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ABSTRACT
In the present paper, a Harmonic Balance Method (HBM)

coupled with a pseudo-arc length continuation algorithm is pre-
sented for the prediction of the steady state behaviour of a rotor-
stator contact problem. The ability of the HBM to reproduce the
four most common phenomena encountered during rotor to sta-
tor contact situations (i.e. ’no-rub’, ’full annular rub’, ’partial
rub’ and ’backward whirl/whip’) is investigated. A modified Jef-
fcott rotor model is used and results of the proposed algorithm
are compared with traditional time marching solutions and ana-
lytical predictions. The advantages and limitations of the HBM
for this kind of problem are analyzed. It is shown that the HBM is
orders of magnitude faster than transient simulations, and pro-
vides very accurate results. However, in its current form it is
unable to predict quasi-periodic behaviour. Detailed analysis of
the transient solutions yields valuable information for the future
extension of the HBM to efficient quasi-periodic simulations.

INTRODUCTION
One of the objectives of turbomachinery designers is to im-

prove the machines efficiency. This can be achieved by reducing
the operating gap between the rotating and stationary parts of
the rotor, but leads to an increased risk of rotor to stator con-

tact. For safety reasons, designers must ensure that such inter-
actions cannot have serious consequences. When an accurate
prediction of the system response is required, it is insufficient to
consider the linear response of the system alone. When nonlin-
earities are considered, highly complex dynamic behaviours are
revealed, even for very simple rotor models. The simplest rotor
model encountered in the literature is the Jeffcott rotor. Although
this model has only one node, with two degrees of translational
freedom (one for each radial direction), it may exhibit a rich va-
riety of phenomena, due to the presence of nonlinearities. Ed-
wards [1] studied a Jeffcott rotor with an additional degree of
torsional freedom, when subjected to a mass imbalance and con-
tact with a circular, rigid, fixed stator. The contact was modelled
using a penalty method with a Coulomb friction law. The system
of equations was solved by numerical integration (Runge-Kutta).
Edwards showed that even when the rotor is excited by a periodic
force (i.e. an imbalance force) only, this relatively simple system
can exhibit periodic as well as chaotic forms of behaviour.

Many authors have studied nonlinear rotor models, using
time marching techniques to reach the steady state response of
the system [1–5]. This approach, although essential when inves-
tigating the system’s transient behaviour [2, 6, 7], is not optimal
in terms of CPU time when the steady state response is investi-
gated, because many cycles need to be simulated before the tran-
sient behaviour disappears completely. This can be problematic

1



when parametric studies are carried out and/or when more com-
plex models (such as finite element rotor models [4,8]) are used.

On the other hand, some authors such as Jiang [9, 10] or
Bently et al. [11] have used mathematical tools to study a Jef-
fcott rotor, for which they analytically determined the limits of
existence for different types of behaviour, according to a set of
dimensionless parameters such as the dimensionless rotational
speed of the rotor or the coefficient of friction. Periodic and
quasi-periodic phenomena were analyzed, and the periodic phe-
nomena were found to be: ’no-rub motion’, in which the rotor
eccentricity is smaller than the operating gap, and ’full annular
rub’, in which the rotor is in permanent contact with the stator in
a forward whirl mode, with a constant eccentricity. The quasi-
periodic phenomena are ’partial rub’, in which the rotor comes
into intermittent contact with the stator, and self-excited ’back-
ward whip’ or ’backward whirl’, in which the rotor rolls (respec-
tively with or without sliding) on the inner surface of the stator, in
a reverse whirl motion, with large eccentricities and large contact
forces. The latter phenomenon is known to be quite violent and
destructive. The four aforementioned phenomena are the most
commonly reported in rotor-to-stator contact scenarios. These
analytical methods are appealing, because they prove that several
stable solutions can coexist with a given set of parameters. For
instance, in [10] Jiang shows that a Jeffcott rotor can, for a given
set of parameters and a certain range of rotational speeds, be
in periodic full annular rub, as well as quasi-periodic backward
whip. Time integration methods would lead to only one of these
two solutions, depending on the initial conditions. These ana-
lytical methods have been extended to multi-mode rotor models
by Childs and Bhattacharya [12]. Their predictions appear to be
in good agreement with numerical simulations and experiments.
Nevertheless, these analytical methods require non-trivial math-
ematical developments, and further extensions are still needed
before they can be used to analyse more complex models.

