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Abstract

The purpose of this paper is to put together a large amount of results on the K(π, 1) conjec-
ture for Artin groups, and to make them accessible to non-experts. Firstly, this is a survey,
containing basic definitions, the main results, examples and an historical overview of the
subject. But, it is also a reference text on the topic that contains proofs of a large part of
the results on this question. Some proofs as well as few results are new. Furthermore, the
text, being addressed to non-experts, is as self-contained as possible.

AMS Subject Classification. Primary: 20F36. Secondary: 32S22, 55P20.

Introduction

Let X be a CW-complex (or a manifold having the same homotopy type as a CW-complex), and
let G be a discrete group. We say that X is an Eilenberg MacLane space for G if the universal
cover of X is contractible and its fundamental group is G. From an Eilenberg MacLane space
for G one can easily construct a free resolution of the group algebra ZG of G, thus one gets a
way for calculating different (co)homologies of G (see [6]).

It has been proved in the 60’s that the space of configurations of n points in the plane is an
Eilenberg MacLane space for the braid group on n strands (see [29]), and this fact has been the
starting point for the calculation of the cohomology of this group [2, 30, 17, 47, 53]. Starting
from the observation that the space of configurations of n points in the plane coincides with
the complement in Cn of a well-known algebraic set, the discriminant, in the 70’s and 80’s the
construction of this space has been extended to all Artin groups as follows.

By [3], it is known that any Coxeter group acts faithfully on an open nonempty convex cone I
so that the union of the regular orbits is the complement in I of a (possibly infinite) family of
linear hyperplanes. More generally, by [54], if W is a reflection group in Vinberg’s sense (see
Section 1), then W is a Coxeter group, and it acts faithfully on an open nonempty convex cone
I so that the union of the regular orbits is the complement in I of a (possibly infinite) family A
of linear hyperplanes. By [35], the fundamental group of the space

N(W ) =

(
(I × I) \

( ⋃
H∈A

(H ×H)

))
/W

is the Artin group A associated to W . The K(π, 1) conjecture, due to Arnold, Brieskorn, Pham,
and Thom, says that N(W ) is an Eilenberg MacLane space for A.
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The purpose of this paper is to put together a large amount of results on this conjecture and to
make them accessible to non-experts. Firstly, this is a survey, containing basic definitions, the
main results, examples and an historical overview of the subject. But, it is also a reference text
on the topic that contains proofs of a large part of the results on this question. Some proofs
as well as few results are new. Furthermore, the text, being addressed to non-experts, is as
self-contained as possible.

The paper is organized as follows. In Section 1 we give a precise and detailed presentation
of the K(π, 1) conjecture, with basic definitions, preliminaries, and examples. Afterwards, we
give an overview of the history of this question and of the cases for which the conjecture has
been proved. Section 2 contains preliminaries on algebraic topology, Coxeter groups, Vinberg’s
reflection groups, and Artin monoids.

Section 3 is dedicated to a key tool of the theory: the Salvetti complexes. In Subsection 3.1
we define the Salvetti complex of a (possibly infinite) arrangement A of hyperplanes in an
nonempty open convex cone I, and we prove that this complex has the same homotopy type
as the complement of ∪H∈A(H × H) in I × I. This construction as well as the proof of this
result are new, although they have been more or less known to experts. In Subsection 3.2 we
prove that, when A is determined by a reflection group W in Vinberg’s sense, then our complex
coincides with the Salvetti complex defined by Charney and Davis in [14]. In Subsection 3.3 we
determine some cellular decompositions of the Salvetti complexes that we use, in particular, to
show that the fundamental group of the above defined space N(W ) is equal to the Artin group
associated to W .

In Section 4 we reprove Deligne’s theorem [26] which says that the K(π, 1) conjecture holds if
W is finite. The proof is made in a general framework in the sense that we use that W is finite
only in the last paragraph of the proof. However, we do not know how to adapt the proof in
other cases.

In Section 5 we study a series of results related to the K(π, 1) conjecture and to the so-called
parabolic subgroups of Artin groups. In particular, we reprove a result by Charney and Davis
[13] which says that the K(π, 1) conjecture holds for Artin groups of FC type.

1 Basic definitions, statements, and examples

Let S be a finite set. A Coxeter matrix over S is a square matrix M = (ms,t)s,t∈S indexed by
the elements of S and satisfying (a) ms,s = 1 for all s ∈ S; (b) ms,t = mt,s ∈ {2, 3, . . . } ∪ {∞}
for all s, t ∈ S, s 6= t. A Coxeter matrix is usually represented by its Coxeter graph, Γ = Γ(M).
This is a labelled graph defined as follows. The set of vertices of Γ is S. Two vertices s, t ∈ S
are joined by an edge if ms,t ≥ 3, and this edge is labelled by ms,t if ms,t ≥ 4.

Let Γ be a Coxeter graph. The Coxeter system of Γ is defined to be the pair (W,S) = (WΓ, S),
where S is the set of vertices of Γ, and W is the group presented as follows.

W =

〈
S

∣∣∣∣ s2 = 1 for all s ∈ S
(st)ms,t = 1 for all s, t ∈ S, s 6= t, ms,t 6=∞

〉
.
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The group W is called Coxeter group of Γ.

Remark. It is shown in [3] that, for s, t ∈ S, s 6= t, the element st is of infinite order if ms,t =∞,
and it is of order precisely ms,t if ms,t 6= ∞. Hence, the pair (W,S) entirely determines the
Coxeter graph Γ.

If a, b are two letters and m is an integer greater or equal to 2, we set Π(a, b : m) = (ab)
m
2 if

m is even, and Π(a, b : m) = (ab)
m−1

2 a if m is odd. Let Σ = {σs; s ∈ S} be an abstract set in
one-to-one correspondence with S. The Artin system of Γ is defined to be the pair (A,Σ), where
A = AΓ is the group presented as follows.

A = 〈Σ | Π(σs, σt : ms,t) = Π(σt, σs : ms,t) for all s, t ∈ S, s 6= t and ms,t 6=∞〉 .

The group AΓ is called Artin group of Γ.

It is easily shown that the Coxeter group of Γ admits the following presentation.

WΓ =

〈
S

∣∣∣∣ s2 = 1 for all s ∈ S
Π(s, t : ms,t) = Π(t, s : ms,t) for all s, t ∈ S, s 6= t, ms,t 6=∞

〉
.

Hence, the map Σ→ S, σs 7→ s, induces an epimorphism θ : AΓ →WΓ. The kernel of θ is called
colored Artin group of Γ and it is denoted by CAΓ.

Example. Consider the Coxeter graph An drawn in Figure 1.1. The Coxeter group of An has
the following presentation.〈

s1, . . . , sn

∣∣∣∣∣∣
s2
i = 1 for 1 ≤ i ≤ n

(sisi+1)3 = 1 for 1 ≤ i ≤ n− 1
(sisj)

2 = 1 for |i− j| ≥ 2

〉
.

This is the symmetric group Sn+1 (of permutations of {1, . . . , n + 1}). The Artin group of An
has the following presentation.〈

σ1, . . . , σn

∣∣∣∣ σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 1
σiσj = σjσi for |i− j| ≥ 2

〉
.

This is the braid group Bn+1 on n+ 1 strands. The colored Artin group of An is the pure braid
group PBn+1.

1 2 3 n− 1 n

Figure 1.1. The Coxeter graph An.

Take a nonempty open convex cone I in a finite dimensional real vector space V . We define
a hyperplane arrangement in I to be a (possibly infinite) family A of linear hyperplanes of V
satisfying (a) H ∩ I 6= ∅ for all H ∈ A; (b) A is locally finite in I, that is, for all x ∈ I, there is
an open neighborhood Ux of x in I such that the set {H ∈ A | H ∩ Ux 6= ∅} is finite. Note that
the “classical” definition of hyperplane arrangement imposes I = V and A finite (see [39]).
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Example. Set V = R3 and I = {(x, y, z) ∈ V | z > 0}. For k ∈ Z, we denote by Hk the
plane of V of equation x = kz, and we denote by H ′k the plane of equation y = kz. We set
A = {Hk, H

′
k | k ∈ Z}. This is a hyperplane arrangement in I. The trace of A on the affine

plane of equation z = 1 is represented in Figure 1.2.

H−1 H0 H1 H2

H ′−1

H ′0

H ′1

H ′2

Figure 1.2. A hyperplane arrangement.

Let V be a finite dimensional real vector space. A reflection on V is defined to be a linear
transformation on V of order 2 which fixes a hyperplane. Attention: there is no hypothesis on
the orthogonality of the reflection, hence the fixed hyperplane does not necessarily determine
the reflection. Let C̄0 be a closed convex polyhedral cone in V with nonempty interior, and
let C0 be the interior of C̄0. A wall of C̄0 is the support of a (codimensional 1) face of C̄0,
that is, a hyperplane of V generated by that face. Let H1, . . . ,Hn be the walls of C̄0. For each
i ∈ {1, . . . , n} we take a reflection si which fixes Hi, and we denote by W the subgroup of GL(V )
generated by S = {s1, . . . , sn}. The pair (W,S) is called a Vinberg system if wC0 ∩ C0 = ∅ for
all w ∈ W \ {1}. In that case, the group W is called linear reflection group in Vinberg’s sense,
S is called canonical generating system for W , and C0 is called fundamental chamber of (W,S).

Linear reflection groups, Coxeter groups and hyperplane arrangements are linked by the following
theorem.

Theorem 1.1 (Vinberg [54]). Let (W,S) be a Vinberg system. We keep the above notations,
and we set

Ī =
⋃
w∈W

w C̄0 .

Then the following statements hold.

(1) (W,S) is a Coxeter system.

(2) Ī is a convex cone with nonempty interior.

(3) The interior I of Ī is stable under the action of W , and W acts properly discontinuously
on I.

(4) Let x ∈ I be such that Wx = {w ∈W | w(x) = x} is different from {1}. Then there exists
a reflection r in W such that r(x) = x.
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The above cone I is called Tits cone of the Vinberg system (W,S).

Remark. The reader must pay attention to the fact that there is a difference in Theorem 1.1.(1)
between the pair (W,S), viewed as a Vinberg system, and the pair (W,S), viewed a Coxeter
system. Indeed, in the first case, W is some specific subgroup of a linear group, while, in the
second case, W is just an abstract group. Note also that any Coxeter system appears as a
Vinberg system (see Theorem 2.5), but this representation is not unique in general.

Let (W,S) be a Vinberg system. Denote by R the set of reflections belonging to W . For r ∈ R
we denote by Hr the fixed hyperplane of r, and we set A = {Hr | r ∈ R}. Then, by Theorem 1.1,
A is a hyperplane arrangement in the Tits cone I. It is called Coxeter arrangement of (W,S).

Example. Consider the symmetric group Sn+1 acting on the space V = Rn+1 by permutations
of the coordinates. Let

C̄0 = {x ∈ V | x1 ≤ x2 ≤ · · · ≤ xn+1} .

For i, j ∈ {1, . . . , n+1}, i 6= j, we denote by Hi,j the hyperplane of equation xi = xj . Then C̄0 is
a convex polyhedral cone whose walls are H1,2, H2,3, . . . ,Hn,n+1. For i ∈ {1, . . . , n}, si = (i, i+1)
is a reflection whose fixed hyperplane is Hi,i+1. Then (Sn+1, {s1, . . . , sn}) is Vinberg system.
In this case we have

Ī =
⋃

w∈Sn+1

wC̄0 = V .

So, I = V , too. The set R of reflections coincides with the set of transpositions, thus A =
{Hi,j | 1 ≤ i < j ≤ n+ 1} is the so-called braid arrangement.

Example. Consider the affine Euclidean plane E2. For k ∈ Z, we denote by Dk the affine line
of equation x = k, and we denote by D′k the affine line of equation y = k (see Figure 1.3). We
denote by sk the orthogonal affine reflection of E2 with respect to the line Dk, and we denote
by s′k the orthogonal affine reflection with respect to D′k. We denote by W the subgroup of the
orthogonal affine group of E2 generated by {sk, s′k | k ∈ Z}. We leave to the reader to determine
all the elements of W . Say, however, that, among these elements, in addition to the reflections,
there are U-turns, translations, and glide reflections. It is easily shown that W is generated by
s0, s1, s

′
0, s
′
1 and admits the following presentation.

W = 〈s0, s1, s
′
0, s
′
1 | s2

0 = s2
1 = s′0

2
= s′1

2
= 1 , (s0s

′
0)2 = (s0s

′
1)2 = (s1s

′
0)2 = (s1s

′
1)2 = 1〉 .

This is the Coxeter group of the Coxeter graph drawn in Figure 1.4.

We embed E2 in R3 via the map (x, y) 7→ (x, y, 1), and we denote by Aff(E2) the affine group of
E2. Recall that, for all f ∈ Aff(E2), there are a unique linear transformation f0 ∈ GL(R2) and
a unique vector u ∈ R2 such that f = Tu ◦ f0, where Tu denotes the translation relative to u.
Recall also that there is an embedding Aff(E2) ↪→ GL(R3) defined by

f 7→
(
f0 u
0 1

)
.

Note that the elements of Aff(E2), embedded in GL(R3) via the above map, leave invariant E2

embedded into R3 as above. So, in this way, the group W can be regarded as a subgroup of
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D−1 D0 D1 D2

D′−1

D′0

D′1

D′2

C̄ ′0

Figure 1.3. Grid lines in the affine plane.

s0 s1 s′0 s′1

∞ ∞

Figure 1.4. A Coxeter graph.

GL(R3). For k ∈ Z, we denote by Hk the linear plane of R3 spanned by Dk, and we denote by
H ′k the linear plane spanned by D′k. Then sk is a linear reflection whose fixed hyperplane is Hk,
and s′k is a linear reflection whose fixed hyperplane is H ′k.

Consider the square
C̄ ′0 = {(x, y) ∈ E2 | 0 ≤ x, y ≤ 1} .

Let C̄0 denote the cone over C̄ ′0. This is a closed convex polyhedral cone whose walls are
H0, H1, H

′
0, H

′
1. Observe that wC0 ∩ C0 = ∅ for all w ∈ W \ {1}, thus (W,S) is a Vinberg

system, where S = {s0, s1, s
′
0, s
′
1}. It is easily checked that

Ī =
⋃
w∈W

wC̄0 = {(x, y, z) ∈ R3 | z > 0} ∪ {(0, 0, 0)} ,

thus
I = {(x, y, z) ∈ R3 | z > 0} .

On the other hand,
A = {Hk, H

′
k | k ∈ Z} .

We turn now to show the link between Artin groups and Coxeter arrangements. Besides, the
K(π, 1) conjecture for Artin groups is the master peace of this link.

For a nonempty open convex cone I in a real vector space V of finite dimension `, and a
hyperplane arrangement A in I, we set

M(A) = (I × I) \

( ⋃
H∈A

H ×H

)
.
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This is a connected manifold of dimension 2`. Note that, if I = V , then A is finite and

M(A) = (C⊗ V ) \

( ⋃
H∈A

C⊗H

)
.

If (W,S) is a Vinberg system andA is the Coxeter arrangement of (W,S), then we set M(W,S) =
M(A). By Theorem 1.1, W acts freely and properly discontinuously on M(W,S). Then, we set

N(W,S) = M(W,S)/W .

The following result will be proved in Subsection 3.3.

Theorem 1.2 (Van der Lek [35]). Let (W,S) be a Vinberg system, and let Γ be the Coxeter
graph of the pair (W,S), viewed as a Coxeter system. Then the fundamental group of N(W,S)
is isomorphic to AΓ, the fundamental group of M(W,S) is isomorphic to CAΓ, and the short
exact sequence associated with the regular covering M(W,S)→ N(W,S) is

1 // CAΓ
// AΓ

θ //W // 1 .

Recall that a space X is an Eilenberg MacLane space for a discrete group G if the fundamental
group of X is G and the universal cover of X is contractible. We also say that X is aspherical
or that it is a K(G, 1) space. Eilenberg MacLane spaces play a prominent role in cohomology
of groups. We refer to [6] for more details on the subject.

