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Dynamic analysis of a harmonically excited
on-board rotor-bearing system

M Dakel, S Baguet, R Dufour
Université de Lyon, CNRS, INSA-Lyon, LaMCoS UMR5259, F-69621, France

ABSTRACT

The aim of this paper is to investigate the dynamic behavior of an on-board rotor
mounted on elastic bearings in the presence of rigid support movements. The
proposed on-board rotor model is based on the Timoshenko beam finite elements.
It takes into account the six deterministic translations and rotations of its rigid
support and the geometric asymmetry of shaft and/or rigid disks. Thus the obtained
linear equations of motion of the rotating rotor in bending contain time-varying
parametric terms which can lead to lateral dynamic instability. The influence of
rotational or translational motions of the support is analyzed by means of orbits of
the rotor, responses in the time domain and fast Fourier transforms (FFTs).

1 INTRODUCTION

Many industrial applications include rotating machines and the rotor plays a
paramount role in them. There are many studies concerning the prediction of
dynamics of rotor systems mounted on elastic bearings in the case of a fixed
support [1,2]. Some studies observed the instability of systems subjected to
parametric excitations [3]. Kang et al. [4] employed the Timoshenko beam finite
elements for modeling asymmetric rotor-bearing systems. Some other works
concentrated on the behavior of a rotor under seismic excitations [5-7]. Subbiah et
al. [8] studied the response of rotor systems under random support excitations
using modal analysis methods. Lee et al. [9] focused on the experimental behavior
of a rotor under shock support excitation. Da Silva Tuckmantel et al. [10]
represented the supporting structure (foundation) of a rotating system by coupled
as well as uncoupled modes for calculating the system response. In [11],
experimental tests have been shown for a flexibly supported undamped rigid block
foundation in rotating machinery. Duchemin et al. [12] observed the stability of a
simple rotor model under a sinusoidal support rotation. Driot et al. [13] described
the orbits of a rotor induced by a harmonic rotational support movement. El-Saeidy
and Sticher [14] obtained the responses of a rigid rotor-bearing system subjected
to rotating mass unbalance plus harmonic support excitations. Das et al. [15]
investigated the active vibration control of a flexible rotor system excited by mass
unbalance and periodic rotational motion of the support. Among all the literature
mentioned above, there are references studying support-excited rotor systems and
whose few works dealt with the harmonically excited on-board rotors [12-15].
Moreover, these references concentrated on the investigation of dynamic behavior
of either simple rotors, rotors supported by elastic bearings with constant damping
and stiffness coefficients or rotors excited by simple support motions. As a
consequence, the applications proposed in these works are not suitable for realistic
ones. In this paper, an improved model is presented. Namely, an asymmetric rotor
is discretized using the finite element method based on the Timoshenko beam
theory, mounted on hydrodynamic bearings linearized with damping and stiffness
coefficients calculated using the Reynolds equation [16], and excited by different
motions of its support. The rotary inertia, the gyroscopic inertia, the shear
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deformation of shaft and the geometric asymmetry of the rotor are taken into
consideration. The effect of rotor internal damping is not included. The equations of
motion point out periodic parametric terms due to the asymmetry of the rotor and
time-varying parametric terms due to the rotational support excitations. In the
presented application, the rotor mounted on elastic linear bearings is subjected to
rotating mass unbalance combined with sinusoidal rotational or translational
support motions. Numerical solutions are computed and analyzed by means of rotor
orbits, time history responses and fast Fourier transforms (FFTs).

2 ANALYTICAL MODELING OF AN ON-BOARD ROTOR-BEARING SYSTEM

2.1 Preliminary calculations

Three principal reference frames shown in Figure la are introduced to take into
account the mobility of the rigid support of the rotor. They are attached to the
ground RY, the rigid support R and the moving rotor R'. The rotational motions of
the rotor support are defined by the angular velocity vector components w*(t), w’(t)
and w?(t) of the rigid support R with respect to the ground R? projected in the frame
R. The translational motions of the rotor support are defined by the coordinates
Xo(t), yo(t) and zo(t) of the position vector 0?0 expressed in the frame R. The Euler
angles W(y,t), 6(y,t) and @(t) (Figure 1b) allow defining the orientation of the rotor
R with respect to its support R. The angular velocity vector of the rotor R' with
respect to the ground R? is defined by:

