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MINOR THEORY FOR SURFACES AND DIVIDES OF MAXIMAL SIGNATURE

SEBASTIAN BAADER AND PIERRE DEHORNOY

Abstract. We prove that the restriction of surface minority to fiber surfaces of divides is a well-
quasi-order. Here surface minority is the partial order on isotopy classes of surfaces embedded in R3

associated with incompressible subsurfaces. The proof relies on a refinement of the Robertson-
Seymour Theorem that involves colored graphs embedded into the plane. Our result implies that
every property of fiber surfaces of divides that is preserved by surface minority is characterized by
a finite number of prohibited minors. For the signature to be equal to the first Betti number is such
a property. We explicitly determine the corresponding prohibited minors. As an application we
establish a correspondance between divide links of maximal signature and Dynkin diagrams.

This article combines techniques of low-dimensional topology and graph theory in order to
investigate a partial order on isotopy classes of embedded surfaces in R3 called surface minority.
A surface Σ is a surface minor of another surface Σ′ if Σ is isotopic in R3 to an incompressible
subsurface of Σ′. We then write Σ 6surf Σ′. This relation is clearly reflexive and transitive. It
turns out to be also antisymmetric, hence it induces a partial order on isotopy classes of embedded
surfaces.

A natural question is whether the above surface minority order is a well-quasi-order, that is,
it has no infinite descending chain and no infinite antichain. One easily shows that 6surf has no
infinite descending chain, but, if An denotes an annulus whose core is a trivial knot and whose
writhe—the linking number between the two boundary components—is n, then the family {An}n∈Z
forms an infinite antichain, that is, elements are pairwise incomparable. So 6surf is not a well-
quasi-order in general.

The aim of this article is to show that, nevertheless, there exists a large and natural class of
surfaces such that the restriction of 6surf to it is a well-quasi-order. Introduced by N. A’Campo [1,
2] for studying the topology of singularities of complex curves, divides are diagrams in the disc that
encode certain fibered links in S3. Every divide comes associated with a preferred fiber surface—
the Milnor fiber in the context of singularities. We prove

Theorem A. Let SDiv be the family of all isotopy classes of fiber surfaces of divides. Then the
restriction of 6surf to SDiv is a well-quasi-order. Equivalently, if Σ1,Σ2, . . . is an infinite sequence
in SDiv, there exist i < j such that Σi is a surface minor of Σ j.

The proof relies on a result of graph theory which is of independent interest. We consider
graphs whose vertices are colored with a set C which is a well-quasi-order. We shall say that a
colored graph G embedded into the plane is a planar minor of another embedded colored graph G′,
denoted G 6plan

C
G′, if a graph isomorphic to G can be obtained from G′ by decreasing the colors

of some vertices, and deleting or contracting some edges in the plane. The difference with the
standard minor notion for abstract graphs is that the planar minority order takes the embedding
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2 SEBASTIAN BAADER AND PIERRE DEHORNOY

in the plane into account. The definition immediately implies that the planar minority order for
embedded graphs refines the minority order for the underlying abstract graphs. A famous theorem
of N. Robertson and P. Seymour [15] says that minority is a well-quasi-order for abstract colored
graphs. Here we show that the result extends to planar minority.

Proposition B. For C a well-quasi-ordered set, the order 6plan
C

on isotopy classes of colored
graphs embedded into the plane is a well-quasi-order.

Since trees are particular graphs, this result is also a generalization of the Kruskal Tree Theo-
rem [13] that states that the family of colored trees embedded into the plane is a well-quasi-order.

An important consequence of being a well-quasi-order is that every property preserved under
passing to smaller elements is characterized by a finite number of prohibited minors. For instance,
the Kuratowski Theorem, which says that a graph is planar if and only if it does not contain the
graph K5 nor the graph K3,3 as a graph minor, appears as an explicit instance of the Robertson-
Seymour Theorem. Returning to fiber surfaces of divides, we shall similarly illustrate the situation
of Theorem A with a Kuratowski-type result involving signatures of divide links.

The signature sign(Σ) of a surface Σ in S3 is an isotopy invariant defined as the signature of a
quadratic form, the Seifert form, on H1(Σ,R) (we will recall the precise definitions in Section 3.b).
As the signature of a quadratic form is not larger than the rank of the underlying vector space,
we always have −b1(Σ) 6 sign(Σ) 6 b1(Σ). A surface Σ is said to have maximal signature if
sign(Σ) = b1(Σ) holds. Having a maximal signature is a property that is preserved under going
to a surface minor, since every restriction of a positive definite quadratic form is positive definite.
Hence Theorem A implies that the set of fiber surfaces of divides whose signature is maximal must
be characterized by a finite number of prohibited minors. Here, we determine these minors, which
turn out to be the fiber surfaces of the two divides depicted in Figure 0.1. Actually, we prove
a stronger result, namely we give a complete list of the fiber surfaces of divides with maximal
signature.

Theorem C. The fiber surface Σ(P) associated with a divide P has maximal signature if and only
if it contains neither Σ(Q) nor Σ(X) as a surface minor, where Q and X are as in Figure 0.1. When
this holds, the divide link associated with P is isotopic to the link of one of the divides depicted in
Figure 0.2. These divides are described by the undirected Dynkin diagrams, except F4.

Figure 0.1. The divides Q and X, and the associated links: L(Q) is an oriented 2-
component link (whose unoriented version is called L6a2 in Thistlethwaite’s table), and
L(X) is an oriented 4-component link (L8a21). The canonical fiber surfaces Σ(Q) and
Σ(X) are obtained by applying the Seifert algorithm to the depicted diagrams.

Theorem C can be compared with the results of [4], that consist of a similar description of
surfaces with maximal signature for another natural class, namely all fiber surfaces of positive
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type An:

type BCn:

type Dn:

type E6, E7, E8: type G2:

Figure 0.2. The list of all connected divide links whose signature is maximal. Their
codes (see Section 1.d) correspond to unoriented finite Dynkin diagrams, except F4. The
coding is not injective, since BC2n and D2n are connected by a sequence of Reidemeis-
ter III moves which do not alter the associated link. The same holds for E6 and G2. Except
for BC2n, this list corresponds to simple germs of holomorphic functions (see Arnold [3]).

braids. The statements are very similar to Theorem C, with the difference that here we have two
prohibited minors instead of four (this can be informally explained by the absence of an analog
to Q in the world of positive braids), and we have slightly more fiber surfaces with maximal
signature: the list of Figure 0.2 is the list of [4], enriched with the family BC2n+1 (the divides BC2n
do not count, as they describe the same link as D2n).

