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Jean-Paul Penot

Laboratoire Jacques-Louis Lions,
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Abstract

We devise a framework encompassing the classical theory of characteristics and the
theory valid in the convex case recently obtained by R.T. Rockafellar and P. Wolenski. It
relies on a notion of transform introduced by I. Ekeland. It involves a class of functions
called Ekeland functions which is large enough to encompass convex functions, concave
functions and linear-quadratic functions, as well as the class of classical Legendre func-
tions. We also introduce a class of functions called (generalized) Legendre functions which
is not as large as the class of Ekeland functions but has better reciprocity properties. It
is obtained by an extension procedure and it enables one to recover the usual Fenchel-
Legendre transform of convex functions.
Key words: characteristics, Ekeland function, Ekeland transform, Hamilton-Jacobi

equations, Legendre function, Legendre transform, subdi¤erential
Mathematics Subject Classi�cation: 49J52, 49J53, 90C26, 53D05, 37K25
Dedicated to Ivar Ekeland on his sixtieth birthday

1 Introduction

Many transforms are known in mathematics such as the Fourier transform, the Laplace trans-
form, the Fenchel transform, the Radon transform. They enable to change a given problem
into a related one which may be more tractable and help in the solution of the initial problem.
In the present paper we use an extension of the Legendre transform.
The aim of the paper consists in an attempt to encompass in a single framework two theories

of characteristics for �rst order partial di¤erential equations: the local, classical one which
assumes di¤erentiability properties (see [8], [11], [14], [21], [46]...) and the global, convex
theory of [41], [42]. For that purpose, we introduce a class of functions which are nonsmooth
and nonconvex but retain the main duality property of the Legendre-Fenchel transform. This
class appears in a natural way when using the Legendre duality introduced by Ekeland [12],
[13]. It contains the classes of closed proper convex functions, of classical Legendre functions
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and of quadratic functions de�ned by a nondegenerated bilinear form and it applies to integral
functionals ([12], [13], [32]). However, in order to encompass the full generality of the conjugacy
theory of convex analysis, we have to extend the process of [12], [13] and use a closure device. We
perform such an extension by using a result in [29] akin to the Brønsted-Rockafellar theorem; it
relies on the Ekeland variational principle and enables one to approach any element of the graph
of a closed proper convex function by elements corresponding to points at which the function
is subdi¤erentiable. Among the reasons justifying such an extension is the well known fact
that the domain of the subdi¤erential of a closed proper convex function is nonconvex but its
closure and interior are convex. Thus, this new class of functions we call generalized Legendre
functions, instead of being more special than the class of convex functions as in [37, Chapter 26],
[7], [5] is a larger class. Using the methods of nonsmooth analysis, we also introduce Ekeland
subsets and Legendre subsets of normed vector spaces (n.v.s.). On the other hand, we avoid
the geometrical framework of Lagrangian submanifolds and contact manifolds present in [1],
[12], [15], [22], [47]. We do not consider either questions of multi-valuedness of the transform
which are dealt with in [12], [31]. In fact, the notions we adopt impose single-valuedness of the
transform.
Our approach can be seen as an instance of the methods of nonsmooth analysis which

strive to encompass in a general framework both di¤erential calculus and convex analysis. In
our views, the most important feature of these developments is the �Copernician revolution�
consisting in considering in a uni�ed framework functions, sets and multimaps (also called
multifunctions, correspondences, relations):
passage from sets to functions: to a subset S of a n.v.s. one associates its distance function

dS(�) = infs2S d(�; s) or its indicator function �S given by �S(x) = 0 if x 2 S; +1 else.
passage from functions to sets: to a function f one associates its epigraph Ef := epif:
passage from multimaps to sets: to a multimap F : X � Y one associates its graph

G(F ) � X�Y ; conversely, to any subset G of X�Y one can associate a multimap F : X � Y
whose graph is G:
The main tool is the notion of subdi¤erential which generalizes in a one-sided way the notion

of derivative. But the transform we study is not limited to the use of a subdi¤erential. One
can also use a generalized derivative taylored to the situation at hand. It is not our purpose
to present here a general de�nition of subdi¤erential. We adopt the properties listed in [20]
and [33]; see also [3], [18], [19], [30] and their references for axiomatic studies of subdi¤erentials
(which may vary with the purposes). Thus, when speaking of a subdi¤erential @, we assume
that @ is a map which assigns to any member f of a class F(X) of extended-real valued functions
on X and x 2 dom f a subset @f(x) of the topological dual Y := X� of X. We require that
0 2 @f(x) when f attains its in�mum at x and that @ coincides with the Moreau-Rockafellar
subdi¤erential of f when f is a convex function, we assume that @(f + c)(x) = @f(x) and
@(�f)(x) = �@f(x) for all c 2 R, � 2 P := (0 + 1); x 2 X; we also assume that for
p : W ! R := R[f�1;+1g de�ned by p(w) := infx2X j(w; x), where j : W � X ! R,
one has (w�; 0) 2 @j(w; x) whenever w� 2 @p(w) and j(w; x) = p(w): Following A.D. Io¤e, we
say that a subdi¤erential @ is elementary if for any pair of functions g, h �nite at x one has
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@g(x) + @h(x) � @(g + h)(x).
We will mainly use the �rm (or Fréchet) subdi¤erential @F given by

x� 2 @Ff(x) i¤ for any " > 0; 0 is a local minimizer of w 7! f(x+ w)� hx�; wi+ " kwk

and the directional (or Dini-Hadamard, or Hadamard or contingent) subdi¤erential @D given
by

x� 2 @Df(x) i¤ for any " > 0; u 2 Xnf0g; (0; u) is a local minimizer on R+ �X

of the function (t; v) 7! f(x+ tv)� hx�; tvi+ " ktvk :

We also mention the proximal subdi¤erential @P , the subdi¤erential associated to a bornology,
the Clarke subdi¤erential @C and the limiting subdi¤erential @L de�ned through a limiting
procedure from a subdi¤erential @ as follows: x� 2 @Lf(x) if there exists sequences (xn) ! x,

(x�n)
�
! x� (i.e. for the weak� topology) such that (f(xn))! f(x).
We also use the normal cone N(E; x) to a subset E of X at x 2 E de�ned as @�E(x); where

�E is the indicator function of E: It is easy to check that when @ is either @C ; @D; @F ; or @L this
de�nition coincides with the usual geometric notions. In particular, for @ = @D, the normal cone
N(E; x) is the polar of the tangent cone T (E; x); where the tangent cone T (E; x) to a subset
E of a n.v.s. X at x 2 E is the set of v 2 X such that there is a sequence ((tn; vn))! (0+; v)
in R�X satisfying x+ tnvn 2 E for each n 2 N.
After some preliminaries recalling the classical theory of characteristics and the Rockafellar-

Wolenski approach in the convex case, we deal with the Legendre transform as devised by
Ekeland and we specify the classes of functions we consider. We mention some examples
and properties and we relate these classes to classes of sets. We display an explicit formula
for the solution of a �rst order Hamilton-Jacobi equation with data satisfying assumptions
related to these classes of functions and we end our study with a connection with the theory of
characteristics.
Other approaches to the theory of characteristics are given in the recent monographs [23],

[25], [43], [46].

2 Preliminaries: characteristics

Let us recall some elements of the theory of characteristics. We refer to [8], [14], [15], [21] and
[46] for more information. Consider the �rst order partial di¤erential equation with unknown
u

F (w;Du(w); u(w)) = 0 w 2 A (1)

u(w) = g(w) w 2 @A (2)

where A is the interior of a submanifold with boundary A of class C2 of some Euclidean or
Banach spaceW; @A is its boundary and F : A�W ��R! R, g : @A! R are given C2 functions.
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In order that such an equation be solvable, some compatibility condition has to be satis�ed.
The classical theory of characteristics is a means to �nd a local solution around some point
(w0; p0; z0) 2 @A �W � � R satisfying F (w0; p0; z0) = 0; g(w0) = z0; p0 j T (@A; w0) = Dg(w0)
by using the solution to the system of ordinary di¤erential equations

bw0(s) = DpF ( bw(s); bp(s); bz(s)) (3)

bp0(s) = �DwF ( bw(s); bp(s); bz(s))�DzF ( bw(s); bp(s); bz(s))bp(s) (4)

bz0(s) = Dw�F ( bw(s); bp(s); bz(s)):bp(s) (5)

and the initial conditions

bw(0) = w0; bp(0) = p0; bz(0) = g(w0):

It is easy to show that if u is a solution of class C2 of (1)-(2), then the solution of the system
(3)-(5) satis�es z(s) = u(w(s)); so that the value of u at w(s) is determined by z(�):
Suppose Dw�F (w0; w

�
0; z0):v 6= 0 for some normal vector v 2 N(@A; w0): Then, performing

a change of variables (x; t) instead of w one can assume that locally A = X0 � P where X0 is
an open subset of an hyperplane X of W and that equations (1)-(2) are of the form

Dtu(x; t) +H(t; x;Dxu(x; t); u(x; t)) = 0; (x; t) 2 X0 � P (6)

u(x; 0) = g(x) x 2 X0: (7)

Then the characteristic system is transformed into the following one

bx0(s) = DyH(s; bx(s); by(s); bz(s)) bx(0) = x0

by0(s) = �DxH(s; bx(s); by(s); bz(s))�DzH(s; bx(s); by(s); bz(s))by(s) by(0) = Dg(x0)

bz0(s) = DyH(s; bx(s); by(s); bz(s)):by(s)�H(s; bx(s); by(s); bz(s)) bz(0) = g(x0):

We denote by (bx(s; x0); by(s; x0); bz(s; x0)) the solution of this system. Then one has the following
classical result.

Theorem 2.1 Suppose that for some x0 2 X0 and some t0 > 0 the �rst component bx(t0; �)
of the solution to this system with initial data x0; y0 := Dg(x0); z0 = g(x0) realizes a di¤eo-
morphism of a neighborhood U of x0 onto a neighborhood V of bx(t0; x0): Then the function
(x; t) 7! bz(t; bx(t; �)�1(x)) is a solution of class C2 to the Hamilton-Jacobi equation.

