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We consider the recovery of a finite stream of Dirac pulses at nonuniform locations, from noisy lowpass-filtered samples. We show that maximumlikelihood estimation of the unknown parameters amounts to a difficult, even believed NP-hard, matrix problem of structured low rank approximation. To solve it, we propose a new heuristic iterative algorithm, based on a recently proposed splitting method for convex nonsmooth optimization. Although the algorithm comes, in absence of convexity, with no convergence proof, it converges in practice to a local solution, and even to the global solution of the problem, when the noise level is not too high. Thus, our method improves upon the classical Cadzow denoising method, for same ease of implementation and speed.

Introduction and Problem Formulation

Reconstruction of signals lying in linear spaces, including bandlimited signals and splines, has long been the dominant paradigm in sampling theory, rooted in Shannon's work [START_REF] Unser | Sampling-50 Years after Shannon[END_REF]. Recently, analog reconstruction from discrete samples has been enlarged to a broader class of signals, with so-called finite rate of innovation, i.e. ruled by parsimonious models [START_REF] Blu | Sparse sampling of signal innovations[END_REF][START_REF] Mishali | Sub-Nyquist sampling: Bridging theory and practice[END_REF][START_REF] Urigüen | Sampling at the rate of innovation: Theory and applications[END_REF][START_REF] Vetterli | Sampling signals with finite rate of innovation[END_REF]. This emerging theory predates and parallels the framework of sparse recovery and compressed sensing [START_REF] Strohmer | Measure what should be measured: Progress and challenges in compressive sensing[END_REF].

In this paper, we focus on the prototypical problem of estimating a finite stream of Dirac pulses, a.k.a. spike train, from uniform, noisy, lowpass-filtered samples [START_REF] Blu | Sparse sampling of signal innovations[END_REF][START_REF] Gedalyahu | Multichannel sampling of pulse streams at the rate of innovation[END_REF][START_REF] Kusuma | On the accuracy and resolution of powersumbased sampling methods[END_REF][START_REF] Maravic | Sampling and reconstruction of signals with finite rate of innovation in the presence of noise[END_REF][START_REF] Tur | Innovation rate sampling of pulse streams with application to ultrasound imaging[END_REF][START_REF] Vetterli | Sampling signals with finite rate of innovation[END_REF]. More precisely, the sought-after unknown signal š consists of K Dirac pulses in the finite interval [0, τ [, where the real τ > 0 and the integer K ≥ 1 are known; that is,

š(t) = K k=1 ǎk δ(t -ťk ), ∀t ∈ [0, τ [, (1) 
where δ(t) is the Dirac mass distribution, { ťk } K k=1 are the unknown distinct locations in [0, τ [, and {ǎ k } K k=1 are the unknown real nonzero amplitudes 1 . The goal is to obtain estimates of these 2K values, which forms a deterministic (non-Bayesian) parametric estimation problem. The available data consists of linear, uniform, noisy measurements {v n } N -1 n=0 on š, of the form

v n = τ 0 š(t)ϕ nτ N -t dt + ε n (2) = K k=1 ǎk ϕ nτ N -ťk + ε n , ∀n = 0, . . . , N -1, (3) 
where ϕ(t) is the sampling function and the ε n ∼ N (0, σ 2 ) are independent random realizations of Gaussian noise. Note that other noise models could be considered as well, by changing the cost function in eqns. ( 5), [START_REF] Blu | The generalized annihilation property-A tool for solving finite rate of innovation problems[END_REF], [START_REF] Candès | Matrix completion with noise[END_REF] below. The questions of the choice of the function ϕ and of the number N of measurements allowing perfect reconstruction, in absence of noise, has been addressed in the literature [START_REF] Ben-Haim | Performance bounds and design criteria for estimating finite rate of innovation signals[END_REF][START_REF] Dragotti | Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang-Fix[END_REF][START_REF] Gedalyahu | Multichannel sampling of pulse streams at the rate of innovation[END_REF][START_REF] Tur | Innovation rate sampling of pulse streams with application to ultrasound imaging[END_REF]. In a nutshell, the condition N ≥ 2K + 1, which we hereafter assume to be true, is necessary and sufficient, provided that ϕ satisfies some constraints in Fourier domain. Additionally, we assume, without loss of generality and only to simplify the notations, that N is odd, of the form N = 2M + 1. Since the emphasis in this paper is on appropriately handling the presence of noise and not on being the most general, we adopt the simplest choice of the Dirichlet sampling function [START_REF] Tur | Innovation rate sampling of pulse streams with application to ultrasound imaging[END_REF], which amounts to periodizing the signal s on the real line before sampling it with the sinc function:

ϕ(t) = sin(N πt/τ ) N sin(πt/τ ) = 1 N M m=-M e j2πmt/τ , ∀t ∈ R. (4) 
The extension of the setting to the reconstruction of pulses with real shape, instead of the ideal Dirac distribution, is of practical interest for a wide range of applications, including ultrawideband communications [START_REF] Mishali | Sub-Nyquist sampling: Bridging theory and practice[END_REF] and the detection of impulsive signals in biomedical applications [START_REF] Tur | Innovation rate sampling of pulse streams with application to ultrasound imaging[END_REF]. This generalization, or equivalently the choice of another sampling function ϕ, can be addressed without any difficulty, as described in details in [START_REF] Tur | Innovation rate sampling of pulse streams with application to ultrasound imaging[END_REF]; therefore, to keep the derivations and notations simple, we do not consider this general case in the paper. We note that the considered sparse deconvolution problem is sometimes called superresolution [START_REF] Azaïs | Spike detection from inaccurate samplings[END_REF][START_REF] Candès | Super-resolution from noisy data[END_REF], because it consists in locating the pulses with precision beyond the resolution limit of τ /N suggested by the classical sampling theory.

The paper is organized as follows. In Sect. 2, we formulate the maximum likelihood estimation problem and in Sect. [START_REF] Aragón Artacho | Recent results on Douglas-Rachford methods for combinatorial optimization problems[END_REF], we show that it amounts to a low rank matrix approximation problem. The new algorithm to solve it is presented in Sect. 4. Experimental results illustrate the effectiveness of the approach in Sect. 5.

