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ON THE CONTROLLABILITY OF THE RELATIVISTIC

VLASOV-MAXWELL SYSTEM

OLIVIER GLASS AND DANIEL HAN-KWAN

Abstract. In this paper, we study the controllability of the two-dimensional relativistic
Vlasov-Maxwell system in a torus, by means of an interior control. We give two types
of results. With the geometric control condition on the control set, we prove the local
exact controllability of the system in large time. Our proof in this case is based on the
return method, on some results on the control of the Maxwell equations, and on a suitable
approximation scheme to solve the non-linear Vlasov-Maxwell system on the torus with an
absorption procedure.

Without geometric control condition, but assuming that a strip of the torus is contained
in the control set and under certain additional conditions on the initial data, we establish
a controllability result on the distribution function only, also in large time. Here, we need
some additional arguments based on the asymptotics of the Vlasov-Maxwell system with
large speed of light and on our previous results concerning the controllability of the Vlasov-
Poisson system with an external magnetic field [14].

1. Introduction

1.1. The relativistic Vlasov-Maxwell system. Consider the relativistic Vlasov-Maxwell
system:

(1.1)





∂tf + v̂ · ∇xf +

(
E +

1

c
v̂ ∧B

)
· ∇vf = 1ωG, t ≥ 0, x ∈ T

3 := R
3/Z3, v ∈ R

3,

∂tE + c curlB = −

∫

R3

f v̂ dv, ∂tB + c curlE = 0,

divE =

∫

R3

f dv −

∫

R3×T3

f dv dx, divB = 0,

f|t=0 = f0, E|t=0 = E0, B|t=0 = B0,

where c > 0 is the speed of light and

v̂ :=
v√

1 + |v|2

c2

is the relativistic velocity. The so-called distribution function f(t, x, v) describes the statistical
distribution of a population of electrons in a collisionless plasma: the quantity f(t, x, v) dx dv
can be interpreted as the number of particles at time t whose position is close to x and velocity
close to v. The term 1ωG is a source in the Vlasov equation. As usual, E and B stand for the
electric and magnetic fields, which are solutions of the Maxwell equations. In the equation on
divE, the term

∫
R3×T3 f dv dx stands for a neutralizing background of fixed ions. We take as

a convention here that the Lebesgue measure of the torus is equal to 1.

Date: November 2012.

1



2 OLIVIER GLASS AND DANIEL HAN-KWAN

In this paper, we will focus on the two-dimensional version of the Vlasov-Maxwell system,
which means that (x, v) ∈ T

2 × R
2. This corresponds to the physical situation in the usual

three-dimensional geometry where:

(1.2)
E = (E1(t, x), E2(t, x), 0),

B = (0, 0, b(t, x)).

In this framework, noticing that the divergence-free condition is automatically satisfied for B,
the Vlasov-Maxwell system can be rewritten in the simplified form:

(1.3)





∂tf + v̂ · ∇xf +

(
E +

1

c
v̂⊥b

)
· ∇vf = 1ωG, t ≥ 0, x ∈ T

2, v ∈ R
2,

∂tE1 − c∂x2b = −

∫

R2

f v̂1 dv, ∂tE2 + c∂x1b = −

∫

R2

f v̂2 dv,

∂tb+ c [∂x1E2 − ∂x2E1] = 0,

∂x1E1 + ∂x2E2 =

∫

R2

f dv −

∫

R2×T2

f dv dx.

If v̂ = (v̂1, v̂2), we set v̂⊥ := (v̂2,−v̂1). For simplicity, we shall also denote in the sequel
curl b := ∇⊥b = (∂x2b,−∂x1b).

We are interested in the controllability properties of this system, by means of an interior
control G, localized in the space variable in an open subset ω of the torus, but without
localization in the velocity variable. The basic controllability question is the following one.
Given (f0, E0, B0), (f1, E1, B1) belonging to a suitable function space and given some control
time T > 0, is it possible to steer the system from the first state to the second one in time T
with a well chosen control function G ? In other words, we ask the solution of (1.3) to satisfy:

(1.4) f|t=T = f1, E|t=T = E1, B|t=T = B1.

Note that in order to preserve electroneutrality, the control G has to satisfy∫

T2×R2

1ω(x)G(t, x, v) dx dv = 0, ∀t ∈ [0, T ].

1.2. Geometric assumptions and main results of the paper. We prove two kinds of
controllability results: for the first one we assume that the celebrated geometric control con-
dition is satisfied for ω. For the second one, we assume another type of condition on ω, as
well as other conditions on the initial magnetic field and/or the speed of light.

1.2.1. With the geometric control condition. The Vlasov-Maxwell can be seen as a hyperbolic
system, made of a transport equation (the Vlasov part) and a coupling between two wave
equations (the Maxwell part). Concerning the problem of controllability of the linear wave
equation, it is well-known that the geometric properties of the control set ω play a key role.
In the seminal works [25] and [3, 4], J. Rauch and M. Taylor and C. Bardos, G. Lebeau and J.
Rauch introduced the so-called geometric control condition on ω, which roughly means that
every ray of geometric optics meets ω before some fixed time, and proved estimates which
imply the exact controllability of the wave equation.

In our case, the geometric control condition can be formulated as follows:

Definition 1.1. The open subset ω of T2 satisfies the geometric control condition (GCC) if:

(1.5) For any x ∈ T
2 and any direction e ∈ S

1, there exists y ∈ R
+ such that x+ ye ∈ ω.
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Conversely, it is well known (see N. Burq and P. Gérard [6]) that the geometric control con-
dition is not only sufficient but is also actually a necessary condition to get exact controllability
of the wave equation.

It is hence natural to start by assuming that ω does satisfy the geometric control condi-
tion. Our first result asserts that with this assumption, local controllability near 0 of the
Vlasov-Maxwell system holds when the controllability time is large enough. This restriction
is expected because of the finite propagation speed both for the electromagnetic waves and
for the charged particles.

Theorem 1 (With geometric control condition). Assume that ω satisfies the geometric control
condition. There exists T0 > 0, such that for any T > T0, there exists κ > 0 satisfying the
following. If for i = 0, 1, (fi, Ei, Bi) ∈ H3(T2 × R

2) × H3(T2) ×H3(T2) are such that fi is
compactly supported in v and satisfy the compatibility conditions

divEi =

∫

R2

fi dv −

∫

T2×R2

fi dv dx,(1.6)

∫

T2×R2

f0 dv dx =

∫

T2×R2

f1 dv dx,(1.7)

as well as the smallness assumption

‖(fi, Ei, Bi)‖H3 ≤ κ, i = 0, 1,(1.8)

then there exists a control G ∈ H2([0, T ]×T
2×R

2), supported in ω, such that the corresponding
solution (f,E,B) to the Vlasov-Maxwell system (1.3) with initial data (f0, E0, B0) satisfies:

f|t=T = f1, E|t=T = E1, B|t=T = B1.

Remark 1.1. The solution that we build involves an electric field E and a magnetic field B
which belong to the Sobolev space C([0, T ];H3(T2)), which is imbedded in C([0, T ];C1(T2)),
so that characteristics are well defined in the classical sense.

Remark 1.2. It is possible to generalize this theorem in two directions: relax the smallness
assumption on Bi and replace the assumption of compact support in v by an assumption of
exponential decrease in v. We refer to Subsections 5.7 and 5.8.

1.2.2. With the strip assumption. Since GCC is necessary and sufficient for the controllability
of the wave equation, it seems very involved (although maybe not impossible) to get the result
of Theorem 1 without assuming GCC.

Nevertheless, the situation is more favorable if we focus on the system of particles only and
“forget” about the electromagnetic field: this corresponds to the control of the distribution
function f only. Indeed, for the kinetic transport equation, we do have more flexibility than
for the wave equation and it is natural to try to relax as much as possible the assumptions
on ω. In this work, we are able to prove some results in this direction. Namely, we prove a
controllability result on the distribution function only with a geometric condition which does
not involve GCC (and which is not implied by GCC).

This geometric assumption on the control set will be referred to as the strip assumption
(loosely speaking, as the name suggests, this corresponds to the case where ω contains a strip).

Definition 1.2. We say that ω satisfies the strip assumption if there exists a straight line of
R
2 whose image H by the canonical surjection s : R2 → T

2 is closed and included in ω. We
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call nH a unit vector, orthogonal to H. For l > 0, we denote

Hl := H + [−l, l]nH .

Since H is closed in T
2, note that we can define d > 0 such that

(1.9) H2d ⊂ ω,

and such that 4d is less than the distance between two successive lines in s−1(H).
We first prove an “asymptotic” controllability result, for which the speed of light is consid-

ered as a parameter. This next result will be valid for a large speed of light.

Theorem 2 (With the strip assumption). Assume that ω satisfies the strip assumption. Let
b0 ∈ H3(T2;R) be a magnetic field such that

∫

T2

b0 dx 6= 0.

There exists T0 > 0 such that for T ≥ T0, there exist κ > 0 and cT > 0 satisfying the following.
If c ≥ cT , if (f0, E0) ∈ H3(T2 × R

2)×H3(T2) and f1 ∈ H3(T2 × R
2) are such that f0, f1 are

compactly supported in v and satisfy

divE0 =

∫

R2

f0 dv −

∫

T2×R2

f0 dv dx,(1.10)

∫

T2×R2

f0 dv dx =

∫

T2×R2

f1 dv dx,(1.11)

‖(f0, E0)‖H3 ≤ κ, ‖f1‖H3 ≤ κ,(1.12)

and if

B0 = c b0,(1.13)

then there exists a control G ∈ H2([0, T ]×T
2×R

2), supported in ω, such that the corresponding
solution (f,E,B) to the Vlasov-Maxwell system (1.3) with initial data (f0, E0, B0) satisfies:

f|t=T = f1.

Remark 1.3. The scaling in (1.13) is in fact natural if we want to recover the convergence
of Vlasov-Maxwell to Vlasov-Poisson with an external magnetic field, in the classical limit
c → +∞: see Paragraph 2.4.

From the physical point of view, one can remark that B0 is in CGS units, namely Gauss
(which is a theoretical physics unit), whereas B0

c is in SI units, namely Teslas (“usual” unit).
Thus, imposing that B0 = c b0 is equivalent to imposing that the intensity keeps a non-zero
value when c becomes large. So this assumption is also natural from this point of view.

As a consequence of the previous result, we are also be able to prove the following theorem,
in which the speed of light is considered as a fixed parameter, let us say c = 1.

Theorem 3 (With the strip assumption). Let c = 1. Assume that ω satisfies the strip
assumption. Let b0 ∈ H3(T2) be a magnetic field such that

∫

T2

b0 dx 6= 0.
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Then there exist T1 > 0 and λ1 > 0 such that the following holds. For any λ ∈ (0, λ1],
for any T ≥ T1/λ, there exists κ > 0 such that, if (f0, E0) ∈ H3(T2 × R

2) × H3(T2) and
f1 ∈ H3(T2 × R

2) are compactly supported in v and satisfy

divE0 =

∫

R2

f0 dv −

∫

T2×R2

f0 dv dx,(1.14)

∫

T2×R2

f0 dv dx =

∫

T2×R2

f1 dv dx,(1.15)

‖(f0, E0)‖H3 ≤ κ, ‖f1‖H3 ≤ κ,(1.16)

and if

B0(x) = λ b0(x),(1.17)

then there exists a control G ∈ H2([0, T ]×T
2×R

2), supported in ω, such that the corresponding
solution (f,E,B) to the Vlasov-Maxwell system (1.3) with initial data (f0, E0, B0) satisfies:

(1.18) f|t=T = f1.

Remark 1.4. The choice c = 1 in Theorem 3 is naturally arbitrary (we could have taken any
positive constant). Note also that taking λ small corresponds to an assumption of smallness
on the initial magnetic field B0. But this yields a result of controllability for a large time. As
we will see in the proof, the effect of the magnetic field is indeed crucial to get the result.

1.3. A short review on the Cauchy problem. Let us now provide a short review on the
classical Cauchy theory for the Vlasov-Maxwell equation. To our knowledge, the very first
results concerning these equations concern the local in time existence of classical solutions,
and were obtained in independent works by K. Asano [1], P. Degond [9] and S. Wollmann
[29, 30]. All these contributions are based on Sobolev type function spaces. For a “sharper”
theory based on C1 spaces, we refer to the fundamental works of R. Glassey and W. Strauss
[17, 18, 20], where the structure of the Vlasov-Maxwell equation (kinetic transport + wave)
plays a crucial role. Concerning the global theory, there have also been several remarkable
contributions: in 3D, for equations set on the whole space, R. Glassey and W. Strauss gave
in the pionneering work [17] a famous criterion for global existence (see also the more recent
contributions of S. Klainerman and G. Staffilani [21], and F. Bouchut, F. Golse and C. Pallard
[5] for alternative proofs); further studies around this criterion have been at the core of many
papers (see for instance [19, 28, 23]), but the unconditional global existence in three dimensions
is still an open problem. In 2D, in the whole space case, the problem of global existence was
settled by R. Glassey and J. Schaeffer [16] as well as for the so-called 2D-1/2 case [15].

We also mention the fundamental contribution of R.J. DiPerna and P.-L. Lions, who built
in [11] global weak solutions (in the energy space) to the Vlasov-Maxwell system, but we shall
not use this type of solutions and will only consider classical solutions, for which characteristics
are well-defined.

1.4. Organization of the following of the paper. Let us describe how the paper is orga-
nized. In Section 2, we explain the strategy of the proofs. In Sections 3 and 4, we construct
some relevant reference solutions, in order to apply the return method. Section 3 considers the
case of Theorem 1, which corresponds to the situation with geometric control condition, while
Section 4 deals with the case of Theorems 2 and 3 (with the strip assumption). For the latter,
we will revisit the case of Vlasov-Poisson with external force fields of [14] and rely on the fact
that the dynamics of Vlasov-Poisson with external magnetic field is a good approximation of
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the dynamics of Vlasov-Maxwell, when the speed of light is large. Finally, in Section 5, we
present the approximation scheme which will allow to give a solution of the full non-linear
problems and conclude the proofs of Theorems 1, 2 and 3. This scheme involves an absorption
procedure which yields some new technical difficulties (that do not appear when one considers
the Cauchy problem for the relativistic Vlasov-Maxwell system without source). Finally we
give in an Appendix the proof of a key lemma for Theorems 2 and 3.

2. Strategy of the proofs

As a preliminary, we set up in this section the strategies that will be implemented in this
paper.