,
RY R R _ X v !
@ -0} +of _<w , 0, w >R, (1)

where T is a matrix transpose. The components (w* , 0’ , w? ) are formulated as a
function of (y,6,®) and their time derivative as well as (w*,w’,w?). The rotor is
supposed to rotate at a constant speed Q. So the spinning angle @ is replaced by
Qt and its derivative @* by Q (e denotes differentiation with respect to time t). Let
us consider a generic point C° along the elastic line of the nondeformed shaft. Its
coordinates in the frame R are (0,y,0). It is interesting to study the translational
displacements u(y,t) and w(y,t) of the point C° due to bending expressed
respectively with respect to the Ox and Oz axes of the frame R.

@¥*
Figure 1. (a) Reference frames for the on-board rotor, (b) Euler angles

2.2 Energy and virtual work calculations

2.2.1 Disk
Since the disk is considered to be rigid, only its kinetic energy T, is calculated as
follows [12]:
T, = Te(vy) e Lef ) 1@ with 1, -diag[ry 1 I, 112 (2)
d 2 o 21/ 'my R 'my my my my my my
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where mq is the mass of the disk, V& is the translational velocity vector of its

center and I, is its principal inertia tensor. I’ and I, are used to distinguish
the effects due to the mean inertia of the disk mass and those due to the inertia
modeling the geometric asymmetry of the disk. Iﬁy,d is the inertia of the disk mass

about the Oy axis. The translational velocity vector components U, , V, and W,

of the disk center are functions of (w*,w”,w?) and (xo,Y0,20). The final expression of
the kinetic energy of the disk having a mass center placed at the arbitrary abscissa
yaq relative to the frame R is given by [12]:

T, = #(ué, +V2, W2 +%(Iﬁ: ((u“ + w”z) + I 0"+ I8 |0 —w”j] (3)

2.2.2 Shaft

Since the shaft is supposed to be flexible, it is characterized by the kinetic and
strain energies and modeled by beam elements. The kinetic energy of a shaft can
be obtained by taking an elementary volume of the shaft which can be considered
as a disk of thickness dy. Thus the expression of the kinetic energy of a shaft has
the following form [12]:

. ,
T, - P22 s”flu Vi Wy )dy+ IS f[ “+wzZidy+205hlsm"fw”dy+psnl" f[w”-w"z}dy (4)

where psn, Ssn and I, are respectively the density, the cross-section and the length
of the shaft. I and Ig; are respectively the mean inertia of the cross-section and

the inertia characterizing the asymmetry of the shaft. The rigid support motion
relative to the ground has no influence on the strain energy of the shaft because
the stresses depend only on the transverse deflection of the shaft with respect to
the rotor support R. In addition to the bending deformation, the shear effects
highlighted by Timoshenko and the centrifugal stress due to the support rotations
are taken into account. The strain energy of a shaft is:

EL 12 = (rap\ (a0 G, k™S, Vo (ew L\
U = —shise o (0¥ 9 4 Zshsh Dsh | [ OU 9N _6) |ldy-=
s 2 -£ ay * ay dy+ 2 f ay Y ay Y

e (5]

ks, () (2 6) g (20t) - (£, 12 [ 284
shsh shf ay +y ay y |cos E,, fdy ay (5)
-G kds, Shf(a—u )(%-e)dy]sm(ZQt] Panan f(l [(g;) +(i;v) ]dylw +07?)

where Es, and Gs, are respectively the Young’s modulus and the shear modulus of
the shaft (Gs»=E/(2(1+Vvs)) hence v, is the Poisson’s ratio). kJ° and k& are

respectively the mean shear coefficient and the shear coefficient relative to the
section asymmetry of the shaft.

