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Abstract

We consider the recovery of a finite stream of Dirac pulses at nonuniform
locations, from noisy lowpass-filtered samples. We show that maximum-
likelihood estimation of the unknown parameters amounts to a difficult,
even believed NP-hard, matrix problem of structured low rank approxima-
tion. To solve it, we propose a new heuristic iterative algorithm, based on
a recently proposed splitting method for convex nonsmooth optimization.
Although the algorithm comes, in absence of convexity, with no convergence
proof, it converges in practice to a local solution, and even to the global
solution of the problem, when the noise level is not too high. Thus, our
method improves upon the classical Cadzow denoising method, for same
ease of implementation and speed.
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1 Introduction and Problem Formulation

Reconstruction of signals lying in linear spaces, including bandlimited signals
and splines, has long been the dominant paradigm in sampling theory, rooted in
Shannon’s work [94]. Recently, analog reconstruction from discrete samples has
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been enlarged to a broader class of signals, with so-called finite rate of innovation,
i.e. ruled by parsimonious models [11,63,95,99]. This emerging theory predates
and parallels the framework of sparse recovery and compressed sensing [86].

In this paper, we focus on the prototypical problem of estimating a finite
stream of Dirac pulses, a.k.a. spike train, from uniform, noisy, lowpass-filtered
samples [11,34,47,56,92,99]. More precisely, the sought-after unknown signal š
consists of K Dirac pulses in the finite interval [0, τ [, where the real τ > 0 and
the integer K ≥ 1 are known; that is,

š(t) =
K∑

k=1

ǎkδ(t− ťk), ∀t ∈ [0, τ [, (1)

where δ(t) is the Dirac mass distribution, {ťk}
K
k=1 are the unknown distinct

locations in [0, τ [, and {ǎk}
K
k=1 are the unknown real nonzero amplitudes1. The

goal is to obtain estimates of these 2K values, which forms a deterministic (non-
Bayesian) parametric estimation problem. The available data consists of linear,
uniform, noisy measurements {vn}

N−1
n=0 on š, of the form

vn =

∫ τ

0
š(t)ϕ

(nτ
N

− t
)
dt+ εn (2)

=

K∑

k=1

ǎkϕ
(nτ
N

− ťk

)
+ εn, ∀n = 0, . . . , N − 1, (3)

where ϕ(t) is the sampling function and the εn ∼ N (0, σ2) are independent
random realizations of Gaussian noise. Note that other noise models could be
considered as well, by changing the cost function in eqns. (5), (10), (18) below.

The questions of the choice of the function ϕ and of the numberN of measure-
ments allowing perfect reconstruction, in absence of noise, has been addressed
in the literature [8, 26, 34, 92]. In a nutshell, the condition N ≥ 2K + 1, which
we hereafter assume to be true, is necessary and sufficient, provided that ϕ
satisfies some constraints in Fourier domain. Additionally, we assume, without
loss of generality and only to simplify the notations, that N is odd, of the form
N = 2M + 1. Since the emphasis in this paper is on appropriately handling
the presence of noise and not on being the most general, we adopt the simplest
choice of the Dirichlet sampling function [92], which amounts to periodizing the
signal s on the real line before sampling it with the sinc function:

ϕ(t) =
sin(Nπt/τ)

N sin(πt/τ)
=

1

N

M∑

m=−M

ej2πmt/τ , ∀t ∈ R. (4)

1The check symbol ˇ is used to distinguish the true parameter values from other quantities,
like their estimates denoted with a tilde .̃
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The extension of the setting to the reconstruction of pulses with real shape,
instead of the ideal Dirac distribution, is of practical interest for a wide range of
applications, including ultrawideband communications [63] and the detection of
impulsive signals in biomedical applications [92]. This generalization, or equiva-
lently the choice of another sampling function ϕ, can be addressed without any
difficulty, as described in details in [92]; therefore, to keep the derivations and
notations simple, we do not consider this general case in the paper. We note
that the considered sparse deconvolution problem is sometimes called super-
resolution [4,17], because it consists in locating the pulses with precision beyond
the resolution limit of τ/N suggested by the classical sampling theory.

The paper is organized as follows. In Sect. 2, we formulate the maximum
likelihood estimation problem and in Sect. 3, we show that it amounts to a low
rank matrix approximation problem. The new algorithm to solve it is presented
in Sect. 4. Experimental results illustrate the effectiveness of the approach in
Sect. 5.