This result is particularly e¤ective when dealing with quasi-linear equations and conservation
laws. In the last section of the present paper we will deal with the case whenH does not depend
on t; x; z; then the characteristic system takes a particularly simple form.
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3 Characteristics in convex analysis

In two remarkable papers, [41], [42], Rockafellar and Wolenski study the Hamilton-Jacobi equa-
tion

Dtu(x; t) +H(x;Dxu(x; t)) = 0; (x; t) 2 X � P

u(x; 0) = g(x) x 2 X;

where g is a given closed proper convex function and H is a �nite concave-convex function on
X � Y (with X �nite dimensional, Y := X�) satisfying the following growth conditions for
some real numbers B; C; D; E and some �nite convex functions ';  

H(x; y) � '(y) + (B kyk+ C) kxk 8(x; y) 2 X �X�;

H(x; y) � � (x)� (D kxk+ E) kyk 8(x; y) 2 X �X�:

They associate to it the Bolza problem

minimize g(w(0)) +

Z t

0

L(w(s); w0(s))ds : w(�) 2 W 1;1([0; t]; X); w(t) = x

in which L(x; �) = H(x; �)�; where f � (resp. h�) denotes the Fenchel transform of a function f
on X (resp. h on Y ) de�ned by

f �(y) := sup
x2X

(hx; yi � f(x)); h�(x) := sup
y2Y
(hx; yi � h(y)):

Here W 1;1([0; t]; X) denotes the set of w 2 C([0; t]; X) such that there exists an element w0 of
L1([0; t]; X) satisfying w(s) = w(0) +

R s
0
w0(r)dr for all s 2 [0; t]: They prove that the value

v(x; t) of the above Bolza problem is a solution to the Hamilton-Jacobi equation in the sense
that v(�; 0) = g(�) and for all (x; t) 2 X � (0;+1) one has

(p; q) 2 @Lv(x; t), p 2 @v(�; t)(x); q = �H(x; p)

where @L is the limiting subdi¤erential and @ is either @L or the contingent or Hadamard
subdi¤erentials or the subdi¤erential of convex analysis. In these papers culminates the duality
theory for convex Bolza problems performed in the seventies ([38]-[40]). Moreover, they give a
global version of the theory of characteristics. They observe that for a given convex function
g : X ! R1 := R[f+1g its subjet

J�g := f(x; y; z) 2 X �X� � R : y 2 @g(x); z = g(x)g

is a Lipschitzian submanifold of X�X��R and that the �ow associated with the characteristic
equations

bx0(t) 2 @H(bx(t); �)(by(t))
by0(t) 2 @(�H)(�; by(t))(bx(t))
bz0(t) = hbx0(t); by(t)i �H(bx(t); by(t))
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carries the subjet J�g of g onto the subjet J�v(t; �) of v(t; �). Here @ is the subdi¤erential in
the sense of convex analysis.
It is our purpose here to consider such questions under relaxed convexity assumptions.

4 The Ekeland and Legendre transforms

In [31], following [12], [13], given two setsX and Y paired by a coupling function c : X�Y ! R,
we de�ned the Ekeland transform as a simple transform for multimaps F : X � Y � R
(identi�ed with their graphs gph(F ) whenever there is no risk of confusion) associating to F
the multimap FE : Y � X � R given by

FE(y) := f(x; s) 2 X � R : (y; c(x; y)� s) 2 F (x)g:

In terms of graphs one has

gph(FE) = f(y; x; s) 2 Y �X � R : (x; y; c(x; y)� s) 2 gph(F )g;

so that gph(FE) is the image of gph(F ) by the mapping L : X � Y � R!Y � X � R given
by L(x; y; z) := (y; x; c(x; y) � z): Using the coupling c| : (y; x) 7! c(x; y) and the mapping
L| : Y �X�R!X�Y �R given by L|(y; x; z) := (x; y; c|(y; x)�z), one can de�ne in a similar
way the Ekeland transform GE of a multimap G : Y � X�R by gph(GE) = L|(gph(G)) (here
we use a slight abuse of notation, using GE instead of GE

|

). Since L| EL is the identity IX�Y�R
of X � Y � R, this transform is involutive in the sense that

(FE)E = F:

This transform has a special interest when Y has a base point 0Y and when c(x; 0Y ) = 0 for all
x 2 X:
Here we take for X a Banach space and for Y its dual space, and unless explicitely men-

tioned, c is the canonical pairing h�; �i; we write either hx; yi or hy; xi for c(x; y): We suppose
a generalized derivative or subdi¤erential @ has been chosen. Then the Ekeland transform can
be specialized to functions f : X ! R1 := R [ f1g in the class F(X) of functions on which
@ is de�ned. For this purpose, one can associate to f its (�rst order) subjet J@f : X � Y � R
(or @-subjet, to be more precise) given by

J@f(x) := f(y; r) : y 2 @f(x); r = f(x)g:

Note that when f is of class Ck (k � 2), and @ is the di¤erentiation operator, J@f = J1f; the
one-jet of f; is a Lagrangian submanifold of class Ck�1 of X �X� � R. That means that the
pull-back to J1f of the di¤erential form ! on X �X� � R given by

!(x; y; z; u; v; w) = w � hy; ui
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is null, or in other terms, that for any x 2 X and any (u; v; w) in the tangent space T (J1f; (x; y; z))
to J1f at (x; y; z) with y := f 0(x); z := f(x) one has !(x; y; z; u; v; w) = 0. For a nonsmooth
function f and for a subdi¤erential @ contained in @D; one may observe that the subjet J

@f
is a super-Lagrangian subset of X � X� � R in the sense that !(x; y; z; u; v; w) � 0 for any
(x; y; z) 2 J@f and any (u; v; w) 2 T (J@f; (x; y; z)). Note that the image M 0 = L(M) of a
super-Lagrangian subset V of X �X��R is a sub-Lagrangian of X��X �R in the sense that
!(y0; x0; z0; v0; u0; w0) � 0 for any (y0; x0; z0) 2 M 0 and any (v0; u0; w0) 2 T (M 0; (y0; x0; z0)) ([31]).
We shall not make use of these remarks in the sequel but we note them in order to point out
links with a geometric approach.

4.1 Ekeland functions

We shall restrict our attention to a special class of functions we call Ekeland functions.

De�nition 4.1 A function f : X ! R1 is an Ekeland function (for @ and c) if for all y in
the image @f(X) of @f in Y := X� one has

x1; x2 2 (@f)
�1 (y)) c(x1; y)� f(x1) = c(x2; y)� f(x2): (8)

Then the Ekeland transform of f is the function fE given by fE(y) := c(x; y) � f(x) for
y 2 @f(X), x 2 (@f)�1 (y), fE(y) := +1 for y 2 Y n@f(X):

Condition (8) means that the restriction of the projection mapping (y; s) 7! y to the projec-

tion of
�
J@f

�E
on Y � R is injective. It can be interpreted as follows: it requires that

�
J@f

�E
is an hypergraph in the sense that it is a subset of Y �X � R of the form

[

y2Y

fyg �G(y)� fg(y)g

for some multimap G : Y � X and some function g : Y ! R1 such that domG = dom g =
@f(X): In fact,

�
J@f

�E
= f(y; x; z) 2 Y �X � R : y 2 @f(X); y 2 @f(x); z = c(x; y)� f(x)g

It is natural to consider the function y 7! fE(y) := g(y) given by g(y) := c(x; y) � f(x) for
x 2 (@f)�1(y) as a transform of f ; we call it the Ekeland transform fE of f: Before going any
further, let us give some examples.
Example 1. Let F(X) be the set �0(X) of closed, proper, convex functions on X and let @ be
the subdi¤erential of convex analysis or any other subdi¤erential coinciding with it on F(X),
c being the usual pairing of X with it dual space Y := X�. Then, for any f 2 F(X), y 2 Y ,
the relation x 2 (@f)�1 (y) means that the function w 7! f(w) � hw; yi attains its minimum
at x: Thus, condition (8) is ful�lled and, for every y 2 @f(X); g(y) := fE(y) coincides with
f �(y) := maxw2X (hw; yi � f(w)) ; the value at y of the Fenchel conjugate function of f:
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Example 2. Let X and Y be arbitrary sets and let c : X � Y ! R be an arbitrary coupling
function. De�ning the subdi¤erential @c associated to c by

y 2 @cf(x), (8w 2 X f(w)� c(w; y) � f(x)� c(x; y)) ;

one gets that any function on X is an Ekeland function. The next example is a special case of
such a general scheme; it yields Example 1 when taking k = 0:
Example 3. Let F(X) := �k(X) be the set of paraconvex (or semiconvex) functions on X
with respect to some function k : X ! R, i.e. the set of functions f such that f + k is closed,
proper, convex. Let us take here the pairing ck : X � Y ! R given by ck(x; y) := hx; yi � k(x)
and the subdi¤erential @k given by

y 2 @kf(x), (8w 2 X f(w)� ck(w; y) � f(x)� ck(x; y)) ;

or, equivalently, y 2 @(f +k)(x); @ being the subdi¤erential of convex analysis. Then, as easily
checked, every f 2 F(X) is an Ekeland function for @k and ck; and f

E(y) = supfck(x; y)�f(x) :
x 2 Xg = (f + k)�(y) for all y 2 @(f + k)(X):
Example 4. Let F(X) be the set of concave functions on X with values in R [ f�1g and
let @ be either the Fréchet or the Hadamard subdi¤erential, c being the usual pairing of X
with its dual space Y := X�. Then, for any f 2 F(X), x 2 f�1(R), y 2 Y , the relation
x 2 (@f)�1 (y) means that f is Fréchet or Hadamard di¤erentiable at x; then the function
w 7! f(w)�hw; yi attains its maximum at x: Thus, condition (8) is ful�lled and fE(y) coincides
with f�(y) := infx2X (hw; yi � f(w)) ; the value of the concave conjugate function of f:
Let us note another choice. It consists in setting @f(x) := �@MR(�f)(x); where @MR is the

Moreau-Rockafellar subdi¤erential. Then fE(y) = �(�f)�(y):
Example 5. Let F(X) be the set of linear-quadratic functions on X; i.e. the set of functions
f given by f(x) := 1

2
hAx; xi � hb; xi + c for some continuous symmetric linear map A : X !