Alternatively, although widely used to solve other types of
problems, numerical techniques such as shooting or harmonic
balance methods are rarely used for rotor-to-stator contact prob-
lems. Although such techniques do not require transient be-
haviour simulations, and are in practice much faster, they are
limited to the study of periodic movements and, to a certain ex-
tent, to quasi-periodic movements. This limitation to periodic
movements is the reason for which such techniques are generally
limited to the study of geometric nonlinearities or oil-film types
of mounting nonlinearities (such as in [13]), because it is known
that with this kind of nonlinearity the system response remains
periodic. Nevertheless, for rotor-stator contact problems coupled
with a path-following continuation scheme and stability analy-
sis, these methods prove to be helpful in parametric studies, thus
minimising the use of long transient simulations.

Following a brief presentation of the harmonic balance
method, a Jeffcott rotor model described in [10] is studied, and
the numerical results provided by this technique are compared to

Jiang’s predictions, as well as to the solutions given by traditional
time marching techniques. The ability of the HBM to reproduce
the four aforementioned phenomena is studied, for several values
of the dry friction coefficient µ . The advantages and limitations
of the proposed method are analyzed. The simulated transient
behaviour of the rotor is then analysed spectrally, and valuable
results are derived for a future extension of this HBM to quasi-
periodic situations.

HARMONIC BALANCE METHOD (HBM)
The Harmonic Balance Method (HBM) is a well-known

technique for the computation of periodic solutions for dynamic
systems. This method consists in solving the equations of motion
in the frequency domain, rather than in the time domain. The
general time-domain equation for a dynamic mechanical system
is given by (1).

R(q(t)) = Kq(t)+Cq̇(t)+Mq̈(t)+ f (q(t), q̇(t))− p(t) = 0 (1)

where q represents the displacement vector for all degrees of
freedom (DOFs); K, C and M are the generalized stiffness, damp-
ing and mass matrices; f is the nonlinear force vector and p is
the external excitation force vector.
When the external excitations are periodic, it can be assumed that
a steady state solution exists for (1), and that this solution is also
periodic. The displacements can thus be written as a truncated
Fourier series:

q(t) = Q0 +
N

∑
j=1

(
Q2 j−1cos(m jωt)+Q2 jsin(m jωt)

)
(2)

where Qi, i ∈ [1 . . .N] denote the Fourier coefficients of q;
ω is the fundamental frequency of the external excitation, and
mi, for i ∈ [1 . . .N], are positive integers.
Similarly, f (q) and p(t) can be rewritten using the same form:

p(t) = P0 +
N

∑
j=1

(
P2 j−1cos(m jωt)+P2 jsin(m jωt)

)
(3)

f (t) = F0 +
N

∑
j=1

(
F2 j−1cos(m jωt)+F2 jsin(m jωt)

)
(4)

As described in [14], equations (2) (3) and (4) are substi-
tuted into (1), and a Galerkin procedure is applied to obtain the
following algebraic system:

R(Q,ω) = Z(ω)Q+F(Q)−P = 0 (5)
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where:

Z = diag
(

K,

[
K−m2

1ω2M m1ωC
−m1ωC K−m2

1ω2M

]
, . . . ,[

K−m2
Nω2M mNωC

−mNωC K−m2
Nω2M

])
(6)

Q =
[
QT

0 ,Q
T
1 , . . . ,Q

T
2N
]T , F =

[
FT

0 ,FT
1 , . . . ,FT

2N
]T and

P =
[
PT

0 ,PT
1 , . . . ,PT

2N
]T are the Fourier coefficient vectors

for displacements, nonlinear forces and external excitations,
respectively.