2 Maximum Likelihood Estimation of the Parame-

ters

A natural approach to solve parametric estimation problem is maximum likeli-
hood (ML) estimation; it consists in selecting the model which is the most likely
to explain the observed noisy data. Since we have assumed Gaussian noise, this
corresponds to solving the nonlinear least-squares problem [40,41]:

Find (t̃, ã) ∈ argmin
t∈[0,τ [K ,a∈RK

N−1∑

n=0

∣∣∣∣∣vn −
K∑

k=1

akϕ
(nτ
N

− tk

)∣∣∣∣∣

2

. (5)

We suppose in the following that the solution set to this problem is a singleton,
that the amplitudes ã = {ãk}

K
k=1 are nonzero, and that the locations t̃ = {t̃k}

K
k=1

are distinct. This is the case almost surely, with respect to the noise randomness.

Now, applying the discrete Fourier transform to the vector of measurements
yields the Fourier coefficients defined by

v̂m =

N−1∑

n=0

vne
−j2πmn/N , ∀m = −M, . . . ,M. (6)

We define the Fourier coefficients {ε̂m}Mm=−M similarly. Combining (3) and (4),
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we get, for every n = 0, . . . , N − 1,

vn − εn =
1

N

K∑

k=1

ǎk

M∑

m=−M

ej2πm(n/N−ťk/τ) (7)

=
1

N

M∑

m=−M

ej2πmn/N

(
K∑

k=1

ǎke
−j2πmťk/τ

)
. (8)

We recognize the form of the inverse discrete Fourier transform. Thus, by iden-
tification, we obtain

v̂m =
K∑

k=1

ǎke
−j2πmťk/τ + ε̂m, ∀m = −M, . . . ,M. (9)

Since the inverse discrete Fourier transform is unitary, up to a constant, the
problem (9) can be rewritten as [41]:

Maximum likelihood (ML) estimation problem

Find (t̃, ã) = argmin
t∈[0,τ [K ,a∈RK

M∑

m=−M

∣∣∣∣∣v̂m −
K∑

k=1

ake
−j2πm

tk

τ

∣∣∣∣∣

2

. (10)

We remark that (10) takes the form of a spectral estimation problem, which
consists in retrieving the parameters of a sum of complex exponentials or sinu-
soids from noisy samples [81–83]. This classical problem, which has a wide range
of applications, e.g. in communications, radar, sonar, and geophysical seismol-
ogy [83], has been studied extensively [14,19,55,67,80,84,91]. The optimal statis-
tical properties of ML spectral estimation are well known [14,21,52,68,84,85,91].
However, solving the problem (10) exactly is a computationally intractable task,
since the cost function has a multimodal shape with a number of local minima
of order of magnitude NK [64] and a narrow trough around the global mini-
mum [20,35,49,69,71], see the example of Fig. 1. Thus, due to the combinatorial
nature of the problem, algebraic [27,64] and stochastic [31,40,41,87] approaches
can only be used for small values of K and N . When N ≫ K and the locations
tk are not too close to each other, classical spectral estimation techniques like
MUSIC [75] and ESPRIT [74], or greedy strategies [66], can be used; they are
fast but are statistically suboptimal. In this work, we investigate the ML estima-
tion problem (10) in its whole generality, without any simplifying assumption.
Several methods have been proposed to find a local minimum of the cost function
in (10) [45,51,93,100], which proceed in two steps: 1) a method is used to obtain
a good initial estimate; 2) this estimate is refined iteratively and converges to
the closest local minimizer of the nonconvex cost function. Thus, the quality of
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the method used for the first step is crucial. A major advantage of the approach
developed in the next section is to get rid of this initialization problem. Lastly,
we can mention recent developments inspired by the theory of compressed sens-
ing, aiming at spectral estimation from random samples [13,28,43,50,89]; this is
notably different from our setting, where the Fourier coefficients are successive
and not chosen randomly.

