” at the Woods Hole Oceanographic Institution in August 2012.



CAMASSA–HOLM EQUATIONS AND VORTEXONS 11

Figure 4. Inviscid regular centre vortexon: (top) streamlines of the three-
component CH solution for c = 0.86, q = 0, and (bottom) velocity profiles of
the perturbed (solid) and laminar (dash) flows.
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Appendix A. Coefficients in Camassa–Holm equations

cjm = −
1

∫
0

W0φjLφm r−1 dr, αjm = −
1

∫
0

φjφm r−1 dr, βjm = −
1

∫
0

W0φjφmr
−1 dr,

Fjnm = −
1

∫
0

φj [∂rφnLφm − ∂r (Lφn)φm + 2r−1Lφnφm] r−2 dr,

Hjnm = −
1

∫
0

φjφm∂rφnr
−2 dr, Gjnm = −

1

∫
0

φj [−φm∂rφn + 2r−1φnφm] r−2 dr.
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Figure 5. Inviscid singular vortexon: wave components B1, B2 and B3 of
the CH equations (c = 0.90, q = 0.025).

Figure 6. Inviscid singular vortexon: streamlines of the three- component
CH solution of Fig. 5 for c = 0.90, q = 0.025.
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Figure 7. Inviscid singular vortexon: (top) streamlines of the three- com-
ponent CH solution for c = 0.70, q = 0, and (bottom) velocity profiles of the
perturbed (solid) and laminar (dash) flows.
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Figure 12. Space-time evolution of β = ∣B1 −B2∣ for Re = 8000, speed of
the reference frame c = 0.75. Large values of β trace centre vortexons (B1

and B2 have opposite sign), whereas smaller values are associated to wall
vortexons (B1 and B2 have same sign).
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