Y := X�; b 2 Y , c 2 R. Let @ be either the Fréchet or the Hadamard subdi¤erential (or the
corresponding di¤erentiation operator). Then f is an Ekeland function. In fact, given y 2 Y ,
x1; x2 2 X such that f 0(xi) = y for i = 1; 2; one has

hxi; yi � f(xi) = hxi; Axi � bi �
1

2
hAxi; xii+ hb; xii � c =

1

2
hAxi; xii � c

and
hAx1; x1i � hAx2; x2i = hA(x1 � x2); x1i+ hAx2; x1 � x2i = 0

since A is symmetric and Ax1 = y + b = Ax2: Thus, for y 2 A(X) � b; we can write fE(y) =
1
2
hy + b; A�1(y + b)i � c; even if A is non invertible. When A is surjective and its kernel has a
complement Z; fE(y) = 1

2
hy+ b; A�1Z (y+ b)i � c; where AZ is the restriction of A to Z, so that

fE is a continuous quadratic function.
Example 6. Let X := U � V be a product of two n.v.s. and let Y := U� � V �: Let
f : X ! R be a saddle function in the sense that for all v 2 V , f(�; v) is a convex function on
U and, for all u 2 U , f(u; �) is a concave function on V: Then, taking the coupling c given by
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c((u; v); (u�; v�)) := hu; u�i+hv; v�i and setting (u�; v�) 2 @f(u; v) if, and only if u� 2 @f(�; v)(u)
and v� 2 �@(�f)(u; �)(v); we see that f is an Ekeland function on X: For that, we note that
since f is convex-concave, (u�; v�) 2 @f(u; v) i¤ (u; v) is a saddle point of f � u� E pU � v

� E pV ;
where pU and pV are the canonical projections from X onto U and V respectively, so that
�fE(u�; v�) is the saddle value of f � u� E pU � v� E pV . In fact, if (u

�; v�) 2 @f(u; v), then for
all (u0; v0) 2 X one has

f(u0; v)� hu�; u0i � hv�; vi � f(u; v)� hu�; ui � hv�; vi as u� 2 @f(�; v)(u);

f(u; v)� hu�; ui � hv�; vi � f(u; v0)� hu�; ui � hv�; v0i as � v� 2 @(�f(u0; �))(v0):

Conversely, when (u; v) is a saddle point of f � u� E pU � v� E pV ; the preceding inequalities
show that (u�; v�) 2 @f(u; v). Thus, the passages from f to (v�; u�) 7! fE(u�; v�) or from f to
�fE can be considered as the appropriate Young-Fenchel transforms for saddle functions. In
particular, for (u; v) 2 dom@f one has �(�fE)E(u; v) = f(u; v):
When f(u; v) := g(u) � h(v); where g : U ! R, h : V ! R are convex functions, one has

fE(u�; v�) = g�(u�) � h�(v�) for (u�; v�) 2 @g(U) � @h(V ). When X is �nite dimensional, the
decomposition of quadratic forms on X shows that the preceding example is a special case of
the present example.
Example 7. Let W be an open subset of a normed vector space X and let f : W ! R be
di¤erentiable and positively homogeneous. Then f is an Ekeland function since for any x 2 W
one has Df(x):x� f(x) = 0 by Euler�s relation.
Example 8. Let f : X ! R be di¤erentiable and such that its derivative f 0 is injective. Then
f is an Ekeland function.
Example 9. Let (S;S; �) be a �-�nite complete measure space and let f : S � E ! R be
a normal (nonconvex) integrand. Then the associated integral functional If : L1(S;E) ! R

given by

If (x) := inff

Z

S

yd� : y 2 L1(S;R); y(�) � f(�; x(�)) a.e.g

is an Ekeland function when one takes either the Fréchet subdi¤erential or the limiting subd-
i¤erential. This assertion stems from the result proved in [9], [32] that for x� 2 L1(S;E

�) one
has x� 2 @F If (x) if, and only if for all u 2 L1(S;E) one has If (u) � If (x) + hx

�; u� xi:
These examples show that the domain of the Ekeland transform may be very small and that

the Ekeland transform of an Ekeland function is not necessarily an Ekeland function. We will
turn later to a remedy to these ailments.
The next example is a re�nement of the classical notion of Legendre function of class Ck:

Recall that that notion enables one to pass from the Euler-Lagrange equations of the calculus of
variations to the Hamilton equations. The latter are explicit (rather than implicit) di¤erential
equations of �rst order (instead of second order). Let us give a precise de�nition in which we
say that a mapping g : U ! V between two metric spaces is stable or is Stepanovian if for all
u 2 U there exist some r > 0; c 2 R+ such that for every u in the ball B(u; r) of center u and
radius r one has

d(g(u); g(u)) � cd(u; u):
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De�nition 4.2 A function f : U ! R on an open subset U of a Banach space X is a classical
Legendre function if it is (Fréchet) di¤erentiable, if its derivative f 0 : U ! Y := X� is a
Stepanovian bijection onto an open subset V of Y whose inverse h is also Stepanovian.

Then one de�nes the Legendre transform of f as the function fL : V ! R given by

fL(y) := hh(y); yi � f(h(y)) y 2 V:

It coincides with the Ekeland transform fE of f associated with the derivative. Since h is just
a Stepanovian function, it is surprising that fL is in fact of class C1 (and of class Ck when f
is of class Ck).

Lemma 4.3 If f is a classical Legendre function on U , then it is an Ekeland function and its
Legendre transform fL is of class C1 on V := f 0(U) and coincides with fE. Moreover fL is a

classical Legendre function,
�
fL
�L
= f and

v = Df(u), u = DfL(v) 8(u; v) 2 U � V:

Furthermore, when f is of class Ck; fL is of class Ck:

Proof. Since the derivative f 0 of a classical Legendre function f is injective, f is an Ekeland
function by Example 8. For v 2 V , since h(v) is the unique u 2 U such that f 0(u) = v; we
have fL(v) = fE(v). Let us show that fL is di¤erentiable. Given u 2 U , v := f 0(u) 2 V , let
y 2 V � v, let x := h(v + y) � h(v) 2 U � u, and let r(x) = f(u + x) � f(u) � f 0(u)x. Then,
since h(v) = u, h(v + y) = u+ x; one has

fL(v + y)� fL(v)� hu; yi = hu+ x; v + yi � f(u+ x)� hu; vi+ f(u)� hu; yi

= hx; v + yi � f 0(u)x� r(x)

= hx; yi � r(x):

Since there exists c 2 R+ such that kxk � c kyk for kyk small enough, the last right hand side
is a remainder, i.e. kyk�1 (hx; yi � r(x)) ! 0 as y ! 0: Thus fL is di¤erentiable at v and
(fL)0(v) = u = h(v): Moreover, fL is a classical Legendre function, and since fL = fE in such

a case,
�
fL
�L
= f .

Suppose now that f is of class C2: Let g := f 0; u 2 U , v := g(u) 2 V; x 2 X, A := g0(u):
For t > 0 small enough to ensure u + tx 2 U; we set yt := t�1(g(u + tx) � g(u)); so that
ktxk = kh(v + tyt)� h(v)k � tc kytk for t small enough. Since (yt) ! y := A(x) as t ! 0+;
we get kxk � c kA(x)k : Thus A is injective and its image is a complete subspace of Y; as
easily seen. Let us show that this image is dense, which will prove that A is an isomorphism.
Given y 2 Y; let us set xt := t�1(h(v + ty) � h(v)); so that v + ty = g(h(v) + txt) and
ty = g(u + txt) � v = g(u + txt) � g(u) = tA(xt) + tzt; where (zt) ! 0 as t ! 0+ since (xt)
is bounded. Thus d(y; A(X)) � limt kztk = 0 and y 2 cl(A(X)) = A(X) which is closed in Y:
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Thus A is an isomorphism and the inverse mapping theorem shows that the inverse h of g is
di¤erentiable at v with inverse A�1 := g0(u)�1: Thus h is of class C1 and since (fL)0 = h; we
get that fL is of class C2:
When f is of class Ck; (fL)0 = h is of class Ck�1 as an induction shows. Thus, fL is of class

Ck: �

Remark. If f : U ! R is Hadamard di¤erentiable, i.e. directionally di¤erentiable and if f 0 is
a bijection from U onto an open subset V of Y whese inverse h is directionally di¤erentiable,
a computation similar to the one of the preceding proof shows that fE is directionally di¤er-
entiable and DfE(v) = h(v) for all v 2 V , so that v = Df(u) is equivalent to u = DfE(v):
�

Remark. Suppose f : U ! R is an Ekeland function such that its Fréchet subdi¤erential @Ff
satis�es the following condition for some u 2 U , v 2 @Ff(u) :
there exist some c, r > 0 such that d(u; (@Ff)

�1(w)) � cd(v; w) for all w 2 B(v; r):
Then, by estimates similar to the computation of the preceding proof one gets that u 2
�@F (�f

E)(v): �

One may wonder to what extent the de�nition of Ekeland functions depends on the choice
of the subdi¤erential. A comparison between Examples 1 and 2 shows that the class of Ekeland
functions for the Moreau type subdi¤erential of Example 2 is much larger than the class of
Ekeland functions for the Fréchet or the Hadamard subdi¤erentials. We just present obvious
observations in this vein.

Proposition 4.4 (a) If a function f : X ! R1 is an Ekeland function for a subdi¤erential @,
then it is an Ekeland function for any smaller subdi¤erential.
(b) A function f : X ! R1 is an Ekeland function for a subdi¤erential @ if, and only if it

is an Ekeland function for the limiting subdi¤erential @L associated with @.

As a consequence, one gets that in an Asplund space the notions of Ekeland function for the
Fréchet subdi¤erential @F and for the limiting subdi¤erential @L associated with @F coincide. We
also note that for important classes of functions such as the class of paraconvex (or semiconvex)
functions, or, more generally, the class of approximately convex functions, usual subdi¤erentials
coincide (see [26] for instance).
Preservation of the Ekeland property under composition or usual operations is not ensured

in general. Such a question will be dealt with in Section 4. For the moment, we just note the
following elementary result.

Proposition 4.5 If A : X ! Y is a surjective continuous linear map between Banach spaces
and if g : Y ! R is an Ekeland function for the Hadamard, the Fréchet, the Clarke or the
limiting subdi¤erential, then f := g E A is an Ekeland function on X. Moreover, for all x� 2
AT (Y �) one has fE(x�) = gE(y�) for y� 2 (AT )�1(x�):
If g is a classical Legendre function on an open subset Y0 of Y and if A is an isomorphism,

then f := g E A is a classical Legendre function on X0 := A�1(Y0):
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Proof. It is not di¢cult to check under the assumption that @f(x) = @g(A(x)) E A for all
x 2 X for @ = @D, @F ; @C or @L: Given x1; x2 2 X; x

� 2 @f(x1) \ @f(x2); so that there exists
y�1 2 @g(A(x1)), y

�
2 2 @g(A(x2)) satisfying x

� = y�1 E A; x
� = y�2 E A; hence y

�
1 = y�2 = y�.