Maximum Likelihood Estimation of the Parameters

A natural approach to solve parametric estimation problem is maximum likelihood (ML) estimation; it consists in selecting the model which is the most likely to explain the observed noisy data. Since we have assumed Gaussian noise, this corresponds to solving the nonlinear least-squares problem [START_REF] Hirabayashi | Sampling signals with finite rate of innovation and recovery by maximum likelihood estimation[END_REF][START_REF] Hirabayashi | Reconstruction of the sequence of Diracs from noisy samples via maximum likelihood estimation[END_REF]:

Find ( t, ã) ∈ arg min t∈[0,τ [ K ,a∈R K N -1 n=0 v n - K k=1 a k ϕ nτ N -t k 2 . (5) 
We suppose in the following that the solution set to this problem is a singleton, that the amplitudes ã = {ã k } K k=1 are nonzero, and that the locations t = { tk } K k=1 are distinct. This is the case almost surely, with respect to the noise randomness. Now, applying the discrete Fourier transform to the vector of measurements yields the Fourier coefficients defined by

vm = N -1 n=0 v n e -j2πmn/N , ∀m = -M, . . . , M. (6) 
We define the Fourier coefficients {ε m } M m=-M similarly. Combining (3) and (4), we get, for every n = 0, . . . , N -1,

v n -ε n = 1 N K k=1 ǎk M m=-M e j2πm(n/N -ťk /τ ) (7) = 1 N M m=-M e j2πmn/N K k=1 ǎk e -j2πm ťk /τ . (8) 
We recognize the form of the inverse discrete Fourier transform. Thus, by identification, we obtain

vm = K k=1 ǎk e -j2πm ťk /τ + εm , ∀m = -M, . . . , M. (9) 
Since the inverse discrete Fourier transform is unitary, up to a constant, the problem ( 9) can be rewritten as [START_REF] Hirabayashi | Reconstruction of the sequence of Diracs from noisy samples via maximum likelihood estimation[END_REF]:

Maximum likelihood (ML) estimation problem

Find ( t, ã) = arg min t∈[0,τ [ K ,a∈R K M m=-M vm - K k=1 a k e -j2πm t k τ 2 . (10) 
We remark that [START_REF] Blu | The generalized annihilation property-A tool for solving finite rate of innovation problems[END_REF] takes the form of a spectral estimation problem, which consists in retrieving the parameters of a sum of complex exponentials or sinusoids from noisy samples [START_REF]Special issue on spectral estimation[END_REF][START_REF] Stoica | List of references on spectral line analysis[END_REF][START_REF] Stoica | Spectral Analysis of Signals[END_REF]. This classical problem, which has a wide range of applications, e.g. in communications, radar, sonar, and geophysical seismology [START_REF] Stoica | Spectral Analysis of Signals[END_REF], has been studied extensively [START_REF] Bresler | Exact maximum likelihood parameter estimation of superimposed exponential signals in noise[END_REF][START_REF] Chan | A parameter estimation approach to estimation of frequencies of sinusoids[END_REF][START_REF] Macleod | Fast nearly ML estimation of the parameters of real or complex tones or resolved multiple tones[END_REF][START_REF] Quinn | The estimation and tracking of frequency[END_REF][START_REF] So | Linear prediction approach for efficient frequency estimation of multiple real sinusoids: Algorithms and analysis[END_REF][START_REF] Stoica | Maximum likelihood estimation of the parameters of multiple sinusoids from noisy measurements[END_REF][START_REF] Tufts | Frequency estimation of multiple sinusoids: Making linear prediction perform like maximum likelihood[END_REF]. The optimal statistical properties of ML spectral estimation are well known [START_REF] Bresler | Exact maximum likelihood parameter estimation of superimposed exponential signals in noise[END_REF][START_REF] Clergeot | Performance of high resolution frequencies estimation methods compared to the Cramér-Rao bounds[END_REF][START_REF] Li | On asymptotic normality of nonlinear least squares for sinusoidal parameter estimation[END_REF][START_REF] Rao | Asymptotic behavior of maximum likelihood estimates of superimposed exponential signals[END_REF][START_REF] Stoica | Maximum likelihood estimation of the parameters of multiple sinusoids from noisy measurements[END_REF][START_REF] Stoica | MUSIC, maximum likelihood and Cramér-Rao bound: further results and comparisons[END_REF][START_REF] Tufts | Frequency estimation of multiple sinusoids: Making linear prediction perform like maximum likelihood[END_REF]. However, solving the problem [START_REF] Blu | The generalized annihilation property-A tool for solving finite rate of innovation problems[END_REF] exactly is a computationally intractable task, since the cost function has a multimodal shape with a number of local minima of order of magnitude N K [START_REF] Ottaviani | Exact solutions in structured low-rank approximation[END_REF] and a narrow trough around the global minimum [START_REF] Chu | Structured low rank approximation[END_REF][START_REF] Gillard | Analysis of structured low rank approximation as an optimization problem[END_REF][START_REF] Lemmerling | Analysis of the structured total least squares problem for Hankel/Toeplitz matrices[END_REF][START_REF] Rice | On frequency estimation[END_REF][START_REF] Rife | Single-tone parameter estimation from discrete-time observation[END_REF], see the example of Fig. 1. Thus, due to the combinatorial nature of the problem, algebraic [START_REF] Dreesen | Numerical algebraic geometry II: Back to the roots -polynomial system solving using linear algebra[END_REF][START_REF] Ottaviani | Exact solutions in structured low-rank approximation[END_REF] and stochastic [START_REF] Erdozain | A new stochastic algorithm inspired on genetic algorithms to estimate signals with finite rate of innovation from noisy samples[END_REF][START_REF] Hirabayashi | Sampling signals with finite rate of innovation and recovery by maximum likelihood estimation[END_REF][START_REF] Hirabayashi | Reconstruction of the sequence of Diracs from noisy samples via maximum likelihood estimation[END_REF][START_REF] Tan | Estimating signals with finite rate of innovation from noisy samples: A stochastic algorithm[END_REF] approaches can only be used for small values of K and N . When N ≫ K and the locations t k are not too close to each other, classical spectral estimation techniques like MUSIC [START_REF] Schmidt | Multiple emitter location and signal parameter estimation[END_REF] and ESPRIT [START_REF] Roy | ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise[END_REF], or greedy strategies [START_REF] Prasad | Sequential estimation of the sum of sinusoidal model parameters[END_REF], can be used; they are fast but are statistically suboptimal. In this work, we investigate the ML estimation problem [START_REF] Blu | The generalized annihilation property-A tool for solving finite rate of innovation problems[END_REF] in its whole generality, without any simplifying assumption. Several methods have been proposed to find a local minimum of the cost function in [START_REF] Blu | The generalized annihilation property-A tool for solving finite rate of innovation problems[END_REF] [START_REF] Hwang | A combined detection-estimation algorithm for the harmonic-retrieval problem[END_REF][START_REF] Li | Efficient mixed-spectrum estimation with applications to target feature extraction[END_REF][START_REF] Umesh | Estimation of parameters of exponentially damped sinusoids using fast maximum likelihood estimation with application to NMR spectroscopy data[END_REF][START_REF] Ying | On model order determination for complex exponential signals: Performance of an FFT-initialized ML algorithm[END_REF], which proceed in two steps: 1) a method is used to obtain a good initial estimate; 2) this estimate is refined iteratively and converges to the closest local minimizer of the nonconvex cost function. Thus, the quality of the method used for the first step is crucial. A major advantage of the approach developed in the next section is to get rid of this initialization problem. Lastly, we can mention recent developments inspired by the theory of compressed sensing, aiming at spectral estimation from random samples [START_REF] Boufounos | What's the frequency, Kenneth?: Sublinear Fourier sampling off the grid[END_REF][START_REF] Duarte | Spectral compressive sensing[END_REF][START_REF] Hu | Compressed sensing of complex sinusoids: An approach based on dictionary refinement[END_REF][START_REF] Lexa | Reconciling compressive sampling systems for spectrally sparse continuous-time signals[END_REF][START_REF] Tang | Compressed sensing off the grid[END_REF]; this is notably different from our setting, where the Fourier coefficients are successive and not chosen randomly.