2.1. Some notations. Let us first give some useful notations.
For T > 0, we denote QT := [0, T ] × T

2 × R
2. For a domain Ω, we write C l

b(Ω), for l ∈ N,

for the set C l(Ω) ∩ W l,∞(Ω). For any l ∈ N, we denote by H l(T2 × R
2) the usual Sobolev

space defined in T
2 × R

2.
For x in T

2 and r > 0, we denote by B(x, r) the open ball of center x and radius r, and by
S(x, r) the corresponding circle. All radii will always be chosen small enough so that S(x, r)
does not intersect itself.

Let us also introduce some notations regarding characteristics and auto-induced electromag-
netic field. Let F (t, x, v) some force field with Lispchitz regularity and sublinear at infinity in
v. Let s ≥ 0, which corresponds to an “initial” time and (x, v) ∈ T

2 × R
2.

We call (X(t, s, x, v), V (t, s, x, v)) the relativistic characteristics associated with F , the so-
lutions of the system of ODEs:





dX

dt
= V̂ ,

dV

dt
= F (t,X, V ),

X(s, s, x, v) = x, V (s, s, x, v) = v,

with V̂ = V
√

1+ |V |2

c2

.

We can also define (X (t, s, x, v),V(t, s, x, v)) the classical characteristics associated with F :




dX

dt
= V,

dV

dt
= F (t,X ,V),

X (s, s, x, v) = x, V(s, s, x, v) = v.

In the following, when not otherwise specified, the characteristics under study are relativis-
tic.

Note that the characteristics (relativistic or classical) are well defined by the classical
Cauchy-Lipschitz theorem. Usually, when there is no ambiguity, we will simply write (X,V )
instead of the full notation (X(t, 0, x, v), V (t, 0, x, v)).

Finally, for any distribution function f(t, x, v) sufficiently smooth and with sufficient de-
cay in velocity, we will denote Ef (t, x) and Bf (t, x) the auto-induced force fields, which are
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solutions of the Maxwell equations:




∂tE
f + c curlBf = −

∫

R2

f v̂ dv, ∂tB
f + c curlEf = 0,

divEf =

∫

R2

f dv −

∫

R2×T2

f dv dx, divBf = 0,

with some relevant initial data (depending on the context).

2.2. The return method. Since we intend to show some controllability properties on the
Vlasov-Maxwell system, for small data (that are close to 0), it would be natural to apply the
following proof scheme:

(1) Linearize the equations around 0 and prove some controllability properties on these
linear equations.

(2) Prove that these properties are somehow preserved by the full equations, by using
some fixed point theorem.

Unfortunately, we are in a situation where this scheme fails. If we consider the linearized
Vlasov-Maxwell equation, around the trivial state (f ,E,B) = (0, 0, 0), we obtain the following
equation:

(2.1) ∂tf + v̂ · ∇xf = 1ωG,

which is the relativistic free transport equation. The characteristics associated with the trans-
port part are simply straight lines. By Duhamel’s formula, we obtain the explicit representa-
tion for f :

f(t, x, v) = f0(x− tv̂, v) +

∫ t

0
(1ωG)(s, x− (t− s)v̂, v)ds.

One can observe that there are two types of obstruction to controllability for the (linear)
relativistic free transport equation.

• (Small velocities) The first obstruction concerns the small velocities. If the velocity v̂
of a charged particle driven by (2.1) is not large enough, then it will not be able to
reach the control zone ω in the desired time T , so that (1ωG)(s, x− tv̂, v) = 0 for all
t ∈ [0, T ]. In particular, if c is not large enough with respect to the desired control
time, then this obstruction appears for many trajectories.

• (Bad directions) The second obstruction is of geometric type: it is possible that a
particle has initially a bad direction, so that, even if the modulus of its velocity and
the speed of light are very large, it will never reach the control zone. Thus we cannot
influence the value of the distribution function along this trajectory. There is no such
problem when ω satisfies the geometric control condition, but this problem can occur
under the strip assumption.

To overcome this difficulty, we shall rely on the return method of J.-M. Coron (see the book
[8] for many examples of applications of this method for several non-linear PDEs, especially
coming from fluid mechanics). The idea is to build some relevant reference solution of the
full PDEs (with a well-chosen source supported in the control set ω), starting from the trivial
state 0 and reaching again 0 after some time fixed in advance, around which the linearized
equations do enjoy nice controllability properties (as opposed to the trivial solution 0). Then,
in the fixed point scheme designed to construct a solution of the non-linear problem, we will
linearize the PDEs around this reference solution, and not the trivial one.
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ω ω

Figure 1. The two obstructions for controllability

For our problem, the key argument is to find a reference solution (f ,E,B) to the relativistic
Vlasov-Maxwell system, with some suitable source in ω, starting from (0, 0, 0) and coming back

to (0, 0, 0), and such that the characteristics associated with E + v̂⊥

c B satisfy:

(2.2) ∀x ∈ T
2,∀v ∈ R

2,∃t ∈ [0, T ], X(t, x, v) ∈ ω.

Note indeed that the linearized equation reads:

∂tf + v̂ · ∇xf + (E +
v̂⊥

c
B) · ∇vf = 1ωG,

so that (2.2) means that the two above obstructions do not occur.
It is clear that this condition on the characteristics is necessary to get some controllability

properties on the linearized equations; we will show later that this will also be sufficient to
get local controllability for the full equations.

Actually, in view of the fixed point procedure which we use to build a solution of the
non-linear problem, we will need to prove a slightly refined version of (2.2):

(1) In the case with GCC, we consider open sets ω′, ω′′ contained in ω, which still satisfy
GCC, such that

ω′ ⊂ ω′ ⊂ ω′′ ⊂ ω′′ ⊂ ω.

We ask that the characteristics associated with E + v̂⊥

c B satisfy:

(2.3) ∀x ∈ T
2,∀v ∈ R

2,∃t ∈ [0, T ], X(t, x, v) ∈ ω′.

(2) In the case with the strip assumption, we consider x0 ∈ ω and r0 > 0 such that

B(x0, 2r0) is contained in ω. We ask that the characteristics associated with E+ v̂⊥

c B
satisfy:

(2.4) ∀x ∈ T
2,∀v ∈ R

2,∃t ∈ [0, T ], X(t, x, v) ∈ B(x0, r0).

2.3. The case of Theorem 1. With geometric control condition on the control set ω, we
can rely on exact controllability properties for the Maxwell equations, which were already
studied by K.-D. Phung in [24] (actually in the more involved context of open sets of R3 with
boundary). This controllability tool will be given in Theorem 4. The crucial point is that
there exist stationary solutions of Maxwell which are relevant for (2.3). This will allow us to
build a suitable reference solution as follows. Starting from zero, by using a suitable control
G, one can emit a wave from ω, so that the electromagnetic field reaches such a stationary
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solution. Then one stays at this point for some time interval, and then returns to zero by
emiting again a wave from ω.

2.4. The case of Theorem 2. Without the geometric control condition, it would be at
first sight tempting to try to use some results based on the approximate controllability of
wave equations (such results are for instance given for the wave equations in the survey of
D. Russell [26] and in the book of J.-L. Lions [22]). Unfortunately, there are at least two
obstructions. First, it is not clear at all that such results hold for the Maxwell equations
(because of some consistency issues, see equation (3.1) below, that do not appear for the
wave equations). Furthermore, such a strategy is likely to fail, since one has to find a way to
“sustain” for some time the appropriate electromagnetic field (E,B), so that the trajectories of
the particles get sufficiently affected by them. This was possible with the geometric condition
condition on ω, only because it is possible to exactly reach some stationary solution of the
Maxwell equations. With only approximate controllability, it seems no longer possible to do
so.

Instead, we propose a strategy based on the large speed of light asymptotics (in other words
the non-relativistic limit) of the Vlasov-Maxwell equation. From the physical point of view,
this limit is well understood: it is well-known that as the speed of light goes to infinity, the
Maxwell equations are approximated by the Poisson equation: this corresponds to the so-called
electrostatic approximation, which is valid when the speed of light is large enough compared
to the typical velocities of the system. Concerning the transport part, that is, the relativistic
Vlasov equation, one can readily see that the effect of a large speed of light is to lead, at least
formally, to the “classical” transport setting, that is:

v̂ =
v√

1 + |v|2

c2

−→
c→+∞

v.

When c → +∞, one can indeed rigorously prove the convergence of classical solutions of the
Vlasov-Maxwell system towards classical solutions of the Vlasov-Poisson system. This was
done independently in works by K. Asano and S. Ukai [2], P. Degong [9] and J. Schaeffer [27],
in the framework of equations set in the whole space R

3. We recall that the Vlasov-Poisson
(without magnetic field) system reads:





∂tf + v · ∇xf + divv [∇xϕf ] = 0,

∆xϕ =

∫
f dv −

∫
f dv dx,

f|t=0 = f0.

Somehow motivated by the convergence of Vlasov-Maxwell to Vlasov-Poisson, we intend
to show that the study of the controllability of the Vlasov-Poisson system with external force
fields, which was done in our previous work [14], can be useful in the Maxwell context. This
means that we rely on the fact that the Vlasov-Maxwell dynamics is close to that of the simpler
Vlasov-Poisson with external magnetic field system, when c is very large. The crucial points
are Lemma 4.2 (which shows how magnetic fields have a “bending” effect on characteristics
and help to overcome the bad directions) and the Approximation Lemma 4.3 which allows
us in some sense to study a Poisson equation instead of Maxwell equations. To apply the
approximation lemma, some difficulties appear, due to some consistency issues in the Maxwell
and Poisson equations, and we will rely on the strip assumption on the control set ω to solve
them.
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Remark 2.1. Taking B0 = c b0 in (1.13), where c is the speed of light, is the “right” scaling
if one wants to recover the Vlasov-Poisson system with an external magnetic field b0 in the
classical limit c → +∞ (taking B0 = b0 yields no magnetic field in [27].)

Remark 2.2. In some sense, the spirit of our proof is quite similar to that of the proof of
approximate controllability of the incompressible Navier-Stokes equations with Navier slip
boundary conditions, by J.-M. Coron [7], whose basic principle relies on the fact that for small
viscosities, solutions of the incompressible Navier-Stokes system behave like solutions of the
incompressible Euler equations.

2.5. The case of Theorem 3: scaling properties of the Vlasov-Maxwell system.

Finally, for the proof of Theorem 3, we will also exploit some scaling properties of Vlasov-
Maxwell, that we recall here. One can observe that the Vlasov-Maxwell system is “invariant”
by some change of scales. This is a kind of generic property to Vlasov equations. More
precisely, when (f,E,B) is a solution of Vlasov-Maxwell in [0, T ]× T

2 ×R
2, then for λ 6= 0,

(2.5) fλ(t, x, v) := f(λt, x, v/λ),

(2.6) Eλ(t, x) := λ2E(λt, x),

(2.7) Bλ(t, x) := λ2B(λt, x).

is still a solution in [0, T/λ] × T
2 ×R

2 of a rescaled Vlasov-Maxwell system:

(2.8)





∂tf
λ + v̂ · ∇xf

λ + divv

[
(Eλ +

1

cλ
v̂ ∧Bλ)fλ

]
= 1ωG

∂tE
λ + cλ curlBλ = −

∫

R2

fλv̂ dv, ∂tB
λ + cλ curlEλ = 0,

divEλ =

∫

R2

fλ dv −

∫

R2×T2

fλ dv dx, divBλ = 0,

fλ
|t=0 = fλ

0 , Eλ
|t=0 = Eλ

0 , Bλ
|t=0 = Bλ

0 ,

with v̂ = v
√

1+ |v|2

(cλ)2

.

This implies that choosing a large parameter λ ≫ 1 artificially increases the speed of light.
This is the key point to deduce Theorem 3 from Theorem 2. Another important choice is
λ = −1, which shows that the equations are reversible. This will allow to simplify the proof
of Theorem 1: we will only prove the result for f1 ≡ 0 outside ω, (E1, B1) = (0, 0) and deduce
the general case by reversibility (actually it is possible to avoid this argument, see Subsection
5.3).

In another direction, we mention that the choice 0 < λ ≪ 1 can be useful to prove global
controllability results for Vlasov systems (that correspond to results without restriction on
the size of the data), and was indeed a crucial argument in the Vlasov-Poisson case in [13, 14].
Unfortunately, we will not be able to do so for this problem, since it is not compatible with
our method using the bending effect of the magnetic field.

3. The reference solution with geometric control condition

In this section, we assume that the geometric control condition is satisfied by the control
set ω, and we build the reference solution (f ,E,B) which is central in the proof of Theorem



ON THE CONTROLLABILITY OF THE RELATIVISTIC VLASOV-MAXWELL SYSTEM 11

1. To this purpose, we first describe in Subsection 3.1 some results on the controllability
of the Maxwell equations. These results are needed for the construction of the reference
solution, which is given in Subsection 3.2 (in particular we will explain how to obtain a
relevant distribution function f).

3.1. Controllability of the Maxwell equations with the geometric control condition.

The controllability problem which we consider in this paragraph is the following one. Let T > 0
be some control time and let (E0, B0, E1, B1) be some electromagnetic field (belonging to some
appropriate function set), the question is to find j̃ and ρ̃ supported in ω such that





∂tB̃ + c curl Ẽ = 0, ∂tẼ + c curl B̃ = −j̃,

div Ẽ = ρ̃−

∫

T2

ρ̃ dx, div B̃ = 0,

Ẽ|t=0 = E0, B̃|t=0 = B0,

Ẽ|t=T = E1, B̃|t=T = B1.

Using the reversibility of the Maxwell equations, it is straightforward to see that this is equiv-
alent to the next controllability problem. Let (E0, B0) be some electromagnetic field, find j̃
and ρ̃ supported in ω such that





∂tB̃ + c curl Ẽ = 0, ∂tẼ + c curl B̃ = −j̃,

div Ẽ = ρ̃−

∫

T2

ρ̃ dx, div B̃ = 0,

Ẽ|t=0 = E0, B̃|t=0 = B0,

Ẽ|t=T = 0, B̃|t=T = 0.

This controllability problem was solved by K.-D. Phung in [24] for equations set in a smooth
domain of R

3. One difficult point comes from a consistency issue. To solve the Maxwell
equations, the source functions have to satisfy the local conservation of charge:

(3.1) ∂tρ̃+∇x · j̃ = 0, ∀t ∈ [0, T ], ∀x ∈ T
2.