2.2.3 Mass unbalance

Let us consider a concentrated mass unbalance mm, positioned at a point P, of the
disk (ymu=ya) with a distance rm, from the geometric center of the shaft. Its initial
angle with the Oz axis of the frame R at rest is nm,. The components of the mass
unbalance translational velocity vector are functions of (w*,w”,w®) and (xo,y0,20) and
are used in the kinetic energy which characterizes the mass unbalance [12]:

v ) (6)
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2.2.4 Bearing

Figure 2a shows a simple diagram of a hydrodynamic bearing which is composed of
a fixed journal containing a rotating shaft. The points O and O'=Cs, represent
respectively the bearing center and the shaft center. The radius, length and
clearance of the bearing are respectively rve, lbe and Coe=rve-rsn Where rs, is the shaft
radius. At a constant rotor speed Q and for a constant static load W, created by the
rotor weight, the shaft center C., in the bearing holds a static equilibrium position
defined by the vector &pesep=<Ubesep,Whesep>r expressed in the frame R or
equivalently by the eccentricity €, = |8, .| Of the shaft center in the journal and
the attitude angle ¢.. between the W, load direction and the line of centers OCsep.
In the present study, the short bearing theory is considered (/v/dre<1/8 where
dhe=2ryc) and the static solution can be obtained using the following formulations
deduced from the Reynolds equation with the Gimbel boundary conditions [16]:

4 g,

- (=) (i )'mﬂ'“‘*—““” and tan(p,.] - 175 7)
Che (I—Egej

where &, is the relative eccentricity (&e=€re/Cre) and p is the fluid film dynamic
viscosity. The above nonlinear equation is solved by an iterative Newton-Raphson
method and provides the eccentricity €. and then the static radial displacement epe
of the shaft center. The vector 8.5, is Obtained by a classical change of basis. The
hydrodynamic fluid forces Fre=<Fpe", Fre">r" produced by the bearings and expressed
in the frame R can be obtained by integration of the fluid film pressure (Reynolds
equation in the dynamic regime) over the bearing. In order to apply the Lagrange’s
equations, the virtual work dW,. of these forces has to be established:

oW, = Fge (abersbe] 33, (8)

If the lateral dynamic displacements 8pe=<Us, Wre>r" Of the shaft elastic line are
assumed to be small in the vicinity of the static position 8.esep, the linear analysis
can be used by finding the first order Taylor series of the dynamic fluid film forces:

Fbe abe’ Sbe = Fbe [ 5be,sepl 0) - cbeAsbe - kbeAabe (9)
, cx cE K2 ke L
with €, = zi zi r be = kzi k; 1] Aabe = 6be - 6be,sep and Aabe = abe . Che and
be Cbe be be

ks, are the damping and stiffness matrices of the linearized hydrodynamic bearing
(Figure 2b) whose analytical expressions can be found in [16].

> 4
w, £

(@) o (b)
Figure 2. (a) Hydrodynamic bearing, (b) Bearing damping and stiffness
coefficients
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2.3 Equations of motion

The finite element method is chosen for discretizing the rotor and describing its
flexural motion as a function of the nodal displacement vector defined by
d"=<u",w",0",@">¢", i.e., the rotor has two translations and two rotations at each
node. The finite element used for the shaft modeling has two nodes and the shape
functions are based on the Timoshenko beam theory. The effect of rotor internal
damping is neglected. The linear equations of motion of the finite element rotor
model are obtained after applying the Lagrange’s equations to the energies for the
disk, the shaft finite element and the mass unbalance as well as to the virtual work
of the hydrodynamic bearings and assembling appropriately the produced vectors
and matrices. They are written with respect to the noninertial reference frame
connected to the rigid support R of the rotor:

M, (t)3,+C,(t)8, +K,(t)8, = F,(t) +F, (3, ., 0] +K,3, ., (10)

M, (t) =M, +M;,, cos(2Qt) + M5, sin(2Qt)
C. (t] = C,, + €5, Q + Cy5,Qcos(2Qt) + €%, Qsin(2Qt) + CFl w”

d,sh d,sh,su

K, (t) = K, +KS, + K& cos(2Qt) + K sin(2Qt) + K34 o + KESY Qu”

d,sh,su’ d,sh,su

x2 re,w? 1y2 re,w** gse,w’?| 122 rew e’ X,z
0" + KGG o, 07° + [KGG e + Kaahs, | @ + KGG 6 07w (11)

re,@ ,c,ny re,Qu’ ¢ y re,w*?,c, x2 re,?,c\y2 re,w??,c, 22
+{Kd,sh,suw + Kd,sh,su Qw” + Kd,sh,su W™+ Kd,sh,su W'+ Kd,sh,su w