Then, from the assumption that g is an Ekeland function, we deduce that for y1 := A(x1);
y2 := A(x2), y

� := y�1 = y�2, we have

hy1; y
�i � g(y1) = hy2; y

�i � g(y2)

hence hx1; x
�i � f(x1) = hy1; y

�i � g(y1) = hy2; y
�i � g(y2) = hx2; x

�i � f(x2) : f is an Ekeland
function.
If A : X ! Y is an isomorphism and if g : Y0 ! R is a classical Legendre function, then

f := g EA is such that x 7! f 0(x) = g0(A(x))EA is a Stepanovian bijection from X0 := A�1(Y0)
onto AT (g0(Y0)) whose inverse is also Stepanovian. Then, for x

� 2 AT (g0(Y0)); x 2 X with
x� = AT (g0(Ax)); one has fL(x�) = hx; x�i � f(x) = hAx; g0(Ax)i � g(Ax) = gL((AT )�1x�): �

4.2 Legendre functions and Legendre transform

The following de�nition stems from our wish to get a symmetric concept. It is also motivated
by the convex case in which the domain of fE is the image of @f which is not necessarily
convex, while a natural extension of fE is the Fenchel conjugate whose domain is convex and
which enjoys nice properties (lower semicontinuity, local Lipschitz property on the interior of
its domain...).

De�nition 4.6 Let X be a Banach space with dual Y: A proper function f : X ! R1 is said to
be a (generalized) Legendre function for a subdi¤erential @ if it is lower semicontinuous (l.s.c.)
on its domain and if there exists a function fL : Y ! R1 which is l.s.c. on its domain and is
such that
(a) f and fL are Ekeland functions and fL j @f(X) = fE;
(b) for any x 2 domf there is a sequence (xn; yn; rn)n in J

@f such that (xn; hxn � x; yni; rn)!
(x; 0; f(x));
(b�) for any y 2 domfL there is a sequence (yn; xn; sn)n in J

@fL such that (yn; hxn; yn � yi; sn)!
(y; 0; fL(y));
(c) the relations x 2 X; y 2 @f(x) are equivalent to y 2 Y; x 2 @fL(y):

The preceding de�nition is symmetric. Indeed, taking (fL)L = f , for any x 2 @fL(Y ) =
dom@f (by (c)), we see that (fL)L(x) = f(x) = hx; yi � fE(y) = (fL)E(x) for y 2 @f(x):
Condition (b) ensures that f is determined by its restriction to dom@f: In fact, for any

x 2 domf one has
f(x) = lim inf

x0(2dom@f)!x
f(x0)

since f(x) � lim infx0!x f(x
0) and (b) implies f(x) = limn f(xn) for some sequence (xn) ! x

in dom@f: Similarly, fL is determined by its restriction to dom@fL = @f(X): Conditions (b�)
and (c) imply that fL is determined by f:
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Condition (b) can be simpli�ed when @f is locally bounded, in particular when @f is.
contained in @Cf and f is locally Lipschitzian on its domain. In that case, condition (b) is
equivalent to the simpler condition
(b0) for any x 2 domf there exists a sequence (xn)n in dom @f such that ((xn; f(xn)) !

(x; f(x)):
A similar observation holds for condition (b�). The interest of the stringent conditions (b) and
(b�) is to make the extensions as close as possible to f and fE respectively.
The following result uses the key fact of nonsmooth analysis that condition (b) of De�nition

4.6 is satis�ed for the Fréchet subdi¤erential on spaces having smooth bump functions.

Proposition 4.7 Let X be a Banach space such that X and X� have C1 smooth bump func-
tions. Let f be a lower semicontinuous Ekeland function whose Ekeland transform fE is a
lower semicontinuous Ekeland function. Then f is a (generalized) Legendre function for the
Fréchet subdi¤erential whenever condition (c) of De�nition 4.6 is satis�ed.

Let us give some examples of Legendre functions.

Proposition 4.8 (a) Any classical Legendre function is a (generalized) Legendre function.
(b) Any l.s.c. proper convex function is a (generalized) Legendre function.
(c) If f : W ! R is a continuous, Hadamard (resp. Fréchet) di¤erentiable, concave function

on an open convex subset W of X whose concave conjugate f� is a continuous, Hadamard (resp.
Fréchet) di¤erentiable function on a convex subset of X�, then f is a (generalized) Legendre
function with fL = f� for the Hadamard (resp. Fréchet) subdi¤erential.
(d) If f is a quadratic function whose Hessian A is an isomorphism, then f is a Legendre

function.

Proof. The �rst assertion is obvious: for condition (b) of De�nition 4.6 one takes (xn; yn; rn) =
(x; f 0(x); f(x)) and we make a similar choice in (b�). Assertion (b) is a consequence of [29, Cor.
1.2], taking for fL the Fenchel conjugate f � of f: If f is as in assertion (c), and if g := �f;
one has fL = f� = �g�(��), so that y 2 @f(x) if, and only if, �y = Dg(x); if, and only if
x 2 @g�(�y) = fDfL(y)g = @fL(y). When the Hessian A is an isomorphism, assertion (d) is
a special case of assertion (a) since a quadratic function whose Hessian is an isomorphism is a
classical Legendre function. �

Example 10. Let F(X) be the set of partially quadratic functions on a Banach space X; i.e.
the set of functions f given by f(x) := 1

2
hA(x � a); x � ai � hb; x � ai + c when x belongs to

some closed a¢ne subspace W + a of X (with W a closed linear subspace of X; a 2 X) and
f(x) = +1 when x 2 Xn(W + a); where A : W ! W � is some continuous symmetric linear
map, b 2 W �, c 2 R. Let @ be either the Fréchet or the Hadamard subdi¤erential. Then f is
an Ekeland function. In fact, given y 2 Y := X�, x1; x2 2 X such that y 2 @f(xi) one has
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y j W = A(xi � a)� b and

hy; xii � f(xi) = hy; ai+ hA(xi � a)� b; xi � ai �
1

2
hA(xi � a); xi � ai+ hb; xi � ai � c

=
1

2
hA(xi � a); xi � ai+ hy; ai � c

and

hA(x1 � a); x1 � ai � hA(x2 � a); x2 � ai = hA(x1 � x2); x1 � ai+ hA(x2 � a); x1 � x2i = 0

since A is symmetric and A(x1 � a) = y j W + b = A(x2 � a): Moreover, when A is invertible,
or, more generally, when A(W ) is closed and the null space of A is complemented, in particular
whenW is �nite dimensional, fE is also a partially quadratic function. In that case, we see that
dom @f = dom f and that the domain of fE is the set of y 2 Y such that (y+ b) j W 2 A(W );
so that f is a Legendre function with fL = fE: �

4.3 Operations on Ekeland and Legendre functions

In the present subsection X is a n.v.s. with dual Y and @ is a general subdi¤erential. The
compatibility of the usual operations with respect to the concepts we study is not as rich as
what occurs for the Fenchel transform, as simple examples show for the sum. However, some
simple properties can be devised, in particular for the in�mal convolution � which is de�ned
by

(g�h) (x) := inffg(u) + h(v) : u; v 2 X; u+ v = xg

for two functions g; h on X: The in�mal convolution g�h is said to be exact at x 2 X if there
exists some u; v 2 X such that u+ v = x and (g�h) (x) = g(u) + h(v):

Proposition 4.9 (a) If f is an Ekeland function, then for any positive real number � the
function �f is an Ekeland function and (�f)E(y) = �fE(��1y): Moreover, if f is a Legendre
function, then �f is a Legendre function.
(b) If fi : Xi ! R1 is an Ekeland (resp. Legendre) function for i = 1; :::; k, then, f given

by f(x) := f1(x1) + :::+ fk(xk) for x := (x1; :::; xk) is an Ekeland (resp. Legendre) function.

Proof. (a) Let xi 2 X be such that y 2 @(�f)(xi) for i = 1; 2: Then �
�1y 2 @f(xi) and

hxi; yi � �f(xi) = �
�
hxi; �

�1yi � f(xi)
�
= �fE(��1y) i = 1; 2;

so that �f is an Ekeland function and (�f)E(y) = �fE(��1y): When f is a Legendre function,
setting (�f)L(y) = �fL(��1y); we easily get that �f is a Legendre function.
(b) Since f is a separable function, when x := (x1; :::; xk); y := (y1; :::; yk), we have y 2 @f(x)

if, and only if, yi 2 @f(xi) for i = 1,...,k: The fact that f is an Ekeland function when fi are
Ekeland functions ensues and fE(y) = fE1 (y1) + :::+ f

E
k (yk): From this formula one sees that f

is a Legendre function when f1; :::; fk are Legendre functions as f
L is also separable. �

In order to study sums and in�mal convolutions, it will be useful to introduce the following
de�nition.
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De�nition 4.10 A pair of functions (g; h) on X is said to be @-convolable at x 2 X if for
every ui; vi 2 X; satisfying ui+vi = x, @g(ui)\@h(vi) 6= ? for i = 1; 2, one has g(u1)+h(v1) =
g(u2) + h(v2): Then, one writes (g�@h)(x) = g(u) + h(v) for u; v 2 X satisfying x = u+ v and
@g(u) \ @h(v) 6= ?:
The functions g, h are said to be @-convolable if they are @-convolable at all x 2 C(g; h)

with
C(g; h) := fx 2 X : 9u; v 2 X; u+ v = x; @g(u) \ @h(v) 6= ?g:

Then (g�@h)(x) is de�ned as above for x 2 C(g; h) and (g�@h)(x) = +1 otherwise.