K.-D. Phung bypasses this difficulty by showing that it is possible to find a control such that
ρ̃ = 0 and div j̃ = 0 and we follow this approach. We will actually use a slight variation on
Phung’s theorem. Although we will not give a complete proof of this result, we provide for
the sake of completeness several lemmas, which, when put together, yield the claimed result.

Using the celebrated H.U.M. (Hilbert Uniqueness Method) of J.-L. Lions, which consists of a
duality argument, see [22], proving the controllability is equivalent to proving an observability
inequality:

Lemma 3.1. The Maxwell equations can be controlled in time T if and only if the observability
inequality on the adjoint system is satisfied: there exists C > 0 such that for any E0, B0 ∈
L2(T2), with ∇ ·E0 = 0, the solution (E,B) to the homogeneous Maxwell system

(3.2)





∂tB + c curlE = 0, ∂tE + c curlB = 0,

divE = 0, divB = 0,

E|t=0 = E0, B|t=0 = B0,
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satisfies

‖E‖2L2([0,T ],L2(T2)) + ‖B‖2L2([0,T ],L2(T2)) ≤ C

∫ T

0

∫

ω
|E|2 dx ds.

Now we state another lemma due to Phung. This result actually comes from the conserva-
tion of the electromagnetic energy and a decomposition of the electromagnetic field using a
suitable vector potential.

Lemma 3.2. There exists C1 > 0 such that for any E0, B0 ∈ L2(T2), with ∇ · E0 = 0, the
solution (E,B) to (3.2) satisfies:

‖B‖2L2([0,T ],L2(T2)) ≤ C1‖E‖2L2([0,T ],L2(T2)).

In particular, it is sufficient to prove observability for the electric field only.

Then, writing the equation on E as a wave equation, K.-D. Phung proved that the ob-
servability inequality is true in a domain with boundaries, using results of propagation of
singularities due to L. Hörmander, R. Melrose and J. Sjöstrand, as in the papers of J. Rauch
and M. Taylor [25] and C. Bardos, G. Lebeau and J. Rauch [4].

Lemma 3.3. The observability inequality holds true if T is large enough.

In view of the control of the Vlasov-Maxwell system, we additionally need to build smoother
controls, so that the associated electromagnetic field (E,B) remains smooth (at least with
Lipschitz regularity) for all times. This can be done by using the method of B. Dehman and
G. Lebeau [10] (see also the paper of C. Bardos, G. Lebeau and J. Rauch [4]) or by applying
the systematic procedure proposed in the paper by S. Ervedoza and E. Zuazua [12]. Gathering
all results together, we obtain the following theorem.

Theorem 4. Assume that the control time T > 0 is large enough. Let k ∈ N
∗. For any

E0, B0, E1, B1 ∈ Hk(T2), with divE0 = divE1 = 0, there exists a control function j̃ ∈
∩k
s=0H

s([0, T ];Hk−s(T2)), supported in [0, T ] × ω, satisfying j|t=0 = j|t=T = 0, such that for

all t ∈ [0, T ], div j̃ = 0 and such that the solution (E,B) to the system:




∂tB̃ + c curl Ẽ = 0, ∂tẼ + c curl B̃ = −j̃,

div Ẽ = 0, div B̃ = 0,

Ẽ|t=0 = E0, B̃|t=0 = B0,

satisfies Ẽ|t=T = E1, B̃|t=T = B1.

3.2. Construction of relevant reference solutions. Let ω′, ω′′ be some smooth open sets,
contained in ω, which still satisfy GCC, such that ω′ ⊂ ω′′ ⊂ ω′′ ⊂ ω. Our aim is now to apply
the controllability results for the Maxwell equation, in order to build, for some sufficiently large
T > 0, a suitable smooth reference solution (f,E,B) for the full Vlasov-Maxwell equations:





∂tf + v̂ · ∇xf + divv

[
(E +

v̂⊥

c
B) f

]
= 1ωG,

∂tE + c curlB = −

∫

R2

fv̂ dv, ∂tB + c curlE = 0,

divE =

∫

R2

f dv −

∫

R2×T2

f dv dx,
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where G is a suitable source and which satisfies the following properties:

f |t=0 = 0, E|t=0 = 0, B|t=0 = 0 and f |t=T = 0, E|t=T = 0, B|t=T = 0.(3.3)

For all t ∈ [0, T ], v ∈ R
2, f(t, ., v) is compactly supported in ω.(3.4)

The characteristics (X,V ) associated with E +
v̂⊥

c
B satisfy the property:(3.5)

for any x ∈ T
2, v ∈ R

2, there is t ∈ [T/9, 8T/9] such that:

X(t, 0, x, v) ∈ ω′, and |V |(t, 0, x, v) ≥ 4.

The main result of this section is the following:

Proposition 3.1. If T > 0 is large enough with respect to c, there exists a reference solution
(f ,E,B) such that (3.3), (3.4), (3.5) hold.

Proof of Proposition 3.1. To build such a reference solution, as explained in Section 2, we have
to overcome the obstruction coming from slow particles. The idea is to use an electric field to
accelerate particles whose initial velocity is too low.

The elementary (yet crucial) observation is that on the torus, any constant electromagnetic
field (E1, B1) ∈ R

2 × R is a stationary solution of the Maxwell equations (without source).

1. In a first time interval [0, T1] ⊂ [0, T ), we take as the reference solution

(f ,E,B) = (0, 0, 0),

which is of course a trivial stationary solution of Vlasov-Maxwell; by compactness, thanks to
the geometric control condition satisfied by ω′, there exists T1 > 0 such that for all x ∈ T

d,
and all v ∈ R

2 such that |v̂| > c/2,

(3.6) x+ tv̂ ∈ ω′, for some t ∈ [0, T1].

Then there exists m > 4, such that for any |v| > m, |v̂| > c/2, which allows to say that (3.5)
is satisfied for all particles whose initial velocity v has a modulus larger than m.

2. There remains to take care of all other particles, whose velocity is not high enough.
For that, the idea is to use the control for the Maxwell equations (Theorem 4) to steer the
electromagnetic field from (0, 0) to (E1, 0), with E1 := (1, 0), to wait for a sufficiently large
time so that all particles get a sufficiently high velocity and meet the control zone as in the
first step, and finally, to use once more the control for Maxwell to bring the electromagnetic
field back to (0, 0). Let us now make this construction explicit.

Let T2 > 0 be a large enough time such that we can apply Theorem 4 and find a smooth j̃2
(with ∇ · j̃2 = 0), supported in ω such that the following holds:





∂tB̃ + c curl Ẽ = 0, ∂tẼ + c curl B̃ = −j̃2,

div Ẽ = 0, div B̃ = 0,

Ẽ|t=T1
= 0, B̃|t=T1

= 0,

Ẽ|t=T1+T2
= E1, B̃|t=T1+T2

= 0.
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Now, we can consider two functions Zi ∈ C∞
0 (R2;R) (for i = 1 or 2) satisfying the following

constraints:

(3.7)





Zi ≥ 0 in R
2,

Supp Zi ⊂ B(0, 1),∫

R2

Zi(v) dv = 0,

∫

R2

Zi(v) v̂ dv = (δi=1, δi=2).

We then set

f = Z1(v)j̃
1
2 +Z2(v)j̃

2
2 , where j̃2 = (j̃12 , j̃

2
2 ),

on [T1, T1 + T2]. We take (E,B) = (Ẽ, B̃) and we notice that (f,E,B) is a solution of the
Vlasov-Maxwell system on [T1, T1 + T2], with a suitable source (supported in ω):

G(t, x, v) := ∂tf + v · ∇xf +

(
Ẽ +

v̂⊥

c
B̃

)
· ∇vf.

Notice that G is compactly supported in ω, by construction of j̃2 and f .
The effect of constant the force field E1 is to accelerate particles (even if it takes a very long

time): denoting by (X,V ) the characteristics associated with E1, we can prove the existence
of some T3 > 0 such that for any (x, v) ∈ T

2×R
2, there exists t ∈ [T1+T2, T1+T2+T3], such

that:

(3.8) ∀x ∈ T
2, ∀v ∈ R

2 s.t. |v| < m, X(t, 0, x, v) ∈ ω′ and |V |(t, 0, x, v) ≥ 4.

Then, on the interval of time [T1 + T2, T1 + T2 + T3], we consider (f ,E,B) = (0, E1, 0) as
the reference function, which is a stationary solution of Vlasov-Maxwell without source.

3. Finally, one finds a smooth j̃3 such that the following holds:




∂tB̃ + c curl Ẽ = 0, ∂tẼ + c curl B̃ = −j̃2,

div Ẽ = 0, div B̃ = 0,

Ẽ|t=T1+T2+T3
= E1, B̃|t=T1+T2+T3

= 0,

Ẽ|t=T1+2T2+T3
= 0, B̃|t=T1+2T2+T3

= 0.

and we can then define

f = Z1(v)j̃
1
3 +Z2(v)j̃

2
3 , where j̃3 = (j̃13 , j̃

2
3 ),

on [T1 + T2 + T3, T1 + 2T2 + T3]. As before, we take (E,B) = (Ẽ, B̃). Finally we choose
T > T1+2T2+T3. By construction, (3.3) and (3.4) are satisfied. We observe finally that (3.5)
is satisfied for some times in [0, T ], because of (3.6) and (3.8). Obtaining the time interval
[T/9, 8T/9] in (3.5) is a matter of translating the solution in time and extending it by 0 when
necessary.

�

4. The reference solution under the strip assumption

In this section, we build a reference solution (f ,E,B) for the Vlasov-Maxwell system, in
the case where we make the strip assumption on the control set. We shall also assume that
the speed of light satisfies c ≥ c0 (where c0 > 0 will be fixed later, see Lemma 4.2). This
construction is central in the proofs of Theorems 2 and 3.
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This section is divided into three sub-sections. First, we build a relevant reference solution
for a relativistic Vlasov-Poisson system. Then, we state an approximation lemma for the
Maxwell equations (as c → +∞), which we use in the last subsection to build a reference
solution for the Vlasov-Maxwell system.

4.1. The case of Vlasov-Poisson with an external magnetic field. Let x0 ∈ ω and
r0 > 0 small enough such that B(x0, 2r0) ⊂ ω. Let b some nonzero constant external magnetic
field. Let R be a large enough positive constant; we construct a reference solution f , which
depends on R, and which will be used to solve the controllability problem for data f0 and f1
supported in T

2 ×B(0, R/2).
We first aim at finding a reference solution f for the relativistic Vlasov-Poisson equation,

with the external magnetic field b:

(4.1)

{
∂tf + v̂ · ∇xf + divv

[
(∇xϕ+ v̂⊥b) f

]
= 1ωG,

∆xϕ = ρ− 1,

where G is a suitable source and which satisfies the following properties, for some large enough
T > 0:

f |t=0 = f |t=T = 0.(4.2)

∀t ∈ [0, T ],∀v ∈ R
2, f(t, ., v) is compactly supported in ω.(4.3)

The characteristics (X,V ) associated with ∇ϕ+ v̂⊥b satisfy the property:(4.4)

for any x ∈ T
2, v ∈ B(0, R), there is t ∈ [T/9, 8T/9] such that

X(t, 0, x, v) ∈ B(x0, r0/2), and |V |(t, 0, x, v) ≥ 5.

Building such a reference solution has been already done in [14] for the classical Vlasov-
Poisson equation; actually it was done for any arbitrarily small control time T > 0, but the
generalization to this relativistic version of Vlasov-Poisson imposes to take a large enough
control time. Furthermore, having in mind an application to the Vlasov-Maxwell equation,
because of consistency issues, we have to impose two additional conditions. First that the
local conservation of charge is satisfied everywhere,

(4.5) ∂tρ+ div j = 0, ∀x ∈ T
2, ∀t ∈ [0, T ],

(where ρ :=
∫
f dv and j =

∫
fv̂ dv) and second that the “zero-mean current” condition holds

(4.6)

∫

T2

j dx = 0, ∀t ∈ [0, T ].

Let us introduce some notations before getting to the construction of f .

Notation. We denote by D a line of T
2, which does not cut the control zone ω (reduce

ω if necessary, but in a way that it still satisfies the strip assumption) and n a unit vector,
orthogonal to D.

We also recall that H2d is defined in (1.9).

We have the following lemmas, which are taken from [14], with modifications to ensure that
(4.5) and (4.6) are satisfied. The first lemma states that we can find some relevant electric
field, whose effect will be to accelerate particles.



16 OLIVIER GLASS AND DANIEL HAN-KWAN

Lemma 4.1. Let b ∈ R be given. Let τ > 0 and M > 0. There exists M̃ > 0, E ∈
C∞([0, τ ] × T

2;R2) and ϕ ∈ C∞([0, τ ] × T
2;R) which do not depend on c, satisfying

E = −∇ϕ in [0, τ ] × (T2 \ Hd),(4.7)

Supp(E) ⊂ (0, τ)× T
2,(4.8)

∆ϕ = 0 in [0, τ ]× (T2 \ Hd),(4.9)
∫

D
∇ϕ · n dx = 0,(4.10)

such that, for any F ∈ L∞(0, T ;W 1,∞(T2 × R
2)) satisfying ‖F‖L∞ ≤ 1, if (X,V ) are the

characteristics corresponding the force F+ E + v̂⊥b, then

(4.11) ∀(x, v) ∈ T
2 ×B(0,M), V (τ, 0, x, v) ∈ B(0, M̃ ) \B(0,M + 1).

The proof is close to that of [14, Proposition 5.2]. The difference with the statement of [14]
appears in (4.10), which will be crucial to ensure (4.5). To prove all requirements, one has to
find w ∈ C∞(T2;R2) satisfying :

curlw = 0 in T
2 \ Hd,(4.12)

divw = 0 in T
2 \ Hd,(4.13)

|w(x)| > 0 for any x in T
2 \ Hd,(4.14)

∫

D
w · n dx =

∫

D
w · dτ = 0.(4.15)

Such a function was constructed in [13, Appendix A.2]. Once it is obtained, one can take
E := w and observe that it coincides with a gradient outside of Hd.

Note in particular that the solution here does not correspond to the one giving rise to the
force field n (which is the “most natural” one could think of; it satisfies (4.12), (4.13) and
(4.14) but not (4.15)). The effect of this force field E is only to accelerate particles, and it is
very unlikely that it allows to “cure” the bad directions.

For that issue, we will fully rely on a “bending” effect of the magnetic field b, which is
described in the next lemma.