3 The Annihilation Property: Reformulation of eqn.

(10) as a Matrix Denoising Problem

Let us assume temporarily that there is no noise, i.e. εm = 0 in [START_REF] Bhaskar | Atomic norm denoising with applications to line spectral estimation[END_REF]. Then, the sequence of Fourier coefficients {v m } M m=-M satisfies a linear annihilating difference equation [START_REF] Blu | The generalized annihilation property-A tool for solving finite rate of innovation problems[END_REF], a known property which dates back to de Prony's work in the eighteenth century [START_REF] Riche De Prony | Essai expérimental et analytique : sur les lois de la dilatabilité de fluides élastiques et sur celles de la force expansive de la vapeur de l'eau et de la vapeur de l'alcool à différentes températures[END_REF]. That is, the convolution of the sequence of Fourier coefficients with the annihilating filter {h k } K k=0 is identically zero:

K k=0 h k vm-k = 0, ∀m = -M + K, . . . , M, (11) 
with the (reversed) Z-transform of the annihilating filter defined, up to a constant, as

H(z -1 ) = K k=0 h k z k = K k=1 (z -e j2π ťk /τ ). (12) 
In matrix form, the annihilation property is

      v-M+K • • • v-M . . . . . . . . . . . . . . . . . . vM • • • vM-K       T K    h 0 . . . h K    =    0 . . . 0    . (13) 
Let us define, for any integer P with K ≤ P ≤ M , the Toeplitz-i.e. with constant values along its diagonals-matrix T P , of size N -P × P + 1, obtained by arranging the values {v m } M m=-M in its first row and column; T P is depicted in [START_REF] Chan | A parameter estimation approach to estimation of frequencies of sinusoids[END_REF] and in [START_REF] Boufounos | What's the frequency, Kenneth?: Sublinear Fourier sampling off the grid[END_REF] for P = K. We define the linear operator toeplitz P which maps the vector v = [v -M • • • vM ] T to T P , i.e. T P = toeplitz P (v). Then, the existence of a nonzero annihilating filter of size K + 1 for the sequence {v m } M m=-M is completely equivalent to the property that T P has rank at most K; that is, rank(toeplitz P (v)) ≤ K. Now, we turn back to the case when noise is present in the data. Because of noise, the matrix T P = toeplitz P (v) has full rank. Let us define the vector ṽ = [ ṽ-M • • • ṽM ] T from the parameters { tk } K k=1 and {ã k } K k=1 solution to (10): ṽm = K k=1 ãk e -j2πm tk τ . Then, the annihilating property holds for these denoised Fourier coefficients, so that rank(toeplitz P ( ṽ)) ≤ K. Therefore, the ML estimation problem [START_REF] Blu | The generalized annihilation property-A tool for solving finite rate of innovation problems[END_REF] can be rewritten as:

Find ṽ = arg min v′ ∈C N v′ -v 2 s.t. rank(toeplitz P (v ′ )) ≤ K. (14) 
So, the process amounts to denoise the vector v by projecting it on the manifold defined by the composition of the low rank and Toeplitz properties, but this formulation does not yield a constructive method. To circumvent this difficulty, one can further rewrite the problem, so that the unknown becomes the matrix T P = toeplitz P ( ṽ). For this, let us define the weighted Frobenius norm of a matrix A = {a i,j } ∈ C N -P ×P +1 by

A 2 w = N -P i=1 P +1 j=1 w i,j |a i,j | 2 , (15) 
where w i,j is the inverse of the size of the diagonal going through the position (i, j):

w i,j =    1/(i -j + P + 1) if i -j ≤ 0, 1/(P + 1) if 1 ≤ i -j ≤ N -2P -1, 1/(j -i + N -P ) if i -j ≥ N -2P. (16) 
In fact, ṽv 2 = toeplitz P ( ṽ)

-toeplitz P (v) 2 w = T P -T P 2 w . (17) 
Hence, we can reformulate the estimation problem [START_REF] Blu | The generalized annihilation property-A tool for solving finite rate of innovation problems[END_REF], or equivalently [START_REF] Bresler | Exact maximum likelihood parameter estimation of superimposed exponential signals in noise[END_REF], as the following matrix approximation problem, named structured low rank approximation (SLRA) in the literature [START_REF] Gillard | Optimization challenges in the structured low rank approximation problem[END_REF][START_REF] Markovsky | Structured low-rank approximation and its applications[END_REF][START_REF]Low Rank Approximation: Algorithms, Implementation[END_REF]:

Structured low rank approximation (SLRA) problem

Find T P ∈ arg min

T∈C N-P ×P +1 T -T P 2 w (18) 
s.t. T is Toeplitz and rank(T) ≤ K, for some chosen integer P ∈ K, . . . , M . The SLRA problem [START_REF] Candès | Matrix completion with noise[END_REF], which consists in projecting a matrix onto the intersection of a linear subspace and a nonconvex manifold, is believed to be NP-hard [START_REF] Gillis | Low-rank matrix approximation with weights or missing data is NP-hard[END_REF][START_REF]Low Rank Approximation: Algorithms, Implementation[END_REF][START_REF] Shalev-Shwartz | Large-scale convex minimization with a low-rank constraint[END_REF]. So, at first glance, we just have replaced the difficult problem [START_REF] Blu | The generalized annihilation property-A tool for solving finite rate of innovation problems[END_REF] by the SLRA problem of same difficulty. However, the parametric problem [START_REF] Blu | The generalized annihilation property-A tool for solving finite rate of innovation problems[END_REF] has been reformulated as a matrix denoising problem: the matrix T P , or equivalently the data {v n } N -1 n=0 , is denoised by finding the closest matrix consistent with the model's structure. The main advantage is that the initialization problem disappears: an iterative algorithm to solve the SLRA problem proceeds directly, with the noisy matrix T P as initial estimate of the solution T P . Moreover, for a low noise level, an algorithm converging to a local solution will find the global solution T P , as T P , T P and the true noiseless matrix will correspond to the same catchment area of the cost function in [START_REF] Candès | Matrix completion with noise[END_REF].

Since the desired parameters { tk } K k=1 and {ã k } K k=1 are somehow encoded in the matrices, we have to describe the extraction process. The whole reconstruction procedure, also given in [START_REF] Blu | Sparse sampling of signal innovations[END_REF], is detailed on the next page. In absence of noise, it yields perfect reconstruction of the parameters. We note that the estimation of the locations is decoupled from that of the amplitudes; since finding the amplitudes given the locations is a simple linear regression problem, the emphasis is on the estimation quality of the locations.

We must remark that the estimates {( tk , ãk )} K k=1 , obtained by the procedure, coincide with the ML estimates, solution to [START_REF] Blu | The generalized annihilation property-A tool for solving finite rate of innovation problems[END_REF], only if the roots {z k } K k=1 are distinct and all on the complex unit circle. This is guaranteed to be the case if the noise level ε is below some threshold, which depends on the separation min k 1 =k 2 | ťk 1 -ťk 2 |. Indeed, the matrices T P and T P are centro-Hermitian, i.e. their entries satisfy v-m = v * m and ṽ-m = ṽ * m , for every m in -M, . . . , M , where • * denotes complex conjugation. Consequently, the polynomial K k=0 hk z k is self-inversive [START_REF] Sinclair | Self-inversive polynomials with all zeros on the unit circle[END_REF], so that its roots {z k } K k=1 are either on the complex unit circle or come by pairs with same complex phase and opposite amplitudes. The perturbation due to noise on the coefficients vm yields a proportionally bounded perturbation on the estimated roots zk = e j2π tk /τ , with respect to the true roots žk = e j2π ťk /τ , but the roots remain on the complex unit circle. Only if the perturbation is large enough, two distinct roots (z k 1 , zk 2 ) will possibly merge and then split in a pair (z k 1 , zk 2 = 1/z * k 1 ) on both sides of the unit circle, yielding tk 1 = tk 2 .

Reconstruction Procedure

Input: The Fourier coefficients {v m } M m=-M . Output: the estimates { tk } K k=1 and {ã k } K k=1 of the unknown locations { ťk } K k=1 and amplitudes {ǎ k } K k=1 .

Step 1. Choose an integer P such that K ≤ P ≤ M ; we recommend P = M . Construct the Toeplitz matrix T P of size N -P × P + 1 by arranging the coefficients {v m } M m=-M in its first row and column and repeating them along the diagonals:

T P =       v-M+P • • • v-M . . . . . . . . . . . . . . . . . . vM • • • vM-P       . ( 19 
)
Step 2. Solve the SLRA problem (18).

Step 3. If P > K, reshape the denoised Toeplitz matrix T P to a Toeplitz matrix T K of size N -K × K + 1; that is,

T K =       ṽ-M+K • • • ṽ-M . . . . . . . . . . . . . . . . . . ṽM • • • ṽM-K       . (20) 
Note that both T P and T K have rank K if ( 18) is solved exactly.

Step 4. Compute the right singular vector h = [ h0 • • • hK ] T of T K corresponding to the singular value zero (the smallest singular value in practice); that is, in the singular value decomposition (SVD) T K = LΣR H , h corresponds to the last column of R.

Then, compute the roots {z k } K k=1 of the polynomial

K k=0 hk z k ; the estimates { tk } K k=1
of the locations are given by

tk = τ 2π arg [0,2π[ (z k ), ∀k = 1, . . . , K. (21) 
Step 5. Given the estimates { tk } K k=1 , the maximum-likelihood estimates {ã k } K k=1 of the amplitudes are obtained by solving the linear system

U H Uã = U H v, ( 22 
)
where • H denotes the Hermitian transpose and

U =    e j2πM t1/τ • • • e j2πM tK /τ . . . . . . . . . e -j2πM t1/τ • • • e -j2πM tK /τ    . (23) 

State of the Art for Structured Low Rank Approximation (SLRA)

The problem of reconstructing a low-rank matrix from limited, noisy, linear measurements arises in many areas of engineering and applied sciences, such as signal processing, machine learning, control, and computer vision. The wide range of applications includes low-order system identification, dynamic MRI, quantum state tomography, phase retrieval, and global positioning from local distances, to mention a few; see references in [START_REF] Fazel | Hankel matrix rank minimization with applications in system identification and realization[END_REF][START_REF] Markovsky | Structured low-rank approximation and its applications[END_REF][START_REF]Low Rank Approximation: Algorithms, Implementation[END_REF]. In many of these problems, the matrix to be recovered is constrained to have some structure, like being Toeplitz, Hankel, Sylvester, or positive definite. The SLRA problems have been studied in the literature under different names; they are equivalent or have tight connections with constrained or structured total least-squares, total leastnorm, and errors-in-variables [START_REF] Moor | Total least squares for affinely structured matrices and the noisy realization problem[END_REF][START_REF] Markovsky | Structured low-rank approximation and its applications[END_REF][START_REF]Low Rank Approximation: Algorithms, Implementation[END_REF][START_REF] Markovsky | Total least squares methods[END_REF][START_REF] Rosen | Total least norm formulation and solution for structured problems[END_REF][START_REF] Van Huffel | Total least squares and errors-in-variables modeling[END_REF][START_REF] Van Huffel | Total least squares and errors-in-variables modeling[END_REF][START_REF] Van Huffel | Formulation and solution of structured total least norm problems for parameter estimation[END_REF]. Several methods have been proposed, in the community of numerical algebra, to obtain a local solution of a SLRA problem, using high-level optimization routines [START_REF] Borsdorf | Structured matrix nearness problems: Theory and algorithms[END_REF][START_REF] Chu | Structured low rank approximation[END_REF][START_REF] Hitz | On computing nearest singular Hankel matrices[END_REF][START_REF] Khare | Numerical algorithm for structured low rank approximation problem[END_REF][START_REF] Lemmerling | Fast algorithm for solving the Hankel/Toeplitz structured total least squares problem[END_REF][START_REF] Schuermans | Weighted low rank approximation: Algorithms and applications[END_REF][START_REF] Schuermans | Structured weighted low rank approximation[END_REF][START_REF] Van Huffel | Formulation and solution of structured total least norm problems for parameter estimation[END_REF].