3 The Annihilation Property: Reformulation of eqn.

(10) as a Matrix Denoising Problem

Let us assume temporarily that there is no noise, i.e. ε̂m = 0 in (9). Then,
the sequence of Fourier coefficients {v̂m}Mm=−M satisfies a linear annihilating
difference equation [10], a known property which dates back to de Prony’s work
in the eighteenth century [70]. That is, the convolution of the sequence of Fourier
coefficients with the annihilating filter {hk}

K
k=0 is identically zero:

K∑

k=0

hk v̂m−k = 0, ∀m = −M +K, . . . ,M, (11)

with the (reversed) Z-transform of the annihilating filter defined, up to a con-
stant, as

H(z−1) =

K∑

k=0

hkz
k =

K∏

k=1

(z − ej2πťk/τ ). (12)

In matrix form, the annihilation property is




v̂−M+K · · · v̂−M
...

. . .
...

...
. . .

...
v̂M · · · v̂M−K




︸ ︷︷ ︸
TK




h0
...

hK


 =




0
...
0


 . (13)

Let us define, for any integer P with K ≤ P ≤ M , the Toeplitz—i.e. with
constant values along its diagonals—matrix TP , of size N −P ×P +1, obtained
by arranging the values {v̂m}Mm=−M in its first row and column; TP is depicted
in (19) and in (13) for P = K. We define the linear operator toeplitzP which
maps the vector v̂ = [v̂−M · · · v̂M ]T to TP , i.e. TP = toeplitzP (v̂). Then,
the existence of a nonzero annihilating filter of size K + 1 for the sequence
{v̂m}Mm=−M is completely equivalent to the property that TP has rank at most
K; that is, rank(toeplitzP (v̂)) ≤ K.
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Now, we turn back to the case when noise is present in the data. Because
of noise, the matrix TP = toeplitzP (v̂) has full rank. Let us define the vec-
tor ˜̂v = [˜̂v−M · · · ˜̂vM ]T from the parameters {t̃k}

K
k=1 and {ãk}

K
k=1 solution to

(10): ṽm =
∑K

k=1 ãke
−j2πm

t̃
k

τ . Then, the annihilating property holds for these
denoised Fourier coefficients, so that rank(toeplitzP (

˜̂v)) ≤ K. Therefore, the
ML estimation problem (10) can be rewritten as:

Find ˜̂v = argmin
v̂′∈CN

‖v̂′ − v̂‖2 s.t. rank(toeplitzP (v̂
′)) ≤ K. (14)

So, the process amounts to denoise the vector v̂ by projecting it on the manifold
defined by the composition of the low rank and Toeplitz properties, but this
formulation does not yield a constructive method. To circumvent this difficulty,
one can further rewrite the problem, so that the unknown becomes the matrix
T̃P = toeplitzP (

˜̂v). For this, let us define the weighted Frobenius norm of a
matrix A = {ai,j} ∈ C

N−P×P+1 by

‖A‖2w =

N−P∑

i=1

P+1∑

j=1

wi,j |ai,j|
2, (15)

where wi,j is the inverse of the size of the diagonal going through the position
(i, j):

wi,j =





1/(i − j + P + 1) if i− j ≤ 0,
1/(P + 1) if 1 ≤ i− j ≤ N − 2P − 1,
1/(j − i+N − P ) if i− j ≥ N − 2P.

(16)

In fact,

‖˜̂v − v̂‖2 = ‖toeplitzP (
˜̂v)− toeplitzP (v̂)‖

2
w = ‖T̃P −TP‖

2
w. (17)

Hence, we can reformulate the estimation problem (10), or equivalently (14),
as the following matrix approximation problem, named structured low rank ap-
proximation (SLRA) in the literature [36,57,60]:

Structured low rank approximation (SLRA) problem

Find T̃P ∈ argmin
T∈CN−P×P+1

‖T −TP‖
2
w (18)

s.t. T is Toeplitz and rank(T) ≤ K,

for some chosen integer P ∈ K, . . . ,M .
The SLRA problem (18), which consists in projecting a matrix onto the

intersection of a linear subspace and a nonconvex manifold, is believed to be
NP-hard [37,60,78]. So, at first glance, we just have replaced the difficult prob-
lem (10) by the SLRA problem of same difficulty. However, the parametric
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problem (10) has been reformulated as a matrix denoising problem: the matrix
TP , or equivalently the data {vn}

N−1
n=0 , is denoised by finding the closest matrix

consistent with the model’s structure. The main advantage is that the initial-
ization problem disappears: an iterative algorithm to solve the SLRA problem
proceeds directly, with the noisy matrix TP as initial estimate of the solution
T̃P . Moreover, for a low noise level, an algorithm converging to a local solution
will find the global solution T̃P , as TP , T̃P and the true noiseless matrix will
correspond to the same catchment area of the cost function in (18).