Lemma 4.2. Let M > 1. Given b 6= 0, there exist:

• c0 > 0 depending on b, x0, r0,
• m > 0 depending only on b, x0, r0,
• T0 > 0 depending on b, x0, r0 and M , and
• κ depending on b, x0, r0 and M ,

such that for all F ∈ L∞(0, T ;W 1,∞(T2 × R
2)) satisfying ‖F‖L∞ ≤ κ, if c ≥ c0 then the

characteristics (X,V ) associated with v̂⊥b+ F satisfy:

(4.16)

∀x ∈ T
2,∀v ∈ R

2 such that M ≥ |v| ≥ m,∃t ∈ (T0/4, 3T0/4), X(t, 0, x, v) ∈ B(x0, r0/2)

and for all s ∈ [0, T0],
|v|

2
≤ |V (s, 0, x, v)| ≤ 2|v|.

The proof of Lemma 4.2 (actually, of a generalized version of Lemma 4.2) is given in the
appendix.
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With these two lemmas in hand, we now have:

Proposition 4.1. There exists T > 0 large enough, such that there exists a reference solution
(f , ϕ) such that (4.2), (4.3), (4.4), (4.5), (4.6) are satisfied. In addition, ρ :=

∫
f dv and

j :=
∫
f v̂ dv do not depend on c.

Proof of Proposition 4.1. The proof is divided into three steps.

1. First, we define the reference potential ϕ : [0, T ] × T
2 → R as follows. We apply Lemma

4.2 for M = R+1, and we obtain some time T0 and some m > 10 such that (4.16) is satisfied.
Then we apply Lemma 4.1 with τ = T0 and

(4.17) M = max
(
m+ 1, 32r0(|b|+ 1)

)
,

and obtain some ϕ2, E2 and some M̃ > 0 such that (4.11) is satisfied. We apply Lemma 4.2

for M = M̃ , and we obtain some time T1 (with the same m > 0). We set

ϕ(t, ·) =

{
0 for t ∈ [0, T0] ∪ [2T0, 2T0 + T1],
ϕ2(t− T0, ·) for t ∈ [T0, 2T0],

and

E(t, ·) =

{
0 for t ∈ [0, T0] ∪ [2T0, 2T0 + T1],
E2(t− T0, ·) for t ∈ [T0, 2T0].

We define T := 2T0 + T1.

2. Let us now introduce a first distribution function f̃ . Consider a function Z ∈ C∞
0 (R2;R)

satisfying the following constraints:

(4.18)





Z ≥ 0 in R
2,

Supp Z ⊂ BR2(0, 1),∫

R2

Z(v) dv = 1,

∫

R2

Z(v) v̂ dv = 0.

We introduce f̃ = f̃(t, x, v) as

(4.19) f̃(t, x, v) := Z(v)∆ϕ(t, x).

Of course, f̃ satisfies (4.1) in [0, T ]× T
2 × R

2, with source term

(4.20) G(t, x, v) := ∂tf + v̂ · ∇xf +
(
∇ϕ+ bv̂⊥

)
· ∇vf ,

which is supported in [0, T ]×B(x0, r0)× R
2. Up to an additive function of t, the function ϕ

satisfies the Poisson equation corresponding to f̃ . We can observe that f̃ also satisfies:

f̃|t=0 = 0, f̃|t=T = 0.

Finally, we denote

(4.21) ρ(t, x) :=

∫

R2

f(t, x, v) dv = ∆ϕ(t, x).

By construction, according to Lemmas 4.1 and 4.2, (4.2), (4.3) and (4.4) hold.

3. Consequently, up to now, the solution (f̃ , ϕ) satisfies all requirements but (4.5) and (4.6).

During the interval of time [0, T0] ∪ [2T0, 2T0 + T1], these are trivially satisfied since f̃ = 0.
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The problem appears only for the interval of time [T0, 2T0], where in general, we do not have
the compatibility conditions:

∂t

∫

R2

f̃ dv +∇x ·

∫

R2

f̃ v̂ dv = 0.

and ∫

T2

∫

R2

f̃ v̂ dv dx = 0.

To ensure these conservation laws, the idea is add a correction to f̃ . Let

g := u1(t, x)Z1(v) + u2(t, x)Z2(v),

with u(t, ·) := (u1, u2) compactly supported in an open set U such that U ⊂ ω, where we
recall that Zi (for i = 1, 2) is defined by:





Zi ≥ 0 in R
2,

Supp Zi ⊂ B(0, 1),∫

R2

Zi(v) dv = 0,

∫

R2

Zi(v) v̂ dv = (δi=1, δi=2).

Let us show that we can choose u such that:

∂t

∫

R2

f̃ dv = −∇x ·

∫

R2

gv dv,

and ∫

T2×R2

g v̂ dv dx = 0.

For simplicity, we denote h := −∂t
∫
f dv. The problem is equivalent to finding a vector

field u ∈ C∞(R+ × T
2), satisfying all four conditions:

u|t=0 = u|t=T = 0,(4.22)

divu = h, ∀t ∈ [0, T ], x ∈ T
2,(4.23)

∀t ∈ [0, T ],Supp u(t, ·) ⊂ ω,(4.24) ∫

T2

u dx = 0, ∀t ∈ [0, T ].(4.25)

To build such a function u, we introduce θ ∈ C∞([0, T ]×T
2) a solution of the elliptic equation:

∆θ = h, for t ∈ [0, T ], x ∈ T
2.

Observe that
∫
T2 hdx = 0 due to (4.21). With the notations of Lemma 4.1, we notice that we

can take

θ = −∂tϕ.

We thus conclude that ∇θ is divergence free outside ω. Therefore, according to the Hodge-
Poincaré lemma (recall that ω contains a hyperplane of the torus with normal vector n), there
exists Ψ ∈ C∞([0, T ]× T

2) and α ∈ R such that:

∇θ = ∇⊥Ψ+ αn in T
2 \ ω,

where α =
∫
D ∇θ · n dx. But the reference potential ϕ defined above is designed as to satisfy∫

D ∇ϕ · n dx = 0 (see (4.10) in Lemma 4.1). This yields that α = 0. Now, we introduce a
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smooth cut-off function η such that η ≡ 0 on U , and η ≡ 1 on T
2 \ω. We define a vector field

u as:

u = ∇θ −∇⊥(ηΨ),

and one can finally check that u satisfies the four above conditions (4.22), (4.23), (4.24) and
(4.25).

We can now set:

f = f̃ + g.

Note that by construction, we have:
∫

R2

f dv =

∫

R2

f̃ dv,

so that the electric field created by f (through the Poisson equation) is the same as the one

created by f̃ , and that ∫
f v̂ dv =

∫
g v̂ dv.

One can readily check that f is a solution of the Vlasov-Poisson system with a suitable source
in ω, and that (4.2), (4.3), (4.4), (4.5), (4.6) are satisfied (up to shifting and rescaling the time
interval [0, T ]). The fact that ρ and j do not depend on c (but only on c0) is due to the fact
that the constructions of Lemmas 4.1 and 4.2 do not depend on c (but only on c0). �

4.2. The approximation lemma. Now, we want to use the following approximation lemma,
which is valid for large values of the speed of light. The goal is to approximate the Vlasov-
Maxwell dynamics by the simpler one of Vlasov-Poisson with an external magnetic field.

For any function A : Td → R, d = 2 or 3, at least in L1, we denote by Âk the k-th Fourier
coefficient of A, for k ∈ Z

d.

Lemma 4.3. Let d = 2 or 3. Let E0, B0, j, ρ some C∞ functions. Let (E,B) the solution to
the Maxwell equations:





∂tB + c curlE = 0, ∂tE + c curlB = −j in [0, T ]× T
d,

divE = ρ−

∫
ρ dx, divB = 0 in [0, T ]× T

d,

E|t=0 = E0, B|t=0 = B0 in T
d.

Assume that at initial time the compatibility conditions are satisfied:

divE0 = ρ(0)−

∫
ρ(0) dx in [0, T ]× T

d,

divB0 = 0 in T
d.

Assume that the local conservation of charge is satisfied for all times:

∀x ∈ T
d, ∂tρ+∇x · j = 0,

as well as the zero-mean current property:

(4.26)

∫

T2

j dx = 0.
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Let E∞ be the solution of the Poisson equation:




curlE∞ = 0 in [0, T ]× T
d,

divE∞ = ρ−

∫
ρ dx in [0, T ] × T

d.

Then, we have for all t > 0:

(4.27)

∥∥∥∥B −

∫

Td

B0 dx− B̃

∥∥∥∥
L∞([0,t]×Td)

≤
Cρ,j(t+ 1)

c
,

and

(4.28)

∥∥∥∥E − E∞ −

∫

Td

E0 dx− Ẽ

∥∥∥∥
L∞([0,t]×Td)

≤
C ′
ρ,j(t+ 1)

c
,

where Cρ,j and C ′
ρ,j are constants depending only on ρ and j and where B̃ and Ẽ are defined

by their space Fourier coefficients:

(4.29)





̂̃B
0

= 0,

̂̃B
k

= k∧Êk(0)
|k| sin(tc|k|) + B̂k(0) cos(tc|k|) for k 6= 0,

̂̃E
0
= 0,

̂̃E
k

= −k∧B̂k(0)
|k| sin(tc|k|) +

[
Êk(0) − ik

|k|2
ρ̂k(0)

]
cos(tc|k|) for k 6= 0.

Remark 4.1. The initial data in this lemma are somehow ill-prepared. In contrast, in the
well-prepared case, which would correspond to the additional assumptions:

curlE0 = 0, curlB0 = 0,

then we would have Ẽ = 0 and B̃ = 0 and this would yield strong convergence results in
L∞([0, t]× T

d). In the present case, the convergence is only weak in time.

Proof of Lemma 4.3. The electromagnetic field E and B satisfies the wave equations:
{
∂2
tE − c2∆xE = −c2∇ρ− ∂tj,

∂2
tB − c2∆xB = c curl j.

Thus we have: {
∂2
t Ê

k + c2|k|2Êk = −ikc2ρ̂k − ∂tĵ
k,

∂2
t B̂

k + c2|k|2B̂k = cik ∧ ĵk,

that we easily solve, for k 6= 0, with Duhamel’s formula:

Êk =
1

c|k|
∂tÊ

k(0) sin(tc|k|) + Êk(0) cos(tc|k|) +

∫ t

0
[−c2ikρ̂k(s)− ∂tĵ

k]
sin((t− s)c|k|)

c|k|
ds,

(4.30)

B̂k =
1

c|k|
∂tB̂

k(0) sin(tc|k|) + B̂k(0) cos(tc|k|) +

∫ t

0
cik ∧ ĵk(s)

sin((t− s)c|k|)

c|k|
ds.(4.31)
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Let us first deal with Êk. We have, by integration by parts:

−

∫ t

0
c2ikρ̂k(s)

sin((t− s)c|k|)

c|k|
ds

=
−ik

|k|2
ρ̂k(t) +

ik

|k|2
ρ̂k(0) cos(tc|k|) +

∫ t

0

ik

|k|2
∂sρ̂

k(s) cos((t− s)c|k|) ds.

We remark that:
−ik

|k|2
ρ̂k(t) = Êk

∞(t).

By another integration by parts, we get:
∫ t

0

ik

|k|2
∂sρ̂

k(s) cos((t− s)c|k|) ds

=
ik

c|k|3
∂tρ̂

k(0) sin(tc|k|) +

∫ t

0

ik

c|k|3
∂ssρ̂

k(s) sin((t− s)c|k|) ds.

Moreover, we have:
∣∣∣∣
∫ t

0

ik

c|k|3
∂ssρ̂

k(s) sin((t− s)c|k|) ds

∣∣∣∣ ≤
1

c

t

|k|2
‖∂ttρ̂

k‖L∞
t
.

Finally, in a straightforward manner, we have
∣∣∣∣
∫ t

0
∂tĵ

k sin((t− s)c|k|)

c|k|
ds

∣∣∣∣ ≤
t‖∂tĵ

k‖L∞
t

c|k|
.

so that for k 6= 0:

(4.32)
∣∣∣Êk(t)− Êk

∞(t)−
k ∧ B̂k(0)

|k|
sin(tc|k|) +

[
Êk(0) −

ik

|k|2
ρ̂k(0)

]
cos(tc|k|)

∣∣∣

≤
t

c|k|2
‖∂ttρ̂

k‖L∞
t
+

1

c

(
‖∂tρ̂

k‖L∞
t

|k|2
+

‖ĵk‖L∞
t

|k|

)
+

t‖∂tĵ
k‖L∞

t

c|k|
.

For k = 0, one has, using the zero-mean current condition (4.26), that

Ê0(t)− Ê0
∞(t) = Ê0(0).

Finally we have:

∥∥∥∥E − E∞ −

∫

Td

E0 dx− Ẽ

∥∥∥∥
L∞([0,t]×T2)

≤
1

c

∑

k 6=0

t

|k|2
‖∂ttρ̂

k‖L∞
t
+

(
‖∂tρ̂

k‖L∞
t

|k|2
+

‖ĵk‖L∞
t

|k|

)
+

t

|k|
‖∂tĵ

k‖L∞
t
.

The summability is a simple consequence of the smoothness of the sources ρ and j. Hence,
the estimation (4.28) holds with

C ′
ρ,j =

∑

k 6=0

1

|k|2
‖∂ttρ̂

k‖L∞
t
+

1

c

(
‖∂tρ̂

k‖L∞
t

|k|2
+

‖ĵk‖L∞
t

|k|

)
+

1

|k|
‖∂tĵ

k‖L∞
t
.
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The magnetic field B is treated likewise. �

4.3. The reference solution. We now rely on the approximation lemma to find a suitable
reference solution for the Vlasov-Maxwell system, provided that the speed of light is large
enough, and that the initial magnetic field B0 is of the form c b0 where b0 satisfies

∫

T2

b0 dx 6= 0.

More precisely, we look for c large enough such that there exists a smooth reference solution
(f ,E,B) to the Vlasov-Maxwell equation:

(4.33)





∂tf + v̂ · ∇xf + divv

[
(E +

v̂⊥

c
B) f

]
= 1ωG,

∂tE1 − c∂x2B = −

∫

R2

fv̂1 dv, ∂tE2 + c∂x1B = −

∫

R2

fv̂2 dv,

∂tB + ∂x1E2 − ∂x2E1 = 0,

∂x1E1 + ∂x2E2 =

∫

R2

f dv −

∫

T2×R2

f dv dx,

with G is a suitable source, which satisfies the following properties:

f |t=0 = 0, f |t=T = 0, E|t=0 = 0 and B|t=0 = B0,(4.34)

∀t ∈ [0, T ], ∀v ∈ R
2, f(t, ., v) is compactly supported in ω,(4.35)

The characteristics (X,V ) associated with E +
v̂⊥

c
B satisfy the property:(4.36)

for any x ∈ T
2, v ∈ R

2, there is t ∈ [T/10, 9T/10] such that

X(t, 0, x, v) ∈ B(x0, r0) and |V |(t, 0, x, v) ≥ 4.