The idea for reducing Theorem A to Proposition B is to encode fiber surfaces of divides using
some specific colored graphs embedded into the plane, called discal graphs. The key observation
is that surface minority for the fiber surfaces of divides refines planar minority for the correspond-
ing discal graphs.

For proving Proposition B, we introduce a faithful coding of graphs embedded into the plane
by binary trees whose leaves are labelled with 3-connected planar graphs. By a theorem of Whit-
ney [17], 3-connected planar graphs admit a unique embedding into the sphere, up to orientation.
We then combine the instance of the Robertson-Seymour Theorem that involves planar graphs [14]
with a variant of the Kruskal Tree Theorem, called Lemma on Trees [14].

For proving Theorem C, we make a case-by-case analysis and show that there is a list of six
divides such that every divide not in the list of Figure 0.2 contains one of them as a subdivide. We
then show that the fiber surfaces associated with these six divides all contain Σ(Q) or Σ(X) as a
surface minor, and that these two surfaces have non-maximal signature.

The plan of the paper follows the above scheme: in Section 1, we introduce divides and their
fiber surfaces, and we explain how to encode them using colored graphs embedded into the disc
so as to reduce the topological problem to a pure question of graph theory. The latter is solved in
Section 2 (Proposition B). Finally, signatures are investigated in Section 3, where Theorem C is
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established. Let us mention that Sections 1 and 3 (about divides) and 2 (about graph minors) are
largely independent and can be read in either order.

We thank Frédéric Mazoit: he explained to us in detail the proof of the Robertson-Seymour
Theorem for planar graphs and provided us several references [7, 11]. We also thank Filip Misev
for several remarks on a first version of this paper.

1. Fiber surfaces for divides and subsurfaces

Here we introduce divides, the associated links and their canonical fiber surfaces, and we define
surface minority, the partial order on isotopy types of surfaces that is our main object of investiga-
tion. Next, we show how to encode the fiber surfaces of divide links into specific colored graphs.
Finally, we connect the surface minority partial order to another partial order called discal minority
which, under the above coding, is a simple purely graph-theoretic counterpart.

1.a. Divides. In the whole article, D is the unit disc in R2 and ∂D is its boundary. A divide is a
generic immersion of a one-dimensional compact manifold in D. Formally, this corresponds to

Definition 1.1 (A’Campo [2]). A divide is the image of an immersion of a finite number of inter-
vals and circles into D such that: (i) there is no triple point, (ii) there is no self-tangency, (iii) all
intersections are transverse, (iv) both endpoints of every immersed segment lie on ∂D and the
endpoints of all segments are distinct, (v) immersed circles do not intersect ∂D.

We denote byDiv the family of all isotopy classes of connected divides.

Two connected divides are displayed in Figure 0.1: Q consists of the immersion of one circle
with winding number 2, and X consists of the immersion of four segments. Further examples
appear in Figure 0.2 (with the disc D omitted).

Every divide gives rise to a link. Following A’Campo [2], we define the tangent bundle T (D)
to D to be the product D × R2, and the unit sphere ST (D) in T (D) to be

ST (D) =
{
(x1, x2, u1, u2) ∈ D × R2

∣∣∣ x2
1 + x2

2 + u2
1 + u2

2 = 1
}
.

Then ST (D) is homeomorphic to the solid torus D×S1, with the boundary 2-torus ∂D×S1 collapsed
into a circle ∂D × {∗}. Now, for P a divide and (x1, x2) a point on P, denote by T(x1,x2)P the set of
vectors based at (x1, x2) that are tangent to P. Then, the link L(P) of P is the intersection of the set
of tangent vectors to P with ST (D), namely

L(P) =
{
(x1, x2, u1, u2) ∈ ST (D)

∣∣∣ (x1, x2) ∈ P, (u1, u2) ∈ T(x1,x2)P
}
.

The hypotheses in Definition 1.1 imply that L(P) is indeed an oriented link, that is, the embedding
of a finite number of oriented circles into ST (D). It consists of two points in the fiber of every
regular point of P, of four points in the fiber of every double point, and of the collapsed fibers of
the points of ∂D that are the extremities of the segments of P. The link L(P) has one component
per segment in P and two components per circle. Divide links form a large family that in particular
includes algebraic links. In general, drawing the link L(P) from a picture of P is not obvious. Let
us mention that there exist at least two algorithms, one by Chmutov [5] and one by Hirasawa [9]—
the one used in Figure 0.1.
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1.b. The fiber surface of a divide. The central objects in this paper are specific Seifert surfaces
associated with divide links. We describe them below. Usually, the definition appeals to Morse
functions but, here, as we only need a combinatorial description a simplified version will be suffi-
cient. We then describe a basis for the first homology group of the fiber surface.

If P is a divide, the regions of D \P can be colored with two colors, say black and white, so that
adjacent regions have different colors. Up to inverting the colors of all regions simultaneously, this
coloring is unique (and using either version leads to equivalent results).

Definition 1.2. (See Figure 1.3.) Assume that P is a divide whose complement in D is colored in
black and white. Then the fiber surface Σ(P) is the surface that consists of those vectors in ST (D)
that are based at points of P and are directed into a black region or are tangent to P, plus all vectors
based at all double points of P.

We denote by SDiv the family of all isotopy classes of fiber surfaces of connected divides.

Figure 1.3. On the left, a divide whose complement is colored in black and white. The
corresponding fiber surface is the collection of all displayed tangent vectors in the tangent
bundle. On the right, the fiber surface around the fiber of a double point. The vertical
direction corresponds to the direction of the fiber S1 (the top has to be identified with the
bottom).

The fiber surface of a divide P consists of one segment in the fiber of every regular point of P,
plus the whole fiber of every double point, plus the collapsed fibers of the extremities of the
segments of P. It is a topological surface; it is not smooth along the fibers of the double points
of P, but this is of no importance for our purpose. Its boundary is the link L(P).

It follows from the definition that if two divides are isotopic as divides, the corresponding fiber
surfaces are isotopic in S3, so that the map P 7→ Σ(P) induces a map from Div to SDiv, also
denoted by Σ. The latter map is not injective, as for example two divides that are related by a
Reidemeister move of type III are not isotopic as divides, but the associated fiber surfaces are
isotopic in S3 (see examples in the proof of Theorem C below).

Considering only connected divides will not reduce the range of our result, but will help to
avoid technicalities. In particular it permits to speak of first homology group and Betti number,
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which is useful for checking incompressibility. In our context, connectivity of the fiber surface
corresponds to connectivity of the underlying divide. For P a divide, we shall write X(P) for the
set of its double points and O(P) for the set of its inner faces, that is, the regions in D \ P that do
not touch ∂D.