Since the desired parameters {t̃k}
K
k=1 and {ãk}

K
k=1 are somehow encoded in

the matrices, we have to describe the extraction process. The whole reconstruc-
tion procedure, also given in [11], is detailed on the next page. In absence of
noise, it yields perfect reconstruction of the parameters. We note that the esti-
mation of the locations is decoupled from that of the amplitudes; since finding
the amplitudes given the locations is a simple linear regression problem, the
emphasis is on the estimation quality of the locations.

We must remark that the estimates {(t̃k, ãk)}
K
k=1, obtained by the procedure,

coincide with the ML estimates, solution to (10), only if the roots {z̃k}
K
k=1 are

distinct and all on the complex unit circle. This is guaranteed to be the case
if the noise level ‖ε‖ is below some threshold, which depends on the separation
mink1 6=k2 |ťk1 − ťk2 |. Indeed, the matrices TP and T̃P are centro-Hermitian,
i.e. their entries satisfy v̂−m = v̂∗m and ˜̂v−m = ˜̂v∗m, for every m in −M, . . . ,M ,
where ·∗ denotes complex conjugation. Consequently, the polynomial

∑K
k=0 h̃kz

k

is self-inversive [79], so that its roots {z̃k}
K
k=1 are either on the complex unit

circle or come by pairs with same complex phase and opposite amplitudes. The
perturbation due to noise on the coefficients v̂m yields a proportionally bounded
perturbation on the estimated roots z̃k = ej2πt̃k/τ , with respect to the true
roots žk = ej2πťk/τ , but the roots remain on the complex unit circle. Only if the
perturbation is large enough, two distinct roots (z̃k1 , z̃k2) will possibly merge and
then split in a pair (z̃k1 , z̃k2 = 1/z̃∗k1) on both sides of the unit circle, yielding

t̃k1 = t̃k2 .
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Reconstruction Procedure

Input: The Fourier coefficients {v̂m}Mm=−M .

Output: the estimates {t̃k}Kk=1 and {ãk}Kk=1 of the unknown locations {ťk}Kk=1 and
amplitudes {ǎk}Kk=1.

Step 1. Choose an integer P such that K ≤ P ≤ M ; we recommend P = M .
Construct the Toeplitz matrix TP of size N −P ×P +1 by arranging the coefficients
{v̂m}Mm=−M in its first row and column and repeating them along the diagonals:

TP =




v̂
−M+P · · · v̂

−M

...
. . .

...
...

. . .
...

v̂M · · · v̂M−P




. (19)

Step 2. Solve the SLRA problem (18).

Step 3. If P > K, reshape the denoised Toeplitz matrix T̃P to a Toeplitz matrix T̃K

of size N −K ×K + 1; that is,

T̃K =




˜̂v
−M+K · · · ˜̂v

−M

...
. . .

...
...

. . .
...

˜̂vM · · · ˜̂vM−K




. (20)

Note that both T̃P and T̃K have rank K if (18) is solved exactly.

Step 4. Compute the right singular vector h̃ = [h̃0 · · · h̃K ]T of T̃K corresponding to
the singular value zero (the smallest singular value in practice); that is, in the singular

value decomposition (SVD) T̃K = LΣRH, h̃ corresponds to the last column of R.

Then, compute the roots {z̃k}Kk=1 of the polynomial
∑K

k=0 h̃kz
k; the estimates {t̃k}Kk=1

of the locations are given by

t̃k =
τ

2π
arg[0,2π[(z̃k), ∀k = 1, . . . ,K. (21)

Step 5. Given the estimates {t̃k}Kk=1, the maximum-likelihood estimates {ãk}Kk=1 of
the amplitudes are obtained by solving the linear system

ŨHŨã = ŨHv̂, (22)

where ·H denotes the Hermitian transpose and

Ũ =




ej2πMt̃1/τ · · · ej2πMt̃K/τ

...
...