Conjecture 1.3 (K(π, 1) conjecture). Let (W,S) be a Vinberg system, and let Γ be the Coxeter
graph of the pair (W,S), viewed as a Coxeter system. Then N(W,S) is an Eilenberg MacLane
space for AΓ.

Let A be a finite hyperplane arrangement in a finite dimensional real vector space V . In [43]
Salvetti associates to A a regular CW-complex, called Salvetti complex and denoted by Sal(A),
and shows that Sal(A) has the same homotopy type as M(A). (The definitions of regular CW-
complex and homotopy equivalence are given in Subsection 2.1.) In Subsection 3.1 we extend
the definition of Sal(A) to any (infinite) hyperplane arrangement A in a nonempty open convex
cone I, and we prove that Sal(A) has the same homotopy type as M(A) (see Theorem 3.1).
This result is more or less known to experts, but, as far as I know, its proof does not exist
anywhere in the literature. Our proof is inspired by [41]. Note that, in this paper, the complex
Sal(A) will be defined as a simplicial complex, and, when A is finite and I = V , it coincides
with the barycentric subdivision of the complex originally defined by Salvetti.

In Subsection 3.2, with a Coxeter graph Γ we associate a simplicial complex Sal(Γ). This complex
will be naturally endowed with a free and properly discontinuous action of the Coxeter group
W of Γ. Let (W,S) be a Vinberg system, and let Γ be the Coxeter graph of the pair (W,S),
viewed as a Coxeter system. We show that Sal(Γ) coincides with Sal(A), where A is the Coxeter
arrangement of (W,S) (see Theorem 3.3). Moreover, we prove that the homotopy equivalence
Sal(Γ) → M(W,S) is equivariant under the action of W and induces a homotopy equivalence
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Sal(Γ)/W → M(W,S)/W = N(W,S). In particular, this shows the following intermediate
result concerning the K(π, 1) conjecture.

Theorem 1.4 (Charney, Davis [13]). Let (W,S) be a Vinberg system. Then the homotopy type
of M(W,S) (resp. N(W,S)) depends only on the Coxeter graph Γ of the pair (W,S), viewed as
a Coxeter system.

In their proof of Theorem 1.4, Charney and Davis [13] use another space which is homotopy
equivalent to M(W,S) and which depends only on the Coxeter graph Γ. The complex Sal(Γ)
itself is also introduced by Chaney and Davis, but in another paper [14], and the homotopy
equivalence Sal(Γ) → M(W,S) is also proved in [14]. Our proof is slightly different from the
one by Charney and Davis.

From now on, we say that a Coxeter graph Γ is of type K(π, 1) if Sal(Γ) is an Eilenberg MacLane
space. By the above, this means that M(W,S) is an Eilenberg MacLane space for any represen-
tation of (W,S) as a Vinberg system, where (W,S) is the Coxeter system of Γ.

Let Γ be a Coxeter graph, and let (W,S) be the Coxeter system of Γ. In Subsection 3.3
we determine cellular decompositions for Sal(Γ) and for Sal(Γ)/W . The definition of Sal(Γ)
given in Subsection 3.2 coincides with the barycentric subdivision of this cellular decomposition.
This cellular decomposition of Sal(Γ)/W is already defined in [14] for all Coxeter graphs, and,
independently, in [45] when the Coxeter group W is finite. A first straightforward consequence
of this description of Sal(Γ)/W will be that the fundamental group of Sal(Γ)/W (resp. Sal(Γ))
is the Artin group AΓ (resp. the colored Artin group CAΓ) (see Theorem 3.10). This new proof
of Theorem 1.2 is well-known to experts, but, as far as I know, nobody went to the bother of
writing down it before. Note also that this cellular decomposition is a useful tool for calculating
different cohomologies of AΓ (of course, under the condition that Γ is of type K(π, 1)) (see
[7, 8, 9, 10, 11, 12, 20, 21, 22, 23, 24, 45, 46, 48, 49]).

The fact that the braid group Bn+1 (that is, the Artin group of An) is of type K(π, 1) was proved
in 1962 by Fox and Neuwirth [29]. This was the first example of an Artin group of type K(π, 1).
The K(π, 1) conjecture itself was firstly stated by Brieskorn in 1971 in [4], but only for Artin
groups of spherical type. (We say that a Coxeter graph Γ is of spherical type if the Coxeter
group WΓ is finite.) In the same paper, [4], Brieskorn proved the conjecture for the Artin groups
associated to the Coxeter graphs An, Bn, Dn, F4 and I2(p) (p ≥ 5) (see Subsection 2.2 for the
pictures of these graphs). Immediately after, in 1972, Deligne [26] proved the conjecture for all
spherical type Artin groups.

The K(π, 1) conjecture, as is stated in the present paper, was stated for the first time in [35].
According to Van der Lek, it is due to Arnold, Pham et Thom. Besides the Artin groups of
spherical type, it was previously proved in [38] for two families of so-called “affine type” Artin
groups: the groups of type Ãn, and those of type C̃n (see also [16]).

Let Γ be a Coxeter graph. For X ⊂ S, we set MX = (ms,t)s,t∈X , we denote by ΓX the Coxeter
graph of MX , and we denote by WX the subgroup of W = WΓ generated by X. By [3], the pair
(WX , X) is the Coxeter system of ΓX . The subgroup WX is called standard parabolic subgroup
of W .

8



Two families of subsets of S play an important role in the theory. The first family, denoted by
Sf , consists of subsets X ⊂ S such that WX is finite. For X ⊂ S, we say that ΓX is free of
infinity if ms,t 6= ∞ for all s, t ∈ X. The second family, denoted by S<∞, consists of subsets
X ⊂ S such that ΓX is free of infinity. Note that Sf ⊂ S<∞.

After [35], the K(π, 1) conjecture has been proved in the following cases.

(1) When ms,t ≥ 3 for all s, t ∈ S, s 6= t (see [33]). (Such a Coxeter graph is called of large
type.)

(2) When |X| ≤ 2 for all X ∈ Sf (see [13]). (Such a Coxeter graph is called of dimension 2.)

(3) When Sf = S<∞ (see [13]). (Such a Coxeter graph is called of FC type.)

(4) For the “affine type” Artin groups of type B̃n (see [11]).

Note that large type Artin groups are both, of dimension 2, and of FC type. On the other hand,
it is proved in [28] that, if ΓX is of type K(π, 1) for all X ∈ S<∞, then Γ is also of type K(π, 1)
(see also [31]).

Maybe the next advances in the subject will be due to Jon McCammond and Robert Sulway (see
[36]). Indeed, they announce that they can embed any affine type Artin group into a Garside
group. Eilenberg MacLane spaces for Garside groups are known [25, 15], thus such an embedding
determines an Eilenberg MacLane space for the considered Artin group AΓ. It remains to show
that this Eilenberg MacLane space has the same homotopy type as Sal(Γ)/W . By the way, I
thank Jon McCammond for pointing out to me this remark.

In Section 4 we give a new proof of Deligne’s theorem [26]: “spherical type Artin groups are of
type K(π, 1)”. Almost the whole proof is made for any Artin group and the hypothesis “Γ is
of spherical type” is used only in the last paragraph. Nevertheless, I am not sure that this is a
substantial progress toward a global proof of the K(π, 1) conjecture, as I do not know how to
complete the proof for other kind of Artin groups, and Van der Lek had a similar problem (but
with another complex) in [35] (see also [27, 40]). Our proof of Theorem 4.10 (Deligne’s theorem)
is inspired by the proof given in [41] (see also [44]).

For X ⊂ S, we set ΣX = {σs | s ∈ X}, and we denote by AX the subgroup of A = AΓ generated
by ΣX . Such a subgroup is called standard parabolic subgroup of A. In Section 5 we use ideas
from [31] to prove some results that involve standard parabolic subgroups. In particular, we
prove the following statements.

(1) “The pair (AX ,ΣX) is the Artin system of ΓX”. This result is originally due to Van der
Lek [35].

(2) “If Γ is of type K(π, 1), then ΓX is also of type K(π, 1)”. This result, although well-known
to experts, was curiously proved very recently for the first time (see [31]).

(3) “If ΓX is of type K(π, 1) for all X ∈ S<∞, then Γ is also of type K(π, 1)”. This is the
previously cited result due to Ellis and Sköldberg [28], and our proof is essentially the
same as the one in [28]. Note that, thanks to Deligne’s theorem [26], this proves that FC
type Artin groups are of type K(π, 1).

9



So, as pointed out before, many of the known results on the K(π, 1) conjecture will be proved
in the present paper. In fact, only the Artin groups of dimension 2 will not be treated, as well
as some examples of Artin groups of affine type.

2 Preliminaries

2.1 Preliminaries on algebraic topology

In this subsection we present some definitions and results on algebraic topology that we will
need in the sequel. No proof (except one) will be given, and we refer to [32] for details and
proofs.

Let X,Y be two topological spaces, and let f, g : X → Y be two continuous maps. We say that
f, g are homotopic if there exists a continuous map H : X × [0, 1]→ Y such that f(x) = H(x, 0)
and g(x) = H(x, 1) for all x ∈ X. “To be homotopic” is an equivalence relation on the set
of continuous maps from X to Y , that we denote by ∼. A map f : X → Y is a homotopy
equivalence if there exists a map g : Y → X such that g ◦ f ∼ IdX and f ◦ g ∼ IdY . In that case
we say that X has the same homotopy type as Y . A space X is contractible if it has the same
homotopy type as a point.

We say that a subspace Y of a topological space X is a deformation retract of X if there exists
a continuous map H : X × [0, 1] → X such that H(x, 0) = x and H(x, 1) ∈ Y for all x ∈ X,
and H(y, t) = y for all (y, t) ∈ Y × [0, 1]. Clearly, if Y is a deformation retract of X, then the
inclusion Y → X is a homotopy equivalence. The reverse is true when X is a CW-complex and
Y is a subcomplex of X (see [32, Thm. 4.5]).

A CW-complex is defined to be a topological space X endowed with a filtration by closed
subspaces,

X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ Xn+1 ⊂ · · ·

satisfying the following properties.

(a) X0 is a discrete set.

(b) For all n ∈ N, there exists a collection Bn of n-dimensional closed disks, called n-cells,
and, for each B ∈ Bn, there exists a map ϕB : ∂B → Xn−1, such that the image of each
ϕB is a finite union of cells of Xn−1, and Xn is obtained from Xn−1 gluing each B ∈ Bn to
Xn−1 via the map ϕB.

(c) X = ∪∞n=0Xn, and X is endowed with the weak topology (that is, A ⊂ X is closed if and
only if A ∩Xn is closed for all n ∈ N).

We say, moreover, that X is regular if, for all n ∈ N and all B ∈ Bn, the gluing map ϕB : ∂B→
Xn−1 is a homeomorphism onto its image. For n ∈ N, the subspace Xn is called n-skeleton of
X.

Let X ′ be another CW-complex. We denote by B′n the set of n-cells of X ′ and, for B ∈ B′n,
we denote by ϕ′B : ∂B → X ′n−1 the gluing map. We say that X ′ is a subcomplex of X if, for
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all n ∈ N, B′n is included in Bn, and, for all B ∈ B′n, the map ϕ′B : ∂B → X ′n−1 coincides with
ϕB : ∂B→ Xn−1.

An (abstract) simplicial complex is defined to be a pair Υ = (S,A), where S is a set, called set of
vertices, and A is a set of subsets of S, called set of simplices, satisfying the following properties.
(a) ∅ is not a simplex, and all the simplices are finite. (b) All the singletons are simplices. (c)
Any nonempty subset of a simplex is a simplex.

Let Υ = (S,A) be a simplicial complex. Take an abstract set B = {es | s ∈ S} in one-to-
one correspondence with S, and denote by V the real vector space having B as a basis. For
∆ = {s0, s1, . . . , sp} in A, we set

|∆| = {t0es0 + t1es1 + · · ·+ tpesp | 0 ≤ t0, t1, . . . , tp ≤ 1 and

p∑
i=0

ti = 1} .

Note that |∆| is a (geometric) simplex of dimension p. In particular, |∆| is topologically a
p-dimensional disk. The geometric realization of Υ is defined to be the following subset of V .

|Υ| =
⋃

∆∈A
|∆| .

We endow |Υ| with the weak topology (see [50, Chap. III, Sec. 1]), so that |Υ| is naturally
endowed with a structure of regular CW-complex. For p ∈ N, if ∆ is a simplex of cardinality
p + 1, then |∆| is a cell of dimension p. The geometric realization of an abstract simplicial
complex is called geometric simplicial complex.

If (E,≤) is a partially ordered set, then the nonempty finite chains of E form a simplicial
complex, called derived complex of (E,≤) and denoted by E′ = (E,≤)′. This observation is
of importance in the paper as our different versions of the Salvetti complex will be defined as
geometric realizations of derived complexes of ordered sets.

Let X be regular a CW-complex. Denote by B the set of all cells of X. If B and B′ are two cells
of X of dimension n and m, respectively, such that n < m and B ⊂ ϕB′(∂B′), then we set B < B′.
It is easily checked that the relation ≤ on B, defined by B ≤ B′ if either B < B′ or B = B′, is a
partial order relation. The derived complex of (B,≤) is called barycentric subdivision of X. It
is easily shown that |(B,≤)′| is homeomorphic to X.

Let X be a topological space, and let U be a cover of X by open subsets. The nerve of U ,
denoted by N(U), is the simplicial complex defined as follows. (a) The vertices of N(U) are the
elements of U . (b) A nonempty finite set of vertices {U0, U1, . . . , Up} is a simplex in N(U) if
U0 ∩ U1 ∩ · · · ∩ Up 6= ∅.

We leave to the reader to look in the literature for the definition of a paracompact space.
However, we point out that all the spaces that we will consider are paracompact. The following
result is one of the main tools in the paper. Its proof can be found for instance in [32, Sec. 4G].

Theorem 2.1.
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(1) Let X be a paracompact space, and let U be a cover by open subspaces such that any finite
nonempty intersection of elements of U is contractible. Then the geometric realization
|N(U)| of the nerve of U is homotopy equivalent to X.

(2) Let X be a CW-complex. Suppose there exists an infinite chain

Y0 ⊂ Y1 ⊂ Y2 ⊂ · · ·Yn ⊂ Yn+1 ⊂ · · ·

of subcomplexes of X such that Yn is contractible for all n ∈ N, and ∪n∈NYn = X. Then
X is contractible, too.

At some point, we will need an equivariant version of Theorem 2.1.(1), and, for this, we will
need an explicit description of the homotopy equivalence |N(U)| → X.

We take a connected paracompact space X and a cover U of X by open subsets such that
every nonempty finite intersection of elements of U is contractible. We denote by NU the set
of all finite nonempty intersections of elements of U ordered by the inclusion. One can show
(with some effort) that |NU ′| = |N(U)|, where N(U) denotes the nerve of U . We describe the
homotopy equivalence f : |NU ′| → X on the n-skeleton of |NU ′| by induction on n.

Let U ∈ NU . Denote by δ(U) the vertex of |NU ′| corresponding to U . Choose a point x ∈ U ,
and set f(δ(U)) = x. This defines f : |NU ′|0 → X. Let U0 ⊂ U1 be a chain of length 2 in NU ,
and let ∆ = ∆(U0, U1) be the 1-simplex of |NU ′| corresponding to this chain. By construction,
U0 ⊂ U1, and, by hypothesis, U1 is connected, thus there exists a path γ : [0, 1]→ U1 such that
γ(0) = f(δ(U0)) and γ(1) = f(δ(U1)). We define f : ∆→ U1 ⊂ X by

f((1− t)δ(U0) + tδ(U1)) = γ(t) , t ∈ [0, 1] .

This defines the map f : |NU ′|1 → X.