Lemma 1.3. With the above notation, the first Betti number b1(Σ(P)) of the fiber surface of a
connected divide P is |X(P)| + |O(P)|.

For example, for P the divide depicted in Figure 1.3, we have |X(P)| = 5 and |O(P)| = 5,
therefore b1(Σ(P)) = 10.

Proof. Consider P as a planar graph whose vertices are double points of P and points of P ∩ ∂D.
We may suppose that no segment of P connects two points of P ∩ ∂D, since in this case the
associated connected component of Σ(P) is a disc, and does not contribute to the first Betti number.
Write eP for the number of segments that connect two double points of P , and e′P for the number
of segments that connect one double point to one point of P∩ ∂D (for example, eP = 9 and e′P = 2
in Figure 1.3). Then the surface Σ(P) consists of eP rectangles and e′P triangles, all glued along the
fibers of the double points of P as in Figure 1.3. The contribution of every rectangle to the Euler
characteristic of Σ(P) is −1 and the contribution of every triangle is 0, yielding χ(Σ(P)) = −eP.

Now, the divide P, seen as a planar graph, has |X(P)| + e′P vertices, eP + e′P edges, and |O(P)|
inner faces. Since it is a planar graph, its Euler characteristic is 1, yielding (|X(P)| + e′P) − (eP +

e′P) + |O(P)| = 1. We then get eP = |X(P)| + |O(P)| − 1. Since the first Betti number of a surface
with boundary is 1 minus its Euler characteristic, we deduce b1(Σ(P)) = |X(P)| + |O(P)|. �

For computing the signature of the fiber surface of a divide in Section 3, we will need an
explicit basis of its first homology group. Lemma 1.3 suggests that there might exist a natural
basis in terms of double points and inner faces of the divide. As shown by Ishikawa [10], this is
indeed the case. For P a divide and p a double point of P, denote by Sp the curve that describes
the oriented fiber of p in ST (D) (the red curve in Figure 1.3 right). We recall that the regions of
the complement of P are assumed to be colored in black and white. For q an inner face of P, let
Cq be a lift of the boundary of q, travelled clockwise, that always points inside q if q is black and
always points outside if q is white (see Figure 1.4). By definition, these |X(P)| + |O(P)| curves lie
in the fiber surface Σ(P). A positive Hopf band is an annulus in S3 with writhe +2 (see Figure 1.4
right).

Proposition 1.4 (Ishikawa). Assume that P is a connected divide. Then its fiber surface Σ(P) is
the iterated plumbing of |X(P)|+ |O(P)| positive Hopf bands. The cores of the bands are the curves
Sp for p in X(P) and Cq for q in O(P).

We refer to Ishikawa [10] for the definitions of plumbing and for the proof. It is then easy to
derive the expected basis for the homology of the fiber surface of a divide.

Corollary 1.5. With the above notations, the classes {[Sp]}p∈X(P) ∪ {[Cq]}q∈O(P) form a basis of
H1(Σ(P),Z).

1.c. Subsurfaces and subdivides. We now introduce two partial orders 6surf and 6div on the
sets SDiv and Div and compare them. A subsurface Σ in a surface Σ′ is incompressible in Σ′ if it
is π1-injective. In particular, this means that no boundary component of Σ bounds a disc in Σ′ \ Σ.
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Figure 1.4. On the left, the curves Sp (red) and Cq (blue and green) on the fiber surface
of a divide. In Lemma 3.3, we will use the fact that the lifts of the blue and green curves
intersect once every adjacent red curve, and that the lifts of a blue curve and of a green
curve intersect once per common side of the corresponding regions of D\P. On the right,
a positive Hopf band.

Definition 1.6. We say that (the isotopy class of) a surface Σ embedded in R3 is a surface minor
of (the isotopy class of ) another surface Σ′ if Σ is isotopic to an incompressible subsurface of Σ′.
We then write Σ 6surf Σ′.

Surface minority is clearly a reflexive and transitive relation. The incompressibility condition
implies that, if Σ 6surf Σ′ holds, then the first Betti number b1(Σ) is not larger than b1(Σ′), implying
that the relation is also antisymmetric. Hence 6surf is a partial order on isotopy classes of embed-
ded surfaces. However, it is a weak relation, in the sense that most surfaces are incomparable, like
the annuli An mentioned in the introduction.

From now on, our aim is to investigate the restriction of the partial order 6surf to the fam-
ily SDiv. We shall exploit the peculiarities of divides. The first step consists in introducing a new
partial order on divides based on desingularization of double points.

Given a connected divide P and a double point p of P, there are two natural ways of desingu-
larizing P around p, that consist in replacing the ends of the four segments of P ending at p by
two arcs that connect them, see Figure 1.5. Then, two of the faces adjacent to p and that are of the
same color are merged into a single one. We denote by P•p the divide obtained by joining the two
black faces adjacent to p and by P◦p the divide obtained by joining the two white faces. If p is a
separating vertex in P, then either P•p or P◦p is not connected. In this case, the desingularization is
allowed only if one of the two components consists of one single segment, and P•p or P◦p denotes
the other connected component.

Definition 1.7. We say that a connected divide P′ is a subdivide of P, if P′ can be obtained from P
by several desingularizations and isotopies. We then write P′ 6div P.

We consider the relation induced by 6div on the set Div. It is clearly reflexive and transitive,
and, since the number of double-points decreases when one of them is desingularized, it is also
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Figure 1.5. The two ways of desingularizing a double point of a divide P, and the cor-
responding operations on discal graphs (Section 1.d). The divide P•p and its code are
depicted on the left, whereas P◦p and its code are on the right.

antisymmetric. Hence it induces an order onDiv. The connection between 6surf and 6plan comes
from the following

Lemma 1.8. Assume that a divide P′ is a subdivide of a divide P. Then the surface Σ(P′) is a
surface minor of Σ(P).

Proof. Let p be a non-separating double point of P. Then the fiber surface Σ(P•p) associated with P•p
is obtained from Σ(P) by cutting two segments in the fiber of p (see Figure 1.6). On the other hand,
P•p has one double-point and one inner region less that P, so that we have b1(Σ(P•p)) = b1(Σ(P))−2.
Then, the two cut segments are essential in Σ(P), and therefore Σ(P•p) is incompressible in Σ(P). If
p separates P, then the second cut disconnects Σ(P), so that only the first cut is essential. But in
this case, we have b1(Σ(P•p)) = b1(Σ(P)) − 1, so that Σ(P•p) is also incompressible in Σ(P). By the
same arguments, Σ(P◦p) is incompressible in Σ(P). �

Lemma 1.8 means that the order 6surf on fiber surfaces is a refinement of the order 6div on
divides. This refinement is strict, as for example two divides that are related by a Reidemeister
move of type III are incomparable under 6div although the associated fiber surfaces are isotopic.