Proposition 4.2. Let T > 0 large enough. There exists c(T ) > 0 such that for any c > c(T ),
there exists a reference solution (f ,E,B) of (4.33) such that (4.34), (4.35) and (4.36) hold.

Proof of Proposition 4.2. Let (f ,∇ϕ) the reference function in Proposition 4.1, corresponding
to the case of Vlasov-Poisson with external magnetic field, relevant for some large enough
T > 0. Let (E,B) the electromagnetic field satisfying Maxwell equations with ρ =

∫
f dv and

j =
∫
f v̂ dv as sources; we recall that by construction, they do not depend on c, but only

on the lower bound c0 (this fact is crucial). We observe that (f,E,B) is a solution of the
Vlasov-Maxwell system (with a suitable source in ω). In addition, (4.34) and (4.35) clearly
hold.

Let us define (recall (1.13))

b =
1

c

∫

T2

B0 dx =

∫

T2

b0 dx.

We introduce three different characteristics:

• the characteristics (X,V ) are associated with ∇ϕ+ v̂⊥b,

• the characteristics (X̃, Ṽ ) are associated with E − Ẽ + v̂⊥

c (B − B̃),

• the characteristics (X,V ) associated with E + v̂⊥

c B.
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Let now show that if c is large enough, the characteristics (X,V ) are close to the characteristics

(X,V ). To that purpose we first prove that (X̃, Ṽ ) is close to (X,V ), and that (X,V ) is close

to (X̃, Ṽ ) (as c → +∞).

1. Using the approximation Lemma 4.3 and defining B̃ and Ẽ by (4.29), we can choose c

large enough (larger than some c1(T ) > 0), so that the characteristics (X̃, Ṽ ) are arbitrarily
close to the characteristics (X,V ), and hence satisfy (4.36).

Indeed, using (4.27)-(4.28), we can set

F := E −∇ϕ− Ẽ +
v̂⊥

c

(
B − B̃ −

∫

T2

B0 dx

)
,

and observe that its norm can be made arbritrarily small, for c large enough. Thus that the
characteristics (X̃, Ṽ ) satisfy (4.36) follows from the definition of (f ,∇ϕ) and an application
of Lemma 4.2.

2. It remains to prove that, the characteristics (X,V ) are arbitrarily close to (X̃, Ṽ ) if c is

large enough (larger than some c2(T ) ≥ c1(T )). The convergences of Ẽ and B̃ to zero as c
tends to infinity are only weak in time, but, as we will see, this is sufficient to establish this
property on the characteristics.

Let us introduce

(Y,W ) := (X,V )− (X̃, Ṽ ).

Then (Y,W ) satisfies




dY

dt
= W,

dW

dt
= E(X)− E(X̃) +

V̂ ⊥

c
B(X) −

̂̃V
⊥

c
B(X̃)− Ẽ(X̃)−

̂̃V
⊥

c
B̃(X̃).

We remark that the right hand side of the equation of W is bounded uniformly with respect
to c. In the same way, we notice that X̃ is Lipschitz with respect to t, uniformly in c and that
V 7→ V̂ is Lipschitzian with a Lipschitz constant independent of c. Multiplying the equations
by Y and W by Y and W respectively and integrating over time, one deduces that for some
constant C > 0 independent of c, one has

(4.37)
d

dt
(Y 2 +W 2) ≤ C(Y 2 +W 2) +

∫ t

0


−Ẽ(X̃)−

̂̃V
⊥

c
B̃(X̃)


 ·W ds.

Denote

I1 :=

∫ t

0
Ẽ(X̃) ·W ds and I2 :=

∫ t

0

̂̃V
⊥

c
B̃(X̃) ·W ds.

Let us show that uniformly on [0, T ], one has I1 → 0 as c → +∞. Using the definition of Ẽ,
and denoting ek(x) = exp(i2πk · x), we have

I1 :=
∑

k∈Z2\{0}

∫ t

0
W ·

[
−
k ∧ B̂k(0)

|k|
sin(sc|k|) +

[
Êk(0) −

ik

|k|2
ρ̂k(0)

]
cos(sc|k|)

]
ek(X̃) ds.



24 OLIVIER GLASS AND DANIEL HAN-KWAN

Integrating by parts, we infer

I1 =
∑

k∈Z2\{0}

∫ t

0

1

c|k|
∂s(Wek(X̃))·

[
k ∧ B̂k(0)

|k|
cos(sc|k|) −

[
Êk(0) −

ik

|k|2
ρ̂k(0)

]
sin(sc|k|)

]
ds

+
∑

k∈Z2\{0}

1

c|k|
W ·

[
−
k ∧ B̂k(0)

|k|
cos(tc|k|) +

[
Êk(0)−

ik

|k|2
ρ̂k(0)

]
sin(tc|k|)

]
ek(X̃).

Using ∂s(Wek(X̃)) = ∂sWek(X̃) + W (∂sX̃ · k)i2πek and the regularity of B(0), E(0) and
ρ(0), we obtain the claim that I1 → 0 as c → +∞. The proof for I2 is similar and therefore
omited.

Using the convergences of I1 and I2, (4.37) and Gronwall’s lemma yields the claim on the
characteristics. Therefore (4.36) is satisfied for c large enough.

�

4.4. With an arbitrary control set? The strip assumption is only used so that the local
conservation of charge and the zero-mean current property are satisfied by the reference solu-
tion for Vlasov-Poisson, so that one can apply the approximation Lemma 4.3. More precisely,
this geometrical hypothesis is only used to get (4.15), which in turn allows to ensure these
properties. For the case of an arbitrary open control set ω, keeping the notations which follow
Lemma 4.1, we would need to construct a function v satisfying the stronger property:

∫

D
v · n dx =

∫

D
v · dτ = 0,

∫

D′

v · n dx =

∫

D′

v · dτ = 0,

where D′ is a line orthogonal to D and which does not meet ω (reduce ω if necessary).
Unfortunately, we were not able to build such a function. Maybe the use of elliptic functions
could be helpful in this general case.

5. Construction of a solution of the non-linear problem

To conclude the proof of Theorems 1, 2 and 3, we can now rely on the reference solutions
which were built in the previous sections to build a solution of the Vlasov-Maxwell system,
which takes into account the initial data, which remains “close” to the reference solutions and
finally reaches the state 0.

As the completions of the proofs are now very similar, we will focus mainly on the construc-
tion for Theorem 2 (and for Theorem 3 which is a corollary of Theorem 2). We will ultimately
explain the needed modifications for Theorem 1.

We will propose a functional framework which is bit different to those proposed for the case
of the Vlasov-Poisson system with external magnetic field in [14] and which is inspired by the
work of Asano [1] and Wollman [29, 30].

This section is organied as follows. We start by proving Theorem 2. This is done in three
steps. First, we construct a solution of the Vlasov-Maxwell system with source (together with
the source itself) by a particular fixed point scheme (Subsection 5.1). Then we prove that
this solution is relevant (Subsection 5.2); this proves Theorem 2 when f1 = 0 outside ω. The
general case f1 6= 0 is explained in Subsection 5.3. Next in Subsection 5.4 we deduce Theorem
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3. In Subsection 5.5, we prove Theorem 1. The last subsections propose several possible
generalizations of these results.

5.1. Fixed point scheme. We recall that x0 ∈ ω and r0 > 0 are such that B(x0, 2r0) ⊂ ω.
We introduce R > 0 such that

(5.1) Supp f0, Supp f1 ⊂ T
2 ×B(0, R/2).

We apply Proposition 4.2; we fix f the reference function and T the control time given in this
proposition. We will assume that c ≥ c(T ).

Let ε ∈ (0, 1). We begin by introducing the operator V whose fixed point will give a solution
to the nonlinear problem. We first define the domain Sε,R of V by

Sε,R :=
{

g ∈ Cb(QT )
/

a. ∀t ∈ [0, T ],∀x ∈ T
2, Suppv g(x, ·) ⊂ B(0, R),

b. ‖g − f‖L∞([0,T ];H3(T2×R2)) ≤ ε,

c. ‖g − f‖W 1,∞([0,T ];H2(T2×R2)) ≤ ε,

d. ∀t ∈ [0, T ],
∫
T2×R2 g(t, x, v) dx dv =

∫
T2×R2 f0(x, v)dx dv ,

e. ∀t ∈ [0, T ],∀x ∈ T
2, ∂t

∫
R2 g dv + divx

∫
R2 v̂ g dv = 0,

f . g|t=0 = f0

}
.

(5.2)

Given f0 small enough and satisfying (5.1), one has f̃ + f ∈ Sε,R (denoting by f̃ the solution
of the relativistic free transport equation with initial data f0), and consequently Sε,R 6= ∅.
From now on, this is systematically supposed to be the case.

As in [13, 14], we introduce the following subsets of S(x0, 2r0)× R
2:

(5.3) γ− :=

{
(x, v) ∈ S(x0, 2r0)× R

2 / |v| >
1

2
and v · ν(x) < −

1

10
|v|

}
,

(5.4) γ2− :=

{
(x, v) ∈ S(x0, 2r0)× R

2 / |v| ≥ 1 and v · ν(x) ≤ −
1

8
|v|

}
,

(5.5) γ3− :=

{
(x, v) ∈ S(x0, 2r0)× R

2 / |v| ≥ 2 and v · ν(x) ≤ −
1

5
|v|

}
,

(5.6) γ+ :=
{
(x, v) ∈ S(x0, 2r0)× R

2 / v · ν(x) ≥ 0
}
,

where ν(x) stands for the unit outward normal to the sphere S(x0, 2r0) at point x. One can
readily check that

dist([S(x0, 2r0)× R
2] \ γ2−; γ3−) > 0.

We introduce a C∞ ∩ C1
b smooth function U : S(x0, 2r0)× R

2 → R, satisfying

(5.7)





0 ≤ U ≤ 1,
U ≡ 1 in [S(x0, 2r0)× R

2] \ γ2−,
U ≡ 0 in γ3−.

We also introduce a cut-off function Υ : R+ → R
+, of class C∞, such that

(5.8) Υ = 0 in

[
0,

T

48

]
∪

[
47T

48
, T

]
and Υ = 1 in

[
T

24
,
23T

24

]
.
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Now, given g ∈ Sε,R, we associate Eg, Bg in C0([0, T ];H3(T2)) ∩ C1([0, T ];H2(T2)) as the
solution of the Maxwell equations:

(5.9)





∂tE
g
1 − c∂x2B

g = −

∫

R2

gv̂1 dv, ∂tE
g
2 + c∂x1B

g = −

∫

R2

gv̂2 dv,

∂tB
g + ∂x1E

g
2 − ∂x2E

g
1 = 0,

∂x1E
g
1 + ∂x2E

g
2 =

∫

R2

g dv −

∫

R2×T2

g dv dx,

Eg|t=0 = E0, Bg|t=0 = B0.

Then, we define

(5.10) Ṽ(g) := f

to be the solution of the following linear system

(5.11)





f(0, x, v) = f0 on T
2 × R

2,

∂tf + v̂.∇xf + (Eg +
v̂⊥

c
Bg).∇vf = 0 in [0, T ] × [(T2 × R

2) \ γ−],

f(t+, x, v) = [1−Υ(t)]f(t−, x, v) + Υ(t)U(x, v)f(t−, x, v) on [0, T ]× γ−.

In order to explain the last equation of (5.11), we introduce the characteristics (X,V )

associated with the force field Eg + v̂⊥

c Bg. In this equation, f(t−, x, v) is the limit value of f
on the characteristic (X,V )(s, 0, x, v) as time s tends to t−. (Observe that for times smaller
than t, but close to t, the corresponding characteristic is not in γ−.) When the characteristics
(X,V ) meet γ− at time t, then the value of f at time t+ is fixed according to the last equation
in (5.11). Loosely speaking, one can interpret the function [1 − Υ(t)] + Υ(t)U(x, v) as an
“opacity” factor which varies according to time, the modulus of the velocity and to the angle
of incidence of the trajectory on S(x0, 2r0). In this process, a part of f is absorbed on γ−,
which varies from the totality of f to no absorption. Typically, when the velocity and the
normal incidence of the trajectory are sufficient, the particles are absorbed. We now consider
a continuous linear extension operator

π : H3([T2 \B(x0, 2r0)]×R
2;R) → H3(T2 × R

2;R),

which continuously maps Hs([T2 \ B(x0, 2r0)] × R
2;R) to Hs(T2 × R

2;R), for any s ∈ [0, 3]
(by classical results, it is possible to consider such an extension operator because B(x0, 2r0) is
smooth). In addition, it is clear that if a function f has compact support in v, we can ensure
that π(f) also satisfies this property.

Then we modify this operator in order to get a new operator π̃ which has the further
property that for any integrable f ∈ Hs((T2 \B(x0, 2r0))× R

2), one has

(5.12)

∫

T2×R2

π̃(f) dv dx =

∫

T2×R2

f0(x, v) dv dx.

This condition can easily be obtained by considering a regular, compactly supported, nonneg-
ative function µ with integral 1 over B(x0, 2r0) × R

2 and such that
∫
v̂µ dv = 0, and adding

to π(f) the function [∫

T2×R2

f0 −

∫

T2×R2

π(f)

]
µ.
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We further modify the operator so that it satisfies the local conservation of charge. To this
end, we add another regular distribution function h, compactly supported in B(x0, 2r0)×R

2,
such that ∫

hdv = 0 and div

∫

R2

hv dv = −∂t

∫

R2

π̃(f) dv − div

∫

R2

π̃(f)v dv.

This can be done as in the proof of Proposition 4.1, but here this is much easier to build such
a function since here we do not need the zero mean current condition (4.6), and this can be
achieved without making any assumption on the control set. We finally obtain a continuous
affine extension operator π.

It is convenient to introduce another time-dependent function Υ̃ depending on time such
that:

(5.13) Υ̃ = 0 in

[
0,

T

100

]
and Υ̃ = 1 in

[
T

48
, T

]
.