We assume that n ≥ 1 and that the map f : |NU ′|n → X is constructed. Furthermore, we
assume that, if U0 ⊂ U1 ⊂ · · · ⊂ Un is a chain of length n + 1 and ∆ = ∆(U0, U1, . . . , Un) is
the corresponding n-simplex of |NU ′|, then f(∆) ⊂ Un. Let U0 ⊂ U1 ⊂ · · · ⊂ Un+1 be a chain
of length n + 2 in NU , and let ∆ = ∆(U0, U1, . . . , Un+1) be the corresponding (n + 1)-simplex
in |NU ′|. By the above, we have f(∂∆) ⊂ Un+1 and, by hypothesis, Un+1 is contractible, thus
f |∂∆ extends to a continuous map f : ∆→ Un+1 ⊂ X. This defines f : |NU ′|n+1 → X.

The following result is probably known, but I have not found it in the literature, thus I include
a proof. It is of importance to prove that the homotopy equivalence Sal(Γ)→M(W,S) induces
a homotopy equivalence Sal(Γ)/W →M(W,S)/W = N(W,S) (see Corollary 3.4).

Proposition 2.2. Let X be a paracompact space, and let U be a cover by open subsets such that
every finite nonempty intersection of elements of U is contractible. Let G be a group acting freely
and properly discontinuously on X, and such that, for all g ∈ G \ {1} and all U ∈ U , we have
g(U) ∈ U and U ∩ g(U) = ∅. Then G acts freely and properly discontinuously on |N(U)|, there
exists a G-equivariant homotopy equivalence f : |N(U)| → X, and this homotopy equivalence
induces a homotopy equivalence f̄ : |N(U)|/G→ X/G.
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Proof. By construction, the group G acts on U , and sends every simplex of |NU ′| to a simplex,
thus this action induces an action of G on |N(U)| = |NU ′|. It is easily checked that the latter
action is free and properly discontinuous. On the other hand, it is easily seen that the homotopy
equivalence f : |NU ′| → X described above can be made to be equivariant under the actions of
G. In particular, such a f induces a continuous map f̄ : |NU ′|/G → X/G. It remains to show
that f̄ is a homotopy equivalence.

In order to prove that f̄ is a homotopy equivalence, we will use the following results. These
are classical and well-known. We refer to [32, Chap. 4] for their proofs. Let ϕ : X → Y be
a continuous map between two connected spaces having the homotopy type of CW-complexes.
Let x0 ∈ X be a base point for X, and set y0 = ϕ(x0).

(1) If ϕ is a covering map, then ϕ induces an isomorphism ϕ∗ : πn(X,x0) → πn(Y, y0) for all
n ≥ 2.

(2) If ϕ is a regular covering map, and G is its Galois group, then we have a short exact
sequence

1 // π1(X,x0)
ϕ∗ // π1(Y, y0) // G // 1 .

(3) The map ϕ : X → Y is a homotopy equivalence if and only if the homomorphism ϕ∗ :
πn(X,x0)→ πn(Y, y0) is an isomorphism for all n ≥ 1.

The group πn(X,x0) is the n-th homotopy group of X. The reader do not need its definition to
understand the proof of Proposition 2.2. The above properties suffice.

We denote by p : |NU ′| → |NU ′|/G and by p′ : X → X/G the natural projections. For n ≥ 2
we have the following commutative diagram.

πn(|NU ′|) f∗ //

p∗
��

πn(X)

p′∗
��

πn(|NU ′|/G)
f̄∗ // πn(X/G)

By (1), p∗ and p′∗ are isomorphisms, and, by (3), f∗ is an isomorphism, thus f̄∗ is an isomorphism,
too. For n = 1 we have the following commutative diagram, where the rows are exact sequences.

1 // π1(|NU ′|) p∗ //

f∗
��

π1(|NU ′|/G) //

f̄∗
��

G

Id

��

// 1

1 // π1(X)
p′∗ // π1(X/G) // G // 1

Since f∗ is an isomorphism, by the five lemma, f̄∗ is an isomorphism, too. By (3) we conclude
that f̄ is a homotopy equivalence.

In order to show that the fundamental group of Sal(Γ)/W is the Artin group AΓ (see The-
orem 3.10), we will need the following method for computing fundamental groups of CW-
complexes.

13



Take a connected CW-complex X. As in the definition, for n ∈ N, we denote by Bn the set
of n-dimensional cells of X, and, for B ∈ Bn, we denote by ϕB : ∂B → Xn−1 the gluing map
of B. Let a ∈ B1 be a 1-cell. We set an orientation on a. This means that we choose some
identification of a with the interval [0, 1]. In that way, a determines a path ã : [0, 1] → X1 by
setting ã(0) = ϕa(0), ã(1) = ϕa(1), and ã(t) = t for all t ∈ (0, 1). Let B ∈ B2 be a 2-cell. Then
B is homeomorphic to the disk D = {z ∈ C | |z| ≤ 1}. Without loss of generality, we can assume
that ϕB(1) is a vertex x0 ∈ X0. Then the map ϕ̃B : [0, 1]→ X1 defined by

ϕ̃B(t) = ϕB(e2iπt)

is a loop based at x0 homotopic in X1 to a loop at x0 of the form ãε11 · · · ã
ε`
` , with a1, . . . , a` ∈ B1,

and ε1, . . . , ε` ∈ {±1}. Recall finally that a maximal tree of the 1-skeleton X1 is a subcomplex
T of X1 such that T0 = X0, and T is simply connected.

Fix a maximal tree T of X1 and a base-point x0 ∈ X0. For all x ∈ X0, choose a path γx in T
from x0 to x. Note that γx is unique up to homotopy, since T is simply connected. For a loop
α : [0, 1] → X based at x0 we denote by [α] the element of π1(X,x0) represented by α. For
a ∈ B1 we set

sa = [γ−1
ã(1) ã γã(0)] .

Note that, if a is a 1-cell of T , then sa = 1 in π1(X,x0). On the other hand, for B ∈ B2, we take
a loop of the form ãε11 · · · ã

ε`
` based at ϕB(1) and homotopic in X1 to ϕ̃B, and we set

w(B) = sε1a1
· · · sε`a` .

Note that we have w(B) = 1 in π1(X,x0) for all B ∈ B2. The following result is classical in the
study of CW-complexes.

Theorem 2.3. Take a connected CW-complex X, and keep the above notations. Then π1(X,x0)
has a presentation with generators sa, a ∈ B1, and relations

sa = 1 for all edges a of T ,

w(B) = 1 for all B ∈ B2 .

The proof of the following is contained in the proof of [6, II, Thm. 7.3]. It will be the key tool
in the proof of Theorem 5.6.

Theorem 2.4. Let X be a CW-complex which is the union of two subcomplexes, X1 and X2,
whose intersection, Y , is nonempty and connected. We take a basepoint x0 ∈ Y , and we denote
by ιi : π1(Y, x0)→ π1(Xi, x0) the homomorphism induced by the inclusion Y ↪→ Xi, for i = 1, 2.
We assume that

(a) ι1 and ι2 are injective,

(b) X1, X2, and Y are Eilenberg MacLane spaces.

Then X is also an Eilenberg MacLane space.
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2.2 Preliminaries on Coxeter groups

Let Γ be a Coxeter graph, and let (W,S) be its Coxeter system. Take an abstract set {es | s ∈ S}
in one-to-one correspondence with S, and denote by V the real vector space having {es | s ∈ S}
as a basis. Define the symmetric bilinear form B : V × V → R by

B(es, et) =

{
− cos( π

ms,t
) if ms,t 6=∞

−1 if ms,t =∞

For s ∈ S define ρs ∈ GL(V ) by

ρs(x) = x− 2B(x, es)es , x ∈ V .

Then ρs is a linear reflection for all s ∈ S, and the map S → GL(V ), s 7→ ρs, induces a
linear representation ρ : W → GL(V ) (see [3]). This linear representation is called canonical
representation of (W,S).

Denote by V ∗ the dual space of V . Recall that any linear map f ∈ GL(V ) determines a linear
map f t ∈ GL(V ∗) defined by

〈f t(α), x〉 = 〈α, f(x)〉 ,

for all α ∈ V ∗ and all x ∈ V . The dual representation ρ∗ : W → GL(V ∗) of ρ is defined by

ρ∗(w) = (ρ(w)t)−1 ,

for all w ∈W . For s ∈ S, we set Hs = {α ∈ V ∗ | 〈α, es〉 = 0}. Let

C̄0 = {α ∈ V ∗ | 〈α, es〉 ≥ 0 for all s ∈ S} .

Theorem 2.5 (Tits [52], Bourbaki [3]). Let Γ be a Coxeter graph, and let (W,S) be its Coxeter
system.

(1) The canonical representation ρ : W → GL(V ) and the dual representation ρ∗ : W ∗ →
GL(V ∗) are faithful.

(2) The set C̄0 is a simplicial cone whose walls are Hs, s ∈ S. The transformation ρ∗(s)
is a linear reflection whose fixed hyperplane is Hs, for all s ∈ S. Moreover, we have
ρ∗(w)C0 ∩ C0 = ∅ for all w ∈W \ {1}.

In particular, (ρ∗(W ), ρ∗(S)) is a Vinberg system whose associated Coxeter graph is Γ.

Recall that Γ (resp. AΓ) is said to be of spherical type if WΓ is finite. Note that, if Γ1, . . . ,Γ`
are the connected components of Γ, then WΓ = WΓ1 × · · · ×WΓ`

. In particular, Γ is of spherical
type if and only if all its connected components are of spherical type.

Theorem 2.6 (Coxeter [18, 19]).

(1) The Coxeter graph Γ is of spherical type if and only if the bilinear form B : V ×V → R is
positive definite.
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An n ≥ 1

Bn
4 n ≥ 2

Dn n ≥ 4

E6 E7

E8 F4

H3 H4

I2(p)
p

4

5 5

p ≥ 5

Figure 2.1. Connected spherical type Coxeter graphs.

(2) The spherical type connected Coxeter graphs are precisely those listed in Figure 2.1.

Let Γ be a Coxeter graph, and let (W,S) be its Coxeter system. Denote by S∗ the free monoid on
S. Let w ∈W . A word µ = s1 · · · s` ∈ S∗ is an expression of w if the equality w = s1 · · · s` holds
in W . The length of w, denoted by lg(w), is defined to be the minimal length of an expression
of w. An expression µ = s1 · · · s` of w is said to be reduced if ` = lg(w).

Let µ, µ′ ∈ S∗. We say that there is an elementary M-transformation joining µ to µ′ if there
exist ν1, ν2 ∈ S∗ and s, t ∈ S such that ms,t 6=∞,

µ = ν1 Π(s, t : ms,t) ν2 , and µ′ = ν1 Π(t, s : ms,t) ν2 .

Theorem 2.7 (Tits [51]). Let w ∈W , and let µ, µ′ be two reduced expressions of w. Then there
is a finite sequence of elementary M-transformations joining µ to µ′.
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Let (A,Σ) be the Artin system of Γ. Recall the epimorphism θ : A→W which sends σs to s for
all s ∈ S. We define a set-section τ : W → A of θ as follows. Let w ∈W . We choose a reduced
expression µ = s1 · · · s` of w and we set

τ(w) = σs1 · · ·σs` .

By Theorem 2.7 the definition of τ(w) does not depend on the choice of the reduced expression.
Attention: τ is a set-section. It is not a homomorphism. However, it is an important tool in the
study of Artin groups.

The following theorem is fundamental in the combinatorial study of Coxeter groups.

Theorem 2.8 (Bourbaki [3]). Let (W,S) be a Coxeter system.

(1) Let w ∈ W , let s ∈ S, and let µ = s1 · · · s` be a reduced expression of w. Then, either
lg(ws) = lg(w) + 1, or there exists an index i ∈ {1, . . . , `} such that w = s1 · · · ŝi · · · s`s.

(2) Let w ∈ W and s, t ∈ S. If lg(ws) = lg(tw) = lg(w) + 1 and lg(tws) < lg(ws), then
ws = tw.

Recall that, for X ⊂ S, we set MX = (ms,t)s,t∈X , where M = (ms,t)s,t∈S is the Coxeter matrix of
Γ, we denote by ΓX the Coxeter graph of MX , and we denote by WX the subgroup of W = WΓ

generated by X. Recall also that, by [3], the pair (WX , X) is the Coxeter system of ΓX , and
WX is called standard parabolic subgroup of W . Let X,Y be two subsets of S. We say that an
element w ∈W is (X,Y )-minimal if it is of minimal length in the double-coset WXwWY .

Proposition 2.9 (Bourbaki [3]). Let (W,S) be a Coxeter system.

(1) Let X,Y be two subsets of S, and let w ∈W . Then there exists a unique (X,Y )-minimal
element lying in WXwWY .

(2) Let X ⊂ S, and let w ∈ W . Then w is (∅, X)-minimal if and only if lg(ws) > lg(w) for
all s ∈ X, and lg(ws) > lg(w) for all s ∈ X if and only if lg(wu) = lg(w) + lg(u) for all
u ∈WX .

(3) Let X ⊂ S, and let w ∈ W . Then w is (X, ∅)-minimal if and only if lg(sw) > lg(w) for
all s ∈ X, and lg(sw) > lg(w) for all s ∈ X if and only if lg(uw) = lg(u) + lg(w) for all
u ∈WX .

(4) Let X ⊂ S, and let w ∈WX . If µ = s1 · · · s` is a reduced expression of w, then s1, . . . , s` ∈
X.

2.3 Preliminaries on Vinberg systems

In this subsection we present the main tool that we will use to pass from the Salvetti complex
of a Coxeter arrangement, denoted by Sal(A), to the Salvetti complex of the associated Coxeter
graph, denoted by Sal(Γ) (see Subsection 3.2). This tool basically says that two posets are
isomorphic (see Theorem 2.10 below). The first poset is the poset of facets of the Coxeter
arrangement, while the second poset, denoted by Pf , is made of the cosets of finite parabolic
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subgroups in W . Theorem 2.10 is essentially due to Vinberg [54], but the proofs of [3, Chap. V]
can be easily adapted to prove the theorem.

Let A be a hyperplane arrangement in an nonempty open convex cone I in V = R`. A chamber of
A is defined to be a connected component of I\(∪H∈AH). We denote by C(A) the set of chambers
of A. For H ∈ A, we set IH = I ∩H and AH = {H ′ ∩H | H ′ ∈ A \ {H} and H ′ ∩H ∩ I 6= ∅}.
Observe that IH is a nonempty open convex cone in H, and AH is a hyperplane arrangement
in IH . For H ∈ A, a chamber of AH is called a face of A (or 1-codimensional facet of A). For
d ∈ N, we define a d-codimensional facet of A by induction on d as follows. The chambers of
A are the 0-codimensional facets. The faces of A are the 1-codimensional facets. For d ≥ 2,
a d-codimensional facet of A is a (d − 1)-codimensional facet of some AH , where H ∈ A. We
denote by F(A) the set of all facets of A. Observe that F(A) is a partition of I. For F ∈ F(A),
we denote by F̄ the closure of F in I. Then F(A) is endowed with the partial order relation �
defined by F1 � F2 if F1 ⊆ F̄2.

Let F be a d-codimensional facet. Define the support of F , denoted by |F |, to be the linear
subspace of V spanned by F . Set IF = |F | ∩ I, AF = {H ∈ A | H ⊃ F}, and AF = {H ∩ |F | |
H ∈ A \ AF and H ∩ IF 6= ∅}. Observe that |F | is a d-codimensional linear subspace of V ,
IF is a nonempty open convex cone in |F |, AF is a hyperplane arrangement in IF , and F is a
chamber of AF . On the other hand, AF is is a finite hyperplane arrangement in I. Moreover, if
d ≥ 1, we have ∩H∈AF

H = |F |. For d = 0, we set |F | = ∩H∈AF
H = ∩H∈∅H = V .

Example. Set V = R3 and I = {(x, y, z) ∈ V | z > 0}. For k ∈ Z, denote by Hk the plane of V
of equation x = kz, and denote by H ′k the plane of equation y = kz. Set A = {Hk, H

′
k | k ∈ Z}.