1.d. Coding divides by embedded graphs. We now explain how to encode a divide using a
(colored) graph embedded in the disc D. This encoding will be the main tool for establishing that
the surface minor order is a well-quasi-order.

Definition 1.9. A discal graph is a graph embedded into D such that the edges intersect ∂D in
vertices only, and whose vertices are colored as follows: the vertices lying in the interior of D are
black, those lying on ∂D are white. If there is exactly one vertex on ∂D, we can also draw a star
instead of coloring in white.

We denote by GD the family of all isotopy classes of discal graphs.

Definition 1.10. Assume that P is a connected divide. Then the code of P is the discal graph G(P)
obtained by taking one vertex in every black region of D \ P and by putting at every double point
of P an edge that connects the two vertices associated with the two adjacent black regions. If P
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Figure 1.6. Desingularizing a double point in a divide amounts to cutting the fiber sur-
face along two segments.

does not intersect ∂D at all, and if the region of D \ P touching ∂D is black, then we put only one
vertex on ∂D, and color it with a star. For p a double point of P, the corresponding edge is denoted
by e(p).

Several examples of codes of divides are depicted in Figures 1.5, 0.2, 3.10 and 3.9. It is easily
seen that exchanging the colors of the regions of D \ P replaces the code by its dual in the disc. It
follows that every divide has two codes which are dual planar graphs.

The interesting property of the coding is that it behaves nicely with respect to divide minors.
Let G be a discal graph and e be an edge of G. If e does not disconnect G or has one end which is
a degree one white vertex, then we denote by G− e the discal graph obtained from G by deleting e
(see the bottom right picture in Figure 1.5). If e is not a loop in G, then we denote by G/e the graph
obtained by contracting e in G (bottom left picture). In the latter case, the vertex that corresponds
to the collapsed edge e is black if the two ends of e were black, white if at least one of the ends
was white, and a star if at least one of the ends was a star.

Lemma 1.11. Assume that P a connected divide, and that G(P) is a code for P. Let p be a
double point of P. If P◦p is defined, then so is the discal graph G(P)−e(p), and it is the code of P◦p.
Similarly, if P•p is defined, then so is G(P)/e(p), and it is the code of P•p.

Proof. For P◦p, the two adjacent black faces are not any more adjacent at p, so that e(p) should
be removed. The rest of G is unchanged. For P•p, the two adjacent black faces have been united,
so that the two corresponding vertices of G(P) should also be united. If one of the two faces is
external, then their union is external; if there was only one external face before, there is also only
one after, hence the coloring. �

In the line of the previous lemma, we now introduce a partial order on discal graphs that corre-
sponds to divide minority, hence refines surface minority.

Definition 1.12. For G,G′ two discal graphs, we say that G is a discal minor of G′ if G can be
obtained from G′ by repeatedly choosing one edge e and replacing G by G−e or by G/e, if allowed.
We then write G 6D G′.
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We consider this relation for discal graphs only, which means that the white vertices should
always lie on the exterior face, and that there can be a star only if there is no white vertex. It
induces a partial order on GD. The restrictions in the definition of discal minority actually imply
that the order 6D on GD is the exact counterpart of the order 6div on Div, but we do not need this
result. What we need is the following straightforward consequence of Lemmas 1.8 and 1.11 which
reduces the proof of Theorem A to Proposition B.

Corollary 1.13. Suppose that P, P′ are connected divides with codes G(P),G(P′). If G(P′) is a
discal minor of G(P), then the fiber surface Σ(P′) is a surface minor of Σ(P).

2. A Robertson-Seymour type result for graphs embedded into the plane

The aim of this graph-theoretic section is to show that planar minority for colored planar graphs
is a well-quasi-order (Proposition B). Merging this result with those of Section 1, we will then
easily complete the proof of Theorem A.

2.a. Planar minors. An embedded graph colored with a set C is a graph embedded into the
plane R2, whose vertices are labelled with elements of C. We denote by GR

2

C
the set of isotopy

classes of embedded graphs colored with C. For G an embedded graph, we denote by G− the
associated abstract graph.

Definition 2.1. Assume that G and H are embedded colored graphs and that C is an ordered
set. We say that H is a planar minor of G, written H 6plan

C
G, if H can be obtained from G by

repeatedly applying the following operations:
(i) decreasing the color of a vertex,
(ii) deleting an edge,
(iii) contracting an edge whose ends have the same color,
(iv) deleting an isolated vertex.

The relation 6plan
C

is a partial order on (isotopy classes of) embedded colored graphs. The
difference between the classical graph minority relation and the current planar minority relation
lies in that, in the latter case, graphs are equipped with a specific embedding in the plane and that
the minor relation has to preserve this embedding: if an embedded graph H is a planar minor of G,
then H− is a graph minor of G−, but the converse is not true in general.

Two particular cases of Proposition B are already known. The first one is the case of embed-
ded trees, which is known as the Kruskal Tree Theorem [13]. The second one is the case of
3-connected graphs. Indeed, by a theorem of Whitney [17], these graphs embed uniquely into the
plane (up to a choice of orientation and of exterior face), so that Proposition B is nothing but the
Robertson-Seymor Theorem for (non-embedded) planar 3-connected colored graphs. The latter is
not as difficult as the general theorem involving arbitrary graphs; it is the subject of the four first
papers [14] of the celebrated series Graph minors of 23 articles [15]. It has also been rewritten
and simplified by several authors [6, 7].

The idea for proving Proposition B will be to combine the two previously known cases by using
a decomposition result of Tutte [16] stating that every planar graph can be cut along vertices or
pairs of vertices into finitely many 3-connected graphs, so that the gluing pattern can be described
by a certain tree. Moreover, in the case of an embedded graph, the embedding into the plane
is governed by the embedding of the corresponding tree into the plane. Using this approach,



MINOR THEORY FOR SURFACES AND DIVIDES OF MAXIMAL SIGNATURE 11

we associate with every embedded graph an embedded tree whose leaves are colored with 3-
connected graphs. Now, the Robertson-Seymour Theorem says that the colors of the leaves, that
is, 3-connected planar graphs, are quasi-well-ordered, and a variant of the Kruskal Tree Theorem
then implies that the above considered embedded trees are well-quasi-ordered, implying in turn
that the embedded graphs we consider are well-quasi-ordered.

