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ABSTRACT the various motions of their base which can increase their lateral

unbalance and the different movements of the rotor base are ~ The rotors are complex systems and their analysis is also
among the main causes of vibrations in bending. The goal of COMplex. Many studies concentrated on making a clear
this paper is to investigate the dynamic behavior of an on- understanding of the dynamics of symmetric/asymmetric
board rotor under rigid base excitations. The modeling takes r|g|d/_erX|pIe rotor systems supported by linear/nonlinear elastic
into consideration six types of base deterministic motions P€arings in the case of fixed base because these systems can be
(rotations and translations) when the kinetic and strain introduced in the modern industry [1,2]. Berlioz et al. [3]
energies in addition to the virtual work of the rotating flexible ©bserved theoretically and experimentally the lateral
rotor components are computed. The finite element method isinstabilities  of a drill-string parametrically excited under
used in the rotor modeling by employing the Timoshenko beamrotating conditions. Nandi and Neogy [4] presented an efficient
theory. The proposed on-board rotor model takes into account analysis of _stab|I|Fy for finite element models of asymmetric
the rotary inertia, the gyroscopic inertia, the shear deformation otors and investigated whether an unstable rotor could be
of shaft as well as the geometric asymmetry of shaft and/or Stabilized using an isotropic viscous damper. _ _

rigid disk. The Lagrange’s equations are applied to establish ~ Samali et al. [5] used the Monte Carlo simulation to
the differential equations of the rotor in bending with respect to Simulate the nonstationary earthquake ground motions and to
the rigid base which represents a noninertial reference frame. determine the statistics of rotating machinery response. In [6], a
The linear equations of motion display periodic parametric Seismic response of a Jeffcott rotor supported by oil film
coefficients due to the asymmetry of the rotor and time-varying P€2rings to a real seismic wave was examined and its stability
parametric coefficients due to the base rotational motions. In Was investigated by calculating the loci of the disk and journal
the proposed applications, the rotor mounted on rigid/elastic centers. Bachelet et al. [7] investigated the .dyr!amlc behgwor of
bearings is excited by a rotating mass unbalance associated@n asymmetric rotor excited by a base seismic translation and
with sinusoidal vibrations of the rigid base. The dynamic developed an original spe_ctral approach in order to approximate
behavior of the rotor is analyzed by means of orbits of the rotor the rotor response. Da Silva Tuckmantel et al. [8] represented

as well as fast Fourier transforms (FFTs). the supporting structure (foundation) of a rotating system by
coupled as well as uncoupled modes. They found that there

were limitations in identifying the vibratory modes and their
1 INTRODUCTION corresponding damping factors in the system response. Kang et
al. [9] and Cavalca et al. [10] studied the effect of the flexible

: Th? rotatmg machines are among the V'.tal parts of modern foundation on the dynamic characteristics of the rotor-bearing
industrial domains and the rotor forms their key component. systems

B st oy ThE NUMer of wors dealng wih the nvestiaton of
board moving svstems. Rotors moyugted on transportation dynamic behavior of a rotor during a harmonic motion of its

g sy - : P GPase is quite low. Duchemin et al. [11] applied the method of
systems are mainly excited by the rotating mass unbalance an



multiple s@les to a simple rotor model under a base sinusoidal 2 THEORTICAL ANALYSIS OF AN ON-BOARD
rotation in order to observe its stability. They presented ROTOR-BEARING SYSTEM

experimental results in order to validate the analytical study. The rotor generally consists of the disk, shaft, mass

Driot et al. [12] described the orbits of a rotor induced by a ynpalance, bearing and base. This section includes formulations
base harmonic rotational movement using numerical methods. oy the rotor components and the equations of motion.