Next, we introduce the continuous operator Π given, for f : ([0, T ]× [T2 \B(x0, 2r0)]×R
2)∪

([0, T/48] × T
2 × R

2) → R, by:

(5.14) (Πf)(t, x, v) := (1− Υ̃(t))f(t, x, v) + Υ̃(t)[πf(t, ·, ·)](x, v).

We finally define V[g] for g ∈ Sε,R by:

(5.15) V[g] := f +Π(f|([0,T ]×[T2\B(x0,2r0)]×R2)∪([0,T/48]×T2×R2)) in [0, T ]× T
2 ×R

2.

The goal is now to prove the existence of a fixed point for this operator. For clarity of
exposure, we cut the argument into several lemmas.

Lemma 5.1. The set Sε,R, endowed with the C0
b topology, is a convex compact subset of

C0
b (QT ), and V is continuous in the C0

b topology.

Proof of Lemma 5.1. That Sε is a convex subset of C0
b (QT ) is straightforward. That it is

compact can be proved exactly as in [13, Section 3.3] or [14], relying on Ascoli’s theorem.
Likewise, the continuity can be proved as in [13, Section 3.3] or [14] and we therefore omit

the proof. Note that by Sobolev imbeddings, Eg and Bg are Lipschitz-continuous in x. �

Lemma 5.2. There exist ε0 > 0 and R0 > 0 such that for any 0 < ε < ε0 and R > R0, we
have:

V(Sε,R) ⊂ Sε,R.

Proof of Lemma 5.2. Let g ∈ Sε,R: let us prove that V(g) ∈ Sε,R. That d., e. and f. hold is
true by construction of V.

That a. and b. hold comes from the fact that one can first prove:

a
′. ∀t ∈ [0, T ],∀x ∈ T

2 \B(x0, 2r0), Suppv Ṽ(g)(t, x, ·) ⊂ B(0, R),

b
′. ‖Ṽ(g)‖L∞([0,T ];H3(T2\B(x0,2r0)×R2)) ≤ ε,

as soon as ε is small enough and R large enough.
These estimates are obtained with the same method as in the classical proof by Wollman

[30] of the existence of solutions of the Vlasov-Maxwell system (without any source); special
emphasis will be put on the new terms coming from the absorption procedure on S(x0, 2r0),
that actually cause significant technical difficulties. The principle is to perform L2 energy
estimates separately on [T2 \B(x0, 2r0)]× R

2 and on B(x0, 2r0)×R
2 (instead of on T

2 × R
2

as in Wollman’s paper), by using the Vlasov equation satisfied by Ṽ(g), and then make the
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sum of the two contributions. The reason for this treatment is the discontinuity across the
hypersurface S(x0, 2r0) which is caused by the absorption procedure.

In order to simplify the notations, we denote by h1 the function Ṽ(g) restricted to [T2 \
B(x0, 2r0)]× R

2 and by h2 the function Ṽ(g) restricted to B(x0, 2r0)× R
2.

The estimates, first in L2, then in H1, etc., are obtained by induction. Let us start with
the L2 norm. By multiplying by h1 the equation satisfied by h1 and integrating over [T2 \
B(x0, 2r0)]× R

2, we obtain after an integration by parts:

d

dt

∫

[T2\B(x0,2r0)]×R2

|h1|
2 dx dv =

∫

S(x0,2r0)×R2

|h1|
2v̂ · ν(x) dσ dv.

Similarly, we obtain for h2:

d

dt

∫

B(x0,2r0)×R2

|h2|
2 dx dv = −

∫

S(x0,2r0)×R2

|h2|
2v̂ · ν(x)dσ dv.

For clarity, it is convenient to introduce the following notations:

γin := {(x, v) ∈ S(x0, 2r0)×R
2, v · (−ν(x)) > 0},

γout := {(x, v) ∈ S(x0, 2r0)×R
2, v · (−ν(x)) ≤ 0}.

Using the definition of the absorption (see the last equation of (5.11)), we have

(5.16)

∫

γin

|h1|
2v · (−ν(x)) dσ dv +

∫

γout

|h1|
2v̂ · (−ν(x)) dσ dv

−

∫

γin

|h2|
2v · (−ν(x)) dσ dv −

∫

γout

|h2|
2v̂ · (−ν(x)) dσ dv

=

∫

γin

|h1|
2 × [1− α2

1(t, x, v)]v̂ · (−ν(x)) dσ dv,

for some smooth function α1 satisfying 0 ≤ α1(t, x, v) ≤ 1. Therefore the right hand side of

(5.16) is non-positive and one obtains L2 estimates for Ṽ(g):

d

dt

(∫

[T2\B(x0,2r0)]×R2

|h1|
2 dx dv +

∫

B(x0,2r0)×R2

|h2|
2 dx dv

)
≤ 0.

Thus, using (5.15), one obtains L2 estimates for V(g):
∫

T2×R2

|V(g)|2 dx dv ≤ C‖f0‖L2(T2×R2), ∀t ∈ [0, T ].

Let us now treat the H1 norm. We first differentiate the Vlasov equation with respect to
space or velocity and we obtain as before (here D := ∂xi or ∂vi , i = 1, 2):

(5.17)
d

dt

∫

[T2\B(x0,2r0)]×R2

|Dh1|
2 dx dv =

∫

S(x0,2r0)×R2

|Dh1|
2v · ν(x) dσ dv

−

∫

[T2\B(x0,2r0)]×R2

Dv̂ ·∇xh1Dh1 dx dv−

∫

[T2\B(x0,2r0)]×R2

D(Eg +
v̂⊥

c
Bg) ·∇vh1Dh1 dx dv.
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Similarly, for h2, we obtain the following estimate:

(5.18)
d

dt

∫

B(x0,2r0)×R2

|Dh2|
2 dx dv = −

∫

S(x0,2r0)×R2

|Dh2|
2v · ν(x) dσ dv

−

∫

B(x0,2r0)×R2

Dv̂ · ∇xh2Dh2 dx dv −

∫

B(x0,2r0)×R2

D(Eg +
v̂⊥

c
Bg) · ∇vh2Dh2 dx dv.

One can bound the last two terms of equations (5.17) and (5.18) (using the Cauchy-Schwarz
inequality) by:

C(1 + ‖(Eg, Bg)‖L∞
t (H3))(‖h1‖

2
H1

+ ‖h2‖
2
H1

).

It remains to estimate the first terms in the right hand sides of (5.17) and (5.18). One can use
the definition of the absorption procedure in (5.11) to compute the derivatives ∂th2, ∂vh2 and
∂τh2 on γin (denoting by τ a tangential unit vector on S(x0, 2r0)) in terms of those of h1 on
γin. To obtain the “missing” derivative ∂νh2, one uses the Vlasov equation, for (x, v) ∈ γin.
We can obtain the following relation on γin:

(5.19) ∇t,x,vh2(t, x, v) = α(t, x, v)∇t,x,vh1(t, x, v) + β(t, x, v,Eg , Bg)h1(t, x, v),

for t ∈ [0, T ], x ∈ S(x0, 2r0), v ∈ R
2,

for some smooth bounded functions α and β satisfying 0 ≤ α ≤ 1. We refer to [13, Section
3.3] for full details.

Summing the two contributions of Dh1 and Dh2, we deduce that the boundary terms can
be rewritten using (5.19):

(5.20)

∫

γin

|Dh1|
2v̂ · (−ν(x)) dσ dv +

∫

γout

|Dh1|
2v̂ · (−ν(x)) dσ dv

−

∫

γin

|Dh2|
2v̂ · (−ν(x)) dσ dv −

∫

γout

|Dh2|
2v̂ · (−ν(x)) dσ dv

=

∫

γin

|Dh1|
2 × [1− α2(t, x, v)]v̂ · (−ν(x)) dσ dv

−

∫

γin

β̃2|h1|
2v̂ · (−ν(x)) dv −

∫

γin

αβDh1h1v̂ · (−ν(x)) dσ dv.

The first term in the right hand side is non-negative. As we will see, the second one will
be absorbed using a Gronwall estimate. We have to handle the last term, which is the most
difficult one, in order to write it with the same form as the second one. We first claim that
on γin, we can write (with again D := ∂xi or ∂vi , i = 1, 2):

Dh1 = a1(t, x, v)∂th1 + a2(t, x, v)∂τh1 + a3(t, x, v)∂vh1,

where the ai are smooth functions (depending of course on the partial derivative D). This is
simply proved by using the fact that h1 is the solution of a Vlasov equation. Then we can
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compute the following integral:
∫ t

0

∫

γin

αβDh1h1v̂ · (−ν(x)) dσ dv ds =

∫ t

0

∫

γin

αβa1(t, x, v)∂t
h21
2
v̂ · (−ν(x)) dσ dv ds

+

∫ t

0

∫

γin

αβa2(t, x, v)∂τ
h21
2
v̂ · (−ν(x)) dσ dv ds

+

∫ t

0

∫

γin

αβa3(t, x, v)∂v
h21
2
v̂ · (−ν(x)) dσ dv ds.

At this point, we can integrate by parts with respect to t, τ and v, which yields only two
boundary terms in time (at time 0 and t respectively, coming from the integration by parts in
time) and terms of the form:

∫ t

0

∫

γin

β2(s, x, v)|h1|
2v̂ · (−ν(x)) dσ dv ds,

for some smooth bounded function β2. The boundary terms in time are the two following one:∫

γin

α|s=0β|s=0f
2
0 v̂ · (−ν(x)) dσ dv,

and ∫

γin

α|s=tβ|s=th
2
1|s=tv̂ · (−ν(x)) dσ dv.

To treat the second term, we use a trace estimate and Young’s inequality, as follows:∫

γin

αβh21v̂ · (−ν(x)) dx dv ≤ C‖h1‖L2‖h1‖H1

≤ C‖h1‖
2
L2 +

1

100
‖∇h1‖

2
H1 .

Using this computation we obtain:

1

2

∑

D∈{∂xi ,∂vi}

(∫

[T2\B(x0,2r0)]×R2

|Dh1(t)|
2 dx dv +

∫

B(x0,2r0)×R2

|Dh2(t)|
2 dx dv

)

≤ C‖f0‖L2 + C
∑

D∈{∂xi ,∂vi}

∫ t

0

∫

[T2\B(x0,2r0)]×R2

|Dh1|
2 dx dv ds +C‖h1‖

2
L2

+
∑

D∈{∂xi ,∂vi}

(∫

[T2\B(x0,2r0)]×R2

|Df0|
2 dx dv +

∫

B(x0,2r0)×R2

|Df0|
2 dx dv

)
,

and we conclude by Gronwall’s lemma.

The higher order derivatives are obtained in the same way by induction. In particular, we
observe that we can obtain a similar formula as (5.19) for higher derivatives. Indeed, let us
prove that for i, j ∈ {t, x1, x2, v2, v2} we have:

(5.21) ∂2
i,jh2 = α∂i,jh1 + β1

i,j∂jh1 + β2
i,j∂ih1 + γi,jh1 on [0, T ] × S(x0, 2r0)× R

2,

where α is the same function as in (5.19) and β1
i,j , β

2
i,j , γi,j are smooth bounded functions of

(t, x, v). From (5.19), we obtain easily that (5.21) is true for any j when i is a tangent direction
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to [0, T ] × S(x0, 2r0)× R
2. For the remaining (normal) direction, we differentiate the Vlasov

equation satisfied by h1 and h2:

∂t(∂jhk) + v̂ · ∇x(∂jhk) + F g · ∇v(∂jhk) = − [∂j v̂ · ∇xhk + ∂jF
g · ∇vhk] ,

denoting by F g := Eg + v̂⊥

c Bg and k = 1, 2. Then we replace the first order derivatives of h2
using (5.19) and the second order derivatives using (5.21) except the one involving the normal
direction in v̂ · ∇x(∂jh2), that is (v̂ · ν)ν · ∇x(∂jh2). As a result, we can express this last term
in terms of α (v̂ · ν)ν · ∇x(∂jh1) and lower order terms as in (5.21).

Then, when one studies the contributions from γ− in the H2 estimates, the most harmful
terms come as before from the crossed terms α∂i,jh1βi,j∂jh1, but as before, one can use an
integration by parts argument. Similar statements hold for derivatives of order 3. Note that
when proving the H2 and the H3 estimates, the time derivatives have to be understood in the
weak sense.

Once a’. and b’. are obtained, that a., b. hold for V(g) is a consequence of the construction
of the extension operator.

There remains to prove that c. also holds. This is actually a consequence of b’. and the
fact that h1 solves the Vlasov equation, so that

‖∂th1‖L∞([0,T ];H2([T2\B(x0,2r0)]×R2)) ≤ Cε.

Finally that c. holds is obtained by construction of the extension operator.
�

We conclude this section with the following statement.

Lemma 5.3. If R > R0 and 0 < ε < ε0, V has a fixed point in Sε,R.

Proof of Lemma 5.3. This is an immediate consequence of Lemma 5.1, Lemma 5.2 and the
Schauder fixed point theorem. �

5.2. Relevancy of the solution. Let us now prove that the solution we have just built is
relevant for the controllability problem of Theorem 2.

Lemma 5.4. There exists ε1 > 0 such that for any 0 < ε < ε1, all the characteristics (X,V )

associated with v̂⊥

c Bf + Ef , where f is a fixed point of V in Sε,R, meet γ3− for some time in

[ T12 ,
11T
12 ].

Proof of Lemma 5.4. This is a consequence of Proposition 4.2 and the fact that a fixed point
(f,Ef , Bf ) is a small perturbation of the reference solution (f,E,B). When ε is chosen small
enough, we have:

‖Bf −B‖∞ ≪ 1,

‖Ef −∇ϕ‖∞ ≪ 1.

This involves that the characteristics (X,V ) associated with the force field Ef + v̂⊥

c Bf still
satisfy the property:
(5.22)

∀x ∈ T
2,∀v ∈ R

2,∃t ∈ [T/11, 10T/11], X(t, x, v) ∈ B(x0, 3r0/2), and |V |(t, x, v) ≥ 3.

As in [14], we can prove that this implies that, provided that ε@ is small enough, the trajec-
tories meet γ3− during [ T12 ,

11T
12 ], so that all particles are absorbed. The technical points are

almost identical to those of the proof given in [14, Lemma 5.3], and so we omit them. �
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We can finally end the proof of Theorem 2 when f1 = 0 outside ω.

Proof of Theorem 2 when f1 = 0 outside ω. By Lemma 5.3 and Lemma 5.4, we obtain a so-
lution f such that:

Supp[f(T, ·, ·)] ⊂ ω × R
2.