The rest of the section details the above arguments.

2.b. Tutte-Mazoit trees. Following Mazoit [11], we associate with every embedded colored
graph a tree that encodes its embedding into the plane. For G a colored graph embedded in the
plane or in a disc, the planar decoration G∗ of G is the graph obtained from G by adding a special
oriented label on the edges of G which are adjacent to the exterior face, so that all exterior edges
are oriented in the clockwise direction. A graph is k-connected if removing any set of less than k
vertices, and the adjacent edges, yields a graph that is still connected.

Definition 2.2. (See Figure 2.7.) Let G be an embedded colored graph. A Tutte-Mazoit tree for
G is an abstract binary tree TG, such that every node v is labelled with (a) a disc D(v) in the plane
whose boundary ∂D(v) intersects G in some vertices only, and (b) the planar decoration G(v)∗ of
the restriction G(v) of G to D(v), and such that

(i) for every leaf v of TG, the graph G(v) is 3-connected,
(ii) for every internal node v with sons v1, v2, the disc D(v) is the union of D(v1) and D(v2),
(iii) denoting by r(TG) the root of TG, the graph G(r(TG)) equals the whole graph G (or, equiv-

alently, the disc D(r(TG)) contains all of G).

Given an embedded planar graph, it is easy to construct an associated Tutte-Mazoit tree by
repeatedly cutting along separating vertices and pairs of vertices, until the remaining blocks are
3-connected. Note that a graph can admit different Tutte-Mazoit trees, which differ by the choice
of the discs and the order in which they are glued. The next result states that planar minors behave
nicely with respect to Tutte-Mazoit trees.

Lemma 2.3. Assume that G and H are two embedded colored graphs, that TG and TH are two
associated Tutte-Mazoit trees, that u is an internal node in TG with sons u1, u2, and that v is an
internal node in TH with sons v1, v2. If H(v1) 6plan

C
G(u1) and H(v2) 6plan

C
G(u2) hold, then so

does H(v) 6plan
C

G(u).

Proof. Perform the reductions of G(u1) to H(v1) inside D(u1) and of G(u2) to H(v2) inside D(u2),
keeping on ∂D(u1) (resp. ∂D(u2)) the vertices that belong to ∂D(u1) (resp. ∂D(u2)). By gluing the
two discs D(u1) and D(u2), and identifying the vertices on the boundaries that are in G(u1)∩G(u2),
we obtain a reduction from G(u1) ∪G(u2) to H(v1) ∪ H(v2), implying that H(v) is a planar minor
of G(u). �

2.c. Proof of Proposition B. The following result is the variant of the Kruskal Tree Theorem that
we need. Roughly speaking, it states that, in a sequence of finite trees with an order relation on
the nodes that is compatible with the tree structure, if there exists an infinite antichain, then there
exists a minimal one, that is, an antichain X such that every set above X is not an antichain.

Lemma 2.4 (Lemma on trees [14]). Assume that T1,T2, . . . is an infinite sequence of rooted trees.
Assume that E is a partial order on the set W = V(T1)∪V(T2)∪ . . . of all nodes, such that for two
nodes u in V(Ti) and v in V(T j) with i < j, if uEv holds, then uEw holds for every node w in V(T j)
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Figure 2.7. A Tutte-Mazoit tree.

that lies on the path between v and r(T j). Finally assume that the set of roots r(T1), r(T2), . . . is an
infinite antichain for E. Then there exists an infinite antichain X in W for E, with |X ∩ V(Ti)| 6 1
for all i, such that the set Y of all sons of elements of X contains no infinite antichain for E.

We refer to the article [14] by Robertson and Seymour for the proof; it follows the scheme of
Nash-Williams’ proof of the Kruskal Tree Theorem [13]. We can now complete the argument.

Proof of Proposition B. The proof is by contradiction. Suppose that G1,G2, . . . is an infinite an-
tichain for the planar minor order. Let TG1 ,TG2 , . . . be associated Tutte-Mazoit trees. Let Eplan

C
be

the partial order on the set V(TG1) ∪ V(TG2) ∪ . . . defined as follows: for u a node of TGi and v
a node of TG j , u Eplan

C
v holds if and only if Gi(u) is a planar minor of G j(v). By hypothesis, the

set of roots r(TG1), r(TG2), . . . is an infinite antichain for Eplan
C

. Also, for w an ancestor of v in the
corresponding tree, u Eplan

C
v implies u Eplan

C
w. Thus, the hypotheses of Lemma 2.4 are satisfied.

Therefore, there exists an infinite set X in V(T1)∪ V(T2)∪ . . . which is an antichain and such that
the set Y of all sons of the elements of X contains no infinite antichain.

Suppose first that Y is finite. Then infinitely many elements of X are leaves in their respective
trees. By the Robertson-Seymour Theorem [14], there exist i < j, u a leaf of TGi and v a leaf
of TG j such that Gi(u)− is a graph minor of G j(v)−. Since u and v are leaves, Gi(u)− and G j(v)−

are 3-connected planar graphs. Therefore, by Whitney’s Theorem [17], their embeddings as Gi(u)
and G j(v) are fixed by the decorations Gi(u)∗ and G j(v)∗. Then we also have Gi(u) 6plan

C
G j(v), a

contradiction.
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Suppose now that Y is infinite. By hypothesis Y contains no infinite antichain. Let Y (2) denote
the set of pairs of sons of all elements in X. Then, by Higman’s Lemma [8], Y (2) also contains no
infinite antichain. That means that there exist i < j, a node u in TGi ∩ X with sons u1, u2 and a
node v in TG j ∩ X with sons v1, v2 satisfying u1 E

plan
C

v1 and u2 E
plan
C

v2. In other words, Gi(u1) is
a planar minor of G j(v1), and Gi(u2) is a planar minor of G j(v2). Then, by Lemma 2.3, Gi(u) is a
planar minor of G j(v), a contradiction again. �

2.d. Application to fiber surfaces of divides. Returning to fiber surfaces of divides and combin-
ing Corollary 1.13 and Proposition B, we immediately deduce Theorem A, that is, the result that
surface minority is a well-quasi-order on the family SDiv of fiber surfaces of divides.