This is a hyperplane arrangement in I. The trace of A in the affine plane of equation z = 1
is pictured in Figure 2.2. Let F = {(0, 0, z) | z > 0}. Then F is a 2-codimensional facet of
A whose support is the line |F | of equations x = y = 0. Here we have IF = F , AF = ∅, and
AF = {H0, H

′
0}. Observe that the set of facets F ′ ∈ F(A) satisfying F � F ′ is made of 4

chambers, 4 faces, and F itself.

H−1 H0 H1 H2

H ′−1

H ′0

H ′1

H ′2

F

Figure 2.2. A facet.

For a given Coxeter graph Γ and its Coxeter system (W,S), we set Sf = SfΓ = {X ⊂ S |
WX is finite} and Pf = PfΓ = {wWX | w ∈ W and X ∈ Sf}. The set Pf is assumed to be
ordered by the inclusion.
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Theorem 2.10 (Vinberg [54]). Let (W,S) be a Vinberg system, let C0 be its fundamental
chamber, let I be its Tits cone, and let A be its Coxeter arrangement. Denote by Γ the Coxeter
graph of (W,S), viewed as a Coxeter system.

I. Let F(C0) = {F ∈ F(A) | F � C0}. Then there is a bijection ι : SfΓ → F(C0) such that⋂
s∈X

Hs = |ι(X)|

for all X ∈ SfΓ. Moreover, the following properties hold.

(1) Let X,Y ∈ SfΓ. We have X ⊂ Y if and only if ι(Y ) � ι(X).

(2) For X ∈ SfΓ, the stabilizer {w ∈ W | w(ι(X)) = ι(X)} of ι(X) is equal to WX , and every
element of WX pointwise fixes ι(X).

II. There is a bijection ι̃ : PfΓ → F(A) defined by

ι̃(wWX) = w(ι(X)) .

Moreover, the following properties hold.

(1) Let u, v ∈W and X,Y ∈ SfΓ. We have uWX ⊂ vWY if and only if ι̃(vWY ) � ι̃(uWX).

(2) Let u, v ∈W and X,Y ∈ SfΓ. We have uWX ⊂ vWY if and only if X ⊂ Y and u ∈ vWY .

(3) The restriction of ι̃ to W is the bijection

W → C(A)
w 7→ w(C0)

III. Let X be a subset of S, and let w be an element of W . Then w is (∅, X)-minimal if and
only if Hr does not separate C0 and w−1(C0) for every reflection r lying in WX .

2.4 Preliminaries on Artin monoids

In this subsection we present some results on Artin monoids, that we will need to prove The-
orem 4.10 (K(π, 1) conjecture for spherical type Artin groups). Most of the results of the
subsection come from [5] (see also [37]), and their proofs are independent from the techniques
presented here.

The Artin monoid of a Coxeter graph Γ is the monoid A+
Γ defined by the following monoid

presentation.

A+
Γ = 〈Σ | Π(σs, σt : ms,t) = Π(σt, σs : ms,t) for all s, t ∈ S, s 6= t, ms,t 6=∞〉+ .

By [42], the natural homomorphism A+
Γ → AΓ is injective.
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Since the relations that define A+
Γ are homogeneous, A+

Γ is endowed with a length function
lg : A+

Γ → N that associates to each element α ∈ A+
Γ the length of any expression of α on the

elements of Σ. Note that lg(αβ) = lg(α)+ lg(β) for all α, β ∈ A+
Γ . For α, β ∈ A+

Γ , we set α �L β
if there exists γ ∈ A+

Γ such that αγ = β. Similarly, we set α �R β if there exists γ ∈ A+
Γ such

that γα = β. Note that the existence of the length function implies that �L and �R are partial
order relations on A+

Γ .

Theorem 2.11 (Brieskorn, Saito [5]). Let Γ be a Coxeter graph, and let E be a nonempty finite
subset of A+

Γ .

(1) E has a greater lower bound for the relation �L (resp. �R), denoted by ∧LE (resp. ∧RE).

(2) If E has an upper bound for the relation �L (resp. �R), then E has a least upper bound
for the relation �L (resp. �R), denoted by ∨LE (resp. ∨RE).

Recall the natural homomorphism θ : AΓ → WΓ and its set-section τ : WΓ → AΓ. Notice that
the image of τ is contained in A+

Γ . We complete the above theorem with the following.

Proposition 2.12 (Brieskorn, Saito [5]). Let Γ be a Coxeter graph.

(1) Let E be a nonempty finite subset of τ(WΓ). If ∨LE (resp. ∨RE) exists, then ∨LE ∈ τ(WΓ)
(resp. ∨RE ∈ τ(WΓ)).

(2) Let X be a subset of S. Recall that ΣX denotes the set ΣX = {σs | s ∈ X}. Then ∨LΣX

(resp. ∨RΣX) exists if and only if WX is finite (that is, X ∈ Sf ).

The last preliminary result on Artin monoids that we will need concerns only the spherical type
ones.

Theorem 2.13 (Brieskorn, Saito [5], Deligne [26]). Let Γ be a spherical type Coxeter graph. Set
∆ = ∨LΣ (this element exists by Proposition 2.12). Then ∆ = ∨RΣ, and every element β ∈ AΓ

can be written in the form β = ∆−kα with α ∈ A+
Γ and k ∈ N.

3 Salvetti complexes

3.1 Salvetti complex of a hyperplane arrangement

In this subsection I denotes an nonempty open convex cone in a real vector space V of dimension
`, and A denotes a hyperplane arrangement in I. Our aim is to define a (geometric) simplicial
complex Sal(A) and to prove that Sal(A) has the same homotopy type as M(A). We start
recalling some definitions from the previous section.

The arrangement A determines a partition of I into facets. We denote by F(A) the set of
facets, and by C(A) the set of chambers (0-codimensional facets) of A. We order F(A) by
F1 � F2 if F1 ⊆ F̄2, where, for F ∈ F(A), F̄ denotes the closure of F in I. The support of
a facet F , denoted by |F |, is the linear subspace of V spanned by F . We set IF = I ∩ |F |,
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AF = {H ∈ A | F ⊂ H}, and AF = {H ∩ |F | | H ∈ A \ AF and H ∩ IF 6= ∅}. Finally, for
F ∈ F(A) and C ∈ C(A), we denote by CF the chamber of AF containing C.

Example. We go back to the example of the previous section. We set V = R3 and I =
{(x, y, z) ∈ V | z > 0}. For k ∈ Z, we denote by Hk the plane of V of equation x = kz, and
by H ′k the plane of equation y = kz, and we set A = {Hk, H

′
k | k ∈ Z}. Consider the facet

F = {(0, 0, z) | z > 0}. Let C be the cone over a square bounded by H0, H1, H
′
0, H

′
1. Then C is

a chamber of A, we have F � C, and CF is the cone {(x, y, z) ∈ V | x > 0, y > 0, z > 0} (see
Figure 3.1).

H−1 H0 H1 H2

H ′−1

H ′0

H ′1

H ′2

F

C

H0

H ′0

CF

Figure 3.1. CF : an example.

We set
Sal0(A) = {(F,C) ∈ F(A)× C(A) | F � C} .

We define a relation � on Sal0(A) as follows.

(F,C) � (F ′, C ′) if F � F ′ and CF ⊂ C ′F ′ .

It is easily checked that � is an order relation on Sal0(A). We define the Salvetti complex of A,
denoted by Sal(A), as the geometric realization of the derived complex of (Sal0(A),�).

Remark. If A is the Coxeter arrangement of a Vinberg system (W,S), then W acts on Sal0(A)
as follows.

w (F,C) = (wF,wC) ,

for w ∈ W and (F,C) ∈ Sal0(A). The ordering � is invariant under the action of W , thus this
action induces an action of W on Sal(A).

Theorem 3.1. There exists a homotopy equivalence f : Sal(A)→M(A). Moreover, if A is the
Coxeter arrangement of a Vinberg system (W,S), then f is equivariant under the actions of W
and induces a homotopy equivalence f̄ : Sal(A)/W →M(A)/W .

Proof. We shall define a family {U(F,C) | (F,C) ∈ Sal0(A)} of open subsets of M(A), and we
shall prove the following.

(1) Let (F,C), (G,D) ∈ Sal0(A). If U(F,C) = U(G,D), then (F,C) = (G,D).
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(2) We have

M(A) =
⋃

(F,C)∈Sal0(A)

U(F,C) .

(3) Let (F0, C0), (F1, C1), . . . , (Fp, Cp) ∈ Sal0(A). We have

U(F0, C0) ∩ U(F1, C1) ∩ · · · ∩ U(Fp, Cp) 6= ∅

if and only if, up to permutation, we have a chain

(F0, C0) ≺ (F1, C1) ≺ · · · ≺ (Fp, Cp) .

(4) Let (F0, C0) ≺ · · · ≺ (Fp, Cp) be a chain in Sal0(A). Then U(F0, C0) ∩ U(F1, C1) ∩ · · · ∩
U(Fp, Cp) is contractible.

Moreover, if A is the Coxeter arrangement of a Vinberg system (W,S), we shall prove the
following.

(5) Let (F,C) ∈ Sal0(A) and w ∈ W \ {1}. Then wU(F,C) = U(wF,wC) and U(F,C) ∩
U(wF,wC) = ∅.

By Theorem 2.1 and Proposition 2.2, Theorem 3.1 will be a straightforward consequence of
(1)–(5).

For (F,C) ∈ Sal0(A), the open subset U(F,C) will be of the form U(F,C) = ω(F )×CF , where
ω(F ) is an open subset of I. We turn now to construct ω(F ) and study its properties.

Throughout the proof we adopt the following definitions and notations. A chain of length p+ 1
in F(A) is a sequence (F0, F1, . . . , Fp) in F(A) such that F0 ≺ F1 ≺ · · · ≺ Fp. We set γ ≤ γ′

if γ = (F0, F1, . . . , Fp) and γ′ = (F ′0, F
′
1, . . . , F

′
q) are two chains in F(A) such that F0 = F ′0

and {F1, . . . , Fp} ⊆ {F ′1, . . . , F ′q}. For F ∈ F(A), we denote by Chain(F ) the set of chains
γ = (F0, F1, . . . , Fp) such that F0 = F . More generally, if γ is a chain, we denote by Chain(γ)
the set of chains γ′ such that γ ≤ γ′.

For all F ∈ F(A), we fix a point x(F ) ∈ F . If A is the Coxeter arrangement of a Vinberg system
(W,S), we choose the points x(F ) so that w x(F ) = x(wF ) for all F ∈ F(A) and all w ∈ W .
For a given chain γ = (F0, F1, . . . , Fp) in F(A) we set

∆(γ) = {y + t1x(F1) + · · ·+ tpx(Fp) | y ∈ F0 and t1, . . . , tp > 0} .

Note that ∆(F0, F1, . . . , Fp) ⊂ Fp. Note also that, if A is the Coxeter arrangement of a Vinberg
system (W,S), then

w∆(F0, F1, . . . , Fp) = ∆(wF0, w F1, . . . , w Fp)

for every chain (F0, F1, . . . , Fp) and every w ∈W .

For a given F ∈ F(A) we set

ω(F ) =
⋃

γ∈Chain(F )

∆(γ)
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F

Figure 3.2. The set ω(F ).

(see Figure 3.2). More generally, for a given chain γ in F(A), we set

ω(γ) =
⋃

γ′∈Chain(γ)

∆(γ′) .

Claim 1. Let F ∈ F(A). Then ω(F ) is an open subset of I.

Proof of Claim 1. Let d be the codimension of F . For k ≥ 0, we denote by Id−k the union of
facets of F(A) of codimension ≥ d− k, and we prove by induction on k that Id−k ∩ ω(F ) is an
open subset of Id−k. The set Id ∩ ω(F ) = F is obviously open in Id, thus we may assume that
k ≥ 1 plus the induction hypothesis. If X is a subset of the cone I and x is a point in I, the
following set

{y + tx | y ∈ X and t > 0}

is called the open cone over X with direction x. Let G be a facet of codimension d − k. We
denote by ∂G the union of the facets K such that K ≺ G. If F 6≺ G, then G ∩ ω(F ) = ∅. If
F ≺ G, then ∂G ∩ ω(F ) is an open subset of ∂G (by induction) and G ∩ ω(F ) is the open cone
over ∂G ∩ ω(F ) with direction x(G). This implies that Id−k ∩ ω(F ) is an open subset of Id−k.

Claim 2. Let γ = (F0, F1, . . . , Fp) and γ′ = (F ′0, F
′
1, . . . , F

′
q) be two chains in F(A). If q ≤ p

and ∆(γ) ∩∆(γ′) 6= ∅, then (F ′0, . . . , F
′
q) = (Fp−q, . . . , Fp).

Proof of Claim 2. We argue by induction on q. Suppose q = 0. Let z ∈ ∆(F0, F1, . . . , Fp)∩∆(F ′0).
Then z ∈ Fp ∩ F ′0, thus Fp ∩ F ′0 6= ∅, therefore Fp = F ′0.

Suppose q > 0 plus the induction hypothesis. Let z ∈ ∆(F0, . . . , Fp) ∩ ∆(F ′0, . . . , F
′
q). Notice

that z ∈ Fp∩F ′q, thus Fp∩F ′q 6= ∅, hence Fp = F ′q. We write z in the form z = y+t1 x(F1)+ · · ·+
tp x(Fp), where y ∈ F0 and t1, . . . , tp > 0. Similarly, we write z = y′ + t′1 x(F ′1) + · · ·+ t′q x(F ′q),
where y′ ∈ F ′0 and t′1, . . . , t

′
q > 0. Let z1 = y + t1 x(F1) + · · · + tp−1 x(Fp−1), and let z′1 =

y′ + t′1 x(F ′1) + · · ·+ t′q−1 x(F ′q−1). Notice that z1 ∈ Fp−1 and z′1 ∈ F ′q−1. If tp > t′q, then

z′1 = y + t1 x(F1) + · · ·+ tp−1 x(Fp−1) + (tp − t′q)x(Fp) ∈ Fp = F ′q .
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This is a contradiction since z′1 ∈ F ′q−1. We prove in the same way that the inequality
tp < t′q cannot hold. It follows that tp = t′q, thus z1 = z′1. By induction, we conclude that
(F ′0, . . . , F

′
q−1) = (Fp−q, . . . , Fp−1).

Claim 3. Let F ∈ F(A), and let z ∈ ω(F ). There exists a unique chain γ ∈ Chain(F ) such
that z ∈ ∆(γ).

Proof of Claim 3. Let γ = (F0, . . . , Fp) and γ′ = (F ′0, . . . , F
′
q) be elements of Chain(F ) such that

z ∈ ∆(γ) ∩∆(γ′). We can assume without loss of generality that q ≤ p. By Claim 2, we have
(F ′0, . . . , F

′
q) = (Fp−q, . . . , Fp). Since, moreover, F0 = F ′0 = F , it follows that p = q and γ = γ′.

Claim 4. Let F,G ∈ F(A). If ω(F ) ∩ ω(G) 6= ∅, then either F � G, or G � F .

Proof of Claim 4. Let F,G ∈ F(A) such that ω(F ) ∩ ω(G) 6= ∅. There exist a chain γ =
(F0, F1, . . . , Fp) lying in Chain(F ) and a chain γ′ = (F ′0, . . . , F

′
q) lying in Chain(G) such that

∆(γ) ∩∆(γ′) 6= ∅. We can assume without loss of generality that q ≤ p. By Claim 2, we have
(F ′0, . . . , F

′
q) = (Fp−q, . . . , Fp). Hence, F = F0 � Fp−q = F ′0 = G.

A straightforward consequence of Claim 4 is the following.

Claim 5. Let F0, F1, . . . , Fp ∈ F(A). If ω(F0) ∩ · · · ∩ ω(Fp) 6= ∅, then, up to a permutation of
the indices, we have a chain F0 ≺ F1 ≺ · · · ≺ Fp.