We obtain furthermore that the distribution function f satisfies for some function G supported
in ω:

∂tf + v̂ · ∇xf + divv

[
(Ef +

1

c
v̂⊥Bf )f

]
= G in [0, T ]× T

2 × R
2.

The function G is then our control function. Steering finally the state exactly to f1 can be
performed via a function supported inside ω, which also yields a source term internal to ω.
This ends the proof of Theorem 2 (in the case where the target f1 = 0 outside ω). �

5.3. From f1 = 0 to general targets. Up to now, the proof of Theorem 2 has been com-
pleted for the case f1 = 0 outside ω. We cannot directly invoke a reversibility argument to
get the general case, since we cannot precisely say at which state the electro-magnetic field
(E,B) is at final time.

Nevertheless, it is possible to modify the fixed point scheme to complete the proof in the
general case. Keeping the same notations, we introduce a function f̂ which is the solution of
the Vlasov equation:

(5.23)





f̂(0, x, v) = f1 on T
2 × R

2,

∂tf̂ + v̂ · ∇xf̂ + (Eg + v̂⊥

c Bg) · ∇vf̂ = 0 in [0, T ]× [(T2 × R
2) \ γ−],

f̂(t+, x, v) = [1−Υ(t)]f̂(t−, x, v) + Υ(t)U(x, v)f̂ (t−, x, v) on [0, T ]× γ−.

We observe, as in the proof of Theorem 2 (using the property of the characteristics), that

f̂|t=T ≡ 0.
We finally define the fixed point operator V which maps g ∈ Sε,R to:

(5.24)

V[g] := f +Π((f + f̂(T − t, x,−v))|([0,T ]×[T2\B(x0,2r0)]×R2)∪([0,T/48]×T2×R2)) in [0, T ]×T
2×R

2,

and conclude as previously.

5.4. Proof of Theorem 3. As already explained, Theorem 3 is a consequence of Theorem 2.
We recall that the speed of light here is equal to 1. Let us show how to reduce to a sufficiently
large c. The principle is to rely on the scale invariance of the equations. Indeed, taking λ
large enough in (2.5) increases the value of the “effective” speed of light.

Let us be more specific. Given ω (satisfying the strip assumption) and b0, we apply Theorem
2. We obtain a time T0, and apply the result to T = T0. We obtain a constant κ > 0 and a
speed of light cT0 > 0, such that whenever c ≥ cT0 , starting from f0, E0, f1 satisfying (1.10)-
(1.13), we have a solution of Vlasov-Maxwell with speed of light c, steering f0 to f1 in time
T0.

We define λ1 := 1/cT0 . For λ ∈ (0, λ1], we observe that

c := 1/λ

satisfies c ≥ cT0 . We define κ1 := min(1, λ2)κ. Given f̃0, f̃1, Ẽ0 satisfying (1.14)-(1.15) and
such that

‖(f̃0, Ẽ0)‖H3 ≤ κ′, ‖f̃1‖H3 ≤ κ′,
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then
f0(x, v) := f̃0(x, λv), f1(x, v) := f̃1(x, λv), E0(x) := 1/λ2Ẽ0(x)

also satisfy (1.10)-(1.11) and moreover (1.12). We also introduce the initial magnetic field B̃0

(and its rescaled counterpart B0):

B̃0(x) := λb0(x), B0(x) := 1/λ2B̃0(x).

Therefore, we observe that:
B0(x) = cb0(x)

and we can apply Theorem 2 to obtain a control function Gλ such that the solution fλ of the
system:





∂tf
λ + v̂λ · ∇xf

λ + divv

[
(Eλ + λv̂⊥λ B

λ)fλ
]
= 1ωGλ,

∂tE
λ +

1

λ
curlBλ = −

∫

R2

fλv̂λ dv, ∂tB
λ +

1

λ
curlEλ = 0,

divEλ =

∫

R2

fλ dv −

∫

R2×T2

fλ dv dx, divBλ = 0,

fλ
|t=0 = f0, Eλ

|t=0 = E0, Bλ
|t=0 = B0 (= cb0),

with v̂λ = v
√

1+ |v|2

(1/λ)2

, satisfies:

(5.25) fλ
|t=T0

= f1.

One deduces a solution (f,E,B) to the Vlasov-Maxwell in the original variables by performing
the “inverse” change of variables:

f(t/λ, x, λv) := fλ(t, x, v), E(t/λ, x) := λ2Eλ(t, x), B(t/λ, x) := λ2Bλ(t, x).

In particular, we observe that

f|t=T0/λ = f̃1.

which gives the controllability in large time of Theorem 3.

5.5. Proof of Theorem 1. In order to prove Theorem 1, we modify the previous construction
as follows. First, we recall that in the construction of the reference solution in Section 3, we
have considered the sequence of sets ω′ ⊂ ω′′ ⊂ ω′′ ⊂ ω. Let f be the reference solution given
by Proposition 3.1.

Let us describe the principle of the absorption in this case. We consider a covering of balls
(B(x, r0))x∈ω′′ of ω′′, whose radius r0 is small enough so that the covering with balls of radius
2r0 is included in ω. By compactness, we can assume that this covering is made of a finite
number of balls B(x1, r0), ..., B(xk , r0).

On each ball B(xi, 2r0) (for i = 1, ..., k) we impose the same absorption procedure as before.
Then one can proceed with almost the same proof as Theorem 2. The only difference appears
in the proof of Lemma 5.2: we now have to estimate the norms L2, H1, etc, in each connected
component of T2 \ ∪k

i=1S(xk, 2r0). Remark that there is only a finite number of such regions.
Then, we make the sum of all contributions of each region to get the relevant estimates.

Finally, we obtain the construction of a control supported in ω which brings the state f of
the system to a value satisfying:

Supp[f(T, ·, ·)] ⊂ ω × R
2,
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for T large enough. Taking T̃ > T large enough so that one can apply Theorem 4 (control of
linear Maxwell equations), we can further modify this solution so that

Supp[f(t, ·, ·)] ⊂ ω × R
2, for any t ∈ [T, T̃ ],

and so that at time T̃ , we have

f(T̃ , ·, ·) ≡ 0 on (T2 \ ω)×R
2,

and

(E(T̃ , ·), B(T̃ , ·)) = (0, 0).

By a slight abuse of notation, we still write T instead of T̃ . We clearly obtain that the
distribution function f satisfies for some function G supported in ω:

∂tf + v̂.∇xf + divv

[
(Ef +

1

c
v̂⊥Bf)f

]
= G in [0, T ] × [T2 \ ω]× R

2.

The function G is then our control function, which brings the state to (0, 0, 0).
We can finally directly invoke a reversibility argument (take λ = −1 in (2.8)) or proceed as

in Subsection 5.3, to steer the system to general (f1, E1, B1).

5.6. A C1 or Hs Cauchy theory ? In the Vlasov-Poisson case, in order to build the solution
in a C1 framework, we used the same absorption procedure which roughly consists in absorbing
fast particles which enter the control zone with sufficient normal incidence. This procedure
is a bit costly in terms of regularity, and it causes a loss of moments in velocity. In [13, 14],
this is compensated via interpolation by a loss of regularity. Nevertheless, this regularity is
re-gained afterwards using the elliptic regularity of the Poisson equation. One first difficulty
in the Maxwell case lies in the fact that this is not possible to do so (as the Maxwell equations
are hyperbolic). A more severe obstruction lies in the hypothetical application of the Glassey-
Strauss-Schaeffer C1 Cauchy theory for Vlasov-Maxwell. Since the Maxwell equation can be
seen as a wave equation, it is quite remarkable to be able to build solutions in a C1 framework
(even worse, in the wave equation form, there seems to be a loss of derivative). Actually, one
can observe that the theorems of Glassey-Strauss-Schaeffer crucially rely on the fact that the
distribution function is a solution to a Vlasov equation (without source). This allows to trade
derivatives like (∂t + v̂ · ∇x) for derivatives in v. Then, integrations by parts in v allow these
authors to perform suitable C1 estimates. For our problem, this is unfortunately impossible
to do so, since in the control zone, the Vlasov will feature a source (the control function) with
only C0 regularity. Therefore it seems difficult to build solutions with these methods.

Instead of the C1 theory, we have thus opted for H3 theory of Asano and Wollman (although
it is less sharp in terms of regularity).

5.7. Removing the smallness assumption on B in Theorem 1. Let us explain how one
can remove the smallness assumption on B0 (and B1) in Theorem 1. When one applies the
return method, instead of building a reference solution which goes from (0, 0, 0) to (0, 0, 0),
one builds instead a solution going from (0, 0, Bi) to (0, 0, 0). To do so, one can still rely on
the controllability of the Maxwell equations. Then we apply the same procedure as above.
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5.8. Generalization to data with unbounded support in velocity in Theorem 1.

Until now, we have dealt with distribution functions having a bounded support in velocity. As
claimed before, we expect the theorems contained in this paper to be generalized to distribution
functions with unbounded support in velocity, but having exponential decay at infinity.

To that purpose, instead of the standard Sobolev space H3 of the local theory of Wollman
[30], we may use weighted Sobolev spaces (accounting for the exponential decay in velocity),
following the work of Asano [1]. It is likely (computations get more tedious) that the fixed
point procedure proposed in this section is still relevant.

6. Appendix: Proof of Lemma 4.2

In this section, we provide a proof of Lemma 4.2. Actually we establish a result which
is more general, by allowing more generic magnetic fields. Let us first describe the class of
magnetic fields b that are admissible.

Definition 6.1. If a magnetic field b is such that either b or −b satisfies the conditions 1.

and 2. below, we say that b satisfies the bending condition.

Condition 1. Geometric control condition on b. We assume that there exists a compact
set K of T2 on which b > 0 and which satisfies the geometric control condition:

(6.1) ∀x ∈ T
2, ∀e ∈ S

1, ∃y ∈ R
+ such that x+ ye ∈ K.

For a compact subset K of T2 and r > 0 we denote

(6.2) Kr := {x ∈ T
2 / d(x,K) ≤ r}.

The first geometric assumption can be reinterpreted with the help of the following lemma (see
[14] for an elementary proof).

Lemma 6.1. Let K ⊂ T
2 such that b > 0 on K and satisfying (6.1). Then there exists b > 0,

d > 0 and D > 0 such that

(6.3) b ≥ b on K2d,

(6.4) ∀x ∈ T
2, ∀e ∈ S

1, ∃t ∈ [0,D], ∀s ∈

[
t, t+

d

2

]
, x+ se ∈ Kd.

Roughly speaking, this lemma gives, for a ray of light (whose velocity is a unit vector), the
maximum time it can spend outside Kd during one passage (that corresponds to D) and the
minimal time it has to spend in Kd during one passage (that corresponds to d/2).

This allows us to introduce the second condition on the magnetic field:
Condition 2. Bound from below. We assume that there exists b̃ ∈ R

− such that

b ≥ b̃ on T
2,

and such that, keeping the same notations as in Lemma 6.1,

(6.5) b̃D + b
d

2
> 0.

It is clear that a constant nonzero magnetic field satisfies the bending condition.
A less general notion was introduced in [14] (the second condition was replaced by a fixed

sign assumption, which corresponds to b̃ = 0); the main interest of this new definition comes
from the fact that it is stable by small perturbations. Indeed, if some b satisfies the bending
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condition, then there exists ε0 > 0 such that any b with ‖b − b‖∞ < ε0, still satisfies the
bending condition. In particular, the following lemma allows to improve some of the results
of [14].

Lemma 6.2. Let x0 ∈ T
2, r0 > 0 and M > 1. Given b ∈ C1(T2) satisfying the bending

condition, there exist:

• c0 > 0 depending on b, x0, r0,
• m > 0 depending only on b, x0, r0,
• T > 0 depending on b, x0, r0 and M , and
• κ depending on b, x0, r0 and M ,

such that for all F ∈ L∞(0, T ;W 1,∞(T2 × R
2)) satisfying ‖F‖L∞ ≤ κ, if c ≥ c0 then the

characteristics (X,V ) associated with v̂⊥b+ F satisfy:

(6.6) ∀x ∈ T
2,∀v ∈ R

2 such that M ≥ |v| ≥ m,∃t ∈ (T/4, 3T/4), X(t, 0, x, v) ∈ B(x0, r0/2)

and for all s ∈ [0, T ],
|v|

2
≤ |V (s, 0, x, v)| ≤ 2|v|.

We prove Lemma 6.2 in several cases of increasing complexity. In a first time (Cases 1–3),
we suppose that F = 0. In Case 4, we explain how to take the additional small force F into
account.

In all cases, we define

(6.7) b := max
x∈T2

b(x).

Before giving the proof, we give its main ideas.

Idea of the proof of Lemma 6.2. The proof is a variant of that given for [14, Proposition
5.1]; here we have to be careful of the effects of relativistic transport and in addition, the
assumptions on b are more general. Conversely, the assumption of smallness on F will allow
us to simplify some aspects of the proof.

In a first time, we consider non-relativistic trajectories (c = +∞) and F = 0. One can
show that for (non-relativistic) free transport (whose trajectories are straight lines), there is
only a finite number of bad initial directions which produce trajectories which never meet the
ball B(x0, r0). Indeed, trajectories with directions having irrational slopes are dense in the
torus T2 and therefore have to meet B(x0, r0). Considering periodic trajectories with rational
slopes, because of the “thickness” of the ball B(x0, r0), only a finite number of them produce
trajectories which do not meet the ball. A magnetic field satisfying the bending condition
allows to circumvent these bad initial directions. The proof of Lemma 6.2 is based on the
three following ingredients.

• Let us define the classical characteristics (X,V ) associated with v⊥b. We can first
observe that when the modulus of the initial velocity |v| is large, the characteristics
(X,V ) remain close to those of free transport (straight lines) at least for a time of
order 1/|v|. This allows to show that trajectories X which initially have a velocity
with a good direction, meet the control zone as it is the case for free transport.

• For trajectories which initially have a bad direction, we rely on the “rotation” effect
provided by the magnetic field, which yields that bad directions become good directions
after some time τ . The condition 1. ensures that trajectories “often” meet the zone
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where b > 0, in which the direction of the velocity gets rotated and therefore do not
remain of bad direction. Note that at each passage in the zone b > 0, the angle of
the velocity is only modified by O(1/|v|), but using the reinterpretation of Lemma
6.1, we can see that during a time of order 1, there are at least O(|v|) passages in
this zone. On the other hand, the condition 2. in the bending condition allows to
say the trajectories are not too affected by their passages in the zones where b can be
non-positive (and which could otherwise annihilate any bending effect).