From their work, the comparison between numerical results and
experimental investigation was quite satisfactory. El-Saeidy and
Sticher [13] obtained the responses of a rigid rotor-bearing o 1 Preliminary Calculations
system subjected to rotating mass unbalance plus base harmonic

excitations along or around lateral directions using analytical 'ntro-lt;h::ee?j E’c:'?;'(%a.lmcooggga:ﬁ t?éStmeg]Se;Z?]\tNgf Itrr:eFrlgio:- r'ar'z
solutions in the case of linear bearing and a time integrationI u : u M gl

scheme in the case of bearing cubic nonlinearity. Das et al. [14] base. They are attached to the gro@¥idthe rigid bas&R and

performed a numerical simulation of a flexible rotor system themoving rotor R
excited by mass unbalance and rotational periodic motion of the
base in order to investigate its active vibration control. This
control was successful for avoiding the lateral parametric
instability due to the sinusoidal rotation of the base.

Among all the literature mentioned above, there are
references studying base-excited rotor systems and whose few
works deal with the harmonically excited on-board rotors
[11-14]. Moreover, these references concentrate on the
investigation of dynamic behavior of either simple rotors (for
example, Jeffcott rotor [6] and rotors modeled using the
Rayleigh-Ritz method [11,12]), rotors supported by elastic
bearings with constant damping and stiffness coefficients (for
example, [13,14]) or rotors excited by simple motions (rotation
or translation) of the base. As a consequence, the applications
proposed in these works are not suitable for realistic ones. In
this paper, an improved model is presented. Namely, an
asymmetric rotor is discretized using the finite element method
based on the Timoshenko beam theory, mounted on
hydrodynamic bearings linearized with damping and stiffness
coefficients calculated using the Reynolds equation [15] and
excited by base combined motions (six types of deterministic
rotational and translational motions). The rotary inertia, the
gyroscopic inertia, the shear deformation of shaft as well as the
geometric asymmetry of shaft and/or rigid disk are taken into
consideration. By computing the Rayleigh damping coefficients,
the effect of rotor internal damping is included in the study. The
application of the Lagrange’s equations using the finite element .
method gives the differential equations of the rotor in bending wf =of +of =<a)*,a)9,aﬁ>w 1)
with respect to a noninertial reference frame connected to the
L()etﬁgdri?dpsfz:ri.et;?e gl(?eef?i:;i ;?tl;angzz OIOm(t)ﬁgn geo(l)?;e?rlij; wh(?reT is Ehe matrix transposition symbol. The components
asymmetry of the rotor and time-varying parametric coefficients (&' ,«” ,&/ ) are formulated as a function of ,¢yp) and
due to the base rotational excitations. These parametrictheir time derivative as well as {@’,»%. The rotor is
coefficients are considered as producers of internal excitation supposedo rotate at a constant speRdSo the spinning angle

and can create lateral dynamic instability. In the presented @ is replaced byt and its derivativep by Q (» refers to the

applications, the rotor mounted on rigid or elastic linear | i . . . .
bpp . L . g differentiation with respect to ting. Let us consider a generic
earings is subjected to rotating mass unbalance plus to base

. 0 - -
sinusoidal rotation without or with base sinusoidal translation. point C* on the elastic line of the nondeformed shaft. Its

Numerical solutions for the linear equations of vibratory motion coordinats in the frameR are (Qy0). The translational

. . O .
of the on-board rotor are computed and analyzed by means ofy SPIETEET Y BCCR 20T PARL ML
orbits of the rotor as well as fast Fourier transforms (FFTSs). P b y P

Ox andOzaxes of the coordinate systén

Figure 1. REFERENCE FRAMES OF THE ON-BOARD
ROTOR

The rotatimal motions of the rotor base are described by
the angular velocity vector component¥t), »(t) andw*(t) of
the iigid baseR with respect to the grouri@® projected in the
frame R. The translational motions of the rotor base are
described by the coordinates(t), yo(t) andz(t) of the position
vecta 0% projected in the frame attached to the bRs@he
Eudler anglesy(y,t), 8(y,t) and ¢(t) (Fig. 2) permit describing

the orientation of the rotoR with respect to its basR. The
angular velocity vector of the rotd® with respect to the ground
measured in the frani® is given by



¥
Figure 2. EULER ANGLES

2.2 Energy and Virtual Work Calculations

The kinetic and strain energies are measured from the
ground and their terms are written with respect to the frame
linked with the rotor rigid basi.