Examples 11. (a) If g and h are convex functions, then (g; h) is @-convolable and g�@h
coincides with the in�mal convolution g�h on C(g; h): given x; ui; vi 2 X; yi 2 @g(ui)\@h(vi),
with ui + vi = x for i = 1; 2, one has

g(u2) + h(v2) � g(u1) + hy1; u2 � u1i+ h(v1) + hy1; v2 � v1i = g(u1) + h(v1)

and, by symmetry, equality. Moreover, for all w 2 X one has

g(x� w) + h(w) � g(u1) + hy1; x� w � u1i+ h(v1) + hy1; w � v1i = g(u1) + h(v1);

hence (g�h)(x) � (g�@h)(x); and in fact equality holds since the preceding relations are
equalities for w = v1: Similar properties hold if g and h are (nonconvex) integral functionals on
L1(S;E) and @ is the �rm or the limiting subdi¤erential as in Example 9. In fact, the result
holds for arbitrary functions when @ is the Moreau-Rockafellar subdi¤erential.
(b) If g and h are concave functions, then g�@h coincides with the supremal convolution

�((�g)�(�h)) since yi 2 @g(ui) \ @h(vi) if, and only if g and h are di¤erentiable at ui and vi
respectively (and thus g � yi and h� yi attain their maximum at such points).
(c) Given symmetric operators B, C : X ! X� such that B +C is an isomorphism from X

onto Y := X�; b, c 2 Y , C, D 2 R, let g and h be given by g(x) := (1=2)hBx; xi � hb; xi + C;
h(x) := (1=2)hCx; xi � hc; xi + D. Here @ coincides with derivation. Then, for all x 2 X, the
system g0(u) = h0(v); u+ v = x is equivalent to

Bu� Cv = b� c

u+ v = x

and its unique solution is given by

u = (B + C)�1(Cx+ b� c);

v = (B + C)�1(Bx� b+ c):

Thus (g; h) is @-convolable. Note that g�@h is also a quadratic polynomial: for A := (B+C)
�1,

since BAC = B �BAB = CAB, one has

(g�@h)(x) =
1

2
hBACx; xi � hCAb+BAc; xi �

1

2
hb� c; A(b� c)i+ C + D:
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Moreover, for all x 2 X one has D(g�@h)(x) = BACx� CAb�BAc = Dg(u) = Dh(v) for u;
v as above. Then, setting y := D(g�@h)(x), one has

(g�@h)
E(y) = hx; yi � (g�@h)(x) = hu+ v; yi � (g(u) + h(v)) = gE(y) + hE(y):

(d) If g and h are di¤erentiable and if for all x 2 X the equation g0(u)� h0(x� u) = 0 has
a unique solution ux, then (g; h) is convolable and (g�@h)(x) = g(ux) + h(x � ux). This fact
occurs when the map (u; v) 7! (g0(u)� h0(v); u+ v) is injective, as in the preceding example or
when the minimization of u 7! g(u) + h(x� u) has a unique solution.
(e) If g; h are saddle functions on X 0�X 00 then (g; h) are @-convolable for the subdi¤erential

@ de�ned in Example 6 provided that when y1 2 @g(u1)\@h(v1) and y2 2 @g(u2)\@h(v2) with
u1 + v1 = u2 + v2 = x one has hx; y1i = hx; y2i. In fact, if x := ui + vi with ui := (u0i; u

00
i ),

vi := (v
0
i; v

00
i ) and if yi := (y

0
i; y

00
i ) 2 @g(u

0
i; u

00
i ) \ @h(v

0
i; v

00
i ) for i = 1; 2 one has

g(u01; u
00
1)� hy

0
1; u

0
1i � hy

00
1 ; u

00
1i = g(u02; u

00
2)� hy

0
2; u

0
2i � hy

00
2 ; u

00
2i;

h(v01; v
00
1)� hy

0
1; v

0
1i � hy

00
1 ; v

00
1i = h(v02; v

00
2)� hy

0
2; v

0
2i � hy

00
2 ; v

00
2i

hence, by addition
g(u1) + h(v1)� hy1; xi = g(u2) + h(v2)� hy2; xi

and g(u1) + h(v1) = g(u2) + h(v2):
(f) Let (S;S; �) be a �-�nite complete measure space, let E be a seaparable Banach space

and let G;H : S � E ! R be normal integrands such that for a.e. s 2 S the functions
Gs := G(s; �) and Hs := H(s; �) are @-convolable for @ = @F or @ = @L. Then the integral
functionals g : x 7! IG(x) =

R
S
G(s; x(s))d�(s) and h : x 7! IH(x) =

R
S
H(s; x(s))d�(s) on

L1(S;E) are @-convolable and g�@h is the integral functional associated with the integrand F
given by Fs = Gs�@Hs.
(g) Two indicator functions �C , �D are @-convolable since @�C(u) \ @�D(v) 6= ? implies that

u 2 C, v 2 D; hence �C(u) + �D(v) = 0: Then �C�@�D is an indicator function. �

A comparison of the @-convolution with the in�mal convolution is in order. We �rst gener-
alize Example 11 (a).

Proposition 4.11 If @ is any elementary subdi¤erential, if g and h are such that for some
x 2 C(g; h) the function kx : u 7! g(u) + h(x � u) is convex, then (g; h) is @-convolable at x
and (g�@h)(x) = (g�h)(x):

Proof. Let u 2 X be such that @g(u)\@h(x�u) 6= ?: Then 0 2 @g(u)�@h(x�u) � @kx(u)
since @ is an elementary subdi¤erential. Since kx is convex, u is a minimizer of kx: Hence kx(u)
is independent of the choice of u: (g; h) is @-convolable at x and (g�@h)(x) = g(u)+h(x�u) =
(g�h)(x): �

Proposition 4.12 Let @ be an arbitrary subdi¤erential.
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(a) If the in�mal convolution f := g�h is exact at x 2 dom@f , then

u; v 2 X; u+ v = x; g(u) + h(v) = f(x); y 2 @f(x) =) y 2 @g(u) \ @h(v)

and if (g; h) is @-convolable at x one has (g�@h)(x) = (g�h)(x).
(b) If the in�mal convolution f := g�h is exact at all x 2 dom@f , and if g and h are

Ekeland functions, then f is an Ekeland function and (g�h)E = gE + hE on dom (g�h)E :

Proof. (a) Let y 2 @f(x), the in�mal convolution being exact at x; so that there exist
u; v 2 X such that u + v = x, g(u) + h(v) = f(x): Let us check that y 2 @g(u) \ @h(v).
Introducing the function j : X �X ! R given by j(w; v) := g(w � v) + h(v) and noting that
f(w) := infv2X j(w; v), from y 2 @f(x) we get (y; 0) 2 @j(w; v) and y 2 @g(x � v) \ @h(v) by
[33, Prop. 2.6] or an easy computation. Thus, if (g; h) is @-convolable at x one has (g�@h)(x) =
g(u) + h(v) = (g�h)(x).
(b) If the in�mal convolution f := g�h is exact at all x 2 dom@f , and if g and h are

Ekeland functions, for every y 2 @f(X) one gets that hy; xi � f(x) does not depend on the
choice of x 2 (@f)�1(y): given u; v 2 X satisfying u + v = x, g(u) + h(v) = f(x), one has
y 2 @g(u) \ @h(v) hence

hy; xi � f(x) = hy; ui � g(u) + hy; vi � h(v) = gE(y) + hE(y): (9)

�

Now let us turn to the @-convolution.

Proposition 4.13 (a) If g and h are @-convolable Ekeland functions and if the following con-
dition holds, then f := g�@h is an Ekeland function and one has (g�@h)

E = gE + hE :

y 2 @f(x); x = u+ v; @g(u) \ @h(v) 6= ? =) y 2 @g(u) \ @h(v):

(b) This condition is satis�ed if g and h are both convex or if g and h are quadratic polyno-
mials given by g(x) := (1=2)hBx; xi � hb; xi+ C, h(x) := (1=2)hCx; xi � hc; xi+ D with B + C
invertible.

Proof. (a) Under our assumption, given x1, x2 2 X and y 2 @f(x1) \ @f(x2); taking ui,
vi 2 X such that xi = ui+ vi; f(xi) = g(ui) + h(vi) for i = 1; 2, using our assumption, one has
y 2 @g(ui) \ @h(vi) for i = 1; 2 hence

hy; xii � f(xi) = hy; uii � g(ui) + hy; vii � h(vi) = gE(y) + hE(y)

which is independent of i 2 f1; 2g. That ensures that f is an Ekeland function and that
fE(y) = gE(y) + hE(y).
(b) If g and h are convex we have seen that g�@h = g�h and that the condition is satis�ed.

If g and h are the quadratic forms described above, with B + C invertible, we have seen that
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y 2 @f(x) means that y = BAC(x) � BAc � CAb for A := (B + C)�1 and the relations x :=
u+ v; @g(u) \ @h(v) 6= ? imply that y = g0(u); y = h0(v): �

Now let us show that the introduction of the @-convolution is justi�ed by the transforms of
sums. In the next result @ is an arbitrary subdi¤erential but the assumption requires a sum
rule satis�ed if g and h are Lipschitzian and if @ = @C or if @ = @L, X being an Asplund space.

Proposition 4.14 Let f := g + h, where g; h : X ! R1 are Legendre functions such that
(gL; hL) is @-convolable at y 2 @f(X). If for all x 2 (@f)�1(y) one has @f(x) � @g(x) + @h(x)
then y 2 C(gL; hL) and (g + h)E(y) = (gL�@h

L)(y).
If (gL; hL) is @-convolable and if @f(x) � @g(x) + @h(x) for all x 2 dom@f , then f is an

Ekeland function and (g + h)E = (gL�@h
L) on domfE.

Proof. Let y 2 C(gL; hL)\ @f(X) and let xi 2 (@f)
�1(y) for i = 1, 2. By assumption, there

exist wi 2 @g(xi), zi 2 @h(xi) such that y = wi + zi for i = 1, 2. Then xi 2 @g
L(wi) \ @h

L(zi)
so that y 2 C(g; h) and since (gL, hL) is @-convolable at y, one has gL(w1)+h

L(z1) = gL(w2)+
hL(z2) and, for i = 1, 2 one gets

hxi; yi � f(xi) = hxi; wi + zii � g(xi)� h(xi) = gL(wi) + h
L(zi)

which does not depend on the choice of i. Thus f is an Ekeland function and (g + h)E(y) =
(gL�@h

L)(y). �

One can give a converse in the case @ is an elementary subdi¤erential.

Proposition 4.15 Let g; h : X ! R1 be Legendre functions such that f := g + h is an
Ekeland function for an elementary subdi¤erential @. Then gL and hL are @-convolable and
fE = gL�@h

L on C(gL; hL):

Proof. Let y 2 C(gL; hL): there exist some w; z 2 Y such that y = w + z and @gL(w) \
@hL(z) 6= ?: Let x 2 @gL(w) \ @hL(z). Since g and h are Legendre functions and since @ is an
elementary subdi¤erential, one has w 2 @g(x), z 2 @h(x) and y = w + z 2 @f(x). Then, by
de�nition of gL, hL, and fE,

gL(w) + hL(z) = hw; xi � g(x) + hz; xi � h(x) = hy; xi � f(x) = fE(y)

so that this sum is independent of the choices of x, w, z: gL and hL are @-convolable and one
has (gL�@h

L)(y) = gL(w) + hL(z) = fE(y): �

Let us turn to composition properties; they encompass Proposition 4.5.