...

e−j2πMt̃1/τ · · · e−j2πMt̃K/τ


 . (23)
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3.1 State of the Art for Structured Low Rank Approximation
(SLRA)

The problem of reconstructing a low-rank matrix from limited, noisy, linear
measurements arises in many areas of engineering and applied sciences, such
as signal processing, machine learning, control, and computer vision. The wide
range of applications includes low-order system identification, dynamic MRI,
quantum state tomography, phase retrieval, and global positioning from local
distances, to mention a few; see references in [33, 57, 60]. In many of these
problems, the matrix to be recovered is constrained to have some structure, like
being Toeplitz, Hankel, Sylvester, or positive definite. The SLRA problems have
been studied in the literature under different names; they are equivalent or have
tight connections with constrained or structured total least-squares, total least-
norm, and errors-in-variables [25,57,60,61,72,96–98]. Several methods have been
proposed, in the community of numerical algebra, to obtain a local solution of a
SLRA problem, using high-level optimization routines [12,20,42,46,48,76,77,98].
For instance, the iterative approach in [20] uses the Matlab function fminunc,
which is a BFGS quasi-Newton method with line search. Besides the difficulty of
implementation, the algorithm is very costly, since many SVDs are required at
each iteration. So, to our knowledge, the only efficient publicly available software
package for SLRA is the one currently in development by I. Markovsky [62].
However, it only handles real-valued data, whereas the matrices in (18) are
complex-valued with centro-Hermitian symmetry.

Due to the complexity of dedicated solvers for SLRA, a simple alternative
is to use the heuristic method of Cadzow denoising [15, 16], a.k.a. alternating
projections. This method is promoted in [11,92] for the reconstruction of Dirac
pulses, and represents the state of the art for this problem. To describe the
method, let us introduce some notations.

• We place ourselves in the real Hilbert space H = C
N−P×P+1 of complex-

valued matrices of size N − P × P + 1, having centro-Hermitian symme-
try. The (Frobenius) inner product between two matrices X, X′ of H is
〈X,X′〉 =

∑
i,j xi,jx

′∗
i,j ∈ R.

• We denote by PΩ the projection onto a subset Ω of H, which maps an
element of H to the closest element in Ω, with respect to the Frobenius
norm.

• We define T , the linear subspace of H of Toeplitz matrices. PT consists in
averaging along the diagonals; that is, PT maps a matrix X with entries
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{xi,j}
j=1,...,P+1
i=1,...,N−P to a matrix X′ with entries

x′i,j =





1
i−j+P+1

∑i−j+P+1
k=1 xk,k+j−i if i− j ≤ 0,

1
P+1

∑P+1
k=1 xk+i−j,k if 1 ≤ i− j ≤ N − 2P − 1,

1
j−i+N−P

∑j−i+N−P
k=1 xk+i−j,k if i− j ≥ N − 2P.

(24)

The computational cost of this operation is O(P (N − P )).

• We define RK , the closed but nonconvex manifold of matrices of H having
rank at most K. PRK

consists in truncating the SVD of the matrix, ac-
cording to the classical Schmidt–Eckart–Young theorem [29] [38, theorem
2.5.3]: if a matrix X has SVD X = LΣRH, then PRK

(X) is obtained
by setting to zero all except the K largest diagonal elements of Σ, which
are the singular values of X. For a square or close to square matrix, i.e.
P ∼ N/2, the computational cost of the SVD is O(N3).

Then, Cadzow denoising simply consists in applying alternately PRK
and PT to

the matrix TP :

Cadzow denoising algorithm. Set T
(0)
P = TP , depicted in (19). Then iterate,

for every l ≥ 0,∣∣∣T(l+1)
P = PT

(
PRK

(T
(l)
P )
)
.

This algorithm seems to always converge in practice to a matrix T̃P ∈ T ∩RK ,
i.e. a Toeplitz matrix of rank at most K. But contrary to a common belief, this
convergence has not been proved, although some partial convergence results have
been derived recently [1,2,39,54]. Moreover, even if Cadzow denoising converges
to a Toeplitz matrix of rank at most K, this matrix is not a local minimizer of
the Frobenius distance or of the weighted Frobenius distance ‖ · −TP‖w in the
SLRA problem (18), as shown by examples in [20, 25, 35]. In the next section,
we propose a new algorithm to compute a local solution of the SLRA problem,
which thus improves upon Cadzow denoising, for essentially the same complexity
of one SVD per iteration.