Disk. The disk is assumed to be rigid. Therefore only its
kinetic energy Tis calculated as follows [7,11]

T, =2 (v ) Vi + S (of ) 1,0] ®)
with
|w=diag[|r>:1d lxh |fq]=diag[| r:rﬂ]d0+| r?; | f\:'/a | $°4 ,':,] 3

where my is the mass of the disk,\/g.g is the translational
velocity vector of its center andi, is its principal inertia
tensor.17 , Iy andl; are the inertias of the disk mass about

the Ox, Oy andOz axes respectively. In addition,* and Ir‘;;
are usedo explain the effects due to the mean inertia of the
disk mass and those due to the inertia modeling the disk

geometric asymmetry. Thus when the disk is asymmeth,
as well aslfnd are different and the contribution 04‘;; in them
is not nil. The translational velocity vector componedfs,
\'/O‘ and v'vo. of the disk center are functions of the components

(0", 0",0%) and the coordinatesd,yo,z). The final expression

of the kiretic energy of the disk having a mass center positioned
at the arbitrary abscissq relative to the fram® is then 6 the
following form [11]

W+ + W

Td:%( o TVo TV

)

1 mof , %2 22 y 1 y2 di ' 2 wiz (4)
+§(Im1(w +tw )+|Ww +Im1(a)x - ))

Shaft. The shaft is supposed to be flexible. Therefore it is
characterized by the kinetic and strain energies and modeled by
beam elements. The kinetic energy of a shaft can be obtained by
considering a shaft elementary volume which can be considered
as a disk of thicknesdy. Thus the kinetic energy of a shaft
takes the following form [7,11]

sh

T :pLSshlj(u

2
sh 2  +
0

5 +VE + W) dy

+;[pshl ’é‘:lj‘h(w*‘z +af 2)dy+ 2pshl’§:|]‘ha)“dy (5)
0 0

+0, ghlj[h(a)x‘ 2_ 2)dy}
0

where ps, Sy and lg, are respectively the density, the cross-

sectionard the length of the shal g: and |gsih are respectively
the mean inertia of the cross-section and the inertia
characterizing the asymmetry of the shaft. The rigid base
motion relative to the ground has no influence on the strain
energy of the shaft because this energy depends only on the
stresses and therefore on the transverse deflection of the shaft
with respect to the rotor bage In addition to the bending
deformation, the shear effects highlighted by Timoshenko and
the geometric stiffening effects corresponding to the centrifugal
stressing due to the base rotational motions are taken into
account. The strain energy of a shaft is defined by
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whetre Eg, and G, are respectively the Young's modulus and the
shear mdulus of the shaftGq=Es/(2(1+vsp)) hencevy, is the

Poisson’sratio). ki° and k{, are respectively the mean shear

correction factor of the cross-section and that relative to the
section asymmetry of the shaft.

Mass Unbalance. Let us consider a concentrated mass
unbalancem,,, placed at a poir,,, on the disk y~yq) with a
distancer, from the shaft geometric center. Its initial angle



with the Oz axis of the frameR at rest isy,, The mass 1€
unbalane is characterized by the kinetic energy computed as tg(¢be):z . s 9)
follows [11] be

Mo (e \T where g, is the relative eccentricityed~e,d/Coe) and u is the
Tow = 2“(V§m) VE:u (1) fluid film dynamic viscosity. The nonlinear Eq. (8) is solved by
an iterative Newton-Raphson method and provides the
eccentricityepe and then the static radial displacemepbof the
. , . shaft ceter. The components of the vec@y scpare obtained
velocity vectorvy are functions ofe*,»",»%) and &o,yo, ). by a clasical change of basis. The hydrodynamic fluid forces
Fre=<Fp Foa'>g" produced by the bearings and projected in the
Bearing. Figure 3 shows a simple representation of a frameR can be obtained by integration of the fluid film pressure
hydrodynamic bearing which is composed of a fixed journal (Reynolds equation in the dynamic regime) over the bearing. In
containing a rotating shaft. The poin@® and O'=Cg,, are order to apply the Lagrange’s equations, the virtual wik.
respectivly the bearing center and the shaft geometric center. Of theseforces has to be established
The radius, length and clearance of the bearing are respectively
Mbe Ibe AN Coe=TpeT s Whererg, is the shaft radius. At a constant MW, = F;e(ﬁ bd b;d’ﬁ N (10)
speed ofotationQ of the rotor and for a constant static la&d
created P the rotor weight, the shaft geometric cer@zs, in
the bearig holds a static equilibrium position defined by the the shaftelastic line are supposed to be small in the vicinity of