Proposition 4.16 Let W0; X0 be open subsets of Banach spaces W;X respectively, let G :
X0 ! W0 be a mapping of class C

1 whose derivative at every point of X0 is surjective, G being
the restriction of a positively homogeneous mapping from X to W . Let g : W0 ! R1 be a
function such that for any x1; x2 2 X0 and z1; z2 2 W

� satisfying z1 EG
0(x1) = z2 EG

0(x2) and
zi 2 @g(G(xi)) for i = 1; 2, one has z1 = z2.
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If g is an Ekeland function, then f := g E G is an Ekeland function. Moreover, for any
y 2 @f(X); x 2 (@f)�1(y), z 2 @g(G(x)) with y = z EG0(x); one has fE(y) = gE(z):
In particular, this conclusion holds under each of the following assumptions on g; G being

as above:
(a) g is a continuous linear form;
(b) g : W ! R is an Ekeland function and G = A is a surjective linear continuous map;
(c) g : W ! R1 is a closed proper convex function such that

8x 2 X0 G0(x)(X)� R+(dom g �G(x)) = W:

Proof. Using the fact that G is open at a linear rate at each point of X0, one can easily check
that for any x 2 X0 one has @f(x) = @g(G(x)) EG0(x): Moreover, by the Euler relation, for all
x 2 X0 one has G

0(x):x = G(x): Then if y 2 @f(xi) for i = 1; 2; one can �nd zi 2 @g(G(xi))
such that y = zi EG

0(xi). Our assumption ensures that z1 = z2; and the Euler relation entails
that G0(xi):xi = G(xi); so that

hy; xii � f(xi) = hzi EG
0(xi); xii � g(G(xi)) = hzi; G(xi)i � g(G(xi)) = gE(zi)

is independent of i : f is an Ekeland function. The relation fE(y) = gE(z) for y 2 @f(x);
z 2 @g(G(x)) with y = z EG0(x) stems from the preceding string of equalities.
(a) When g is a continuous linear form, the relations zi 2 @g(G(xi)) imply that zi = g:
(b) When G is a surjective continuous linear map, the relation z1 E G

0(x1) = z2 E G
0(x2)

amounts to z1 EG = z2 EG; hence z1 = z2 since G is surjective.
(c) It is known that the quali�cation condition we assume implies that @f(x) = @g(G(x)) E

G0(x) both for the �rm and the directional subdi¤erentials (see for instance [28], Prop. 4.1).
The rest of the proof is similar to the preceding case. �

Proposition 4.17 Let A : X ! W be a surjective continuous linear map between Banach
spaces and let g, h : W ! R1 be @-convolable Ekeland functions. Then g E A, h E A are
@-convolable and (g E A)�@(h E A) = (g�@h) E A:

Proof. Let x 2 C(g EA; h EA) and for i = 1; 2 let ui, vi 2 X, yi 2 @(g EA)(ui)\ @(h EA)(vi)
be such that ui + vi = x. Then there exists zi 2 @g(A(ui)) \ @h(A(vi)) satisfying yi = zi E A:
Since g; h are @-convolable one has g(A(u1)) + h(A(v1)) = g(A(u2)) + h(A(v2)): Thus g E A,
h E A are @-convolable. Moreover, since A(ui) + A(vi) = A(x) and zi 2 @g(A(ui)) \ @h(A(vi)),
one has

((g E A)�@(h E A))(x) = g(A(ui)) + h(A(vi)) = (g�@h)(A(x)):

5 Ekeland sets

The �rst part of the following de�nition has been introduced in [31]. Here we use the notion
of normal cone to a set S at x 2 S associated with a subdi¤erential @ by N(S; x) := @�S(x),
where �S is the indicator function of S.
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De�nition 5.1 A subset S of a Banach space will be called an Ekeland set if its indicator
function �S is an Ekeland function, i.e. if for any x1; x2 2 S and any y 2 N(S; x1) \N(S; x2)
one has hx1; yi = hx2; yi:
A subset S of a Banach space will be called an Legendre set if its indicator function �S is a

Legendre function.

Any closed convex subset S is a Legendre set and �ES is the support function of S:
Any cone S is an Ekeland set when @ is contained in the directional subdi¤erential @D;

moreover, in such a case, �ES is an indicator function. In particular, for S := R+�f0g[f0g�R+,
one has �ES = �S: If S is a closed convex cone, then �

E
S is the indicator function of the polar cone

of S:
Let us note that if S is an Ekeland set, then �ES is a positively homogeneous function.
In the following statement, we use the Fréchet subdi¤erential @F .

Proposition 5.2 If the distance function dS to a closed subset S of a n.v.s. is an Ekeland
function then S is an Ekeland set. Moreover, for all y 2 @F �F (S) one has

�ES (y) = kyk d
E
S (y):

Conversely, if a closed subset S of a Hilbert space (or a re�exive Banach space with the
Kadec-Klee property and a Gâteaux smooth norm o¤ 0) X is an Ekeland set, then its associated
distance function dS is an Ekeland function.

Proof. Suppose dS is an Ekeland function. Let y 2 X� and let x1; x2 2 S be such that
y 2 @F �S(xi) for i = 1; 2. Let u be an element of the unit sphere SX� of X� be such that
y = kyku: Then, since by a well known result (see [34, Lemma 4.21] for instance), one has

@FdS(x) = NF (S; x) \BX�

for all x 2 S; where BX� is the unit ball of X�; and since the Fréchet normal cone NF (S; x) is
@F �S(x); one has u 2 @FdS(xi) for i = 1; 2: Since dS is an Ekeland function, one has

hx1; ui = hx1; ui � dS(x1) = hx2; ui � dS(x2) = hx2; ui

It follows that hx1; yi = kyk hx1; ui = kyk hx2; ui = hx2; yi and S is an Ekeland subset of X.
Moreover, for i = 1; 2 one has �ES (y) = hxi; yi = kyk hxi; ui � kyk dS(xi) = kyk d

E
S (y):

Conversely, let S be a closed Ekeland subset of X. Let y 2 X� and let x 2 X be such
that y 2 @FdS(x): If y = 0; then x 2 S and hx; yi � dS(x) = 0; independently of the choice of
x 2 (@dS)

�1 (y): Suppose y 6= 0: Then, under our assumptions, by [6, Lemma 6], there exists
some w 2 S such that dS(x) = kx� wk and y 2 S(x� w) where

S(x� w) := fy 2 SX� : hx� w; yi = kx� wkg:
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Moreover y 2 NF (S;w): Then,

hx; yi � dS(x) = hx; yi � kx� wk = hx; yi � hx� w; yi = hw; yi = �SS(y)

is independent of the choice of x 2 (@dS)
�1 (y): Thus dS is an Ekeland function. �

Example 12. Let S be the epigraph of the function x 7! �x2 from R to R. Then Example
4 and the following proposition show that S is an Ekeland set. It uses the next elementary
lemma which is valid for any usual subdi¤erential @ contained in the directional subdi¤erential
@D (or in the limiting subdi¤erential associated with @D if f is continuous).

Lemma 5.3 If E is the epigraph of a lower semicontinuous function f : X ! R1, if (x; t) 2 E
and if (x�;�t�) 2 N(E; (x; t)) with t� > 0; then t = f(x) and x�=t� 2 @f(x):

Proof. Assume t > f(x): Then (0;�1) 2 T (E; (x; t)); as easily seen. Then, the relation

t� = h(x�;�t�); (0;�1)i � 0

leads to a contradiction to the assumption t� > 0. Thus t = f(x): The inclusion x�=t� 2 @f(x) is
then a consequence of the well known fact that u� 2 @f(x) if, and only if (u�;�1) 2 N(E; (x; t)):
�

In the next statement, we say that a function f : X ! R1 is quiet if f is calm at x for
all x 2 domf , i.e. if there exists c > 0 such that f(w) � f(x) � c kw � xk for all w in a
neighborhood of x:

Proposition 5.4 Let E be the epigraph E of a lower semicontinuous function f and let S
be the hypograph of �f : E := f(x; r) : r � f(x)g; S := f(x; s) : s � �f(x)g: If E is an
Ekeland set, then f is an Ekeland function and �ES (y; s) = sfE(s�1y) = (sf)E(y) for every
(y; s) 2 @f(X)� (0;+1); in particular fE(y) = �ES (y; 1) for all y 2 @f(X).
Conversely, if f is a quiet lower semicontinuous Ekeland function, then its epigraph E is

an Ekeland set.

Proof. Suppose E is an Ekeland set. Let x1; x2 2 X; y 2 X� be such that y 2 @f(x1) \
@f(x2): Then, for i = 1; 2; one has (y;�1) 2 N(E; (xi; f(xi))); hence

hx1; yi � f(x1) = h(x1; f(x1)); (y;�1)i = h(x2; f(x2)); (y;�1)i = hx2; yi � f(x2);

so that f is an Ekeland function. Moreover, by the preceding relations, for every (y; s) 2
@f(X) � (0;+1) one has fE(y) = �EE(y;�1) = �ES (y; 1) for all y 2 X�. Thus, since �ES
is positively homogeneous, for (y; s) 2 @f(X) � (0;+1) one has (sf)E(y) = sfE(s�1y) =
s�ES (s

�1y; 1) = �ES (y; s):
Conversely, let f be a quiet Ekeland function and let (x1; r1), (x2; r2) 2 E; (y; s) 2 X

��R be
such that (y;�s) 2 N(E; (xi; ri)) for i = 1; 2:When (y;�s) = (0; 0); one has h(y;�s); (xi; ri)i =
0 for i = 1; 2: Because f is continuous, that happens whenever ri > f(xi) for some i 2 f1; 2g:
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Thus, one may suppose ri = f(xi): Since (0; r) 2 T (E; (xi; ri)) for every r > 0; one has s � 0:
Let c > 0 be such that f(xi + v)� f(xi) � c kvk for kvk small enough. Then, for every u 2 X
one has

df(xi; u) := lim inf
(t;v)!(0+;u)

(1=t)(f(xi + tv)� f(xi)) � c kuk ;

and since (u; r) 2 T (E; (xi; f(xi))) for r � df(xi; u); one gets hu; yi � cs kuk � 0 and kyk � cs:
Thus, when s = 0 one has (y;�s) = (0; 0): Therefore we may suppose s > 0; so that s�1y 2
@f(xi) and

h(xi; ri); (y;�s)i = s
�
hxi; s

�1yi � f(xi)
�
= sfE(s�1y):

Therefore E is an Ekeland set. �

Proposition 5.5 Let A and B be Ekeland sets. Then S := A + B := fa + b : a 2 A; b 2 Bg
is an Ekeland set.