Equation (5) needs to be solved for Q. This equation is
still nonlinear, such that an appropriate nonlinear solver should
be used to determine the correct solution. A Newton-Raphson
solver was used in the present case, which solves (5) in an itera-
tive manner:

Q(k+1) = Q(k)+

(
∂R(Q(k))

∂Q

)−1

R(Q(k)) (7)

where R(Q(k),ω) = Z(ω)Q(k) + F(Q(k))− P is the residual of
equation (5). It has been shown that the combination of a HBM
and a Newton-Raphson solver is equivalent to the Incremental
Harmonic Balance Method (IHBM) [15]. As the relationship be-
tween the displacements and the nonlinear forces is known in
the time domain only (a priori unknown in the frequency domain
(5)), an Alternating Frequency Time (AFT) algorithm [16] was
used for the computation of F(Q). Direct and inverse Fourier
transforms must be used in order to determine the solution. Dis-
placements (Q) in the frequency domain are transferred to the
time domain using an inverse Fourier transform. Once the dis-
placements have been determined in the time domain (q), the
corresponding nonlinear forces are calculated, following which
a direct Fourier transformation is used to obtain the nonlinear
forces in the frequency domain (F). The next Newton-Raphson
iteration can then be carried out. In practice, fast Fourier trans-
form (FFT) algorithms are used due to their combined speed,
accuracy and robustness. This procedure can be summarized as
follows:

Q(ω)
f f t−1
−→ q(t)−→ f (t)

f f t−→ F(ω)

Similarly, for reasons of improved accuracy and faster con-

vergence, the Jacobian term ∂R(Q(k))
∂Q is calculated using analytical

derivation rather than finite differences.

FIGURE 1. JIANG’S SCHEMATIC DIAGRAMS OF THE JEFF-
COTT ROTOR WITH A CIRCULAR RIGID STATOR [10].

The path following technique used for the parametric study
was a pseudo-arc length continuation method. Contrary to tran-
sient time marching techniques, the combination of HBM and a
continuation method converges to both stable and unstable solu-
tions, and there is no way to make an a priori assessment of the
solution’s stability. Several definitions of the stability of a dy-
namic solution exist. In the present study, we investigate the lo-
cal stability of the solutions. The local stability assessment con-
sists in applying a small perturbation to the equilibrium solution,
and then verifying that this perturbation subsides over time. The
stability can be computed a posteriori, using different theories.
One theory frequently cited in the literature is that of Floquet. In
the following, the stability of the HBM solutions is calculated in
the time domain, by means of a monodromy matrix computation.
The monodromy matrix is a linear operator describing the evo-
lution over one period of perturbations, applied to the periodic
solution. Its eigenvalues are called the Floquet multipliers. If
any of the Floquet multipliers has a module greater than one, the
solution is unstable, otherwise it is stable.

STUDY OF A NONLINEAR JEFFCOTT ROTOR
Description of the problem

In this section, a nonlinear Jeffcott rotor identical to that de-
scribed by Jiang in [10] is studied (see Fig. 1). The mathematical
model has two degrees of freedom and the dimensionless equa-
tions of motion are as follows:

X ′′+2ξ X ′+βX +Θ

(
1− R0

R

)
(X−µsign(Vrel)Y )

= Ω
2 cosΩτ (8)

Y ′′+2ξY ′+βY +Θ

(
1− R0

R

)
(Y +µsign(Vrel)X)

= Ω
2 sinΩτ (9)

Vrel = RdiskΩ+Rωb (10)
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FIGURE 2. ROTOR RESPONSE CHARACTERISTICS IN THE
PARAMETER PLANE OF Ω-µ WITH β = 0.04, ξ = 0.05, R0 = 1.05
AND Rdisk = 20R0, ACCORDING TO JIANG [10].

with the dimensionless variables: X = x
e , Y = y

e , R0 =
r0
e , Rdisk =

rdisk
e , Vrel =

vrel
e , 2ξ = c√

kbm
, β = ks

kb
, ω2 =√

kb
m , Ω = ω

ω2
, ωb = ωw

ω2
, R =

√
X2 +Y 2, Θ ={

1 if R≥ R0,

0 else.
, τ = ω2t where x and y represent the ra-

dial displacements along the x and y axes, respectively, e is the
mass eccentricity, r0 is the initial clearance between the rotor
and the stator, rdisk is the disk radius, vrel is the relative velocity
between the rotor and the stator, c is the damping factor, m is
the rotor mass, ks and kb are the rotor and stator stiffnesses,
respectively, ω is the rotor’s rotational speed, and ωw is the
rotor’s whirl frequency.