. —- T .
displacement _VeCto5be~sep'<ube'se’”wbe~se_?f‘ expressed in the o gtatic pOsitiodye sep the linear analysis of bearings can be
frameR or equivalently by the eccentricitg,, :"5 be se;“ of the applied byconstructing a first order Taylor expansion of the

shaft ceter in the journal and the attitude anglg between the fluid film forces Fbe(f,be,s be) in the vicinity of the static
W load direction and the line of cent@€.e,

The omponents of the mass unbalance translational

If the transverse dynamic displacemebys<upeWoe>r' Of

hydrodynamic forces,, (6be sep 0) as follows

Fbe(6 be'ii he) = F bis he se;p) -C Aﬁ be k 4@ (11)

with
X Xz X ez
cbe=[°°; ﬂ : k[ . ii} (12)
Cbe Cbe e kbe
Aéibe = 6be_ 6 be sep ; Aiibe = 8be (13)

wherec, and ke are the damping and stiffness matrices of the
linearized hydrodynamic bearing (Fig. 4) whose analytical
expressions can be found in [15].

Figure 3. SCHEMATIC VIEW OF A HYDRODYNAMIC
BEARING

In the pesent study, the short bearing theory is considered
(l,ddpe<1/8 where d,=2r,o) ard the static solution can be
reached using the following relations obtained from the
Reynolds equation with the Giimbel boundary conditions [15]

1
Vvl' = HEe [rbejz [Ibejz IbeQ Ebe (16£§e+ 772(1_ 451)2@))2 (8)

e 1-8)
’ (1-<2) Figure 4. BEARING DAMPING AND STIFFNESS
COEFFICIENTS

e



2.3 Equations of Motion time-varying trigonometric functions cos(BQand sin(2xt).

The finite element method is chosen for discretizing the The superscriptid” stands for the rotor internal damping
rotor and describing its flexural motion as a function of the introduced by estimating the Rayleigh damping coefficienfs,
nodal displacement vector defined ky'=<u"W'6"y">g" for the rotor gyroscopic effect,e” for the shaft elasticity
becausehe rotor has two lateral translations and two rotations corresponding to the bending and shear deformatioesfor
at each node. The finite element used for the shaft modeling haghe rotational effects due to the base rotations (these effects
two nodes and the shape functions are based on the Timoshenk§°mMe from the kinetic energies of the disk and the shaft) and
beam theory. “gsé€ for the geometric stiffening effects corresponding to the

The linear equations of motion of the finite element rotor Centrifugal stress due to the base rotations.
model are obtained after applying the Lagrange’s equations to 1 he vector(t) is defined as follows
the energies for the disk, the shaft finite elements and the mass
unbalance as well as to the virtual work of the hydrodynamic — F (t) =R+ Fru(t) + F o (1) + o sno(t) + F5 o {t) cos( 22t)
bearings and assembling appropriately the produced matrices +F2, o(t)sin(20t)
and vectors. They are written with respect to the noninertial -y
reference frame connected to the rotor rigid baiae follows T

H(VE50 +VERW S Y 0

W, +V 2. Q% cos(Qt) + V2. Q% sin(Qt)

M, (t)§, +C, (1)8, +K, (t)8 =F (t)

r

oo (8 0o 0) + K 3

be“’ r, sep

(14) +V GG + Vn‘;ﬁf;:'qw‘a)z) cos(Qt)

+(V‘*’y'sia)y +VEUSQW +V @ 8 w?

mu, b mu, b

with M((t), C,(t) and K,(t) the mass, damping and stiffness
matriceswith time-varying parameters due to the asymmetry of
the rotating rotor and to its moving badk., 4, and 5, are
respectively the acceleration, velocity and displacement vectors
of the on-board rotor-bearin system of dimensiom«#1)x1
hencengg, is the number of shaft finite elements(t) is the
externd force vector. In addition, the static hydrodynamic force
vector F,{d, s¢p0) Of the bearings is opposite and equal to the
rotor waght vector FL‘,’sth. Lastly, 8, sep is the static solution