Proof. Since �S = �A��B and the in�mal convolution is exact, that follows from Proposition
4.12. �

Proposition 5.6 Let A : X ! Y be a surjective continuous linear map and let G be an Ekeland
set in Y: Then F := A�1(G) is an Ekeland set in X:

Proof. For x1, x2 2 F such that there exists x� 2 N(F; x1) \ N(F; x2); we can �nd
y� 2 N(G;A(x1)) \ N(G;A(x2)) such that x

� = AT (y�) (see [34, Thm 2.111]). Then one
has hx�; x1i = hy

�; A(x1)i = hy
�; A(x2)i = hx

�; x2i: Thus F is an Ekeland set. �

A notion of Ekeland relation can easily be introduced and used jointly with a notion of
coderivative (see [31]), but we shall not use it here.

6 The Lax formula and characteristics

Let us return to the Hamilton-Jacobi equation in the case the Hamiltonian H depends only on
its variable y in Y := X� :

Dtu(x; t) +H(Dxu(x; t)) = 0 (x; t) 2 X � P; (10)

u(x; 0) = g(x) x 2 X: (11)

Here g and H are given functions on X and X� respectively with values in R1:We assume that
the epigraph E of H (or the hypograph S of �H) is a Legendre set, so that H is a Legendre
function. We consider the function u de�ned by analogy with the Lax-Oleinik-Hopf formula by

u(x; t) :=
�
g�(tH)L

�
(x): (12)
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In particular, when H is a closed proper convex function, the preceding formula coincides with
the Lax-Oleinik-Hopf formula given by

u(x; t) := inf
w2X

sup
p2Y

(g(w) + hp; x� wi � tH(p)) = (g�(tH)�) (x);

where (tH)� is the Fenchel conjugate of tH. Following [17], [35], [36], let us introduce the
functions F;G given by

F (y; r) := �E(y;�r) := �S(y; r) (p; r) 2 Y � R;

G(x; t) := g(x) + �f0g(t) (x; t) 2 X � R:

Since the indicator function �E of E is a Legendre function, its composition F with the isomor-
phism A : (x; r) 7! (x;�r) also is a Legendre function.

Lemma 6.1 The function u given by (12) coincides with the function FL�G on X� (0;+1):
Moreover, for (x; t) 2 X � (0;+1) the in�mal convolution

�
FL�G

�
(x; t) is exact if, and only

if, the in�mal convolution
�
g�(tH)L

�
(x) is exact.

Proof. Proposition 5.4 ensures that FL(x; t) = (tH)L(x) for all (x; t) 2 X � P. Moreover

�
FL�G

�
(x; t) = inffg(w) + �f0g(t� s) + (sH)L(x� w) : (w; s) 2 X � Rg

= inffg(w) + (tH)L(x� w) : w 2 Xg =
�
g�(tH)L

�
(x):

The assertion about exactness (i.e. attainment) ensues.
When H is a closed proper convex function, since F is closed proper convex, one has

FL = F �: Hence, for (x; t) 2 X � R+, one has

FL(x; t) = F �(x; t) = supfhx; pi � rt : (p; r) 2 Eg

= supfhx; pi � rt : p 2 domH; r � H(p)g = (tH)�(x):

�

In the next two results we take for @ a subdi¤erential contained in @D (or the limiting
subdi¤erential associated with @D if H is continuous).

Proposition 6.2 Let H be a function whose epigraph is a Legendre set and let g be an arbi-
trary lower semicontinuous function such that for some ! > 0 and all t 2 (0; !) the in�mal
convolution u(�; t) := g�(tH)L is exact. Then u is an unilateral solution of equation (10) on
X � (0; !) in the sense that for all (x; t) 2 X � (0; !) and all (p; q) 2 @u(x; t) one has

q +H(p) = 0:
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Proof. Let (x; t) 2 X�(0; !) and let (p; q) 2 @u(x; t). Since the in�mal convolution
�
FL�G

�

is exact at (x; t) there exists w 2 X such that u(x; t) = FL(x� w; t) +G(w; 0): Then we have
(p; q) 2 @FL(x � w; t): Thus, we have (x � w; t) 2 @F (p; q) or (x � w;�t) 2 @�E(p;�q): As t
is positive, this inclusion means that t�1(x�w) 2 @H(p) and the relation �q = H(p) holds in
view of Lemma 5.3. �

The condition that the in�mal convolution is exact is satis�ed under lower semicontinuity
and coercivity assumptions in the �nite dimensional case or in the re�exive case.
Now let us tackle the links with the method of characteristics. In the present case, because

H does not depend on x; t; z, the characteristic system can be given a simple form:

bx0(s) 2 @H(by(s)) bx(0) = w;

by0(s) = 0 by(0) = w�;

bz0(s) = hbx0(s); by(s)i �H(by(s)) bz(0) = g(w)

Given (w;w�) 2 @g and v 2 @H(w�), a solution to this system is given by

bx(s) = w + sv; by(s) = w�; bz(s) = g(w) + s(hv; w�i �H(w�)):

The following result extends [27, Theorem 2.2] from the case of a strictly convex Hamiltonian
to the case of a (generalized) Legendre Hamiltonian; see [44], [45] for related results dealing
with regularity properties. It is also a partial extension of [41, Thm 2.4] since in that paper H
also depends on x:

Proposition 6.3 Let H be a Legendre function and let g be an arbitrary lower semicontinuous
function such that for some t 2 (0; !) the in�mal convolution u(�; t) := g�(tH)L is exact
at x 2 X. If @u(�; t)(x) is nonempty, there exist w 2 X and w� 2 @g(w) such that the
characteristic curve emanating from (w;w�; g(w)) satis�es bx(t) = x, by(t) = w�; bz(t) = u(x; t):
Thus, if the in�mal convolution u(�; t) := g�(tH)L is exact at each point of dom@u(�; t),

the subjet of u(�; t) is contained in the image of the subjet of g by the �ow de�ned by the
characteristic system.

Proof. Given (x; t) 2 X � (0; !) and w 2 X such that u(x; t) = (tH)L(x � w) + g(w), for
all p 2 @u(�; t)(x); one has p 2 @(tH)L(x� w) \ @g(w): Then, since tH is a Legendre function
by Proposition 4.9 (a), one gets t�1(x � w) 2 @H(p): Setting w� := p; v := t�1(x � w) we see
that x is the value at s = t of the characteristic curve bx : s 7! w + sv: Correspondingly, since
v 2 @H(w�);

bz(t) = g(w) + t (hv; w�i �H(w�)) = g(w) + tHL(v)

= g(w) + tHL(t�1(x� w)) = g(w) + (tH)L(x� w)

= u(x; t):

Thus (x; p; u(x; t)) is the image of (w;w�; g(w)) by the �ow (bx; by; bz) at time t: �
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The following examples fall outside the usual convex framework of [14], [35].
Example 13. Let X be a re�exive Banach space, let B;C be symmetric linear continuous
operators from X to X�; B being invertible, and let g and H be given by g(x) = 1

2
hCx; xi,

H(p) = 1
2
hB�1p; pi: Then H is a locally Lipschitz Legendre function and HL(x) = 1

2
hBx; xi: Its

epigraph is a Legendre set by Proposition 5.4. Then, Proposition 6.2 and a simple computation
show that the function u given by

u(x; t) := (g�@(tH)
L)(x) =

1

2
h(I + tB�1C)�1Cx; xi

is a unilateral solution of equation (H-J) on X � (0; !) with ! := kB�1Ck
�1
since t�1B +C is

invertible when t 2 (0; !):
Example 14. LetX = R2 and let g; H be given by g(x1; x2) =

1
2
x21�

1
2
x22, H(p1; p2) =

1
4
p41�

1
4
p42:

Then g and H are classical Legendre functions and

HL(x1; x2) =
3

4
x
4=3
1 �

3

4
x
4=3
2 :

Let r(s; t) be the unique solution of the equation r3 + t�1=3r � s = 0: Then u given by

u(x1; x2; t) =
1

2

�
x1 � r(x1; t)

1=3
�2
+
3

4
t�1=3r(x1; t)

4=9 �
1

2

�
x2 � r(x2; t)

1=3
�2
�
3

4
t�1=3r(x2; t)

4=9

is a unilateral solution of equation (H-J) on X � (0;+1).

7 The Hopf formula and characteristics

Finally, let us consider the Hamilton-Jacobi equation in the case the HamiltonianH depends on
t and y only. Given t > 0; let us suppose that for all r 2 (0; t) the function y 7�! Hr(y) = H(r; y)
is convex and that for all y 2 Y the function r 7�! Hr(y) = H(r; y) is continuous and let us
suppose g is a Legendre function. Let ht be the function given by

ht(y) :=

Z t

0

H(s; y)ds y 2 Y := X�: (13)

We use an elementary subdi¤erential contained in @D and we assume that for some t > 0 g
L+ht

is an Ekeland function, so that we can consider the function ut given by

ut(x) = (g
L + ht)

E(x):

It can be considered as an analogue of the function (g� + ht)
� of interest when g is convex too.

For v 2 X; y 2 @g(v); let us consider the characteristic system

bx0(s) 2 @Hs(by(s)) bx(0) = v

by0(s) = 0 by(0) = y

bz0(s) 2 @Hs(by(s)):by(s)�Hs(by(s)) bz(0) = g(v):
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Any solutions bx, by of the �rst two equations of this system satisfy

by(s) = y; bx(s) 2 @hs(y) + v:

Here, with the initial data, we have used the fact that h0 = 0 and the inequality

Hr(w)�Hr(by(r)) � hw � by(r); bx0(r)i 8(w; r) 2 Y � [0; s]

to get by integration, since by(r) = y for all r > 0;

hs(w)� hs(by(s)) � hw � by(s); bx(s)� vi 8w 2 Y;

hence bx(s)� v 2 @hs(y): Then, taking

bz(s) = hy; bx(s)� vi+ g(v)� hs(y)

we get a solution to the whole system.
Now, since g is a Legendre function and y 2 @g(v), we have v 2 @gL(y); hence

bx(t) = v + (bx(t)� v) 2 @gL(y) + @ht(y) � @(gL + ht)(y): (14)

When gL + ht is an Ekeland function, for x := bx(t) we get, since gL(y) = hy; vi � g(v);

(gL + ht)
E(x) = hy; xi � (gL + ht)(y)

= hy; x� vi+ g(v)� ht(y) = bz(t):

If moreover gL+ht is a Legendre function, then, by (14) y 2 @(g
L+ht)

L(x) = @(gL+ht)
E(x) =

@ut(x):
Recording our �ndings, we get the following statement in which we write explicitely the

dependence in v of bx(t) by substituting to bx(t) the notation bx(t; v): Since H is independent of x
but depends on t and since g is not supposed to be convex, this statement is a partial extension
of [41, Thm 6.8].