2 w2
re,w gse,w’
+[Kd,sh,su + K3 e |

re,ww? ,C X 12 re,@’ s iy re,Qw’ s y re,w?,s X2
+Koh o 0w ]COS(ZQ“ +(Kd,5h,suw + K Qu” +KIE o

re,w?,s, y2 re,w@,s, X, 7| i
Ko @ + K0 &0 w )sm{ZQt]

F(€) = Bl + Py (€] + ooy () + By, (8] + Fi s, (€] cOS[208) 4 F

r mt d,sh,su
= SV W, + V5, Q7 cos | Qt) + V5,97 sin[Qt) + [VES,07 + VEY£Qw + Vi 0™

mu,su mu,su
e 2 o
+VEC Cw’? + VO Cqp®? ¢ V9 @ X

mu,su mu,su mu,su

+vm“,swx2 +vm“,swyz +vm’2,sw12 +vw"w’,swxwz

mu,su mu,su mu,su mu,su

(t)sin(2Qt)

cos(Qt) +(V“’V" @ + V2 Qu”

mu,su mu,su

sin(Qt)
VY o [ Ko #2200 =2V 0007 +2, (0 + 00| -y, (07 - 0@ | - X, |0 + 072 (12)

=V e | Zo + 2V0@" = 2X,0" + Y, (0~ + cuywz) - X, [a’)y - w*wz) -z, (a)“ + a)”ji)

sh,su d,sh,su

(
-V (a’)* + @@+ VY, 07 - 0w’ | - VI (cbx + 0w’
(
{
[

-V, (o - a)*a)y) -V Qo+ a)xwyj +V (Qaf + W W)
-voe L [0° - 200" - 0 w?| cos(2Qt) + VI (&7 +2Qw* + w*w’ | cos(2Qt)
Ve (0F - 2Qw" - '@ sin(2Qt) + VI8 (07 + 2Q0 + w*w’ | sin(2Qt)

where 3, , Sr and O, are respectively the acceleration, velocity and displacement

vectors of the on-board rotor-bearing system of dimension 4(ne»+1)x1 hence nNes»
is the number of shaft finite elements. M(t), C(t) and K.(t) are respectively the
parametric mass, damping and stiffness matrices due to the asymmetry of the rotor
and to the rotational motions of its support. F.(t) is the external force vector.
Fue(d:,5e5,0) is the hydrodynamic force vector caused by the bearings in the static

case. This vector is opposite and equal to the rotor weight vector FZ',’;,,. O, s is the

static solution vector of the rotor due to the hydrodynamic bearing. The subscripts
“d”, “sh”, “be” and “su” refer respectively to the disk, shaft, bearing as well as
support and express the contribution to the phenomenon represented by the
corresponding matrix. The superscript “g” refers to the gyroscopic effect, “e”
signifies the shaft elasticity corresponding to the bending and shear deformations,
“re” is the rotational effects due to the support rotations (these effects come from
the kinetic energies of the disk and the shaft) and “gse” is the geometric stiffening
effects corresponding to the centrifugal stress due to the support rotations. V.,
Vgsh,su @nd Vs, are load vectors associated respectively with the mass unbalance,
the inertia force due to support motions and that due to coupling between both
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phenomena. The superscripts u, w, ¢ and 6 denote the direction of the action force
components associated with the motions of the rotor support. The transient
dynamic motion of the rotor is then obtained by solving Equation 10 by means of
the implicit Newmark scheme based on the average acceleration. The static
equilibrium position &,s, is used to initialize the transient dynamic problem. The
final integration time is chosen such that the transient effects have disappeared and
the steady-state regime has been reached.