• Finally, by choosing c sufficiently large and F sufficiently small, by a perturbation
argument, we get that the relativistic trajectories (X,V ) are close to the classical
trajectories (X,V ), which allows to conclude.

{b > 0}

Figure 2. An illustration of the proof of Lemma 6.2: the bending effect of
the magnetic field.

Proof of Lemma 6.2.
In the sequel, we denote (X#, V #) the characteristics associated with the relativistic free

transport and (X,V ) the characteristics associated with relativistic transport with the force
v̂⊥b+ F.
Case 1. Constant magnetic field and F = 0. Let us first suppose that b is constant and F = 0;
for readability we assume here that b := 1.

As noticed in [13, Appendix A, p. 373-374], there is only a finite number of directions in
S
1 for which there exists a half-line in T

2 which does not intersect B(x0, r0/8). Identifying S
1

with [0, 2π[, we denote them α1, ..., αN ∈ [0, 2π[.
We introduce the neighborhoods of αi:

Vi = (αi − β/2, αi + β/2),

as follows. Let β > 0 and τ > 0 satisfying:

(6.8) β < min
i 6=j

d(Vi,Vj)/8 and τ =

√
1 +

M2

c20
min
i 6=j

d(Vi,Vj)/7.

By construction, observe that:

β <
τ√

1 + M2

c20

.

By a compactness argument, there exists L > 0 such that for any x ∈ T
2, and for any

ai ∈ S
1 \ ∪N

i=1Vi, any trajectory X# starting from x with a direction ai has to cover at most
a distance L to meet B(x0, r0/8).
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We choose c0 and m large enough such that:

(6.9) Tm :=
L
√

1 +m2/c2

m
≤ L

√
1

m2
+

1

c20
< τ.

This is the time “free” trajectories X# with velocity of modulus m take to cover the distance
L. We observe that for any |v| ≥ m, we have

(6.10) T|v| :=
L
√

1 + |v|2/c2

|v|
≤ Tm.

Now let x ∈ T
2, v ∈ R

2 with |v| ≥ m. First note that for all t, |V (t, 0, x, v)| = |v|. Now let us
discuss according to the direction of v.

• First case: v
|v| ∈ S

1 \ ∪N
i=1Vi.

We have, for any t ≤ T|v| ≤ Tm,

|X#(t, 0, x, v) −X(t, 0, x, v)| ≤
|v|√

1 + |v|2/c2

T 2
|v|

2
=

1√
1 + |v|2/c2

L2(1 + |v|2/c2)

2|v|

≤
L2

2

√
1/c20 + 1/m2.

We can impose c0 and m large enough such that:

(6.11)
L2

2

√
1/c20 + 1/m2 < r0/8.

As a result, we obtain that

∃t ∈ (0, Tm], X(t, 0, x, v) ∈ B(x0, r0/4),

and (6.6) is trivial here since |V (t, 0, x, v)| is conserved.

• Second case: v
|v| ∈ ∪N

i=1Vi, say Vj.

As already explained in the heuristics, we wait for a time τ , that is, we consider:

(x′, v′) := (X(τ, 0, x, v), V (τ, 0, x, v)).

We observe that because of the “rotation” induced by the magnetic field, the angle between v
and v′ is equal to τ/

√
1 + |v|2/c2, which is larger than τ/(

√
1 +M2/c20).

Consequently, due to the choice of β,

v′

|v′|
∈ S

1 \ ∪N
i=1Vi,

and thus we are in the same case as before.

Therefore, defining T := 4(Tm + τ), we have proven that (actually up to a harmless trans-
lation in time):

∃t ∈ (T/4, 3T/4], X(t, 0, x, v) ∈ B(x0, r0/4),

together with the condition (6.6) on the velocity field.
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Case 2. Positive magnetic field modulus and F = 0. Here we suppose that b = b(x) > 0 on
T
2.
We are in the case where in Lemma 6.1, we can take K = Kd = T

2 and

b = inf
x∈T2

b > 0.

Keeping the same notations as before, we set τ ∈ (0, T ] and β > 0 in order that

(6.12) β < min
i 6=j

d(Vi,Vj)/8 and τ =

√
1 + M2

c20

b
min
i 6=j

d(Vi,Vj)/7.

The proof is very similar to the previous one. Indeed, the following comparison estimate still
holds for t ≤ T|v| ≤ τ where T|v| was defined in (6.10):

(6.13) |X#(t, 0, x, v) −X(t, 0, x, v)| ≤ b
L2

2

√
1/c20 + 1/m2.

Let x̃ ∈ T
2, ṽ ∈ R

2. We distinguish as before between two possibilities. Using the inequality
(6.13), the first case holds identically for m large. For the second case, we just have to check
that with this magnetic field, the velocity is rotated by an angle at least equal to β after some
time t ≤ τ .

We use the following computation for general (x, v). Denote by θ(t) the angle between

v⊥ and V (t, 0, x, v). We compute the scalar product of V (t, 0, x, v) and dV (t,0,x,v)
dt , using the

identity:

dV (t, 0, x, v)

dt
= b(X(t, 0, x, v))

V (t, 0, x, v)⊥√
1 + |V (t, 0, x, v)|2/c2

.

We straightforwardly obtain that |V (t, 0, x, v)| = |v|. Then, taking the scalar product of v⊥

and dV (t,0,x,v)
dt , we likewise obtain:

(6.14) θ′(t) =
b(X(t, 0, x, v))√

1 + |v|2/c2
,

(even if sin θ(t) = 0 in which case one considers the scalar product with v.) We deduce that

θ′(t) ≥ b/
√

1 +M2/c20.
Thus going back to (x̃, ṽ), by the intermediate value theorem and the definition of the

neighborhoods Vi and to (6.12), there is a positive time t less or equal to τ for which we have:

V (t, 0, x̃, ṽ) ∈ S
1 \ ∪N

i=1Vi,

and we conclude as in Case 1.

Case 3. Magnetic field satisfying the bending condition and F = 0. Let us now consider the
general case for , but still without the additional force F.

Given K satisfying the geometric condition (6.1), we introduce d and D as in Lemma 6.1.
We consider Kd as in (6.2). Using the condition 2. (bound from below), we have:

(6.15) γ := Db̃+
d

2
b > 0.
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(we recall that by definition, b̃ ≤ 0). We assume here that in addition to (6.8), τ ∈ (0, T ] and
β > 0 are such that

β <
τγ

2
√

1 +M2/c20(D + d/2)
.

Let x ∈ T
2 and v ∈ R

2. Once again we distinguish between the two possibilities (good or
bad direction). As before the first case is still similar since (6.13) is still valid. We have to
give a new argument only for the second case.

To that purpose, we examine the behavior of the characteristics during the time interval
[0, τ ].

• By (6.4), each passage in T
2 \K of X#(t, 0, x, v) lasts at most during a time equal to:

D
√

1 + |v|2/c2/|v|.

The characteristics X are not straight lines since they are modified by the magnetic field.
Let us prove nevertheless that if |v| and c are large enough, then the particle X(t, 0, x, v)

can remain at most during a time D
√

1 + |v|2/c2/|v| in T
2 \ Kd. Let x ∈ T

2 \ Kd, and
v
|v| ∈ S

1, let σ > 0. By Lemma 6.1, there exists some s < D
√

1 + |v|2/c2/|v| such that

X#(σ + s, σ, x, v) ∈ K. Now we can evaluate as before:

∣∣∣X#(σ + s, σ, x, v)−X(σ + s, σ, x, v)
∣∣∣ ≤ b

D2

2

√
1/c20 + 1/|v|2.

Hence, we can impose c0 and m large enough such that when |v| ≥ m,

X(σ + s, σ, x, v) ∈ Kd.

Hence, we deduce that each passage of X(t, 0, x, v) in T
2 \ Kd lasts at most during a time

equal to D
√

1 + |v|2/c2/|v|, which proves the claim.

• Likewise, given x ∈ T
2 \ Kd,

v
|v| ∈ S

1 and σ > 0, by Lemma 6.1, there exists some s <

D
√

1 + |v|2/c2/|v| such that X#(τ, σ, x, v) ∈ K for all τ ∈ [s+ σ, s+ σ + d
2

√
1 + |v|2/c2/|v|].

We have for all τ ∈ [s+ σ, s+ σ + d
2

√
1 + |v|2/c2 ]/|v|] that

|X#(τ, σ, x, v) −X(τ, σ, x, v)| ≤ b
|v|√

1 + |v|2/c2

(
(D + d

2 )
√

1 + |v|2/c2/|v|)
)2

2
.

Hence we can choose m and c0 large enough such that for any |v| ≥ m and when c ≥ c0,

X(τ, σ, x, v) ∈ Kd for all τ ∈ [s+ σ, s+ σ + d
2

√
1 + |v|2/c2 ].

• We see that a trajectory alternates between passages in Kd and in T
2 \Kd. We denote as

previously by θ(t) the angle between V (t, 0, x, v) and v and aim at finding a lower bound for
θ(τ). We introduce

N :=

⌊
τ |v|√

1 + |v|2/c2(D + d/2)

⌋
,
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(here ⌊·⌋ denotes the floor function) and

A :=
{
t ∈ [0, τ ]

/
X(t, 0, x, v) ∈ T

2 \Kd

}
.

There are at most N distinct intervals of length
√

1 + |v|2/c2(D + d/2) in [0, τ ]. Using the
considerations above, one sees that the Lebesgue measure of A satisfies

|A| ≤ (N + 1)D
√

1 + |v|2/c2/|v|.

Indeed, taking t0 := inf A, one has

|A ∩ [t0, t0 +
√

1 + |v|2/c2(D + d/2)]| ≤ D
√

1 + |v|2/c2/|v|,

and we can make the same reasoning with t1 := inf(A ∩ {t ≥ t0 +
√

1 + |v|2/c2(D + d/2)},
etc. Likewise,

|([0, τ ] \A) ∩ [t0, t0 +
√

1 + |v|2/c2(D + d/2)]| ≥
d

2

√
1 + |v|2/c2/|v|,

and

|[0, τ ] \ A| ≥ N
d

2

√
1 + |v|2/c2/|v|,

For |v| ≥ m, with m large enough and c0 large enough we have N ≥ 3 and hence

N − 1 ≥
τ |v|

2
√

1 + |v|2/c2(D + d/2)
,

so
θ(τ) ≥ b |[0, τ ] \A|+ b̃ |A|

≥ N
d

2
b
√

1 + |v|2/c2/|v|+ (N + 1)Db̃
√

1 + |v|2/c2/|v|

≥ N
(
Db̃+

d

2
b
)√

1 + |v|2/c2/|v| +
Db̃

|v|

√
1 + |v|2/c2

≥ (N − 1)
(
Db̃+

d

2
b
)√

1 + |v|2/c2/|v|

≥
τ

2
√

1 + |v|2/c2(D + d/2)

(
Db̃+

d

2
b
)

=
τγ√

1 +M2/c20(D + d/2)
> β (> 0).

Finally we can conclude as in Case 2.

Case 4. With a nontrivial additional force F.
Let us finally explain how one can take the small force F into account. First, we study

the equations for |V | and θ, where θ is the angle between v and V (t, 0, x, v). The following
computations are valid for v large so that |V (t, 0, x, v)| does not vanish and for a time interval
where θ ∈ [−π/2, π/2].

• For what concerns |V |, it suffices to take the scalar product with V (t, 0, x, v) of the equation
of V . We infer

d

dt
|V (t, 0, x, v)|2 = 2F · V (t, 0, x, v),
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so that

(6.16)
d

dt
|V (t, 0, x, v)| =

F · V (t, 0, x, v)

|V (t, 0, x, v)|
.

Therefore, it is clear that for T > 0, there exists κ > 0 small enough, such that if the L∞

norm of F is smaller than κ, then one has for all (x, v) ∈ T
2 × R

2 with |v| ≥ m, for any
t ∈ [0, T ],

(6.17)
|v|

2
≤ |V (t, 0, x, v)| ≤ 2|v|.

• For what concerns θ, taking the scalar product of the equation of V with v we deduce
(

d

dt
|V (t, 0, x, v)|

)
|v| cos θ(t)− |V (t, 0, x, v)||v|θ′(t) sin θ(t)

= b(X(t, 0, x, v))
V

⊥
(t, 0, x, v) · v√

1 + |V (t,0,x,v)|2

c2

+ F · v.

Hence

|V (t, 0, x, v)||v|θ′(t) sin θ(t)

= b(X(t, 0, x, v))|V (t, 0, x, v)||v| sin(θ(t))
1√

1 + |V (t,0,x,v)|2

c2

−F·

(
v −

V (t, 0, x, v)|v|

|V (t, 0, x, v)|
cos θ(t)

)
.

We notice that

v −
V (t, 0, x, v)|v|

|V (t, 0, x, v)|
cos θ(t) = p{V (t,0,x,v)}⊥(v),

where p{V (t,0,x,v)}⊥(v) denotes the orthogonal projection of v on {V (t, 0, x, v)}⊥. So

(6.18) θ′(t) =
b(X(t, 0, x, v))√
1 + |V (t,0,x,v)|2

c2

,+
1

|V (t, 0, x, v)|
F ·

p{V (t,0,x,v)}⊥(v)

|v| sin θ(t)
.

Note that

|p{V (t,0,x,v)}⊥(v)| = |v| | sin(θ(t))|,

so that, using Cauchy-Schwarz inequality:

−
1

|V (t, 0, x, v)|

∣∣∣∣∣F ·
p{V (t,0,x,v)}⊥(v)

|v| sin θ(t)

∣∣∣∣∣ ≥ −
1

|V (t, 0, x, v)|
‖F‖∞.

Now it is rather straightforward to revisit Case 3. to include the small force F. A helpful
ingredient is given by the following Gronwall estimate, in which we compare the characteristics
(X,V ) associated with F+b(x)v⊥ with the characteristics (X,V ) associated with the magnetic
field b(x)v⊥ alone. We have:

(6.19)

{
|V (σ + t, σ, x, v) − V (σ + t, σ, x, v)| ≤ ‖F‖∞ exp(‖b‖W 1,∞(1 + 2|v|)t),
|X(σ + t, σ, x, v) −X(σ + t, σ, x, v)| ≤ t‖F‖∞ exp(‖b‖W 1,∞(1 + 2|v|)t),

which allows to get the result by using a perturbation argument (we recall that ‖F‖∞ ≤ κ). �
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