Claim 6. Let γ = (F0, . . . , Fp) be a chain in F(A). Then

ω(F0) ∩ · · · ∩ ω(Fp) = ω(γ) .

Proof of Claim 6. Since the inclusion ω(γ) ⊂ ω(F0) ∩ · · · ∩ ω(Fp) is obvious, we only need to
prove ω(F0) ∩ · · · ∩ ω(Fp) ⊂ ω(γ). Let z ∈ ω(F0) ∩ · · · ∩ ω(Fp). Since z ∈ ω(F0), there exists
a chain δ = (G0, . . . , Gq) lying in Chain(F0) such that z ∈ ∆(G0, . . . , Gq). Let i ∈ {1, . . . , p}.
There is also a chain δ′ = (G′0, . . . , G

′
r) lying in Chain(Fi) such that z ∈ ∆(δ′). If q < r, then,

by Claim 2, F0 = G0 = G′r−q. But, this is not possible because, otherwise, we would have
Fi = G′0 � G′r−q = F0 and F0 ≺ Fi. So, r ≤ q and, again by Claim 2, Fi = G′0 = Gq−r. This
shows that γ ≤ δ, thus z ∈ ∆(δ) ⊂ ω(γ).

Claim 7. Let γ = (F0, . . . , Fp) be a chain in F(A). Then ω(γ) is contractible.

Proof of Claim 7. We choose y0 ∈ F0 and we set

z0 = y0 + x(F1) + · · ·+ x(Fp) .

For t ∈ [0, 1], we define the map ht : ω(γ) → ω(γ) as follows. Let z ∈ ω(γ). Let δ =
(G0, . . . , Gq) ∈ Chain(γ) such that z ∈ ∆(δ). There exist y ∈ F0 = G0 and t1, . . . , tq > 0 such
that z = y + t1 x(G1) + · · ·+ tq x(Gq). We set

ht(z) = t y + (1− t)y0 + u1(t)x(G1) + · · ·+ uq(t)x(Gq) ,
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where

uj(t) =

{
t tj if Gj 6∈ {F1, . . . , Fp}
t tj + (1− t) if Gj ∈ {F1, . . . , Fp}

It is easily seen that the map
ω(γ)× [0, 1] → ω(γ)

(z, t) 7→ ht(z)

is well-defined and continuous. Moreover, we have ht(z0) = z0 for all t ∈ [0, 1], h1 = Id, and
h0(z) = z0 for all z ∈ ω(γ). This shows that {z0} is a deformation retract of ω(γ).

Claim 8. Suppose that A is the Coxeter arrangement of a Vinberg system (W,S). For F ∈
F(A), we denote by WF = {w ∈ W | wF = F} the stabilizer of F . Let F ∈ F(A), and let
w ∈W . If ω(F ) ∩ wω(F ) 6= ∅, then w ∈WF .

Proof of Claim 8. Suppose that ω(F ) ∩ wω(F ) 6= ∅. Let z ∈ ω(F ) ∩ wω(F ). There are chains
γ = (F0, . . . , Fp) and γ′ = (F ′0, . . . , F

′
q) lying in Chain(F ) such that

z ∈ ∆(γ) ∩ w∆(γ′) = ∆(F0, . . . , Fp) ∩∆(wF ′0, . . . w F
′
q) .

Assume q ≤ p. The case p ≤ q is proved in the same way. By Claim 2, (wF ′0, . . . , w F
′
q) =

(Fp−q, . . . , Fp). Since codimF0 = codimwF ′0 = codimF , it follows that p = q and w γ′ = γ. In
particular, F = F0 = wF ′0 = wF , thus w ∈WF .

For (F,C) ∈ Sal0(A), we set
U(F,C) = ω(F )× CF .

We turn now to prove in the following claims that the set {U(F,C) | (F,C) ∈ Sal0(A)} satisfies
(1)–(5).

Claim 9. Let (F,C) ∈ Sal0(A). Then U(F,C) ⊂M(A).

Proof of Claim 9. Let (x, y) ∈ U(F,C). Let G ∈ F(A) such that x ∈ G. Since x ∈ ω(F ), we
have F � G. Let H ∈ A. If H ∈ AF , then y 6∈ H, since y ∈ CF , thus (x, y) 6∈ H × H. If
H 6∈ AF , then H 6∈ AG, since AG ⊂ AF . But, AG = {H ′ ∈ A | x ∈ H ′}, thus x 6∈ H, therefore
(x, y) 6∈ H ×H. This shows that (x, y) ∈M(A).

Claim 10. Let (F,C), (G,D) ∈ Sal0(A). If U(F,C) = U(G,D), then (F,C) = (G,D).

Proof of Claim 10. We have F ⊂ ω(F ) and, if F ′ ∈ F(A) intersects ω(F ), then F � F ′,
thus ω(F ) determines F . This implies that F = G. We have ω(F ) ∩ CF ⊂ C, thus U(F,C) =
ω(F )× CF determines C. This implies that C = D.

Claim 11. We have
M(A) ⊂

⋃
(F,C)∈Sal0(A)

U(F,C) .
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Proof of Claim 11. Let (x, y) ∈ M(A). Let F ∈ F(A) such that x ∈ F . Let H ∈ AF . Since
x ∈ H, we have y 6∈ H. Hence, there exists a chamber C̃ of AF such that y ∈ C̃. Let C ∈ C(A)
such that F � C and CF = C̃. Then

(x, y) ∈ F × CF ⊂ ω(F )× CF = U(F,C) .

Claim 12. Let (F,C), (G,D) ∈ Sal0(A). If U(F,C)∩U(G,D) 6= ∅, then either (F,C) � (G,D),
or (G,D) � (F,C).

Proof of Claim 12. Suppose that U(F,C) ∩ U(G,D) 6= ∅. We have ω(F ) ∩ ω(G) 6= ∅, thus, by
Claim 4, either F � G, or G � F . We can assume without loss of generality that F � G. Then
∅ 6= CF ∩DG ⊂ CG ∩DG, thus CG = DG, therefore CF ⊂ DG.

A straightforward consequence of Claim 12 is the following.

Claim 13. Let (F0, C0), (F1, C1), . . . , (Fp, Cp) ∈ Sal0(A). If U(F0, C0) ∩ · · · ∩ U(Fp, Cp) 6= ∅,
then, up to a permutation of the indices, we have a chain

(F0, C0) � (F1, C1) � · · · � (Fp, Cp) .

Claim 14. Let ((F0, C0), . . . , (Fp, Cp)) be a chain in Sal0(A). Then

U(F0, C0) ∩ U(F1, C1) ∩ · · · ∩ U(Fp, Cp) = ω(F0, . . . , Fp)× (C0)F0 .

Proof of Claim 14. Since (C0)F0 ⊂ (Ci)Fi for all i ∈ {1, . . . , p}, by Claim 6 we have

U(F0, C0) ∩ · · · ∩ U(Fp, Cp) = (ω(F0) ∩ · · · ∩ ω(Fp))× (C0)F0 = ω(F0, . . . , Fp)× (C0)F0 .

Claim 15. Let ((F0, C0), . . . , (Fp, Cp)) be a chain in Sal0(A). Then U(F0, C0)∩ · · · ∩U(Fp, Cp)
is nonempty and contractible.

Proof of Claim 15. ω(F0, . . . , Fp) is contractible by Claim 7, and CF is contractible since it is
convex. Both spaces are obviously nonempty.

Claim 16. Suppose A is the Coxeter arrangement of a Vinberg system (W,S). Let (F,C) ∈
Sal0(A), and let w ∈W \ {1}. Then wU(F,C) ∈ Sal0(A) and U(F,C) ∩ wU(F,C) = ∅.

Proof of Claim 16. We have wU(F,C) = U(wF,wC) ∈ Sal0(A). Recall that WF = {w ∈ W |
wF = F}. Since W acts freely on C(A), the group WF acts freely on {C ∈ C(A) | F � C}. If
w 6∈ WF , then, by Claim 8, ω(F ) ∩ wω(F ) = ∅. If w ∈ WF , then F � wC and C 6= wC, thus
CF 6= wCF , therefore CF ∩ wCF = ∅. In both cases we have U(F,C) ∩ U(wF,wC) = ∅.
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3.2 Salvetti complex of a Coxeter system

Recall that, for a given Coxeter system (W,S), we denote by Sf the set of subsets X of S such
that WX is finite. The following lemma is a preliminary to the definition of the Salvetti complex
of a Coxeter graph.

Lemma 3.2. Let Γ be a Coxeter graph, and let (W,S) be its Coxeter system. Let � be the
relation on W × Sf defined as follows.

(u,X) � (v, Y )

if
X ⊂ Y , v−1u ∈WY , and v−1u is (∅, X)-minimal.

Then � is a partial order relation.

Proof. Let (u,X) ∈ W × Sf . We have X ⊂ X, u−1u = 1 ∈ WX , and u−1u = 1 is (∅, X)-
minimal, thus (u,X) � (u,X).

Let (u,X), (v, Y ) ∈W×Sf such that (u,X) � (v, Y ) and (v, Y ) � (u,X). We have X ⊂ Y ⊂ X,
thus X = Y . We have v−1u ∈ WX and v−1u is (∅, X)-minimal. But, the only (∅, X)-minimal
element lying in WX is 1, thus v−1u = 1, therefore v = u.

Let (u,X), (v, Y ), (w,Z) ∈W×Sf such that (u,X) � (v, Y ) � (w,Z). We have X ⊂ Y and Y ⊂
Z, thus X ⊂ Z. We also have w−1v ∈ WZ and v−1u ∈ WY ⊂ WZ , thus w−1u = w−1v v−1u ∈
WZ . Now, because w−1v is (∅, Y )-minimal and v−1u is (∅, X)-minimal, by Proposition 2.9, for
all u0 ∈WX we have the following equalities.

lg(w−1uu0) = lg(w−1v v−1uu0) = lg(w−1v) + lg(v−1uu0) = lg(w−1v) + lg(v−1u) + lg(u0)

= lg(w−1v v−1u) + lg(u0) = lg(w−1u) + lg(u0) .

By Proposition 2.9 it follows that w−1u is (∅, X)-minimal. So, (u,X) � (w,Z).

Let Γ be a Coxeter graph, and let (W,S) be its Coxeter system. The Salvetti complex of
Γ, denoted by Sal(Γ), is defined to be the geometric realization of the derived complex of
(W × Sf ,�). Note that the action of W on W × Sf defined by w · (u,X) = (wu,X), w ∈ W
and (u,X) ∈W × Sf , preserves the ordering. Hence, it induces an action of W on Sal(Γ).

Now, we take a Vinberg system (W,S) and we denote by Γ the Coxeter graph of (W,S), viewed as
a Coxeter system. We go back to the notations and definitions of Subsection 2.3. So, A denotes
the Coxeter arrangement of (W,S), C0 denotes the fundamental chamber of (W,S), F(C0)
denotes the set of facets F of A such that F � C0, and Pf = {wWX | w ∈ W and X ∈ Sf}.
Recall also that we have bijective maps ι : Sf → P(C0) and ι̃ : Pf → F(A) whose properties
are stated in Theorem 2.10. We define the map ϕ : W × Sf → Sal0(A) as follows

ϕ(w,X) = (ι̃(wWX), ι̃(w)) = (w(ι(X)), w(C0)) .

The main result of this subsection is the following.

Theorem 3.3. The map ϕ is a bijective map which satisfies the following property.
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(∗) Let (u,X), (v, Y ) ∈W × Sf . We have (u,X) � (v, Y ) if and only if ϕ(v, Y ) � ϕ(u,X).

Before proving Theorem 3.3, we first give two important consequences. By construction, the
map ϕ induces a homeomorphism h : Sal(Γ) → Sal(A). Moreover, ϕ being equivariant, the
homeomorphism h is also equivariant. Combining this with Theorem 3.1 we obtain the following.

Corollary 3.4. There exists a homotopy equivalence f : Sal(Γ) → M(W,S) equivariant under
the actions of W and that induces a homotopy equivalence f̄ : Sal(Γ)/W → M(W,S)/W =
N(W,S).

The following result is a direct consequence of Corollary 3.4. It was previously proved by Charney
and Davis [13].

Corollary 3.5. The homotopy type of N(W,S) (resp. M(W,S)) depends only on the Coxeter
graph Γ.

Proof of Theorem 3.3. Let (F,C) ∈ Sal0(A). There exists w ∈W such that C = w(C0). We
have w−1(F ) � w−1(C) = C0, thus w−1(F ) ∈ F(C0), therefore there exists X ∈ Sf such that
w−1(F ) = ι(X). Hence, (F,C) = ϕ(w,X). This shows that ϕ is a surjective map.

Let (u,X), (v, Y ) ∈W×Sf such that ϕ(u,X) = ϕ(v, Y ) = (F,C). We have u(C0) = v(C0) = C,
thus u = v. Moreover, ι(X) = ι(Y ) = u−1(F ), thus X = Y . This shows that ϕ is injective.

Let (u,X), (v, Y ) ∈ W × Sf such that (u,X) � (v, Y ). Set (F,C) = ϕ(u,X) and (G,D) =
ϕ(v, Y ). We have X ⊂ Y and u can be written in the form u = vw, where w ∈ WY and w is
(∅, X)-minimal. We have ι(Y ) � ι(X) by Theorem 2.10.I, thus ι(Y ) = w−1(ι(Y )) � w−1(ι(X)),
therefore v(ι(Y )) = G � u(ι(X)) = F . Let H ∈ AF . We have u−1(H) ∈ Aι(X). By
Theorem 2.10.I, there exists a reflection r lying in WX such that u−1(H) = Hr. By Theo-
rem 2.10.III, u−1(H) does not separate C0 and w−1(C0), thus H does not separate u(C0) = C
and uw−1(C0) = v(C0) = D. It follows that CF = DF , thus DG ⊂ CF . Hence, (G,D) � (F,C).

Let (u,X), (v, Y ) ∈ W × Sf . We set (F,C) = ϕ(u,X) and (G,D) = ϕ(v, Y ), and we assume
that (G,D) � (F,C). Let w = v−1u (thus u = vw). Since G = ι̃(vWY ) � F = ι̃(uWX), by
Theorem 2.10.II, uWX ⊂ vWY , thus, again by Theorem 2.10.II, X ⊂ Y and u ∈ vWY . The
later inclusion implies that w ∈WY . Let r be a reflection lying in WX . We have Hr ∈ Aι(X) by
Theorem 2.10.I, thus u(Hr) ∈ AF . Since CF = DF , u(Hr) does not separate C and D, thus Hr

does not separate u−1(C) = C0 and u−1(D) = w−1(C0). By Theorem 2.10.III, it follows that w
is (∅, X)-minimal. We conclude that (u,X) � (v, Y ).

3.3 Cellular decompositions and fundamental groups

Let Γ be a Coxeter graph, and let (W,S) be its Coxeter system. For all s ∈ S we set W s =
WS\{s}. The Coxeter complex of Γ, denoted by Cox = Cox(Γ), is the simplicial complex defined
as follows.

(a) The set of vertices of Cox is the set of cosets {wW s | w ∈W and s ∈ S}.
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(b) A family {w0W
s0 , w1W

s1 , . . . , wpW
sp} is a simplex of Cox if the intersection w0W

s0∩· · ·∩
wpW

sp is nonempty.

For X ⊂ S, X 6= ∅, we set WX = WS\X . Let X ⊂ S, X 6= ∅, and let w ∈ W . With the coset

wWX we associate the simplex ∆(wWX) = {wW s | s ∈ X} of Cox. Every simplex has this
form, and we have ∆(uWX) = ∆(vW Y ) if and only if uWX = vW Y . The Coxeter complexes
play a prominent role in the definition and the study of Tits buildings. We refer to [1] for a
detailed study of these complexes and their applications to Tits buildings. In this paper we will
use the following result. This is well-known and can be found for instance in [1].