4 A New Optimization Algorithm for SLRA

Before addressing the particular problem (18), let us consider the generic opti-
mization problem:

Find x̃ ∈ argmin
x∈H

F (x) s.t. x ∈ Ω1 ∩ Ω2, (25)

where H is a real Hilbert space of finite dimension, Ω1 and Ω2 are two closed
subsets of H, and F : H → R is a convex and differentiable function with β-
Lipschitz continuous gradient, for some β > 0; that is, ‖∇F (x) − ∇F (x′)‖ ≤
β‖x− x′‖, ∀x, x′ ∈ H. This problem can be solved by the following algorithm:
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Optimization algorithm. Choose the parameters µ > 0, γ ∈ ]0, 1[, and the
initial estimates x(0), s(0) ∈ H. Then iterate, for every l ≥ 0,∣∣∣∣
x(l+1) = PΩ1

(
s(l) + γ(x(l) − s(l))− µ∇F (x(l))

)
,

s(l+1) = s(l) − x(l+1) + PΩ2
(2x(l+1) − s(l)).

This algorithm is a particular instance of a more general proximal splitting
algorithm derived recently by the first author [23]. Consequently, as corollaries
of the results derived in [23], we get the following convergence results.

Theorem 1. In (25), suppose that (i) a solution exists; (ii) the sets Ω1 and Ω2

are convex; (iii) ri(Ω1)∩ri(Ω2) 6= ∅, where ri denotes the relative interior [6]. In
the algorithm, suppose that (iv) 2γ > βµ. Then, the sequence (x(l))l∈N converges
to some element x̃ solution to the problem (25).

Theorem 2. In (25), suppose that (i) F = 0; (ii) the sets Ω1 and Ω2 are con-
vex; (iii) Ω1 ∩ Ω2 6= ∅. In the algorithm, suppose that (iv) γ = µ = 0. Then,
the algorithm reverts to the Douglas–Rachford splitting algorithm, well known
in optimization theory [6, 22]. Consequently, the sequence (x(l))l∈N converges to
some element x̃ ∈ Ω1 ∩Ω2.

Now, we recognize that the SLRA problem (18) is a particular instance of
(25); in the notations introduced in the previous section, Ω1 = RK , Ω2 = T ,
and F = 1

2‖ · −TP‖
2
w. This motivates the use of the proposed optimization

algorithm to solve the SLRA problem. Let us rewrite explicitly the algorithm in
this setting. For this, we remark that ∇F (X) = W ◦ (X−TP ), where ◦ is the
entrywise (Hadamard) product and the entries wi,j of the matrix W are defined
in (16). The Lipschitz constant of ∇F is β = maxi,j |wi,j | = 1.

Proposed algorithm for SLRA. Choose the parameters µ > 0, γ ∈ ]0, 1[,

such that 2γ > µ, and set T
(0)
P = S

(0)
P = TP . Then iterate, for every l ≥ 0,∣∣∣∣∣

T
(l+1)
P = PRK

(
S
(l)
P + γ(T

(l)
P − S

(l)
P )− µW ◦ (T

(l)
P −TP )

)
,

S
(l+1)
P = S

(l)
P −T

(l+1)
P + PT (2T

(l+1)
P − S

(l)
P ).

However, we remark that one of the assumption in Theorem 1 is not met
in our context: the set RK is not convex. Therefore, the convergence of the
proposed algorithm to a local solution of the problem (18) is not guaranteed,
and we will use the algorithm as a heuristic. In fact, Cadzow denoising and
the Douglas–Rachford algorithm are also heuristic methods for nonconvex prob-
lems, but a large body of empirical evidence shows that these two algorithms
actually work in a surprisingly broad range of applications and achieve compa-
rable results to much more sophisticated, special purpose algorithms. They have
been used for protein fold prediction, phase retrieval in optics, crystallography,
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graph coloring, and solving Sudokus [3, 7, 30, 90]. The Douglas–Rachford iter-
ation generally outperforms Cadzow denoising for these applications [3, 7, 30].
The motivation for applying the new proposed algorithm to SLRA stems from
this practical success, since it can be viewed as a Douglas–Rachford iteration
with an additional gradient descent step. However, there are very few conver-
gence results for the Douglas–Rachford algorithm in the nonconvex case, as the
behavior of such iterative methods is particularly difficult to analyze; see [65]
and references therein. Still, we can mention the following good property: for
every fixed point (T̃P , S̃P ) of the proposed algorithm, T̃P ∈ RK ∩ T .