As seen in the equations of motion (8) and (9) above, the
stator model is circular, rigid and fixed. There are no DOF asso-
ciated with it. The contact is modelled by a penalty law using a
dry friction Coulomb model.

Jiang analytically examines the existence of four possible
types of steady-state rotor behaviour, resulting from imbalance
and rotor-to-stator contact. These four types of behaviour are:

’no-rub motion’ in which there is no contact between the
rotor and the stator. The orbit is circular and the movement
is periodic.
’full annular rub’ in which the rotor remains in permanent
contact with the stator. The orbit is also circular and the
movement periodic.
’partial rub’ in which the rotor intermittently comes into
contact with the stator. The movement is quasi-periodic.
’backward whip’ in which the rotor rolls (with slippage) on

the inner surface of the stator. This movement is a self-
excited phenomenon and its frequency does not necessarily
depend on the rotor’s rotational speed. As a consequence,
the movement is a priori quasi-periodic.

The stability of these four types of behaviour can be de-
rived from the aforementioned dimensionless parameters. More
specifically, Fig. 2 shows the rotor response characteristics in the
Ω-µ parameter plane. According to Jiang, the straight lines Ωl
and Ωu indicate the rotational speed limits when the linear ro-
tor eccentricity is equal to the initial clearance. Thus, the ’no-
rub motion’ can appear only at rotational speeds below Ωl and
above Ωu. The curves HP and SN correspond to the limits of
’full annular rub’ motion. To the right of the line HP, ’full an-
nular rub’ becomes unstable and the movement becomes quasi-
periodic (Hopf bifurcation). To the right of line SN, the ’full
annular rub’ no longer exists (saddle node bifurcation). The line
DF denotes the presence of a backward whip response. The line
DW indicates the limit beyond which backward whip is triggered
by the imbalance force.

There are some regions in which several behaviours coexist.
The regions labelled ’0’ are regions where no-rub motion and dry
whip coexist. In the region labelled ’1’, both full annular rub and
dry friction backward whirl are possible. The region labelled ’2’
shows the presence of partial rub and backward whirl. In ’3’,
full annular rub and no-rub motions are simultaneously present.
Finally, a small region ’4’ exhibits no-rub motion, full annular
rub and backward whip.

The results shown in Fig. 2 have been confirmed via numer-
ical simulations. Applying the same parameter values as those
used in Fig. 2, the simulations were run with a fixed value for
the friction coefficient µ and varying values of Ω. Only one har-
monic was retained for the HBM simulations. As the no-rub
and full annular rub motions have circular orbits, one harmonic
is sufficient to provide an exact representation of these move-
ments. The pseudo arc length continuation algorithm was used
for the parametric study with respect to Ω, over the range from 0
to 1.2. In the case of the simulations based on the time marching
technique, the solutions were calculated for discrete values of Ω.
The initial conditions used for the next value of Ω correspond to
the final steady state conditions of the current simulation. This
corresponds to an incremental continuation technique. For each
value of Ω, 100 rotor revolutions were simulated in order to at-
tain the steady-state behaviour. Twenty-five additional revolu-
tions were then simulated and saved for analysis. This procedure
was performed twice for each value of µ . In the first pass, the
simulations were made with progressively greater values of Ω,
whereas in the second pass progressively smaller values of Ω

were used. As numerical simulations (HBM or time integration)
require the use of non dimensionless variables, the following pa-
rameters were set arbitrarily: e = 0.1 m, ks = 100 N.m−1, m = 1
kg. The other parameters were derived. All of the simulations
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FIGURE 3. RESPONSE CURVE FOR µ = 0.1. HBM STABLE(�),
HBM UNSTABLE (�), TIME INTEGRATION (×).

