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Abstract

A graph G is arbitrarily partitionable (AP for short) if for every
sequence pn1, ..., npq of positive integers summing up to |V pGq| there
exists a partition pV1, ..., Vpq of V pGq such that GrVis is a connected
graph on ni vertices for every i P t1, ..., pu. We show that the Cartesian
product G ˝ Kl is AP whenever G is AP and Kl is a complete graph
on l ě 1 vertices.

1 Result

Please refer to [1] to understand our terminology and notation. We start
with the following lemma.

Proposition 1:
Let l ě 1 be a positive integer, and τ “ pn1, ..., npq be a sequence of positive
integers such that }τ} ” 0 mod l. If p ą l, then τ can be divided into two
non empty subsequences τ1 and τ2 such that }τ1} ” 0 mod l and }τ2} ” 0
mod l.

Proof:
If τ contains an element ni such that ni ” 0 mod l, then if suffices to consider
τ1 “ pniq and τ2 “ τ ´pniq. Let us then consider that for every i P t1, ..., pu,
we have ni ı 0 mod l. For every x P t1, ..., pu, let sx “

řx
i“1 ni be the sum

of the x first elements of τ . Because τ has more than l elements, there exist
two values x1 and x2 such that sx1 ” sx2 mod l. Thus, τ1 “

Ťx2
i“x1`1

pniq
and τ2 “ τ ´ τ1 satisfy our conditions �
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We will also be needing the following two connectivity theorems.

Theorem 1 ([4]):
If G and H are connected graphs, then the Cartesian product G ˝ H is
pk1 ` k2q-connected, where k1 and k2 are the connectivity of G and H,
respectively.

Theorem 2 ([2, 3]):
If G is a k-connected graph, then G can be partitioned following every
sequence of length at most k.

We now prove our main result.

Theorem 3:
The Cartesian product G ˝Kl is AP whenever G is AP and l ě 1.

Proof:
If l “ 1, then G ˝ Kl is isomorphic to G and is AP by assumption. Let us
thus consider that l ě 2, and let consider any sequence τ “ pn1, ..., npq of
positive integers summing up to |V pG ˝Klq|. Since G ˝Kl is l-connected by
Theorem 1, we may also suppose that |τ | ě l` 1 since otherwise an obvious
realization of τ in G ˝Kl could be deduced thanks to Theorem 2.

By repeatedly applying Proposition 1, our sequence τ can be divided
into q ě 2 subsequences τ1, ..., τq such that |τi| ď l and }τi} ” 0 mod l for

every i P t1, ..., qu. Let us put λi “
}τi}
l for every i P t1, ..., qu. These αi’s are

integers, we have α1 ` ...` αq “ |V pGq| and, because G is AP, there exists
a realization pV1, ..., Vqq of pα1, ..., αqq in G. Consider now Ui the extension
of Vi in G ˝ Kl for every i P t1, ..., qu (Ui “ V 1

i Y ... Y V l
i ). Clearly, we

have |Ui| “ }τi} and, because |τi| ď l and pG ˝ KlqrUis is l-connected, there
exists a realization Ri of τi in pG ˝ KlqrUis for every i P t1, ..., qu according
to Theorem 2. It follows that

Ťq
i“1Ri is a realization of τ in G ˝Kl. �
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