Proposition 3.6. Let Γ be a Coxeter graph of spherical type. Then |Cox(Γ)| is (homeomorphic
to) a sphere of dimension |S| − 1.

Set P0 = P0(Γ) = {wWX | w ∈ W, X ⊂ S and X 6= S} = {wW Y | w ∈ W, Y ⊂ S and Y 6= ∅},
and P = P(Γ) = {wWX | w ∈W and X ⊂ S} that we order by the inclusion. Note that, if Γ is
of spherical type, then P coincides with the set Pf defined in Subsection 2.3. Observe also that
|P ′| is the cone over |P ′0|. On the other hand, by the above, P0 is (isomorphic to) the barycentric
subdivision of |Cox(Γ)|. Then the following result follows from Proposition 3.6.

Corollary 3.7. Let Γ be a Coxeter graph of spherical type. Then the geometric realization |P ′|
of the derived complex of P is homeomorphic to a disk of dimension |S|, whose boundary is the
geometric realization |P ′0| of the derived complex of P0.

There is a “geometric” way to describe the Coxeter complex and see Proposition 3.6. Recall
the construction of the canonical representation (see Subsection 2.2). We take an abstract set
{es | s ∈ S} in one-to-one correspondence with S, and we denote by V the real vector space
with basis {es | s ∈ S}. There is a symmetric bilinear form B : V ×V → R, and a faithful linear
representation ρ : W → GL(V ) that leaves invariant the form B and which is called canonical
representation.

Assume that Γ is of spherical type. Then B is positive definite (see Theorem 2.6), thus we can
identify V ∗ with V via the form B. For all s ∈ S, we set Hs = {x ∈ V | B(x, es) = 0}. This is
the hyperplane orthogonal to es. Then ρ(s) = ρ∗(s) is the orthogonal reflection with respect to
Hs for all s ∈ S, and W , identified with ρ(W ), is a (finite) linear group generated by reflections.
In this case the Tits cone is I = V . Recall that A denotes the set of reflection hyperplanes of
W . This is a finite hyperplane arrangement in V . We observe that the arrangement A defines a
cellular decomposition of the sphere S|S|−1 = {x ∈ V | B(x, x) = 1}. The proof of the following
can be found in [1].

Proposition 3.8. The cellular decomposition of S|S|−1 determined by A is a simplicial decom-
position which is isomorphic to Cox(Γ).

Example. Let m ∈ N, m ≥ 2. We identify R2 with C, we denote by H0 the (real) line spanned
by 1, by H1 the line spanned by eiπ/m, by s the orthogonal reflection with respect to H0, and
by t the orthogonal reflection with respect to H1. Let W be the group generated by s and t.
Then W is the dihedral group of order 2m and has the presentation

W = 〈s, t | s2 = t2 = (st)m = 1〉 .
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For k ∈ {0, 1, . . . ,m − 1}, we denote by Hk the line spanned by eikπ/m. Then A = {Hk | 0 ≤
k ≤ m− 1}. The cellular decomposition of S1 defined by A is composed by 2m vertices and 2m
edges (see Figure 3.3). Let C̄0 be the closed cone spanned by 1 and eiπ/m. Then a0 = C̄0 ∩ S1

is an edge of the decomposition, and W acts freely and transitively on the set of edges. For
w ∈ W , the 1-simplex of Cox corresponding to w a0 is ∆(wW {s,t}) = ∆(w · {1}). The vertices
adjacent to the edge w a0 correspond to the vertices wW s = w · {1, t} and wW t = w · {1, s} of
Cox.

= tst a0

sts a0

ts a0

st a0

t a0

H1

H0

s a0

a0

Figure 3.3. Coxeter complex.

We turn back to the assumption that Γ is any Coxeter graph. Let (u,X) ∈W × Sf . Set

C(u,X) = {(v, Y ) ∈W × Sf | (v, Y ) � (u,X)} .

Furthermore, let wWY ∈ P(ΓX), and let w0 be the (∅, Y )-minimal element lying in wWY . With
the coset wWY we associate the element (uw0, Y ) of W ×Sf , that we denote by f(wWY ). The
key point in the construction of the cellular decomposition of Sal(Γ) is the following.

Lemma 3.9. Let (u,X) ∈ W × Sf . Then f(wWY ) ∈ C(u,X) for all wWY ∈ P(ΓX), and the
map f : P(ΓX)→ C(u,X) is a poset isomorphism.

Proof. Let wWY ∈ P(ΓX). We can assume without loss of generality that w is (∅, Y )-minimal.
Since Y ⊂ X, w ∈ WX , and w is (∅, Y )-minimal, we have f(wWY ) = (uw, Y ) � (u,X). So,
f(wWY ) ∈ C(u,X).

If (v, Y ) ∈ C(u,X), then (v, Y ) = f(u−1vWY ). So, f is surjective. On the other hand, if
f(wWY ) = (v′, Y ′), then Y = Y ′ and wWY = u−1v′WY , thus wWY is entirely determined by
its image. So, f is injective.

Let w1WY1 , w2WY2 ∈ P(ΓX). We can assume without loss of generality that w1 is (∅, Y1)-
minimal and w2 is (∅, Y2)-minimal. Suppose w1WY1 ⊂ w2WY2 . Then Y1 ⊂ Y2 and w1 ∈ w2WY2

(see Theorem 2.10.II). By Proposition 2.9, w1 is of the form w1 = w2w
′
1, where lg(w1) =

lg(w2)+lg(w′1), and w′1 ∈WY2 . Moreover, w′1 is (∅, Y1)-minimal because w1 is. Since f(w1WY1) =
(uw1, Y1) = (uw2w

′
1, Y1) and f(w2WY2) = (uw2, Y2), it follows that f(w1WY1) � f(w2WY2).
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Suppose that f(w1WY1) � f(w2WY2). Then Y1 ⊂ Y2 and w−1
2 w1 ∈ WY2 , thus w1WY1 ⊂ w2WY2 .

We describe the cellular decomposition of Sal(Γ) as follows. For all w ∈ W we have a vertex
x(w) corresponding to the poset w {1}. The 0-skeleton of Sal(Γ) is {x(w) | w ∈W}. For p ∈ N,
the set of p-cells of Sal(Γ) is {|C(u,X)′| | (u,X) ∈ W × Sf and |X| = p}, and the p-skeleton
Sal(Γ)p is the union of these cells. Lemma 3.9 and Corollary 3.7 imply that this defines a regular
cellular decomposition of Sal(Γ).

For (u,X) ∈ W × Sf with |X| = p, we denote by B(u,X) = |C(u,X)′| the cell of Sal(Γ)p
associated to (u,X), and we denote by ϕu,X : ∂B(u,X)→ Sal(Γ)p−1 the gluing map.

We denote by Sal(Γ) the quotient of Sal(Γ) under the action of W . Then the cellular decom-
position of Sal(Γ) determines a cellular decomposition of Sal(Γ) that is described as follows.
Let X ∈ Sf . The orbit of the cell B(1, X) under the action of W is {B(u,X) | u ∈ W}.
With this orbit we associate a cell B̄(X) of Sal(Γ) of dimension |X| and homeomorphic to
B(1, X) via a homeomorphism hX : B̄(X) → B(1, X). The set of cells of Sal(Γ) of dimen-
sion p is {B̄(X) | X ∈ Sf and |X| = p}. For X ∈ Sf such that |X| = p, the gluing map
ϕ̄X : ∂B̄(X)→ Sal(Γ)p−1 is defined as follows.

ϕ̄X = π ◦ ϕ1,X ◦ hX : ∂B̄(X)→ Sal(Γ)p−1 ,

where π : Sal(Γ) → Sal(Γ) denotes the natural projection. Note that ϕ̄X is not in general
a homeomorphism onto its image, thus Sal(Γ) is not a regular CW-complex. Note also that
B(1, X) can be viewed as embedded into Sal(Γ), but B̄(X) cannot be viewed as embedded into
Sal(Γ).

For practical reasons (in particular, for calculating fundamental groups), and in order to better
understand these complexes, we turn now to describe the p-skeletons of Sal(Γ) and Sal(Γ) for
p = 0, 1, 2.

0-skeleton. As mentioned before, the 0-skeleton of Sal(Γ) is a set {x(w) | w ∈W} in one-to-one
correspondence with W . The 0-skeleton of Sal(Γ) is reduced to a point that we denote by x0.

1-skeleton. With every (u, s) ∈W×S is associated an edge B(u, {s}) of Sal(Γ) whose extremities
are x(u) and x(us). We denote this edge by a(u, s), and we assume it to be oriented from x(u)
to x(us). So, for u, v ∈ W , if v is of the form v = us with s ∈ S, there is an edge a(u, s) going
from x(u) to x(v), and there is another edge a(v, s) going from x(v) to x(u) (see Figure 3.4).
On the other hand, there is no edge joining x(u) and x(v) if v is not of the form v = us with
s ∈ S. With every s ∈ S is associated an edge ās = B̄({s}) of Sal(Γ) whose extremities are both
equal to x0. Let s ∈ S. It is easily seen that the action of W on {a(u, s) | u ∈W} preserves the
orientations of the a(u, s), thus it induces an orientation on ās. So, we assume ās to be endowed
with this orientation.

2-skeleton. Let s, t ∈ S, s 6= t. Note that we have {s, t} ∈ Sf if and only if ms,t 6= ∞. Assume
m = ms,t 6=∞. With every u ∈W is associated a 2-cell of Sal(Γ), B(u, {s, t}), whose boundary
is

a(u, s) a(us, t) · · · a(uΠ(s, t : m− 1), t) a(uΠ(t, s : m− 1), s)−1 · · · a(ut, s)−1 a(u, t)−1
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x(u)

a(v, s)

a(u, s)

= x(us)
x(v)

x0

ās

Figure 3.4. Edges in Sal(Γ) and in Sal(Γ).

if m is even, and

a(u, s) a(us, t) · · · a(uΠ(s, t : m− 1), s) a(uΠ(t, s : m− 1), t)−1 · · · a(ut, s)−1 a(u, t)−1

if m is odd (see Figure 3.5). The W -orbit of 2-cells {B(u, {s, t}) | u ∈W} determines the 2-cell
B̄({s, t}) of Sal(Γ). By the above, the boundary curve of B̄({s, t}) is

ās āt · · · āt ā−1
s · · · ā−1

s ā−1
t = Π(ās, āt : m) Π(āt, ās : m)−1

if m is even, and

ās āt · · · ās ā−1
t · · · ā−1

s ā−1
t = Π(ās, āt : m) Π(āt, ās : m)−1

if m is odd (see Figure 3.5).

x(u)

a(u, t)

a(u, s)

x(ut)

x(us)

a(ut, s)

a(us, t)

x(uts)

x(ust)

a(uts, t)

a(ust, s)

= x(utst)
x(usts) x0

āt

ās

x0

x0 āt

ās x0

x0

āt

ās

x0

Figure 3.5. 2-cells in Sal(Γ) and in Sal(Γ).

A straightforward consequence of these descriptions and of Theorem 2.3 is the following.

Theorem 3.10. We have π1(Sal(Γ), x0) = AΓ, π1(Sal(Γ), x(1)) = CAΓ, and the exact sequence
associated with the regular covering Sal(Γ)→ Sal(Γ) is the following.

1 // CAΓ
// AΓ

θ //W // 1 .
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Corollary 3.11. (Van der Lek [35]). Let (W,S) be a Vinberg system. Let Γ be the Coxeter graph
of (W,S), viewed as a Coxeter system. Then π1(N(W,S)) = AΓ, π1(M(W,S)) = CAΓ, and the
exact sequence associated with the regular covering M(W,S)→ N(W,S) is the following.

1 // CAΓ
// AΓ

θ //W // 1 .

4 K(π, 1) problem for spherical type Artin groups

In this section we first describe the universal cover S̃al(Γ) of the Savetti complex of any Coxeter

graph Γ (see Subsection 4.1). Afterwards we prove that a certain subcomplex S̃al
+

(Γ) of S̃al(Γ)

is contractible (see Subsection 4.2). At the end, we prove that S̃al(Γ) is contractible if Γ is of
spherical type (see Subsection 4.3).

4.1 Universal cover of the Salvetti complex

We take a Coxeter graph Γ, and we denote by (A,Σ) the Artin system of Γ. Recall the ho-
momorphism θ : A → W which sends σs to s for all s ∈ S. Recall also that θ has a natural
set-section τ : W → A defined as follows (see Subsection 2.2). Let w ∈W . We choose a reduced
expression µ = s1 · · · s` of w and we set τ(w) = σs1 · · ·σs` .

Lemma 4.1. Let � be the relation on A× Sf defined by

(α,X) � (β, Y )

if X ⊂ Y and α can be written in the form α = β τ(w), where w ∈WY and w is (∅, X)-minimal.
Then � is a partial order relation.

Proof. We cleary have (α,X) � (α,X) for all (α,X) ∈ A × Sf . Let (α,X), (β, Y ) ∈ A × Sf
such that (α,X) � (β, Y ) and (β, Y ) � (α,X). We have X ⊂ Y and Y ⊂ X, thus X = Y . By
definition, α can be written in the form α = β τ(u), where u ∈ WX and u is (∅, X)-minimal.
But, the only (∅, X)-minimal element lying in WX is 1, thus u = 1 and α = β.

Let (α,X), (β, Y ), (γ, Z) ∈ A × Sf such that (α,X) � (β, Y ) and (β, Y ) � (γ, Z). We have
X ⊂ Y ⊂ Z. Moreover, α can be written in the form α = β τ(u), where u ∈ WY and u is
(∅, X)-minimal, and β can be written in the form β = γ τ(v), where v ∈ WZ , and v is (∅, Y )-
minimal. Set w = vu. Since u ∈ WY and v is (∅, Y )-minimal, by Proposition 2.9, we have
lg(w) = lg(v) + lg(u), thus τ(w) = τ(v) τ(u). Hence, α = γ τ(w). We have w ∈ WZ , since
v, u ∈ WZ . On the other hand, one can easily prove following the same arguments as in the
proof of Lemma 3.2 that w is (∅, X)-minimal. So, (α,X) � (γ, Z).

We denote by S̃al(Γ) the geometric realization of the derived complex of (A×Sf ,�). The action
of A on A× Sf defined by

β (α,X) = (βα,X)
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induces a free and properly discontinuous action of A on S̃al(Γ). It is easily shown that

S̃al(Γ)/CA = Sal(Γ) and S̃al(Γ)/A = Sal(Γ). Hence, since the fundamental group of Sal(Γ)
is A, we have the following.

Proposition 4.2. S̃al(Γ) is the universal cover of Sal(Γ) and of Sal(Γ).

4.2 The subcomplex S̃al
+

(Γ)

Recall that the Artin monoid of a Coxeter graph Γ is the monoid A+
Γ that admits the following

monoid presentation:

A+
Γ = 〈Σ | Π(σs, σt : ms,t) = Π(σt, σs : ms,t) for all s, t ∈ S, s 6= t, ms,t 6=∞〉+ .

By [42], the natural homomorphism A+
Γ → AΓ is injective.

We define S̃al
+

(Γ) to be the geometric realization of the derived complex of (A+
Γ ×Sf ,�), where

� is the restriction to A+
Γ × Sf of the ordering defined in Lemma 4.1. The main result of this

subsection is the following.

Theorem 4.3. The subcomplex S̃al
+

(Γ) is contractible.

The remainder of the subsection is dedicated to the proof of Theorem 4.3.

Let V = R`, and let H1, . . . ,Hk be hyperplanes of V . For each i ∈ {1, . . . , k} we take a linear
form αi : V → R such that Kerαi = Hi. We say that H1, . . . ,Hk are independent if α1, . . . , αk
are linearly independent in V ∗.