FIGURE 4. REAL AND IMAGINARY PARTS OF THE FLOQUET
MULTIPLIERS IN THE UNSTABLE HBM SOLUTION AT Ω ≈ 0.98
(SADDLE NODE BIFURCATION)

were performed using the Code Aster [17] and Scipy [18] envi-
ronments. Although the simulations were run for many values
of µ , only the results obtained for µ = 0.1 and µ = 0.2, which
are representative of all possible solutions, are presented in the
following.

Numerical Results
Results for µµµ === 000...111. Fig. 3 shows the response curve

for µ = 0.1, β = 0.04, ξ = 0.05, R0 = 1.05 and Rdisk = 20R0

FIGURE 5. PERFECTLY CIRCULAR ORBIT OF THE ROTOR
DURING FULL ANNULAR RUB AT Ω = 0.5.

calculated using HBM and time integration. The y-axis repre-
sents the rotor eccentricity normalized to the initial clearance, on
a logarithmic scale, and the x-axis corresponds to the normal-
ized rotational speed Ω = ω

ω2
. In this case, the time transient

and HBM curves are very similar. As predicted by Jiang’s an-
alytical results (see Fig. 2), only no-rub motion and full annu-
lar rub are found for µ = 0.1. The transition between no-rub
motion and full annular rub (which correspond to the Ωl line in
Fig. 2) occurs between approximately Ω= 0.150 and Ω= 0.155,
which is highly consistent with the analytically determined value
(Ωl = 0.1536). One can indeed see that the normalized rotor ec-
centricity is less than unity for Ω ≤ 0.150 and greater than unity
for Ω ≥ 0.155. The Ωu line is also correctly predicted by both
HBM and the time integration methods (Ωu = 0.854). In addi-
tion, the region labelled ’3’ in Fig. 2 is also correctly predicted.
Fig. 3 shows that no-rub motion and full annular rub are both
possible for 0.850 < Ω < 0.995. The time integration method is
characterised by a sudden ’drop’ in eccentricity at ΩSN ≈ 0.995,
corresponding to the ’run up’ simulation, whereas a ’jump’ oc-
curs at Ωu ≈ 0.850 during the ’run down’ simulation. The HBM
coupled to arc length continuation and stability computation is
characterised by three possible solutions within this same range
of rotational speeds, although only two of these are stable (pas-
sage through a saddle node bifurcation). The Floquet multipliers
of the unstable HBM solution at Ω ≈ 0.98 are plotted in Fig. 4.
As the number of Floquet multipliers is equal to twice the num-
ber of degrees of freedom, four Floquet multipliers are visible.
One of these has departed from the unit circle on the positive
real axis, which corresponds here to a saddle node bifurcation.
Although the HBM and time integration methods described here
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FIGURE 6. RESPONSE CURVE FOR µ = 0.2. HBM STABLE (�),
HBM UNSTABLE (�), TIME INTEGRATION (×).

FIGURE 7. REAL AND IMAGINARY PARTS OF THE FLOQUET
MULTIPLIERS IN THE UNSTABLE HBM SOLUTION AT Ω ≈ 0.33
(SECONDARY HOPF BIFURCATION).

provide extremely similar results, the HBM technique is approx-
imately 500 times faster than the time integration method. The
circular orbit of the rotor during full annular rub (Ω = 0.5) is
shown in Fig. 5. Of course, the no-rub motion is also charac-
terised by a perfectly circular orbit.

Results for µµµ === 000...222 The response curve for µ = 0.2 is
shown in Fig. 6. Here, the HBM curve is very similar to that
obtained for µ = 0.1. However, stability analysis reveals a loss
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FIGURE 8. SAME AS FIG. 2 WITH NOTEWORTHY VALUES OF
Ω HIGHLIGHTED FOR µ = 0.1 AND µ = 0.2 [10].