For instance, the iterative approach in [START_REF] Chu | Structured low rank approximation[END_REF] uses the Matlab function fminunc, which is a BFGS quasi-Newton method with line search. Besides the difficulty of implementation, the algorithm is very costly, since many SVDs are required at each iteration. So, to our knowledge, the only efficient publicly available software package for SLRA is the one currently in development by I. Markovsky [START_REF] Markovsky | Software for weighted structured low-rank approximation[END_REF]. However, it only handles real-valued data, whereas the matrices in ( 18) are complex-valued with centro-Hermitian symmetry.

Due to the complexity of dedicated solvers for SLRA, a simple alternative is to use the heuristic method of Cadzow denoising [START_REF] Cadzow | Signal enhancement-A composite property mapping algorithm[END_REF][START_REF]Total least squares, matrix enhancement, and signal processing[END_REF], a.k.a. alternating projections. This method is promoted in [START_REF] Blu | Sparse sampling of signal innovations[END_REF][START_REF] Tur | Innovation rate sampling of pulse streams with application to ultrasound imaging[END_REF] for the reconstruction of Dirac pulses, and represents the state of the art for this problem. To describe the method, let us introduce some notations.

• We place ourselves in the real Hilbert space H = C N -P ×P +1 of complexvalued matrices of size N -P × P + 1, having centro-Hermitian symmetry. The (Frobenius) inner product between two matrices X, X ′ of H is X, X ′ = i,j x i,j x ′ * i,j ∈ R.

• We denote by P Ω the projection onto a subset Ω of H, which maps an element of H to the closest element in Ω, with respect to the Frobenius norm.

• We define T , the linear subspace of H of Toeplitz matrices. P T consists in averaging along the diagonals; that is, P T maps a matrix X with entries {x i,j } j=1,...,P +1 i=1,...,N -P to a matrix X ′ with entries

x ′ i,j =      1 i-j+P +1 i-j+P +1 k=1 x k,k+j-i if i -j ≤ 0, 1 P +1 P +1 k=1 x k+i-j,k if 1 ≤ i -j ≤ N -2P -1, 1 j-i+N -P j-i+N -P k=1 x k+i-j,k if i -j ≥ N -2P. ( 24 
)
The computational cost of this operation is O(P (N -P )).

• We define R K , the closed but nonconvex manifold of matrices of H having rank at most K. P R K consists in truncating the SVD of the matrix, according to the classical Schmidt-Eckart-Young theorem [START_REF] Eckart | The approximation of one matrix by another of lower rank[END_REF] [38, theorem 2.5.3]: if a matrix X has SVD X = LΣR H , then P R K (X) is obtained by setting to zero all except the K largest diagonal elements of Σ, which are the singular values of X. For a square or close to square matrix, i.e. P ∼ N/2, the computational cost of the SVD is O(N 3 ).

Then, Cadzow denoising simply consists in applying alternately P R K and P T to the matrix T P :

Cadzow denoising algorithm. Set T (0) P = T P , depicted in [START_REF] Chan | A parameter estimation approach to estimation of frequencies of sinusoids[END_REF]. Then iterate, for every l ≥ 0,

T (l+1) P = P T P R K (T (l) P ) .
This algorithm seems to always converge in practice to a matrix T P ∈ T ∩ R K , i.e. a Toeplitz matrix of rank at most K. But contrary to a common belief, this convergence has not been proved, although some partial convergence results have been derived recently [START_REF] Andersson | A fast alternating projection method for complex frequency estimation[END_REF][START_REF]Alternating projections on non-tangential manifolds[END_REF][START_REF] Hesse | Alternating projections and Douglas-Rachford for sparse affine feasibility[END_REF][START_REF] Luke | Prox-regularity of rank constraint sets and implications for algorithms[END_REF]. Moreover, even if Cadzow denoising converges to a Toeplitz matrix of rank at most K, this matrix is not a local minimizer of the Frobenius distance or of the weighted Frobenius distance • -T P w in the SLRA problem [START_REF] Candès | Matrix completion with noise[END_REF], as shown by examples in [START_REF] Chu | Structured low rank approximation[END_REF][START_REF] Moor | Total least squares for affinely structured matrices and the noisy realization problem[END_REF][START_REF] Gillard | Analysis of structured low rank approximation as an optimization problem[END_REF]. In the next section, we propose a new algorithm to compute a local solution of the SLRA problem, which thus improves upon Cadzow denoising, for essentially the same complexity of one SVD per iteration.

A New Optimization Algorithm for SLRA

Before addressing the particular problem [START_REF] Candès | Matrix completion with noise[END_REF], let us consider the generic optimization problem:

Find x ∈ arg min x∈H F (x) s.t. x ∈ Ω 1 ∩ Ω 2 , ( 25 
)
where H is a real Hilbert space of finite dimension, Ω 1 and Ω 2 are two closed subsets of H, and F : H → R is a convex and differentiable function with β-Lipschitz continuous gradient, for some β > 0; that is, ∇F (x) -∇F (x ′ ) ≤ β xx ′ , ∀x, x ′ ∈ H. This problem can be solved by the following algorithm:

Optimization algorithm. Choose the parameters µ > 0, γ ∈ ]0, 1[, and the initial estimates x (0) , s (0) ∈ H. Then iterate, for every l ≥ 0,

x (l+1) = P Ω 1 s (l) + γ(x (l) -s (l) ) -µ∇F (x (l) ) , s (l+1) = s (l) -x (l+1) + P Ω 2 (2x (l+1) -s (l) ).
This algorithm is a particular instance of a more general proximal splitting algorithm derived recently by the first author [START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF]. Consequently, as corollaries of the results derived in [START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF], we get the following convergence results.