3 NUMERICAL EXAMPLES AND DISCUSSION

The symmetric rotor-linearized hydrodynamic bearing system presented in Figure 3
is subjected to rotating mass unbalance combined with sinusoidal rotational or
translational support motions: the rotation around the Ox axis is given by
w*=w*°cos(Qt) in rad/s, while the translation along the Oz axis is expressed as
Zo=Zoc0os(Qt) in m. The physical properties as well as the geometry of the rotor
and the bearings are listed in Table 1. The shaft is discretized into eight identical
2-node Timoshenko beam finite elements. The disk is located at node 5 and
bearings # 1 and # 2 are respectively placed at nodes 1 and 9. The rotor runs at a
speed of rotation Q=1200 rpm (=20 Hz=mass unbalance frequency) and its first
four natural frequencies are 33.57 Hz, 52.7 Hz, 542.4 Hz and 1647.2 Hz. The
relative static equilibrium position of the geometric center of the shaft in the fluid
film bearings is given by 8pesep/Cre=<-0.2855,-0.8789><". The bearing damping and
stiffness matrices are expressed in what follows:

1.30x10° 1.32x10°
6.30x10° 1.94x10’

3 4
Co - 3.50x10° 1.08x10 ]N/m/s ok, =[

N/m
1.08x10° 7.57x10° / (13)

Ybe.# 2

= Zo=Zocos(Q7t) ’ ‘ [rd

sk
# L . . . . I L £ # 2
o v B
=

Isn

Figure 3. Schématic diagram of the investigated rotor-beéring system

Table 1. Main characteristics of the investigated rotor and the bearings

Density of both disk and shaft material
Radius, thickness and location of the
disk

shaft material

Radius and length of the shaft

Mass unbalance

pPa=psh=7800 kg/m3

rs=0.15m, e,=0.03 m, y4=0.2 m
Esn=2x10" N/m?, v&»=0.3
r»=0.04 m, lh=0.4 m
Mmurme=1500 g mm, Nm,=0°

Radius and length of the bearings rpe=0.04 m, /,e=0.01 m
Locations of the bearings Voet 1=0 M, Vre.r 2=0.4 M
Radial clearance of the bearings Cre=2x10"m
Oil film dynamic viscosity 1u=288x10" Pa s

All the presented orbits are dimensionless with respect to the bearing clearance ¢y
and are thus plotted in a unit circle. These orbits show the transient motion within
the bearings from the static position Cs, to the steady-state solution. Figure 4a
presents a general view of the rotor orbit at the hydrodynamic bearings due to the
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mass unbalance effect. Since the disk is positioned at the middle of the shaft, the
orbits at both bearings are identical in the case of a fixed support. The
nonsymmetric damping and stiffness coefficients make the bearings anisotropic and
the orbit elliptical with diagonal axes defining the phase between the mass
unbalance excitation and the rotor response (Figure 4b).

1 -0.8,

-0.85]
&
L -0.9
& .
2 Csep
-0.95

0 -1 —61.15 -0.3 -0.45
(a) u/c,, (b) u/c,,

Figure 4. (a) Mass unbalance orbit of the investigated rotor at the bearings

for a fixed support, (b) zoom on the orbit

w/cy,
)

Figures 5 and 6 display the rotor orbits at bearing # 2 during the harmonic
translational or rotational motions of the support. Even though the disk location is
symmetric with respect to the bearings, the orbits are not identical in the case of a
harmonic support rotation because of its normal and tangential accelerations. Focus
is put on bearing # 2 which is more affected by the support rotation. The orbit
characteristics (shape and magnitude) change with the amplitude (zo or w*?) and
frequency (97 or Q*) of the harmonic support excitation. As expected, in the case of
very small amplitudes and frequencies of the support motions equal to the mass
unbalance frequency, the orbits are similar to those produced when the support is
fixed. Increasing the frequencies makes the orbit shapes more complicated; see
Figures 5a and 6a. The dynamic behavior is all the more modified as the frequency
of the support excitation is high compared with the natural frequencies or the speed
of rotation of the rotor. On the other hand, the amplitudes of the support motion
change the x and z orbit magnitudes.