Proposition 7.1 Let H : (t; y) 7! H(t; y) be a function that is convex in its second variable
and let g be a Legendre function such that for some t > 0 the function gL + ht is a Legendre
function, ht being given by (13). Then, the �ow associated with v 7! bx(t; v) carries the subjet
J@g := f(v; y; z) : v 2 X; y 2 @g(v); z = g(v)g of g into the subjet J@ut of ut; where

ut(x) := (g
L + ht)

L(x):

Moreover, if the preceding assumptions are satis�ed for every t in some interval T , then the
function (t; x) 7! ut(x) is a subsolution of the Hamilton-Jacobi equation on X � T in the sense
that for all (x; t) 2 X � T and all (p; q) 2 @u(x; t) one has

q +H(t; p) � 0:
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Proof. It remains to prove the last assertion. We �rst observe that since (p; q) 2 @Du(x; t)
we have p 2 @Dut(x) (and a similar assertion holds for any bornological subdi¤erential such as
the Fréchet subdi¤erential @F ). Moreover, taking v 2 @g

L(q), y = p, since u(t; bx(t; v)) = bz(t; v),
we have

q + hp; bx0(t; v)i � bz0(t; v) = hy; bx0(t; v)i �H(t; y);

hence q � �H(t; p): �

When g is closed, proper, convex it is proved in [46, Thm 9.1] under continuity and growth
conditions that (x; t) 7! ut(x) = (g� + ht)

�(x) is a classical solution of the Hamilton-Jacobi
equation

Dtu(x; t) +H(t;Dxu(x; t)) = 0; u(x; 0) = g(x):

What precedes is not limited to the convex case as the next example shows.
Example 15. LetX = R2 and let g; H be functions of class C2 such that g(x1; x2) =

1
2
x21�

1
2
x22,

Ht being convex with bounded second order partial derivatives. Then, g is a classical Legendre
function and gL(y1; y2) =

1
2
y21�

1
2
y22 and for t > 0 small enough the function g

L+ht is a classical
Legendre function too. Then the preceding result applies.
Acknowledgements. The author is most grateful to R. Strugariu and C. Z¼alinescu for criti-
cisms on a preliminary version of the present paper.

References

[1] Arnold V.I., Chapitres supplémentaires de la théorie des équations di¤érentielles ordinaires,
Editions Mir, Moskow (1980), translated from the Russian edition, Nauka, Moskow (1978).

[2] Arnold V.I., Singularities of Caustics and Wave Fronts, Kluwer, Dordrecht (1990).

[3] Aussel, D., Corvellec, J.-N. and Lassonde, M., Mean value property and subdi¤erential
criteria for lower semicontinuous functions, Trans. Amer. Math. Soc. 347 (1995), 4147-
4161.

[4] Bardi M. and Capuzzo-Dolcetta I, Optimal control and viscosity solutions of Hamilton-
Jacobi-Bellman equations, Birkhäuser, Boston (1997).

[5] Bauschke H.H., Borwein J. M. and Combettes P.- L., Essential smoothness, essential strict
convexity and Legendre functions in Banach spaces, Commun. Contemp. Math. 3, No.4
(2001), 615-647.

[6] Borwein J.M. and Giles J.R., The proximal normal formula in Banach space, Trans. Amer.
Math. Soc. 302 (1) (1987), 371-381.

[7] Borwein J.M. and Vanderwer¤ J.D., Convex functions of Legendre type in general Banach
spaces, J. Convex Anal. 8, No.2 (2001), 569-581.

27



[8] Cannarsa P., Sinestrari C., Semiconcave Functions, Hamilton-Jacobi Equations, and Op-
timal Control, Progress in Nonlinear Di¤erential Equations and Their Applications, Vol.
58, Birkhäuser, Basel, 2005.

[9] Chieu, N.H. The Fréchet and limiting subdi¤erentials of integral functionals on the space
L1(A; E), J. Math. Anal. Appl. 360 (2) (2009), 704-710.

[10] Conway E.D. and Hopf E., Hamilton�s theory and generalized solutions of the Hamilton-
Jacobi equation, J. Math. Mech. 13 (1964), 939-986.

[11] Courant, R. and Hilbert, D., Methods of Mathematical Physics, I,II, Interscience Publish-
ers, New York (1953), (1962).

[12] Ekeland I., Legendre duality in nonconvex optimization and calculus of variations, Siam
J. Control Optim 15 (6) (1977), 905-934.

[13] Ekeland I., Nonconvex duality, Bull. Soc. Math. France, Mémoire no 60 �Analyse non
convexe, Pau, 1977�, (1979), 45-55.

[14] Evans L.C., Partial Di¤erential Equations, Graduate Studies in Mathematics # 19, Amer.
Math. Soc. Providence, RI (1998).

[15] Hörmander L, Fourier integral operators I, Acta Math. 127 (1971), 79-183.

[16] Hopf E., Generalized solutions of nonlinear equations of �rst order, J. Math. Mech. 14
(1965), 951-973.

[17] C. Imbert, Convex analysis techniques for Hopf�Lax formulae in Hamilton�Jacobi equa-
tions, J. Nonlinear Convex Anal. 2, No.3 (2001), 333�343.

[18] Io¤e, A.D., On the local surjection theorem, Nonlinear Anal. Theory, Methods & Appl. 11
(5) (1987), 565-592.

[19] Io¤e, A.D., Variational methods in local and global non-smooth analysis, in F.H. Clarke
and R.J. Stern (eds) Nonlinear Analysis, Di¤erential Equations and Control, Kluwer, Dor-
drecht (1999), 447-502.

[20] Io¤e, A.D., Theory of subdi¤erentials, Adv. Nonlinear Anal. 1 (2012), 47-120.

[21] Lions P.-L., Generalized solutions of Hamilton-Jacobi equations, Research Notes in Math,
Pitman, Boston, 1982.

[22] Maslov V., Theory of perturbations and asymptotic methods, Nauka, Moskow (1988).

[23] Melikyan A.A., Generalized characteristics of �rst order PDEs. Applications in optimal
control and di¤erential games, Birkhäuser, Boston (1998).

28



[24] Mirica S., Generalized solutions by Cauchy�s method of characteristics, Rend. Semin. Mat.
Univ. Padova 77 (1987), 317-350.

[25] Mirica S., Constructive dynamic programming in optimal control, Autonomous problems,
Editura Academiei Române, Bucharest (2004).

[26] Ngai H. V. and Penot J.-P., Approximately convex sets, J. Nonlinear and Convex Anal. 8
(3) (2007), 337-371.

[27] Nguyen Hoang, The regularity of generalized solutions of Hamilton-Jacobi equations,
preprint Hue University (2004).

[28] Penot J.-P., Second order generalized derivatives: comparison of two types of epi-
derivatives, in �Advances in Optimization, Proceedings, Lambrecht, FRG, 1991�, W. Oet-
tli, D. Pallaschke (eds.), Lecture Notes in Economics and Math. Systems 382, Springer
Verlag, Berlin (1992), 52-76.

[29] Penot J.-P., Subdi¤erential calculus without quali�cation assumptions, J. Convex Analysis
3 (2) (1996), 1-13.

[30] Penot J.-P., The compatibility with order of some subdi¤erentials, Positivity 6 (2002),
413-432.

[31] Penot J.-P., The Legendre transform of correspondences, Paci�c J. Math. 1 (1) 161-177.

[32] Penot J.-P., Image space approach and subdi¤erentials of integral functionals, Optimiza-
tion 59 (8) (2010), 1-19.

[33] Penot J.-P., Towards a new era in subdi¤erential analysis? to appear in Contemporary
Math.

[34] Penot J.-P., Calculus Without Derivatives, Graduate Texts in Mathematics no 266,
Springer, New York (2013).

[35] Penot J.-P. and Volle M., Explicit solutions to Hamilton-Jacobi equations under mild
continuity and convexity assumptions, J. Nonlinear Convex Anal. 1 (2000), 177-199.

[36] Penot J.-P. and Volle M., Duality methods for the study of Hamilton-Jacobi equations,
ESAIM: Proceedings, 17 (2007), 96�142.

[37] Rockafellar R.T., Convex Analysis, Princeton University Press, Princeton, 1970.

[38] Rockafellar R.T., Conjugate convex functions in optimal control and the calculus of vari-
ations, J. Math. Anal. Appl. 32 (1970), 174-222.

29



[39] Rockafellar R.T., Generalized Hamiltonian equations for convex problems of Bolza, Paci�c
J. Math. 33 (1970), 411-428.

[40] Rockafellar R.T., Existence and duality theorems for convex problems of Bolza, Trans.
Amer. Math. Soc. 159 (1971), 1-40.

[41] Rockafellar R.T. and Wolenski P.R., Convexity in Hamilton�Jacobi theory. I: Dynamics
and duality, SIAM J. Control Optimization 39, No.5 (2000), 1323-1350.

[42] Rockafellar R.T. and Wolenski P.R., Convexity in Hamilton�Jacobi theory. II: Envelope
representations, SIAM J. Control Optimization 39, No.5 (2000), 1351-1372.

[43] Subbotin A.I., Generalized solutions of �rst-order PDE�s. The dynamical optimization
perspective. Birkhäuser, Basel (1994).

[44] Tran Duc Van, Nguyen Hoang and M. Tsuji, On Hopf�s formula for Lipschitz solutions of
the Cauchy problem for Hamilton-Jacobi equations, Nonlinear Anal. T.M.A. 29 (10 (1997),
1145-1159.

[45] Tran Duc Van, Nguyen Hoang and Nguyen Duy Thai Son, Explicit global Lipschitz so-
lutions to �rst order, nonlinear partial di¤erential equations, Vietnam J. Math. 27 (2)
(1999), 93-114.

[46] Tran Duc Van, Tsuji M., Nguyen Duy Thai Son, The characteristic method and its gen-
eralizations for �rst-order nonlinear partial di¤erential equations, Chapman & Hall, Boca
Raton, FL (2000).

[47] Weinstein A., Symplectic manifolds and their Lagrangian submanifolds, Advances in Math.
6 (1971), 329-346.

30