FIGURE 9. ROTOR ORBIT DURING PARTIAL RUB AT Ω = 0.33
(TIME TRANSIENT RESULT).

of stability beyond ΩHP ≈ 0.289. The Floquet multipliers of the
unstable solution at Ω ≈ 0.3 can be seen Fig. 7. A pair of Floquet
multipliers has departed from the left-hand side of the unit circle,
with a non-zero imaginary component indicating a Hopf bifurca-
tion and a loss of stability. A Hopf bifurcation corresponds to
the appearance of a second frequency in the real rotor response,
and the initiation of a quasi-periodic regime. This means that al-
though, theoretically, the periodic full annular rub response still
exists beyond this point, it is in practice no longer possible to
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FIGURE 10. BACKWARD WHIP ORBIT AT Ω = 0.33. THE
ROTOR ECCENTRICITY IS ONE ORDER OF MAGNITUDE
GREATER THAN THE CLEARANCE (TIME TRANSIENT RE-
SULT).

FIGURE 11. FAST FOURIER TRANSFORM OF THE NONLIN-
EAR CONTACT FORCE SIGNAL DURING PARTIAL RUB AT Ω =

0.33. PEAKS AT LINEAR COMBINATIONS OF THE TWO INCOM-
MENSURABLE FREQUENCIES ARE VISIBLE.

achieve this response, due to its instability. The value of ΩHP ob-
tained with the HBM is very consistent with the value predicted
by Jiang (see Fig. 8).

Conversely, the transient simulation results presented here
are quite different to those previously observed. During the
’sweep up’ simulation, the time transient results are initially sim-

FIGURE 12. FAST FOURIER TRANSFORM OF THE NONLIN-
EAR CONTACT FORCE SIGNAL DURING BACKWARD WHIP Ω=

0.33. ONLY TWO PEAKS CAN BE SEEN.

ilar to those observed for µ = 0.1. The no-rub motion is the
first to be observed, and is very close to the HBM prediction.
Then, beyond Ωl ≈ 0.15, the full annular rub regime starts. Here
again, the results are very close to those found with the HBM
simulations. However, beyond ΩHP ≈ 0.289, the time transient
line deviates from that predicted by the HBM, and the rotor mo-
tion becomes quasi-periodic. The rotor orbit computed using the
time transient technique at Ω = 0.33 is shown Fig. 9. It can be
seen that the rotor does not remain in permanent contact with the
stator, which corresponds to the ’partial rub’ motion predicted
by Jiang. During this movement, the maximum rotor eccen-
tricity is greater than that predicted during full annular rub. At
ΩDW ≈ 0.460, it can be observed that the eccentricity suddenly
increases by a factor of ten. Although slightly different from the
value found by Jiang (≈ 0.41), the latter value of Ω is coherent
with this author’s prediction. In this regime, referred to as back-
ward dry whip, the rotor’s orbit is almost circular, as shown in
Fig. 10. The rotor can be seen to remain in the backward whip
regime until the end of the sweep up.

A substantially different behaviour is observed during the
sweep down. The rotor starts in the no-rub regime, until Ωu ≈
0.86, at which a sudden increase in eccentricity occurs, transfer-
ring the rotor motion to the backward whip regime. The rotor
remains in this regime until a very small value of ΩDF ≈ 0.045 is
reached, at which the eccentricity suddenly drops, leading to the
no rub regime. This value of ΩDF is also in good agreement with
Jiang’s prediction (see Fig. 8).

From the preceding description, it can be seen that the HBM
is able to predict only a portion of the time transient simulations.
However, stability analysis can detect unstable solutions, such
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TABLE 1. fn0 AND fn1 CALCULATED FOR THE FIRST FOUR
VALUES OF n FOR THE PARTIAL RUB MOTION AT Ω = 0.33.
HERE, f1 = 1×Ω AND f2 ≈ 1.08×Ω.

n fn0(×Ω) fn1(×Ω)

0 1 2.08

1 4.08 5.16

2 7.16 8.24

3 10.2 11.3

that the DF curve can be determined in addition to the Ωl and Ωu
lines. The DW and DF lines cannot be predicted by the HBM in
its current form. Nonetheless, the HBM technique could be ex-
tended to quasi-periodic analysis [19, 20], theoretically allowing
the partial rub and backward whip regimes to be predicted.