VW VS 0 +V;ﬁf§*§a)xwz)sin(9t)
~Va.en b(xo+ 2240’ - 2307 + (@ + w'w?)
Yo (@7 - ') = %, (@ + ?))
-sth,b(zo+2yc;f - 2%’ + 36(50* +wywz)
X (@ - W'e?) - 2 (2 + 7))

-V b(ci)x + wywz) +V 2 b(gf - wxwy)
Vg ol @+ wywz) —V,fsh’b(df - a)xa)y)

vector ofthe rotor due to the hydrodynamic bearings. (
VI o[ QW+ 0 @) + V5, (Qaf + w7

The matrices of Eq. (14) are expressed in what follows

M, (1) =M 4, +M % cod Dt)+ Mg, sir Bt) (15) VG| @ - 200 - wywz)cos( )
C,(t)=C,+Cy, +C9%,Q+C5%%Qcoy Nt) 16) VY5 (67 + 200 + w'e)cog Zat) (18)
+CIEQsIN(201) +Co o Y50 - 2007 - w'o)sin( 22)
K, (t) =K . +K 4K %% cos( Dot) +K &2 sir{ BDt) V0% (@ + 200 + w'e?)sin( 201)
P +K E00 00 + (K e +K 5% )

oo e o s e 2 e . whereV my (Fru(t)), Va.shp (Fa.sndt)) andV gy p (Frmus(t)) are load
+K s o @ +(K dsnn KOG shb)w +K G 0 vectors (force vectors) associated respectively with the mass

contribution to the
corresponding matrix. The superscripts’‘and “s,” denote the
geometricasymmetry of the rotor expressed in terms of the

(K@ ear +K 398 0w +K e 17)
S 4 K 50 +K % e cod| )

d,sh b

d,shb d,shb d,shb

+(K re,a‘)’,%d)y +K re,Qa)’,szQa)y + Kre,wxz,sz(dxz
HK R0 +K Y w)sin( 20)
The subscriptsd”, “sh’, “be’ and “b” refer to the disk,

phenomenon represented by

unbalance, the inertia force due to base motions and that due to
coupling between both phenomena. The superscr@gtsahd
“s,” signify the components of the mass unbalance force
expressd in terms of the time-varying trigonometric functions
cosft) and sinQt). The superscripts, w, v andf denote the
direction of the action force components associated with the
rotor base motions.

The transient dynamic motion of the rotor is then obtained
by solving Eq. (14) by means of the implicit Newmark time-

shaft, bearing as well as base respectively and express thestep integration algorithm based on the average acceleration.
the The static equilibrium positio, s, is used to initialize the

transientdynamic problem. The final integration time is chosen



such thathe transient effects have disappeared and the steady-  The rotorsystem is supported either by rigid bearings or
state regime has been reached. hydrodynamic ones leading in the case of fixed base either to
symmetric damping and stiffness matrices with isotropic
diagonal and cross-coupling terms or to nonsymmetric matrices
3 NUMERICAL SIMULATIONS AND DISCUSSION respectively.

The symmetric rotor-rigid/elastic linearized bearing system

presented in Fig. 5 is subjected to rotating mass unbalance as Table 1. ROTOR AND BEARING DATA

well as to base harmonic rotation without/with base harmonic Disk material density 7800 kg/ni
translation: the rotation around th®x axis is given by Disk radus 0.15m
w*=w*cosQ) in rad/s, while the translation along 1B axis %isskktlholgzggis 00-023nr:‘
's expressed az;=ZocosQ2) in m. Shaft material density 7800 kg/nd
Young's modulus of the shaft 2x10 N/
Thos2 : Poisson'’s ratio of the shaft 0.3
L ¥ Shaft radius 0.04 m
‘ : : Shaft length 0.4m
Ja > Mass unbalance 1500 g mm, 0°
........ Radius of the bearings 0.04m
} Length of the bearings 0.01m
b = Zocos(9) Locations of the bearings O0m,0.4m
a ‘ Radial clearance of the bearings 2x10*m
41 Tsi 4 Qil film dynamic viscosity 288x10%Pa s
0 ¥
Figure 6shows the classical disk orbit due to the mass
° Q unbalance for rigid bearings and a fixed base. Since the
x o Ml matrices of the rotor-bearing system are symmetric and skew-
o =" cos(f) e symmetric with isotropic diagonal and cross-coupling