Lemma 4.4. Let I be a nonempty open convex cone in V = R`, and let H1, . . . ,Hk be indepen-
dent hyperplanes. Set L = H1 ∩ · · · ∩Hk, and assume that L ∩ I 6= ∅. So, we have Hi ∩ I 6= ∅
for all i ∈ {1, . . . , k}. For each i ∈ {1, . . . , k} we take an open half-space bounded by Hi that we
denote by H+

i . Then (∪ki=1H
+
i ) ∩ I is contractible.

Proof. We choose a basis {e1, . . . , e`} for V so that Hi is defined by the equality xi = 0 with
respect to this basis, and H+

i is defined by the inequality xi > 0, for all i ∈ {1, . . . , k}. Choose
a point p0 ∈ L∩ I. Since p0 ∈ L, it can be written in the form p0 = λk+1ek+1 + · · ·+λ`e`, where
λk+1, . . . , λ` ∈ R. Since I is open, there is ε > 0 such that

q0 = εe1 + · · ·+ εek + p0 = εe1 + · · ·+ εek + λk+1ek+1 + · · ·+ λ`e` ∈ I .

For all t ∈ [0, 1] we define ht : V → V by

ht(p) = (1− t)p+ t q0 , p ∈ V .

It is easily checked that ht(p) ∈ (∪ki=1H
+
i )∩ I if p ∈ (∪ki=1H

+
i )∩ I, that h0(p) = p for all p ∈ V ,

that h1(p) = q0 for all p ∈ V , and that ht(q0) = q0 for all t ∈ [0, 1].

Recall that Pf denotes the set {wWX | w ∈ W and X ∈ Sf} (see Subsection 2.3). Note
that every coset wWX ∈ Pf is uniquely represented by the pair (u,X), where u is the unique
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(∅, X)-minimal element lying in wWX . For s ∈ S, we say that the coset wWX is s-minimal if

lg(su) = lg(u) + 1 and su is (∅, X)-minimal. We denote by Pfs the set of cosets wWX lying in

Pf that are s-minimal, and we assume Pfs ordered by the inclusion. For X0 ∈ Sf , X0 6= ∅, we
set

PfX0
=
⋃
s∈X0

Pfs .

Lemma 4.5. Let s ∈ S, and let uWX , vWY ∈ Pf . If uWX ∈ Pfs and vWY ⊂ uWX , then
vWY ∈ Pfs .

Proof. We can assume without loss of generality that u is (∅, X)-minimal and that v is (∅, Y )-

minimal. We observe that, by Proposition 2.9, we have uWX ∈ Pfs if and only if lg(suw) =
lg(u) + lg(w) + 1 for all w ∈WX . Since vWY ⊂ uWX , we have Y ⊂ X and v ∈ uWX . We write
v = uv′, where v′ ∈ WX . Since u is (∅, X)-minimal, we have lg(v) = lg(u) + lg(v′). Moreover,
since v is (∅, Y )-minimal, v′ is also (∅, Y )-minimal. Let w ∈WY . Then

lg(svw) = lg(suv′w) = lg(u) + lg(v′w) + 1 = lg(u) + lg(v′) + lg(w) + 1 = lg(v) + lg(w) + 1 .

This shows that vWY ∈ Pfs .

Lemma 4.6.

(1) The geometric realization |(Pf )′| of the derived complex of Pf is contractible.

(2) Let X0 ∈ Sf , X0 6= ∅. Then the geometric realization |(PfX0
)′| of the derived complex of

PfX0
is contractible.

Proof. Let ρ∗ : W → GL(V ∗) be the dual representation of the canonical representation. Recall
that, by Theorem 2.5, this representation is faithful and, (W,S), identified with (ρ∗(W ), ρ∗(S)),
is a Vinberg system. We denote by I the Tits cone, and by A the Coxeter arrangement in I
associated to (W,S). For a reflection r lying in W we denote by Hr the fix hyperplane of r.
Note that, by construction, the set {Hs | s ∈ S} is independent.

We denote by C0 the fundamental chamber, and by F(C0) the set of facets F of A such that
F � C0. Recall that we have a bijection ι : Sf → F(C0), and this bijection extends to a bijection
ι̃ : Pf → F(A), uWX 7→ u ι(X). Moreover, we have uWX ⊂ vWY if and only if v ι(Y ) � u ι(X)
(see Theorem 2.10).

For all s ∈ S, we denote by H+
s the open half-space bounded by Hs and containing C0. For

X0 ∈ Sf , X0 6= ∅, we set

Ω(X0) =

 ⋃
s∈X0

H+
s

 ∩ I .
Note that ι(X0) is contained in ∩s∈X0Hs, thus (∩s∈X0Hs) ∩ I 6= ∅, therefore, by Lemma 4.4,
Ω(X0) is contractible.
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Claim 1. Let s ∈ S, and let uWX ∈ Pf . We have uWX ∈ Pfs if and only if u ι(X) is contained
in H+

s .

Proof of Claim 1. We can assume without loss of generality that u is (∅, X)-minimal. Set
F = u ι(X). Observe that F is contained in H+

s if and only if C is contained in H+
s for every

chamber C ∈ C(A) satisfying F � C.

Suppose that uWX ∈ Pfs . Let C ∈ C(A) such that F � C. By Theorem 2.10.I, there exists
w ∈WX such that C = uw(C0). Then

lg(suw) = lg(uw) + 1 (since uWX ∈ Pfs )
⇒ lg(w−1u−1s) = lg(w−1u−1) + 1
⇒ C = uw(C0) ⊂ H+

s (by Theorem 2.10.III)

This shows that F is included in H+
s .

Suppose now that F is included in H+
s . Let w ∈ WX . Set C = uw(C0). Since F � C, we have

C ⊂ H+
s . By Theorem 2.10.III, it follows that

lg(w−1u−1s) = lg(w−1u−1) + 1 ⇒ lg(suw) = lg(uw) + 1 = lg(u) + lg(w) + 1 .

This shows that uWX ∈ Pfs .

For every facet F of A, we denote by ω(F ) the set defined in the proof of Theorem 3.1 (see

Figure 3.2). For uWX ∈ Pf , we set ω(uWX) = ω(u ι(X)). Let s ∈ S, and let uWX ∈ Pfs . Set
F = u ι(X). By Claim 1, we have F ⊂ H+

s . Moreover, if G is a facet of A such that F � G,
then G ⊂ H+

s . Since ω(uWX) = ω(F ) is contained in the union of the facets G of A satisfying
F � G, it follows that ω(uWX) ⊂ H+

s . This proves the following.

Claim 2.

(1) The set {ω(uWX) | uWX ∈ Pf} is a cover of I by open subsets.

(2) Let X0 ∈ Sf , X0 6= ∅. Then the set {ω(uWX) | uWX ∈ PfX0
} is a cover of Ω(X0) by open

subsets.

By Claims 5, 6, and 7 in the proof of Theorem 3.1, we have

ω(u0WX0) ∩ ω(u1WX1) ∩ · · · ∩ ω(upWXp) 6= ∅

if and only if, up to permutation, we have

upWXp ⊂ · · · ⊂ u1WX1 ⊂ u0WX0 .

Moreover, in that case, this intersection is contractible. By Theorem 2.1, it follows that |(Pf )′|
has the same homotopy type as I, thus |(Pf )′| is contractible. Similarly, if X0 ∈ Sf , X0 6= ∅, then

|(PfX0
)′| has the same homotopy type as Ω(X0), thus |(PfX0

)′| is contractible by Lemma 4.4.
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We turn back to the universal cover S̃al(Γ) of the Salvetti complex. For α ∈ AΓ, we set
C̃(α) = {(ατ(u), X) | X ∈ Sf , u ∈ W and u is (∅, X)-minimal}. We restrict the ordering of

AΓ × Sf to C̃(α), and we denote by Φ(α) ⊂ S̃al(Γ) the geometric realization of the derived
complex of C̃(α).

Let α ∈ AΓ, and let uWX ∈ Pf . We can assume without loss of generality that u is (∅, X)-
minimal. Then we set fα(uWX) = (ατ(u), X) ∈ C̃(α).

Lemma 4.7. Let α ∈ AΓ. Then the map fα : Pf → C̃(α) is a poset isomorphism. In particular,
it induces a homeomorphism fα : |(Pf )′| → Φ(α). Hence, by Lemma 4.6, Φ(α) is contractible.

Proof. It is easily seen that fα is bijective. Let uWX , vWY ∈ Pf . We assume without loss of
generality that u is (∅, X)-minimal and v is (∅, Y )-minimal. Suppose that uWX ⊂ vWY . Then
X ⊂ Y and u ∈ vWY . Let u′ ∈ WY such that u = vu′. Since v is (∅, Y )-minimal, we have
lg(u) = lg(v) + lg(u′), thus τ(u) = τ(v) τ(u′). Moreover, u′ is (∅, X)-minimal, since u is. This
implies that (α τ(u), X) = (α τ(v) τ(u′), X) � (α τ(v), Y ).

Suppose that (α τ(u), X) � (α τ(v), Y ). Then X ⊂ Y and α τ(u) can be written in the form
α τ(u) = α τ(v) τ(u′), where u′ ∈WY and u′ is (∅, X)-minimal. The latter equality implies that
u = vu′ ∈ vWY , thus uWX ⊂ vWY .

For n ∈ N, we set

S̃al
(n)

(Γ) =
⋃

α∈A+
Γ , lg(α)≤n

Φ(α) .

Note that

S̃al
+

(Γ) =
⋃

α∈A+
Γ

Φ(α) =

∞⋃
n=0

S̃al
(n)

(Γ) .

Lemma 4.8. Let n ∈ N, and let α, β ∈ A+
Γ such that α 6= β and lg(α) = lg(β) = n + 1. Then

Φ(α) ∩ Φ(β) ⊂ S̃al
(n)

(Γ).

Proof. For n ∈ N, we set

S̃al
(n)

0 (Γ) =
⋃

α∈A+
Γ , lg(α)≤n

C̃(α) .

Since Φ(α) = |C̃(α)′| and Φ(β) = |C̃(β)′|, we have

Φ(α) ∩ Φ(β) = |(C̃(α) ∩ C̃(β))′| .

Hence, in order to prove Lemma 4.8, it suffices to show that C̃(α) ∩ C̃(β) ⊂ S̃al
(n)

0 (Γ).

Let (γ, Z) ∈ C̃(α) ∩ C̃(β). There exist u, v ∈ W , both (∅, Z)-minimal, such that γ = α τ(u) =
β τ(v). Since τ(u) �R γ and τ(v) �R γ, the element τ(u)∨Rτ(v) exists, and, by Proposition 2.12,
there exists w ∈W such that τ(u) ∨R τ(v) = τ(w).
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Let µ ∈ A+
Γ such that τ(w) = µ τ(u). Set u′ = θ(µ). Note that w = θ(τ(w)) = u′ u. We have

lg(w) ≤ lg(u′) + lg(u) ≤ lg(µ) + lg(τ(u)) = lg(τ(w)) = lg(w) ,

thus µ = τ(u′) and lg(w) = lg(u′) + lg(u). Similarly, there exists v′ ∈W such that w = v′ v and
lg(w) = lg(v′) + lg(v). Note that this implies that τ(w) = τ(u′) τ(u) = τ(v′) τ(v).

Let γ0 ∈ A+
Γ such that γ = γ0 τ(w). By left cancellation, we have α = γ0τ(u′) and β = γ0τ(v′).

These two equalities imply that lg(γ0) ≤ n + 1. Moreover, if we had lg(γ0) = n + 1 = lg(α) =
lg(β), then we would have γ0 = α = β, which is not true. Hence, lg(γ0) ≤ n. So, in order to

prove that (γ, Z) ∈ S̃al
(n)

0 (Γ), it suffices to show that w is (∅, Z)-minimal.

Suppose that w is not (∅, Z)-minimal. Then, by Proposition 2.9, there exists s ∈ Z such
that lg(ws) < lg(w). Let u = s1 · · · s` be a reduced expression of u, and let u′ = t1 · · · tk
be a reduced expression of u′. Note that t1 · · · tks1 · · · s` is a reduced expression of w = u′u.
By Theorem 2.8, either there exists i ∈ {1, . . . , `} such that ws = t1 · · · tks1 · · · ŝi · · · s`, or
there exists j ∈ {1, . . . , k} such that ws = t1 · · · t̂j · · · tks1 · · · s`. But, we cannot have ws =
t1 · · · tks1 · · · ŝi · · · s`, because lg(us) = lg(u) + 1 (since u is (∅, Z)-minimal), thus we have ws =
t1 · · · t̂j · · · tks1 · · · s` for some j ∈ {1, . . . , k}. Set u′′ = t1 · · · t̂j · · · tk. Then ws = u′′u and
lg(ws) = lg(u′′) + lg(u) = lg(w) − 1. In particular, τ(ws) = τ(u′′) τ(u). Similarly, there exists
v′′ ∈ W such that ws = v′′v and lg(ws) = lg(v′′) + lg(v) (hence, τ(ws) = τ(v′′) τ(v)). This
contradicts the fact that τ(w) = τ(u) ∨R τ(v), since lg(τ(ws)) < lg(τ(w)), and, by the above,
τ(u), τ(v) �R τ(ws).

For α ∈ A+
Γ , we set

End(α) = {s ∈ S | σs �R α} .

Note that α is an upper bound of ΣEnd(α) for the relation �R, thus, by Proposition 2.12, we

have End(α) ∈ Sf .

Lemma 4.9. Let α ∈ A+
Γ such that lg(α) = n+ 1. Set X0 = End(α). Then

Φ(α) ∩ S̃al
(n)

(Γ) = fα(|(PfX0
)′|) .

So, by Lemma 4.6, Φ(α) ∩ S̃al
(n)

(Γ) is contractible.

Proof. Since Φ(α) = |C̃(α)′| and S̃al
(n)

(Γ) = |(S̃al
(n)

0 (Γ))′|, we have

Φ(α) ∩ S̃al
(n)

(Γ) = |(C̃(α) ∩ S̃al
(n)

0 (Γ))′| .

Hence, it suffices to show the following.

C̃(α) ∩ S̃al
(n)

0 (Γ) = fα(PfX0
) .

Let uWX ∈ PfX0
. As ever, we assume that u is (∅, X)-minimal. By definition, there exists

s ∈ X0 such that lg(su) = lg(u) + 1 and su is (∅, X)-minimal. Since X0 = End(α), we have
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σs �R α, thus α can be written in the form α = βσs, where β ∈ A+
Γ . Since lg(su) = lg(u)+1, we

have τ(su) = σs τ(u), thus α τ(u) = β τ(su), therefore fα(uWX) = (α τ(u), X) = (β τ(su), X) ∈
C̃(β). On the other hand, lg(β) = n, thus fα(uWX) ∈ C̃(α) ∩ S̃al

(n)

0 (Γ).

Let (γ, Z) ∈ C̃(α) ∩ S̃al
(n)

0 (Γ). There exists β ∈ A+
Γ such that lg(β) ≤ n and (γ, Z) ∈ C̃(β).

There exist u, v ∈ W such that u and v are (∅, Z)-minimal and γ = α τ(u) = β τ(v). It is
easily shown in the same way as in the proof of Lemma 4.8 that τ(u) ∨R τ(v) exists, that this
element is of the form τ(w) with w ∈ W , that w is (∅, Z)-minimal, and that w can be written
in the form w = u′u = v′v with lg(w) = lg(u′) + lg(u) = lg(v′) + lg(v). Note that, since
lg(β) < lg(α) and α τ(u) = β τ(v), we have lg(u) < lg(v), thus u′ 6= 1. We choose s ∈ S such
that lg(u′s) = lg(u′)− 1. Set u′′ = u′s. By the above, τ(u′) = τ(u′′)σs. Let γ0 ∈ A+

Γ such that
γ = γ0 τ(w). We have α = γ0 τ(u′) = γ0 τ(u′′)σs, thus s ∈ X0. Finally, lg(su) = lg(u) + 1 (since

lg(w) = lg(u′) + lg(u)) and su is (∅, Z)-minimal (since w is (∅, Z)-minimal), thus uWZ ∈ PfX0
.