Proof of Theorem A. First, surface minority admits no infinite descending chain. Indeed, taking
an incompressible strict subsurface decreases the first Betti number. Next, no infinite antichain
of 6surf may be included in SDiv. Indeed, by Corollary 1.13, the codes of the involved surfaces
would provide an infinite antichain in the set of discal graphs equipped with 6D. Now 6D is the
restriction to the class GD of the order 6plan

C
on colored graphs embedded into the plane, where C

is the ordered set ? < ◦ < •. Then, by Proposition B, (GD,6D) contains no infinite antichain. �

3. Signatures of divides

In this section, we prove Theorem C about the fiber surfaces of divides whose signature is
maximal. Since it is easier to enumerate the minors of a graph than the minors of a surface, the
proof will deal with divides and their codes rather than with fiber surfaces. This is the reason why
we will first prove a version of Theorem C dealing with divides.

3.a. An explicit version of Theorem C. Denote by Q the divide whose code consists of a cycle
with a black vertex, and by X the divide whose code is a cross with four edges, one black vertex in
the center, and four white vertices on the border (see Figure 0.1). For p, q, r positive integers, we
denote by Ep,q,r the divide coded by a tree with three branches with respective lengths b(p + 1)/2c,
b(q + 1)/2c and b(r + 1)/2c, and a black or white vertex at the end depending on whether p (resp.
q, resp. r) is even or odd (see Figure 3.8). Finally, for p, q positive, we denote by Fp,q the divide
coded by a triangle with two black and one white vertices, and two branches of respective lengths
p−2 and q−2 (in the sense of the definition of Ep,q,r) starting from the two black vertices (see
Figure 3.8).

Theorem C then essentially reduces to the following result, which is the goal of this section.

Proposition 3.1. Assume that P is a divide. Then the signature of Σ(P) is maximal if and only if P
does not contain Q, X, E2,2,2, E1,3,3, E1,2,5 or F2,5 as a subdivide (see Figure 3.8).

The strategy for the proof is to first show that the fiber surfaces corresponding to the given
divides do not have maximal signature. In order to do this, we introduce in the next subsection
a simple algorithm for computing the signature of a divide link (Lemma 3.3). Then, we list the
divides that do contain none of the prohibited divides (this step requires some care, but is not
difficult) and check that their signatures are maximal. This is done in the third subsection. Finally
we deduce Theorem C from Proposition 3.1.
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Figure 3.8. The prohibited divides Q, X, E2,2,2, E1,3,3, E1,2,5 and F2,5, and their codes.

3.b. Computing the signature of the fiber surface of a divide. Here we recall the definition of
the signature of a surface in R3, and give a simple algorithm for computing the signature of the
fiber surface associated with any divide, starting from a code of the divide.

Let Σ be an oriented embedded surface in R3 and {b1, . . . , bn} be a family of curves on Σ that
induces a basis of H1(Σ,Z). The associated Seifert matrix is the n × n matrix S defined by Si, j =

lk(bi, b+
j ), where b+

j denotes a loop in R3 obtained by slightly pushing b+
j out of Σ in the positive

direction, and lk denotes the usual linking number. It turns out that the signature of the symmetric
matrix S + tS does not depend on the family {b1, . . . , bn}, but on Σ only (as explained in Murasugi’s
book [12]), and actually on the link ∂Σ only.

Definition 3.2. For Σ an oriented surface in R3, the signature of Σ is the signature of any sym-
metrized Seifert matrix S + tS .

Assume that G is a discal graph, that its black vertices are called v1, . . . , va, its edges ea+1, . . . ea+b,
and its faces fa+b+1, . . . , fa+b+c. We say that a vertex and an edge are adjacent if the vertex is an
extremity of the edge, and that they are twice adjacent if the edge is a loop based at the vertex.
Similarly, we say that an edge and a face are adjacent (resp. twice adjacent) if the edge appears
once (resp. twice) on the boundary of the face. We say that a vertex and a face are k times adjacent
if the vertex appears k times on the boundary of the face. By convention, two elements that are not
adjacent are 0 time adjacent. We define the symmetrized Seifert matrix of G as follows: S(G) is a
square matrix of size a+b+c whose rows and columns correspond to the black vertices, the edges,
and the faces of G; all diagonal coefficients are equal to 2; for i , j, there is a k in position (i, j) if
the two corresponding elements of G are k times adjacent.

Lemma 3.3. Assume that P is a divide and let G(P) be a code of P. Then the symmetrized Seifert
matrix of G(P) coincides, up to permutation of the indices, with the symmetrized Seifert matrix
associated with the basis {[Sp]}p∈X(P) ∪ {[Cq]}q∈O(P) of H1(Σ(P),Z) given by Corollary 1.5.

Proof. Remember from Proposition 1.4 that the edges of G(P) correspond to the double points
of P, that is here, to loops of the form Sp for p in X(P), and that the vertices and the faces of G(P)
respectively correspond to the black and to the white faces of D \ P, that is here, to loops of the
form Cq for q in O(P). All these loops have a tubular neighbourhood in Σ(P) that is a positive
Hopf band, therefore they have self-linking number 1 (Proposition 1.4 and Figure 1.4). Since we
consider the symmetrized matrix, we get coefficients +2 everywhere on the diagonal.

Now, every curve that is a diameter of D lifts to a 2-sphere in ST (D). Then, if the projections
of two loops on D are disjoint, the loops are not linked, so that the only possibility for two distinct
loops to yield a non-zero coefficient is to correspond to two adjacent faces q, q′ in D \ P, or to a
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face q and a double point p that is adjacent to q. For the matrix S(P), this gives all the mentioned
coefficients 0.

Next, for every double point p of P, there are at most four loops that intersect Sp, corresponding
to the at most four adjacent inner faces of D\P. For every such face, the corresponding loop inter-
sects Sp in one point, and the contribution to the linking number is positive. Thus the contribution
to the Seifert matrix is +1 per adjacency.

Finally, for every pair of adjacent inner faces q, q′ in D \ P, the corresponding loops intersect
once for every common edge. Once again, all these intersection points contribute positively to the
linking number, thus the contribution to the Seifert matrix is again +1 per adjacency. �

3.c. Prohibited divides for the maximality of the signature. Call a divide and its associated
codes maximal if the associated divide surface has maximal signature. Our goal is then to de-
termine all maximal divides. For that, we first need to see which divides of the form Ep,q,r have
maximal signature. Remember that the determinant of a surface is the invariant defined as the
determinant of any of its symmetrized Seifert matrices (see for example [12]). Remember also
that an n × n matrix M has maximal signature if and only if the determinant of every minor of M
(in the sense of linear algebra) is positive.