Transient simulations can provide valuable information con-
cerning the nature of the quasi-periodic regimes. A fast Fourier
transform of the nonlinear contact force, during partial rub at
Ω = 0.33, is shown Fig. 11. By analyzing this diagram, it can be
concluded that the peaks are present for linear combinations of
two incommensurable frequencies. The lowest frequency (noted
f1) is naturally the rotational frequency of the rotor (1×Ω). The
second frequency (noted f2) cannot be accurately determined,
since it is not commensurable with f1. However, it can be ap-
proximated, for this value of Ω, to approximately 1.08×Ω.
Spectral analysis of the contact force during partial rub for sev-
eral values of Ω show that, even though f1 is naturally always
equal to the rotating frequency ( f1 = 1×Ω), the second fre-
quency f2 is related to f1 ( f2 = f ( f1)). Although we noted that
this second frequency f2 decreases when Ω increases, no trivial
relationship could be found relating them to each other. It was
verified that, for every simulated partial rub movement, spectral
peaks appeared in the contact force power spectrum, at linear
combinations of the two incommensurable frequencies, as de-
scribed by the following formulae:

fn0 = (2n+1) f1 +(n+0) f2 for n ∈ N (11)

fn1 = (2n+1) f1 +(n+1) f2 for n ∈ N (12)

The peaks indeed occur in pairs, and decrease in amplitude with
n (see Fig. 11). The values of fn0 and fn1 are given in Table 1 for
increasing values of n, (to be compared with Fig. 11).

The spectral analysis provided in Fig. 12 shows that the ro-
tor movement has one main frequency during backward whip.

This predominant frequency does not correspond to the rota-
tional speed of the rotor, but rather to the backward whip fre-
quency. The rotational frequency of the rotor f1 has a compara-
tively small amplitude, because the backward whip phenomenon
is self-excited. Our computations show that the backward whip
frequency has little to no dependence on Ω. For Ω ≤ 0.5 the
backward whip frequency increases slightly when Ω increases
(from 0.75×ω2 at Ω = 0.045 to 1×ω2 at Ω = 0.5). For Ω≥ 0.5
the backward whip frequency is constant and equal to ω2. This
type of backward whip frequency behaviour is frequently re-
ported in the literature, as for example in [12].

Other simulations were made for a large set of values of
µ . For each value tested, good agreement was found between
the HBM, the time transient computations, and Jiang’s predic-
tion. Unfortunately, Jiang’s predictions are limited to Jeffcott ro-
tor models. Nonetheless, the HBM and time transient tools can
be used for more complex models, such as finite element rotor
models, with no need for any further developments.

CONCLUSION
The applicability of the Harmonic Balance Method (HBM),

with pseudo arc-length continuation and stability assessment, to
the computation of the steady-state behaviour of a rotor to sta-
tor contact problem, has been investigated. The HBM results
have been compared with classical time marching solutions and
analytical results [10]. The rotor model was that of a simple Jef-
fcott rotor, with a circular, rigid, static stator. It has been demon-
strated that although the rotor is submitted to imbalance only,
there are four possible kinds of solution: two of these are pe-
riodic solutions (no-rub motion and full annular rub), whereas
the remaining two are quasi-periodic (partial rub and backward
whip). The HBM is shown to be capable (at speeds orders of
magnitude faster than those given by time marching analysis) of
accurately predicting the two periodic solutions. The HBM can
also predict the initiation of the quasi-periodic partial rub regime,
which corresponds to a loss of stability of the periodic solution.
However, the partial rub and backward whip motions cannot be
described by means of the HBM in the presented form. An exten-
sion of this method to the treatment of quasi-periodic solutions
is mandatory [19, 20], and is currently under study. Our detailed
analysis of the partial rub and backward whip regimes, using time
marching algorithms, has provided clues for the implementation
of this extension.
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