This shows that (γ, Z) = fα(uWZ) ∈ fα(PfX0
).

Proof of Theorem 4.3. We start by proving by induction on n that S̃al
(n)

(Γ) is contractible.

If n = 0, then S̃al
(0)

(Γ) = Φ(1), thus, by Lemma 4.7, S̃al
(0)

(Γ) is contractible.

Now, we assume that n ≥ 0 and S̃al
(n)

(Γ) is contractible. Let α ∈ A+
Γ such that lg(α) = n+ 1.

By Lemma 4.7, Φ(α) is contractible. Moreover, by Lemma 4.9, Φ(α)∩ S̃al
(n)

(Γ) is contractible.

It follows that the embedding of Φ(α) ∩ S̃al
(n)

(Γ) into Φ(α) is a homotopy equivalence, thus

Φ(α) ∩ S̃al
(n)

(Γ) is a deformation retract of Φ(α) (see [32, Thm. 4.5]). We fix a deformation

retraction hα : Φ(α)× [0, 1]→ Φ(α) of Φ(α) onto Φ(α) ∩ S̃al
(n)

(Γ).

We define a map

h : S̃al
(n+1)

(Γ)× [0, 1]→ S̃al
(n+1)

(Γ)

as follows. Let α ∈ A+
Γ such that lg(α) ≤ n + 1. If lg(α) ≤ n, we set h(x, t) = x for all

(x, t) ∈ Φ(α) × [0, 1]. If lg(α) = n + 1, we set h(x, t) = hα(x, t) for all (x, t) ∈ Φ(α) × [0, 1].
Lemma 4.8 implies that h is well-defined. It is clear from the above that h is a deformation

retraction of S̃al
(n+1)

(Γ) onto S̃al
(n)

(Γ), thus S̃al
(n+1)

(Γ) is contractible as S̃al
(n)

(Γ) is.

Since

S̃al
+

(Γ) =

∞⋃
n=0

S̃al
(n)

(Γ) ,

we conclude by Theorem 2.1 that S̃al
+

(Γ) is contractible.

4.3 K(π, 1) problem for Artin groups of spherical type

Theorem 4.10 (Deligne [26]). If Γ is a spherical type Coxeter graph, then Sal(Γ) is an Eilenberg
MacLane space.
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Proof. According to the statement of Theorem 2.13, we set ∆ = ∨LΣ. We have the following
chain of subcomplexes.

S̃al
+

(Γ) ⊂ ∆−1 S̃al
+

(Γ) ⊂ · · · ⊂ ∆−n S̃al
+

(Γ) ⊂ ∆−n−1 S̃al
+

(Γ) ⊂ · · · .

The subcomplex ∆−n S̃al
+

(Γ) is contractible by Theorem 4.3, and ∪∞n=0∆−n S̃al
+

(Γ) = S̃al(Γ)

by Theorem 2.13. We conclude by Theorem 2.1 that S̃al(Γ) is contractible.

5 Parabolic subgroups, FC type Artin groups, and generaliza-
tions

Let Γ be a Coxeter graph, and let (AΓ,Σ) = (A,Σ) be its Artin system. For X ⊂ S, we set
ΣX = {σs | s ∈ X}, and we denote by AX the subgroup of A generated by ΣX . Such a subgroup
is called standard parabolic subgroup of A. Recall that, for X ⊂ S, we set MX = (ms,t)s,t∈X ,
where M = (ms,t)s,t∈S is the Coxeter matrix of the Coxeter graph Γ, we denote by ΓX the
Coxeter graph of MX , and we denote by WX the subgroup of W = WΓ generated by X. By [3],
the pair (WX , X) is the Coxeter system of ΓX . The subgroup WX is called standard parabolic
subgroup of W .

Let T be a subset of S. Set SfT = {X ∈ Sf | X ⊂ T}. Observe that the inclusion (WT ×SfT ) ↪→
(W ×Sf ) induces an embedding ιT : Sal(ΓT ) ↪→ Sal(Γ) which is equivariant under the action of
WT . The starting point of the present section is the following theorem proved in [31]. It will be
the key in the proofs of several results on standard parabolic subgroups and on some families of
Artin groups.

Theorem 5.1 (Godelle, Paris [31]). Let T be a subset of S. Then the embedding ιT : Sal(ΓT ) ↪→
Sal(Γ) admits a retraction πT : Sal(Γ)→ Sal(ΓT ) which is equivariant under the action of WT .

Proof. It suffices to determine a function πT : (W×Sf )→ (WT×SfT ) that satisfies the following
properties.

• πT (u,X) = (u,X) for all (u,X) ∈WT × SfT ,

• πT is equivariant under (left) action of WT ,

• if (u,X) � (v, Y ), then πT (u,X) � πT (v, Y ).

Let (u,X) ∈ W × Sf . We write u = u0u1, where u0 ∈ WT and u1 is (T, ∅)-minimal. Let
X0 = T ∩ u1Xu

−1
1 . Then we set

πT (u,X) = (u0, X0) .

Note that, since WX0 ⊂ u1WXu
−1
1 , the group WX0 is finite, thus X0 ∈ SfT .

It is easily seen that πT (u,X) = (u,X) for all (u,X) ∈ WT × SfT , and that πT is equivariant
under the action of WT . So, it remains to show that, if (u,X), (v, Y ) ∈ W × Sf are such that
(u,X) � (v, Y ), then πT (u,X) � πT (v, Y ).
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Let (u,X), (v, Y ) ∈ W × Sf such that (u,X) � (v, Y ). Set u = u0u1 and v = v0v1, where
u0, v0 ∈ WT , and u1, v1 are (T, ∅)-minimal. Let X0 = T ∩ u1WXu

−1
1 and Y0 = T ∩ v1WY v

−1
1 .

Then πT (u,X) = (u0, X0) and πT (v, Y ) = (v0, Y0). Let w = v−1u, and let w0 = v−1
0 u0. Since

(u,X) � (v, Y ), we have X ⊂ Y , w ∈ WY , and w is (∅, X)-minimal. We should show that
X0 ⊂ Y0, w0 ∈ WY0 , and w0 is (∅, X0)-minimal. We argue by induction on the length of w.
It is easily checked that, if w = 1, then u0 = v0 (thus w0 = 1), u1 = v1, and X0 ⊂ Y0, thus
πT (u,X) � πT (v, Y ). So, we may assume that lg(w) ≥ 1 plus the induction hypothesis.

We write w = sw′, where s ∈ Y , w′ ∈ WY , and lg(w′) = lg(w) − 1. Let v′ = vs. The element
(v′)−1u = w′ lies in WY and is (∅, X)-minimal (since w is), thus (u,X) � (v′, Y ). Set v′ = v′0v

′
1,

where v′0 ∈ WT and v′1 is (T, ∅)-minimal, and set Y ′0 = T ∩ (v′1)WY (v′1)−1. By the induction
hypothesis, we have (u0, X0) = πT (u,X) � πT (v′, Y ) = (v′0, Y

′
0). Set w′0 = (v′0)−1u0. Then

X0 ⊂ Y ′0 , w′0 ∈WY ′0
, and w′0 is (∅, X0)-minimal.

Suppose that v1s is (T, ∅)-minimal. Then v′0 = v0 and v′1 = v1s. Moreover, it is easily seen that,
in that case, Y0 = Y ′0 (thus X0 ⊂ Y0) and w0 = w′0 (thus w0 ∈ WY0 and w0 is (∅, X0)-minimal).
Hence, πT (u,X) � πT (v, Y ).

Suppose now that v1s is not (T, ∅)-minimal. We have lg(v1s) > lg(v1), otherwise v1s would
be (T, ∅)-minimal since v1 is. Furthermore, by Proposition 2.9, there exists t ∈ T such that
lg(tv1s) < lg(v1s). We also have lg(tv1) > lg(v1), since v1 is (T, ∅)-minimal. By Theorem 2.8,
these inequalities imply that tv1 = v1s. Then v′0 = v0t, v

′
1 = v1, thus Y0 = Y ′0 and w0 =

tw′0. A first consequence of this is that X0 ⊂ Y0 = Y ′0 and w0 ∈ WY0 (since w′0 ∈ WY0 and
t = v1sv

−1
1 ∈ T ∩ v1WY v

−1
1 = Y0). It remains to prove that w0 is (∅, X0)-minimal. Suppose

not. Then we have lg(w0) = lg(tw′0) > lg(w′0), otherwise w0 would be (∅, X0)-minimal since
w′0 is. By Proposition 2.9, there exists x ∈ X0 such that lg(tw′0x) < lg(tw′0). We also have
lg(w′0x) > lg(w′0) since w′0 is (∅, X0)-minimal. By Theorem 2.8, it follows that tw′0 = w′0x = w0.
Hence,

x = (w′0)−1t(w′0) = u−1
0 (v′0)t(v′0)−1u0 ∈WX0 = WT ∩ u1WXu

−1
1

⇒ u−1v0tv
−1
0 u = u−1vsv−1u = w−1sw ∈WX

⇒ swWX = w′WX = wWX .

This contradicts the fact that w is (∅, X)-minimal (recall that lg(w′) < lg(w)). So, w0 is (∅, X0)-
minimal. We conclude that πT (u,X) � πT (v, Y ).

Let ῑT : Sal(ΓX) = Sal(ΓX)/WX → Sal(Γ) = Sal(Γ)/W denote the map induced by ιT :
Sal(ΓT )→ Sal(Γ).

Lemma 5.2. Let T ⊂ S. Then ῑT : Sal(ΓT )→ Sal(Γ) is an embedding.

Proof. Let x, y be two points in Sal(ΓT ) ⊂ Sal(Γ) that belong to the same W -orbit. Let w ∈W
such that y = w x. The point x (resp. y) lies in the interior of some cell B(u,X) (resp. B(v, Y ))
of Sal(ΓT ). Since w sends cells to cells, we shall have wB(u,X) = B(w u,X) = B(v, Y ), thus
X = Y and v = wu. Hence, w = vu−1 ∈WT (since u, v ∈WT ).

Consider the cellular decomposition of Sal(Γ) described in Subsection 3.3. Let T be a subset of

S. Observe that, for all X ∈ SfT , the map ῑT sends the cell B̄(X) of Sal(ΓT ) homeomorphically
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to the cell B̄(X) of Sal(Γ). Observe also that, for all s ∈ T , the map ῑT preserves the orientation
of ās = B̄({s}). Hence,

Lemma 5.3. Let T be a subset of S. Then the homomorphism (ῑT )∗ : π1(Sal(ΓT ), x0) = AΓT
→

π1(Sal(Γ), x0) = AΓ coincides with the natural homomorphism AΓT
→ AΓ which sends σs to σs

for all s ∈ T .

Theorem 5.4 (Van der Lek [35]). Let T be a subset of S. Then the natural homomorphism
AΓT

→ AΓ which sends σs to σs for all s ∈ T is injective. In other words, the pair (AT ,ΣT ) is
an Artin system of ΓT .

Proof. We have the following commutative diagram, where the lines are exact sequences.

1 → CAΓT
−→ AΓT

−→ WΓT
→ 1

↓ ↓ ↓
1 → CAΓ −→ AΓ −→ WΓ → 1

By Theorem 5.1, the homomorphism CAΓT
→ CAΓ has a retraction, thus it is injective. The

homomorphism WΓT
→ WΓ is injective by [3]. We conclude by the five lemma that the homo-

morphism AΓT
→ AΓ is injective.

Theorem 5.5 (Godelle, Paris [31]). Let T be a subset of S. If Sal(Γ) is an Eilenberg MacLane
space, then Sal(ΓT ) is also an Eilenberg MacLane space.

Proof. By Theorem 5.1, for all n ≥ 1, the homomorphism (ιT )∗ : πn(Sal(ΓT ), x(1)) →
πn(Sal(Γ), x(1)) has a retraction πn(Sal(Γ), x(1)) → πn(Sal(ΓT ), x(1)), hence it is injective.
Assume that Sal(Γ) is an Eilenberg MacLane space. Then πn(Sal(Γ), x(1)) = {1} for all n ≥ 2,
thus, by the above, πn(Sal(ΓT ), x(1)) = {1} for all n ≥ 2, therefore Sal(ΓT ) is an Eilenberg
MacLane space.

Theorem 5.6 (Ellis, Sköldberg [28]). Let s, t ∈ S such that ms,t = ∞. Set T = S \ {s} and
R = S \ {t}. If Sal(ΓT ) and Sal(ΓR) are both Eilenberg MacLane spaces, then Sal(Γ) is an
Eilenberg MacLane space.

Proof. Let X ∈ Sf . If s ∈ X, then t 6∈ X, thus X ∈ SfR. Similarly, if t ∈ X, then s 6∈ X,

thus X ∈ SfT . Note that, if s 6∈ X and t 6∈ X, then X ∈ SfT∩R. By Lemma 5.2, Sal(ΓT )
and Sal(ΓR) are subcomplexes of Sal(Γ). By the above, we have Sal(ΓT ) ∪ Sal(ΓR) = Sal(Γ)
and Sal(ΓT ) ∩ Sal(ΓR) = Sal(ΓT∩R). By Lemma 5.3, the homomorphisms π1(Sal(ΓT∩R), x0)→
π1(Sal(ΓT ), x0) and π1(Sal(ΓT∩R), x0)→ π1(Sal(ΓR), x0) are injective. The complexe Sal(ΓT ) is
an Eilenberg Maclane space, since Sal(ΓT ) is a covering of Sal(ΓT ) and, by hypothesis, Sal(ΓT ) is
an Eilenberg MacLane space. Similarly, Sal(ΓR) is an Eilenberg MacLane space. Furthermore,
by applying Theorem 5.5 to ΓT∩R and ΓT we get that Sal(ΓT∩R) is an Eilenberg MacLane space,
thus Sal(ΓT∩R) is an Eilenberg MacLane space. By Theorem 2.4, it follows that Sal(Γ) is an
Eilenberg MacLane space, thus Sal(Γ) is an Eilenberg MacLane space.

Recall that a subset T of S is said to be free of infinity if ms,t 6=∞ for all s, t ∈ T . We denote
by S<∞ the set of subsets of S that are free of infinity. Note that Sf ⊂ S<∞. Recall also that
Γ is said to be of FC type if Sf = S<∞.
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Corollary 5.7. (Ellis, Sköldberg [28]). If Sal(ΓT ) is an Eilenberg MacLane space for all
T ∈ S<∞, then Sal(Γ) is an Eilenberg MacLane space.

Proof. We argue by induction on |S|. If |S| = 1, then S is free of infinity, thus Sal(Γ) = Sal(ΓS)
is an Eilenberg MacLane space. More generally, if S itself is free of infinity, then Sal(Γ) = Sal(ΓS)
is an Eilenberg MacLane space. Assume that |S| ≥ 2 and S is not free of infinity, plus the
induction hypothesis. Let s, t ∈ S such that ms,t =∞. Set T = S \ {s} and R = S \ {t}. By the
induction hypothesis, Sal(ΓT ) and Sal(ΓR) are Eilenberg MacLane spaces. By Theorem 5.6, it
follows that Sal(Γ) is an Eilenberg MacLane space.

Corollary 5.8. (Charney, Davis [13]). The complex Sal(Γ) is an Eilenberg MacLane space if Γ
is a Coxeter graph of FC type.

Proof. By Theorem 4.10, Sal(ΓT ) is an Eilenberg MacLane space for all T ∈ Sf . By definition,
Sf = S<∞, thus, by Corollary 5.7, Sal(Γ) is an Eilenberg MacLane space.
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[53] F. V. Vǎınštěın. The cohomology of braid groups. Funktsional. Anal. i Prilozhen. 12 (1978), no. 2,
72–73. Translation in Functional Anal. Appl. 12 (1978), no. 2, 135–137.

[54] E. B. Vinberg. Discrete linear groups that are generated by reflections. (Russian) Izv. Akad. Nauk
SSSR Ser. Mat. 35 (1971), 1072–1112.

Luis Paris,
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