Theorem 1. In [START_REF] Moor | Total least squares for affinely structured matrices and the noisy realization problem[END_REF], suppose that (i) a solution exists; (ii) the sets Ω 1 and Ω 2 are convex; (iii) ri(Ω 1 ) ∩ ri(Ω 2 ) = ∅, where ri denotes the relative interior [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]. In the algorithm, suppose that (iv) 2γ > βµ. Then, the sequence (x (l) ) l∈N converges to some element x solution to the problem (25).

Theorem 2. In [START_REF] Moor | Total least squares for affinely structured matrices and the noisy realization problem[END_REF], suppose that (i) F = 0; (ii) the sets Ω 1 and Ω 2 are convex; (iii) Ω 1 ∩ Ω 2 = ∅. In the algorithm, suppose that (iv) γ = µ = 0. Then, the algorithm reverts to the Douglas-Rachford splitting algorithm, well known in optimization theory [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Combettes | Proximal splitting methods in signal processing[END_REF]. Consequently, the sequence (x (l) ) l∈N converges to some element

x ∈ Ω 1 ∩ Ω 2 .
Now, we recognize that the SLRA problem ( 18) is a particular instance of (25); in the notations introduced in the previous section, Ω 1 = R K , Ω 2 = T , and

F = 1 2 • -T P 2 
w . This motivates the use of the proposed optimization algorithm to solve the SLRA problem. Let us rewrite explicitly the algorithm in this setting. For this, we remark that ∇F (X) = W • (X -T P ), where • is the entrywise (Hadamard) product and the entries w i,j of the matrix W are defined in [START_REF]Total least squares, matrix enhancement, and signal processing[END_REF]. The Lipschitz constant of ∇F is β = max i,j |w i,j | = 1.

Proposed algorithm for SLRA. Choose the parameters µ > 0, γ ∈ ]0, 1[, such that 2γ > µ, and set T However, we remark that one of the assumption in Theorem 1 is not met in our context: the set R K is not convex. Therefore, the convergence of the proposed algorithm to a local solution of the problem ( 18) is not guaranteed, and we will use the algorithm as a heuristic. In fact, Cadzow denoising and the Douglas-Rachford algorithm are also heuristic methods for nonconvex problems, but a large body of empirical evidence shows that these two algorithms actually work in a surprisingly broad range of applications and achieve comparable results to much more sophisticated, special purpose algorithms. They have been used for protein fold prediction, phase retrieval in optics, crystallography, graph coloring, and solving Sudokus [START_REF] Aragón Artacho | Recent results on Douglas-Rachford methods for combinatorial optimization problems[END_REF][START_REF] Bauschke | Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization[END_REF][START_REF] Elser | Searching with iterated maps[END_REF][START_REF] Tropp | Designing structured tight frames via an alternating projection method[END_REF]. The Douglas-Rachford iteration generally outperforms Cadzow denoising for these applications [START_REF] Aragón Artacho | Recent results on Douglas-Rachford methods for combinatorial optimization problems[END_REF][START_REF] Bauschke | Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization[END_REF][START_REF] Elser | Searching with iterated maps[END_REF]. The motivation for applying the new proposed algorithm to SLRA stems from this practical success, since it can be viewed as a Douglas-Rachford iteration with an additional gradient descent step. However, there are very few convergence results for the Douglas-Rachford algorithm in the nonconvex case, as the behavior of such iterative methods is particularly difficult to analyze; see [START_REF] Phan | Linear convergence of the Douglas-Rachford method for two closed sets[END_REF] and references therein. Still, we can mention the following good property: for every fixed point ( T P , S P ) of the proposed algorithm, T P ∈ R K ∩ T .

In practice, when using the proposed algorithm to solve the SLRA problem [START_REF] Candès | Matrix completion with noise[END_REF], we observed that it almost always converges. Only when the noise level is very high, and in rare cases, it gets trapped in a cycle and does not converge; if this happens, running again the algorithm with lower values of the parameters µ and γ is sufficient to obtain convergence. More extensive use of the algorithm will be necessary to understand its behavior and the appropriate values of µ and γ to use. When the algorithm converges, it always does so to a Toeplitz matrix of rank K, which is a local minimizer of the weighted Frobenius cost function. More precisely, we checked that the locations { tk } K k=1 and amplitudes {ã k } K k=1 obtained at convergence of the algorithm are local solutions of the ML problem [START_REF] Blu | The generalized annihilation property-A tool for solving finite rate of innovation problems[END_REF] as follows. As remarked in [25, Sect. IV.C], in the case of K = 1 Dirac pulse, all the local minima of the least squares cost function [START_REF] Blu | The generalized annihilation property-A tool for solving finite rate of innovation problems[END_REF] with respect to the location are roots of a particular polynomial Q constructed from the data. That is, setting the partial derivative with respect to t to zero in M m=-M |v mae -j2πmt/τ | 2 yields M m=-M mz m v * m = 0, where z = e -j2πmt/τ . Equivalently, t is a local solution only if z is a root on the unit circle of the polynomial

Q(z) = 2M m=0 (m -M )v * m-M z m . (26) 
Therefore, in our case of multiple Dirac pulses, we can subtract to the data {v m } M m=-M the sequences {ã k e -j2πm tk /τ } M m=-M for all values of k except one value k 0 and check whether zk 0 , defined in [START_REF] Clergeot | Performance of high resolution frequencies estimation methods compared to the Cramér-Rao bounds[END_REF], is a root of the corresponding polynomial Q. We observed empirically that this is always the case.

A Convex Variant of the Approach

To circumvent the difficulty of achieving the ML estimate for spike train recovery from noisy Fourier coefficients, a convex surrogate of the problem has been proposed in recent papers, based on the minimization of the so-called total variation measure [START_REF] Azaïs | Spike detection from inaccurate samplings[END_REF][START_REF] Bhaskar | Atomic norm denoising with applications to line spectral estimation[END_REF][START_REF] Candès | Super-resolution from noisy data[END_REF]. The main limitation of this approach is the necessity of a minimal separation between the pulses, like min k 1 =k 2 | ťk 1 -ťk 2 | ≥ 2τ /M . In this section, we propose another convex relaxation of the problem, which is free of such assumption of minimal separation. It is obtained by replacing the rank in the SLRA problem [START_REF] Candès | Matrix completion with noise[END_REF] by its convex surrogate, the nuclear norm [START_REF] Fazel | A rank minimization heuristic with application to minimum order system approximation[END_REF]:

Convex approximation of the SLRA problem Find T P ∈ arg min

T∈C N-P ×P +1 1 2 T -T P 2 w + λ T * (27) s.t. T is Toeplitz,
where the nuclear norm • * of a matrix is the sum of its singular values and the Lagrangian parameter λ > 0 controls the tradeoff between the antagonist terms.