(@) Zo=10"m (b) Zo=5%x10" m

0.8 -0
N
T 0.85, -0.85
o 5 &
-0.9 -0.9
N 3 3
N" -0.95] -0.95
B -0.2 -0.3 -0.4 -0.5 “0.1 -0.2 -0.3 -0.4 -0.5
u/cpe u/Che
-0. o

Q*=50 Hz
w/C,e
&
w/c,,

Q*=80 Hz
w/C,e
&
w/c,,

-0.3 -0.4 -0.5 b1 -0.2 -0.3 -0.4 -0.5
u/Cpe u/Cpe

Figure 5. Relative orbits of the rotor at bearing # 2 for two amplitudes of
sinusoidal support translations: (a) Zo=10° m, (b) Zo=5x10"° m

20.1 -0.2
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(@) @*=102rad/s (b) @**=5%x102rad/s

-0.85|

%3 —_—

-0.95|

Q*=20 Hz
w/C,e
2 &
w/Cpe

0.1 0.2 0.3 0.4 0.5 “0.1 0.2 0.3 -0.4 0.5
u/c,, u/c,,
-0. -0.
N
T 0.85] -0.85|
M M
° U‘n 'J.n
-0.9 -0.9
1n 3 3
,!I -0.95} -0.95|
20.1 -0.2 -0.3 -0.4 -0.5 “0.1 -0.2 -0.3 -0.4 -0.5
u/c,, u/c,,
-0. -0.
N
T 0.85] -0.85|
=) & 5
-0.9 -0.9
] 3 3
,!I -0.95} -0.95|
20.1 -0.2 -0.3 -0.4 -0.5 “0.1 -0.2 -0.3 -0.4 -0.5
u/c,, u/c,,

Figure 6. Relative orbits of the rotor at bearing # 2 for two amplitudes of
sinusoidal support rotations: (a) w*°=102rad/s, (b) @w*°=5%x102rad/s

The time history responses and their FFTs presented in Figures 7 and 8 exhibit two
frequency components due to the mass unbalance excitation (20 Hz) and to the
harmonic support motions (50 Hz and 80 Hz). The mass unbalance excitation in
Equation 12 and thereby the corresponding rotor response are not affected by the
support translations. This result is confirmed in Figures 7b and 7c where the FFT
peaks at a frequency of 20 Hz in both Ox and Oz directions have exactly the same
displacement amplitude for support translations of frequency 50 Hz and 80 Hz.
Even if the support rotations have an influence on the mass unbalance excitation
(see Equation 12), this influence does not appear clearly in the FFTs of the rotor
motion during the harmonic support rotation because its amplitude is very small
compared to the speed of rotation of the rotor (mass unbalance frequency).

4 CONCLUSIONS

A finite element model is presented to analyze the dynamic behavior of a
symmetric on-board rotor whose support is subjected to sinusoidal rotation or
translation. The rotational effects and the geometric stiffening effects relative to the
centrifugal stressing due to the support rotations are taken into account. The
support rotations create time-varying parametric coefficients which can lead to
lateral dynamic instability. It is noted that the shape and the magnitude of the rotor
orbits can be significantly affected by the frequency and amplitude of the support
motion respectively. It is shown that the mass unbalance forces and also the
corresponding responses can depend on the support rotation around a transverse
axis (in the presence of considerable rotation compared to the speed of rotation of
the rotor) but not on the support translation along a lateral direction. The two
frequency components due to the mass unbalance excitation and to the harmonic
support motions appear in the time history responses and the FFTs of the rotor
oscillations. In the case of large orbits, the assumption of a linearized
hydrodynamic bearing model is questionable. A nonlinear bearing model is to be
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considered. Future work will concern the dynamics of such a nonlinear on-board
rotor-bearing system.

Displacement in the Ox direction Displacement in the Oz direction
013 -0 012

0
3

-0.

-0.. H
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EME

(a) Q?=20 Hz
w/c,,
w/cy,

4 245 25 0 0 60 80 24 2.45 25 N4 60 8 100
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Figure 7. Relative responses and FFTs of the lateral vibrations at
bearing # 2 for support translations of amplitude Z,=5%x10° m and
frequency: (a) Q°=20 Hz, (b) Q°=50 Hz, (c) Q°=80 Hz
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Figure 8. Relative responses and FFTs of the transverse vibrations at
bearing # 2 for support rotations of amplitude w**=5%x10"2 rad/s and
frequency: (a) =20 Hz, (b) *=50 Hz, (c) Q*=80 Hz
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