components, the dynamic behavior is symmetric and the orbit is
circular. Its center coincides with the po@t(bearing center).

: FFT of the orbit shows that the rotor displacement has an
L amplitude almost of order 1x10m and the same mass

i unbalane frequency (20 Hz).

H
P
%

Figure 5. ON-BOARD ROTOR-BEARING SYSTEM
CONFIGURATION 1

The physcal properties as well as the geometry of the rotor

and the bearings are listed in Table 1. The shaft is discretized e
into eight identical 2-node Timoshenko beam finite elements. £y ©) o
The disk is located at node 5 and the bearings # 1 and # 2 are "

respectively placed at nodes 1 and 9. The rotor runs at a speed
of rotationQ=1200 rpm (20 Hz=mass unbalance frequency).
The static equilibrium position of the shaft geometric 6 4 2 0 2 4

¢ o) 10’

center in the fluid film bearings is given by o
dbe se<-5.71x10°,-1.76x10">," m. The bearing damping and &
stiffnessmatrices are expressed in what follows =
£
350x16  1.0& 10 &3
= N/m/s =
’e L.OSX 10 75% 1@} /m %
(19 4
= 5‘31] i} 40 (] # 100

be ~

1.30x16 1.3% 10 N/m
6.30x10 1.94 10

Frequency (Hz)

Figure 6. MASS UNBALANCE ORBIT AND ITS z-FFT AT
THE DISK FOR RIGID BEARINGS AND FIXED BASE



Figure 7 gives the disk orbit and-FFT of the rotor

vibrations due to the mass unbalance and the base rotation i
around the Ox axis. This rotation generates vectors
corresponding to force components acting respectively in the R
Ox direction (due to the Coriolis acceleration, i.e., the term = /
-V, Qo in Eq. (18)) and in th©z direction (due to the M Coep
tangential acceleration, i.e., the the term¥y @w* and % 3 ‘< 3 B
_Vish, & in Eg. (18)). The two transverse displacements e
associated with these force components are different and this z N
breaks the asymmetry of the rotor behavior. For the selected 5"8
speed of rotation of the rotor, tleeamplitude is very higher
than the x-amplitude which remains mostly the same. FFT f,"-ﬂ
exhibits two frequency components due to the mass unbalance fu.;
excitation (20 Hz) and to the base harmonic motion (80 Hz). 3
20
[ 10 ; [
[} 0 40 0 §0 100
4 Frequency (Hz)
Figure 8. MASS UNBALANCE ORBIT AND ITS z-FFT AT
. 2 THE DISK FOR FLEXIBLE BEARINGS AND FIXED BASE
£
4 Figure 9displays the disk orbits for hydrodynamic bearings
v during base rotational motions. The orbit characteristics (shape
i and magnitude) change with amplitude and frequency of the
e A 3 base harmonic excitation. It should be noted that for very small
o ' amplitudes and different frequencies, the orbit shapes become
Ly more complicated with respect to those obtained when the base
= is fixed (see Fig. 9(a)). On the other hand, the base motion
£ amplitudes change theandz orbit magnitudesz-FFTs exhibit
13 two frequency components due to the mass unbalance excitation
S (20 Hz) and to the base harmonic motions (50 Hz or 80 Hz).
‘ They also show that the displacement amplitude due to the mass
E' | unbalance excitation (20 Hz) does not roughly change for base
<% W W W W m motions of frequency 50 Hz and 80 Hz, i.e., the influence of the
. Yooyt base rotations on the mass unbalance excitation (see Eq. (18))
Figure 7. DISK ORBIT AND ITS z-FFT FOR RIGID . L
BEARINGS AND BASE HARMONIC ROTATION: can be neglected at the lower amplitudes of the base excitation.
W ?=5x10" rad/s AND Q=80 Hz Figures 10 and 11 display the orbits of the disk and their