The main advantage of this formulation is to be a strongly convex semidefinite program, for which many efficient algorithms exist to compute the unique solution. Also, replacing the rank by the nuclear norm has proved successful for several problems, like matrix completion [START_REF] Candès | Matrix completion with noise[END_REF][START_REF] Fazel | Hankel matrix rank minimization with applications in system identification and realization[END_REF][START_REF] Liu | Interior-point method for nuclear norm approximation with application to system identication[END_REF]. However, in our setting, two pulses can be arbitrarily close to each other, so that the measurements can be highly coherent. Therefore, the quality of the solution to a problem like ( 27) can be significantly degraded in comparison with the SLRA solution, as shown in another context in [START_REF]Data modeling using the nuclear norm heuristic[END_REF][START_REF]How effective is the nuclear norm heuristic in solving data approximation problems?[END_REF]. For our problem, the solution of ( 27) seems significantly worse than the estimate given by the algorithm proposed in Sect. 4, as shown by the example in Fig. 6. Moreover, the choice of the value of λ to use is problematic; a stability analysis of the kind of the one for total variation minimization in [START_REF] Tang | Near minimax line spectral estimation[END_REF] would be desirable, but we leave this difficult study for future work.

We note that a minor modification of the proposed algorithm for SLRA can compute the solution of ( 27): we simply have to replace the operator P R K , which performs hard-thresholding of the singular values, by soft-thresholding S µλ of the singular values: in the SVD X = LΣR H , S µλ (X) is obtained by replacing each of the diagonal elements {σ i,i } P +1 i=1 of the matrix Σ by max(σ i,iµλ, 0). As a consequence of the results in [START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF], the sequence (T (l) P ) l∈N generated by this algorithm converges to some matrix T P solution to [START_REF] Dreesen | Numerical algebraic geometry II: Back to the roots -polynomial system solving using linear algebra[END_REF].

Experimental Results

The reconstruction procedure described in Sect. 3 was implemented in Matlab, with the choice between Cadzow denoising and the algorithm proposed in Sect. 4 to solve the SLRA problem (with P = M ), or with no denoising (starting directly the procedure at Step 3, with T K = T K ; this method is called total least squares in [START_REF] Blu | Sparse sampling of signal innovations[END_REF]). We also implemented several methods of spectral estimation: root-MUSIC [START_REF] Barabell | Improving the resolution performance of eigenstructurebased direction-finding algorithms[END_REF] a variant of MUSIC (we used the function rootmusic of Matlab), the the proposed algorithm the SLRA problem [START_REF] Candès | Matrix completion with noise[END_REF] with SNR≥12dB, but with the Frobenius norm instead of the weighted Frobenius norm (which amounts to replace W • (T We set γ = 0.51µ in all cases. Actually, the values for µ and σ yielding fastest convergence depended on the experiment and on the noise level, and we could not come to a rule for tuning these parameters. Qualitatively, Cadzow denoising and the proposed algorithm behave similarly. Yet, the values of lowpass MSE indicate a slightly better reconstruction with the proposed method.

Conclusion

We proposed a new heuristic optimization algorithm for structured low rank approximation. Its combination with Prony's extraction procedure yields an efficient method for the reconstruction of Dirac pulses. The maximum-likelihood parameter estimates are obtained, up to some threshold SNR. Thus, the proposed algorithm outperforms the state-of-the-art approach to date, based on Cadzow denoising, for same ease of implementation and complexity, essentially one SVD per iteration. More in-depth analysis of the performances is currently led by the authors. Many theoretical questions remain open, e.g. on the relationship between the proposed formalism and the recent developments on total variation minimization [START_REF] Azaïs | Spike detection from inaccurate samplings[END_REF][START_REF] Bhaskar | Atomic norm denoising with applications to line spectral estimation[END_REF][START_REF] Candès | Super-resolution from noisy data[END_REF]. We should also investigate the possibility to generalize the method in higher dimensions, a work started in [START_REF] Condat | A 2-D spectral analysis method to estimate the modulation parameters in structured illumination microscopy[END_REF], and apply it to other model identification problems [START_REF]Low Rank Approximation: Algorithms, Implementation[END_REF]. [START_REF] Blu | The generalized annihilation property-A tool for solving finite rate of innovation problems[END_REF], as a function of t 1 and t 2 , on the horizontal and vertical axes, respectively. (b) plot of the same cost function as a function of t 2 , for t 1 = 0.47. For given t 1 and t 2 , the values of a 1 and a 2 are the optimal values obtained by solving [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF]. The setting is the same as in Figs. 2 and3 

( t1 -t 1 ) 2 τ + ( t2 -t 2 ) 2 τ , ( t1 -t 2 ) 2 τ + ( t2 -t 1 ) 2 τ /2, where (x) τ = (x + τ 2 ) mod τ -τ
2 , and (b) the lowpass MSE vṽ 2 /N , for several reconstruction methods. The true signal š consists of K = 2 Dirac pulses, with (t 1 , t 2 ) = (0.42, 0.52), (a 1 , a 2 ) = (1, 1), τ = 1, N = 11. The values are averaged over 10,000 noise realizations for every integer value of the SNR. The signal and the measurements are exactly the same as in Fig. 7, but the reconstruction is performed with K = 30, to illustrate the effects of underfitting. Interestingly, the 30 pulses with largest absolute amplitudes have been identified.
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  -T P ) by (T (l) P -T P ) in the algorithm), the results are almost exactly the same as with Cadzow denoising; this indicates that the gain provided by the proposed method is explained by the presence in the problem formulation of the appropriate cost function. In Figs. 4-8, we show examples for larger values of K and N . For the proposed algorithm, we used µ = 1.6 in Figs. 2-4 and µ = 0.1 in Figs. 5, 7, 8.
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 1 Figure 1: (a) Contour plot showing the level lines of the cost function in[START_REF] Blu | The generalized annihilation property-A tool for solving finite rate of innovation problems[END_REF], as a function of t 1 and t 2 , on the horizontal and vertical axes, respectively. (b) plot of the same cost function as a function of t 2 , for t 1 = 0.47. For given t 1 and t 2 , the values of a 1 and a 2 are the optimal values obtained by solving[START_REF] Combettes | Proximal splitting methods in signal processing[END_REF]. The setting is the same as in Figs.2 and 3(a): the true unknown signal consists of K = 2 Dirac pulses with τ = 1, ( ť1 , ť2 ) = (0.42, 0.52) and (ǎ 1 , ǎ2 ) = (1, 1); we have N = 11 noisy measurements with SNR=15dB.