Lemma 3.4. For all positive integers p, q, r, we have det(Σ(Ep,q,r)) = −pqr + p + q + r + 2.

Proof. Let Mp denote the p×p-matrix whose diagonal coefficients are equal to 2, and whose upper-

and lower-diagonal coefficients are equal to 1:

 2 1
1 2 1

1 2 . . .
. . .

. . . 1
1 2

. By induction we have det(Mp) = p+1.

By Lemma 3.3, the symmetrized Seifert matrix of Σ(Ep,q,r) is the block matrix

2 1 0 . . . 1 0 . . . 1 0 . . .

1
0 Mp
...

1
0 Mq
...

1
0 Mr
...

.

Developping the first line, we get det(Σ(Ep,q,r)) = 2(p + 1)(q + 1)(r + 1)− p(q + 1)(r + 1)− (p +

1)q(r + 1) − (p + 1)(q + 1)r = −pqr + p + q + r + 2. �

Lemma 3.5. A divide of type Ep,q,r is maximal if and only if, up to permutation, we have p = q = 1,
or p = 1, q = 2 and r = 2, 3 or 4.

Proof. The signature of a surface is maximal if and only if the determinant of every minor is
positive. Applying this observation to Σ(Ep,q,r) with the canonical Seifert matrix, and using
Lemma 3.4, we deduce that the divides E1,2,2, E1,2,3, E1,2,4, and E1,1,r, for every r, are maximal.
Every divide not in this list contains E2,2,2, E1,3,3, or E1,2,5 as a minor. By Lemma 3.4, we have
det(Σ(E2,2,2)) = det(Σ(E1,3,3)) = det(Σ(E1,2,5)) = 0, so that these divides are not maximal. �

Proof of Proposition 3.1. First we show that Q, X, E2,2,2, E1,3,3, E1,2,5 and F2,5 are not maximal.
Lemma 3.5 treats the case of E2,2,2, E1,3,3 and E1,2,5. By Lemma 3.3, the Seifert matrix of Σ(Q) is
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[
2 1 2
1 2 1
2 1 2

]
, which has determinant zero, and the Seifert matrix of Σ(X) is

 2 1 1 1 1
1 2 0 0 0
1 0 2 0 0
1 0 0 2 0
1 0 0 0 2

, which also has

determinant zero. Finally, Figure 3.9 shows that F2,5 is obtained from E1,2,5 by a Reidemeister III
move; this implies that the surfaces Σ(F2,5) and Σ(E1,2,5) are isotopic, so that F2,5 is not maximal
either.

Figure 3.9. The divides E1,2,5, F2,5, and the two divides obtained by applying Reide-
meister III moves. The two latter have a code containing a cycle of length 4, hence the
fiber surfaces contain Σ(X) as a surface minor.

We now want to show that every divide either contain one of the six above mentioned divides
or is maximal. The connected sum of two surfaces has maximal signature if and only if the
two summands have maximal signature, since both the signature and the first Betti number are
additive under connected sum. Now, if the code of a divide has a separating white vertex, then the
corresponding fiber surface is a connected sum. Therefore we can restrict our attention to codes
with no separating white vertex.

Let P be a maximal divide whose fiber is not a connected sum. We will show that either P is
maximal or, after possibly applying several Reidemeister moves of type III, P contains one of the
minors of Figure 3.8. We use a case-by-case analysis. Let Σ be the fiber surface associated with P,
and G be a code of P. By hypothesis, G has no separating white vertex.

Case 1: G contains a cycle all of whose vertices are black. Then contracting all edges of this
cycle but one yields a Q-minor.

Case 2: G has a black vertex of degree at least 4. Then G has an X-minor.
Case 3: G has more than one black vertex of degree 3.
Case 3.1: There are two degree 3 black vertices than are connected by a path of black vertices.

The contraction of this path yields a minor with a degree 4 vertex, hence an X-minor for P.
Case 3.2: There are two black vertices connected by two different paths (whose vertices need

not to be black). Then the union of there two paths is a cycle of length at least 4, and the dual of G
contain a black vertex of degree at least 4, hence an X-minor for P.

Case 4: G contains one black vertex of degree 3, say v.
A branch is a path all of whose vertices are black. Since v is the unique degree 3 vertex, a

branch starting at v ends either at a degree 1 black vertex, or at a white vertex (of any degree).
Case 4.1: The three branches starting at v end at different white vertices or end at black vertices.

In this case, the union of these branches is a tree Tv around v of type Ep,q,r. By Lemma 3.5, either
Tv is maximal or it contains E2,2,2, E1,3,3 or E1,2,5.
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Case 4.1.1: Tv = E1,2,2 or E1,2,4. Then Tv has only one white vertex. If G contains an additional
edge, it must contain a loop that encircles Tv. This gives a Q-minor in the dual of G.

Case 4.1.2: Tv = E1,2,3. If G has additional edges, then either there is a loop that encircles Tv
as above, or there is an edge joining the two white vertices of Tv. This, in turn, gives a cycle of
length 4, hence an X-minor in the dual of G.

Case 4.1.3: Tv = E1,1,r for some r ≥ 1. Once again, there can some additional loops based at
the white vertices. They can encircle Tv, which give a Q-minor as above, or they can be inside a
face of G, in which case the dual of G contains two or more black vertices of degree 3, hence is
not maximal by case 3. The only case left is if there are edges that connect the two white vertices
of Tv. In this situation we can apply several Reidemeister III moves and turn P into a divide of
type E1,1,r′ where r′ − r is twice the number of additional edges. The latter has maximal signature.

Case 4.2: Two of the three branches starting at v end at the same white vertex.
Case 4.2.1: The two branches are not of length 1. Then either their lengths add up to 3 and G

is F2,3 or F2,4 or it contains F2,5 as a minor, or the branches are longer, and G contains a cycle of
length 4 as a minor. Now we applying a Reidemeister III move to F2,3 and F2,4 respectively yields
E1,2,3 and E1,2,4 which are maximal.

Case 4.2.2: The two branches are of length 1. If G contains nothing but the third branch, then G
contains some E1,1,r as a minor of corank 1 and one checks det(G) > 0. In this case, the signature
is maximal, and G is of type BCn.

Otherwise, the two extremal white vertices have an edge between them. If the third branch is of
length 1, and there is one additional edge, G is the dual to F2,3 or is self-dual and G is maximal. If
there is more than one edge, either all edges are on the same side and the dual of G contains F2,5,
or they are on different sides and the dual of G contains an inner black vertex, which contradicts
the maximality of G. If the third branch is of length larger than 1, then there can be no edge
between the white edges, for otherwise G would contain a 4-cycle.