z-FFTs in the presence of mass unbalance forces and of a

Figure 8presents the disk orbit due to the mass unbalance combination of base rotational and translational motions. In
effect in the presence of hydrodynamic bearings. The Fixg. 10, the ba_se rotation is kept co_nstaﬁ‘t"(:5><102 rad_/s and
nonsymmetric damping and stiffness coefficients make the € =50 Hz) while the base translation has two amplitudes and
bearings anisotropic and the orbit elliptical with diagonal axes three fequenmes.s In Fig. 11, the base translation is kept
defining the phase between the mass unbalance excitation angonstant £o=5x10° andQ*=50 Hz) while the base rotation has
the rotor response. The orbit center coincides with the [aipt two amphtuds; and three frequer_mles. Increasing the ampht_udes
(static poition of the shaft center in the bearings). It is noted @nd frequencies makes the orbits larger and more complicated
that the orbit is large compared to that corresponding to rigid €SPecially when compared with the mass unbalance orbit for a
bearings because of the combination between the bendingfix€d base; see Fig. 8. The assumption to have linear behavior
modes of the rotor and the rigid body modes relative to the of the bearing is questionable. FFTs in Figs. 10 and 11 exhibit
rotor motion in the hydrodynamic bearingsFT indicates that ~ three frequency components due to the mass unbalance

the disk vibration has an amplitude of about 710 and the excitation (20 Hz), to the base harmonic rotation (50 Hz in
same masunbalance frequency (20 Hz). Fig. 10 and 80 Hz in Fig. 11) as well as to the base harmonic
translation (80 Hz in Fig. 10 and 50 Hz in Fig. 11).



4 CONCLUSIONS It is noted that the shape and the magnitude of the orbits
A finite element model is presented to analyze the dynamic ¢an be significantly affected by the base motion frequency and

behavior of a symmetric on-board rotor-rigid/hydrodynamic amplitude respectively.

bearing system whose base is subjected to sinusoidal rotations /N the case of considerable rotation amplitude compared to
without/with sinusoidal translations. the speed of rotation of the rotor, it is shown that the mass

The rotational effects and the geometric stiffening effects unbalance forces can depend on the base rotation around a

relative to the centrifugal stressing due to the base rotations ardra@nsverse axis.
taken into account. The frequency components due to the mass unbalance

The base rotations create time-varying parametric €Xcitation and to the base harmonic motions appear in FFTs of
coefficients which can lead to lateral dynamic instability. the rotor flexural vibrations. _ _ _
In the case of a rotor mounted on rigid bearings and In the case of large orbits, the assumption of a linearized

running at the lower speeds of rotation, the base rotation aroundydrodynamic bearing model is questionable. A nonlinear
a transverse axis creates an orbit having its greatest magnitudénodel is to be considered and the hydrodynamic bearings have
in the perpendicular transverse direction. Unlike the previous t0 be treated as external nonlinear forces acting on the shaft

case, the base rotation effects concern the two transversg/ithin the bearings.
directions when the rotor is supported by hydrodynamic
bearings.

(a) ®*?=107 rad/s (b) @**=5x10? rad/s
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Figure 9. DISK ORBITS AND THEIR z-FFTs FOR FLEXIBLE BEARINGS AND TWO AMPLITUDES OF BASE HARMONIC
ROTATIONS: w*?= (a) 10% rad/s, (b) 5%10 rad/s, (Q*=20 Hz, 50 Hz AND 80 Hz)
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Figure 11. ORBITS AND THEIR z-FFTs AT THE DISK FOR FLEXIBLE BEARINGS AND BASE HARMONIC TRANSLATION
(Zo=5x10"° AND Q=50 Hz), COMBINED WITH TWO AMPLITUDES OF BASE HARMONIC ROTATIONS:
w*?= (a) 10 rad/s, (b) 5x10 “ rad/s, (Q*=20 Hz, 50 Hz AND 80 Hz)
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