  Figure 1: (a) Contour plot showing the level lines of the cost function in[START_REF] Blu | The generalized annihilation property-A tool for solving finite rate of innovation problems[END_REF], as a function of t 1 and t 2 , on the horizontal and vertical axes, respectively. (b) plot of the same cost function as a function of t 2 , for t 1 = 0.47. For given t 1 and t 2 , the values of a 1 and a 2 are the optimal values obtained by solving[START_REF] Combettes | Proximal splitting methods in signal processing[END_REF]. The setting is the same as in Figs.2 and 3(a): the true unknown signal consists of K = 2 Dirac pulses with τ = 1, ( ť1 , ť2 ) = (0.42, 0.52) and (ǎ 1 , ǎ2 ) = (1, 1); we have N = 11 noisy measurements with SNR=15dB.
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 2 Figure 2: Plot in log-log scale of (a) the mean squared periodic error (MSPE) min( t1t 1 ) 2 τ + ( t2t 2 ) 2 τ , ( t1t 2 ) 2 τ + ( t2t 1 ) 2 τ /2, where (x) τ = (x + τ 2 ) mod τ -τ2 , and (b) the lowpass MSE vṽ 2 /N , for several reconstruction methods. The true signal š consists of K = 2 Dirac pulses, with (t 1 , t 2 ) = (0.42, 0.52), (a 1 , a 2 ) = (1, 1), τ = 1, N = 11. The values are averaged over 10,000 noise realizations for every integer value of the SNR.
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 345678 Figure3: The signal consists of K = 2 Dirac pulses, with N = 11 noisy measurements, and the SNR is 15dB. (a) Same setting as in Fig.2; (b)(t 1 , t 2 ) = (0.42, 0.5) and (a 1 , a 2 ) = (1, 0.5). In black: true pulses. In blue and red: reconstructed locations and amplitudes of the pulses with Cadzow denoising and the proposed algorithm, respectively, for 500 different noise realizations. The difference is small visually, but the proposed algorithm yields smaller estimation errors, with points clouds slightly less dispersed. The computation time for one reconstruction, with 50 iterations, was 14ms.

The check symbol ˇis used to distinguish the true parameter values from other quantities, like their estimates denoted with a tilde ˜.
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method of Tufts and Kumaresan [START_REF] Tufts | Frequency estimation of multiple sinusoids: Making linear prediction perform like maximum likelihood[END_REF], and the matrix pencil method [START_REF] Hua | Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise[END_REF] 2 . The results obtained with this Matlab code 3 are illustrated for several experiments in Figs. 2345678.

Before discussing the results, we have to choose a criterion to quantify the estimation error between the true unknown signal š and the estimated signal s = K k=1 ãk δ(t -tk ). We note that this question is related to the notion of distance between discrete measures in the theory of optimal transportation. Since the problem is parametric, it is natural to think of a kind of mean squared error (MSE) between the sets {t k } K k=1 and { tk } K k=1 on one hand, and {a k } K k=1 and {ã k } K k=1 on the other hand. But the problem of assigning each estimated pulse to a true pulse is not trivial, especially because of the intrinsic periodicity of the setting: the boundaries at t = 0 and t = τ are identified. For the setting of Fig. 2, with two pulses of same amplitude, we considered the best assignment between the two possible permutations and computed the mean squared periodic error (MSPE) [START_REF] Routtenberg | Non-Bayesian periodic Cramér-Rao bound[END_REF]. But, in general, this best assignment is not appropriate, because it does not depend on the amplitudes. Therefore, we adopt as error criterion the squared L 2 distance between the lowpass-filtered signals š * ϕ and s * ϕ, where ϕ is the Dirichlet kernel defined in [START_REF] Azaïs | Spike detection from inaccurate samplings[END_REF]. From Parseval's identity, this is equivalent to considering the squared distance 1 N M m=-M | vmṽm | 2 between the true Fourier coefficients vm of š and the denoised Fourier coefficients ṽm , which are Fourier coefficients of s. We call this error criterion the lowpass mean squared error.

The first experiment, illustrated in Figs. 2 and3 (a), corresponds to K = 2 pulses with same amplitude. In that case, the performances can be evaluated by comparing the MSPE on the locations with the corresponding Cramér-Rao bound (CRB), which is a lower bound for the expectation of the mean squared error achievable by any unbiased estimator, calculated like in [START_REF] Blu | Sparse sampling of signal innovations[END_REF]. The proposed method outperforms all the other methods over the whole range of signal-tonoise ratio 4 (SNR) values. For an SNR above 12dB, the MSPE of the proposed method achieves the CRB, which implies that the proposed method yields the optimal ML estimate. For a lower SNR, the performances are degraded, which means that the proposed method only achieves a local minimum of the SLRA problem [START_REF] Candès | Matrix completion with noise[END_REF], and not the global solution corresponding to the ML estimate. Although Cadzow denoising performs well, it does not achieve the CRB, even asymptotically, contrary to what is claimed in [START_REF] Blu | Sparse sampling of signal innovations[END_REF]. The proposed approach outperforms Cadzow denoising consistently. Interestingly, when solving with 2 For the method of Tufts and Kumaresan [START_REF] Tufts | Frequency estimation of multiple sinusoids: Making linear prediction perform like maximum likelihood[END_REF] and the matrix pencil method [START_REF] Hua | Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise[END_REF], we used the implementation of Kfir Gedalyahu, found on his webpage at https://sites.google.com/site/kfirgedal/. 3 The Matlab code implementing all the methods mentioned is available on the webpage of the first author at http://www.gipsa-lab.grenoble-inp.fr/∼laurent.condat/publications.html. 4 We define the SNR as 20 log 10 ( vε / ε ) = 20 log 10 ( vε / ε ) = 20 log 10 ( v / ε ).