Case 4.3: All three branches starting at v end at the same white vertex.
Case 4.3.1: All branches are of length 1. Then G corresponds to the Dynkin diagram G2.

Applying a Reidemeister III move, we obtain E1,2,2, which is maximal.
Case 4.3.2: One of the branches is of length two. If it is the central one, then the dual of G

contains a cycle of two black vertices, hence a Q-minor. If it is an exterior branch that is of length
2, then the dual of G is F2,3 or F2,4. If there is any other additional edge, we get an X-minor. In
all other cases, there is a cycle of length 4 in G, hence also an X-minor in P.

Case 5: G contains no black vertex of degree 3.
Case 5.1: G contains more than 3 white vertices. Then, since G has no separating white vertex,

there is cycle of length 4, hence an X-minor in P.
Case 5.2: G contains three white vertices. If there is a black vertex, there is a cycle of length

4, hence an X-minor. Otherwise the dual of G is a tree, and these have already been analysed in
case 4.1.

Case 5.3: G contains two white vertices. Then G is made of several paths connecting these two
vertices, plus some loops.

Case 5.3.1: There is one path only. Then G is of type A2n.
Case 5.3.2: There is more than one path. Either there are at least two black vertices, and then

there is a cycle of length 4, thus an X-minor, or there is at most one black vertex. In the latter case,
either it is adjacent to an exterior face and G a again the dual of a tree, or it is in the interior of G,
and the dual of G contains a black cycle.
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Case 5.4: G contains one white vertex only. Then either G is a path of type A2n+1 or it contains
black vertices on its exterior loop only. If G has more than two black vertices, then its dual contains
an X-minor. If G has exactly two black vertices, then its dual has a degree 3 black vertex, and these
have been classified. If G has one black vertex, either G is a cycle with one white and one black
vertex, and G corresponds to the diagram BC1, or the dual of G contains a degree 3 black vertex.

Case 5.5: G has no white vertex. Then G is a path of black vertices, and the corresponding
divide is of type A2n.

This completes the proof: either P is maximal or P contains one of the prohibited minors. �

We can now return to fiber surfaces and conclude.

Proof of Theorem C. For the list of prohibited minors, starting from Proposition 3.1, we only have
to show that the surfaces Σ(E2,2,2), Σ(E1,3,3),Σ(E1,2,5), and Σ(F2,5) all contain Σ(Q) or Σ(X) as a
surface minor. For Σ(E2,2,2), Figure 3.10 shows that, applying a Reidemeister move of type III
to the divide of E2,2,2 yields a cycle of length 3, which contains Q as a divide minor. Since a
Reidemeister III move for the divide corresponds to an isotopy for the fiber surface, Σ(E2,2,2)
contains Σ(Q) as a surface minor.

Figure 3.10. The divide E2,2,2 and its image after Reidemeister III move. One can then
desingularize two double points and obtain Q.

Similarly, starting from the codes of Σ(E1,3,3),Σ(E1,2,5) and Σ(F2,5), and applying Reidemeis-
ter III moves, we obtain some graphs that contain cycles of length 4 (see Figure 3.9), so that their
duals contain X. Therefore, the corresponding fiber surfaces all contain Σ(X) as a surface minor.

The complete list of all codes whose associated fiber surface is not a connected sum and has
maximal signature can now be made by following the proof of Proposition 3.1. If G has no degree
3 vertex, then the divide is of type An. Otherwise it has one degree 3 vertex. If case 4.1 holds,
then G is of type Dn (which is also E1,1,n in our notation), or it is E1,2,2, E1,2,3 or E1,2,4. If case 4.2
holds, then G is of type BCn, or it is F2,3 or F2,4. If the latter holds, we can apply a Reidemeister III
move and transform them into E1,2,3 and E1,2,4 respectively. If case 4.3 holds, G can be transformed
into E1,2,2. In case 5, considering the dual of G leads back to case 4.

The divides listed above then correspond to those depicted in Figure 0.2. �
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4. Questions

With Theorem A, we have exhibited a class of surfaces—fiber surfaces of divides—for which
surface minority is a well-quasi-order. It is natural to wonder whether surface minority is a well-
quasi-order for other natural classes of surfaces. An obvious candidate is the family of the canon-
ical Seifert surfaces of positive braids, for which an analog of Theorem C is already known [4].

Question 4.1. Is the family of all canonical Seifert surfaces for positive braids, equipped with the
surface minor order, a well-quasi-order?

If we restrict to fiber surfaces of positive braids with bounded braid width n, then the answer to
Question 4.1 is positive. Indeed, such a surface is coded by a word on the alphabet {σ1, . . . , σn−1}

that describes the braid. Erasing a letter in this word amounts to cutting an essential ribbon in the
surface, so that if a word w is a subword of w′, then the surface associated with w is a surface minor
of the surface associated with w′. Then, the property just follows from the Higman Lemma [8]
which states that, for words on a finite alphabet, the subword order is a well-quasi-order.

On the other hand, we conjecture that the answer to Question 4.1 with no restriction on the
braid index is negative. For an infinite antichain, we propose the canonical Seifert surfaces of the
following family of positive braids

σ2
1σ

2
2σ

2
1σ

2
3σ

2
2σ

2
1σ

2
4σ

2
3 . . . σ

2
kσ

2
k−1 . . . σ

2
n−2σ

2
n−3σ

2
nσ

2
n−1σ

2
n−2σ

2
nσ

2
n−1σ

2
n =

A reason why this family could be an infinite antichain is that the associated Seifert surfaces
contain a natural ribbon that visits all strands and has writhe 2n−1. The presence of the σ2

1 and σ2
n

at the two ends then makes it unlikely that the surface can be embedded into another larger surface
without changing the framing.

In another direction, we can look for other properties of fiber surfaces of divides eligible for
Theorem A. Falling short from having maximal signature by a bounded amount is such a property:
for c positive, sign(Σ) ≥ b1(Σ) − c is a property of Σ that is stable under going to a surface minor.

Question 4.2. For c a fixed integer, what are the prohibited minors for the property sign(Σ) ≥
b1(Σ) − c for fiber surfaces of divides?

For Σ = Σ(Q) and Σ(X), we have sign(Σ) = b1(Σ) − 1, whence sign(Σ) = b1(Σ) − c − 1 for all
surfaces obtained by connected sum of c + 1 copies of Σ(Q) or Σ(X). So any such surface is a
prohibited minor for the property sign(Σ) ≥ b1(Σ) − c. We do not know if there are any others.
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