In practice, when using the proposed algorithm to solve the SLRA problem
(18), we observed that it almost always converges. Only when the noise level is
very high, and in rare cases, it gets trapped in a cycle and does not converge; if
this happens, running again the algorithm with lower values of the parameters
µ and γ is sufficient to obtain convergence. More extensive use of the algorithm
will be necessary to understand its behavior and the appropriate values of µ
and γ to use. When the algorithm converges, it always does so to a Toeplitz
matrix of rank K, which is a local minimizer of the weighted Frobenius cost
function. More precisely, we checked that the locations {t̃k}

K
k=1 and amplitudes

{ãk}
K
k=1 obtained at convergence of the algorithm are local solutions of the ML

problem (10) as follows. As remarked in [25, Sect. IV.C], in the case of K = 1
Dirac pulse, all the local minima of the least squares cost function (10) with
respect to the location are roots of a particular polynomial Q constructed from
the data. That is, setting the partial derivative with respect to t to zero in∑M

m=−M |v̂m − ae−j2πmt/τ |2 yields
∑M

m=−M mzmv̂∗m = 0, where z = e−j2πmt/τ .
Equivalently, t is a local solution only if z is a root on the unit circle of the
polynomial

Q(z) =

2M∑

m=0

(m−M)v̂∗m−Mzm. (26)

Therefore, in our case of multiple Dirac pulses, we can subtract to the data
{v̂m}Mm=−M the sequences {ãke

−j2πmt̃k/τ}Mm=−M for all values of k except one
value k0 and check whether z̃k0 , defined in (21), is a root of the corresponding
polynomial Q. We observed empirically that this is always the case.

4.1 A Convex Variant of the Approach

To circumvent the difficulty of achieving the ML estimate for spike train recovery
from noisy Fourier coefficients, a convex surrogate of the problem has been
proposed in recent papers, based on the minimization of the so-called total
variation measure [4,9,17]. The main limitation of this approach is the necessity
of a minimal separation between the pulses, like mink1 6=k2 |ťk1 − ťk2 | ≥ 2τ/M . In
this section, we propose another convex relaxation of the problem, which is free
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of such assumption of minimal separation. It is obtained by replacing the rank
in the SLRA problem (18) by its convex surrogate, the nuclear norm [32]:

Convex approximation of the SLRA problem

Find T̃P ∈ argmin
T∈CN−P×P+1

1
2‖T −TP‖

2
w + λ‖T‖∗ (27)

s.t. T is Toeplitz,

where the nuclear norm ‖ · ‖∗ of a matrix is the sum of its singular values and
the Lagrangian parameter λ > 0 controls the tradeoff between the antagonist
terms.

The main advantage of this formulation is to be a strongly convex semi-
definite program, for which many efficient algorithms exist to compute the
unique solution. Also, replacing the rank by the nuclear norm has proved suc-
cessful for several problems, like matrix completion [18,33,53]. However, in our
setting, two pulses can be arbitrarily close to each other, so that the measure-
ments can be highly coherent. Therefore, the quality of the solution to a problem
like (27) can be significantly degraded in comparison with the SLRA solution,
as shown in another context in [58, 59]. For our problem, the solution of (27)
seems significantly worse than the estimate given by the algorithm proposed in
Sect. 4, as shown by the example in Fig. 6. Moreover, the choice of the value of
λ to use is problematic; a stability analysis of the kind of the one for total vari-
ation minimization in [88] would be desirable, but we leave this difficult study
for future work.

We note that a minor modification of the proposed algorithm for SLRA can
compute the solution of (27): we simply have to replace the operator PRK

, which
performs hard-thresholding of the singular values, by soft-thresholding Sµλ of
the singular values: in the SVD X = LΣRH, Sµλ(X) is obtained by replacing
each of the diagonal elements {σi,i}

P+1
i=1 of the matrix Σ by max(σi,i − µλ, 0).

As a consequence of the results in [23], the sequence (T
(l)
P )l∈N generated by this

algorithm converges to some matrix T̃P solution to (27).

5 Experimental Results

The reconstruction procedure described in Sect. 3 was implemented in Matlab,
with the choice between Cadzow denoising and the algorithm proposed in Sect. 4
to solve the SLRA problem (with P = M), or with no denoising (starting directly
the procedure at Step 3, with T̃K = TK ; this method is called total least squares
in [11]). We also implemented several methods of spectral estimation: root-
MUSIC [5] a variant of MUSIC (we used the function rootmusic of Matlab), the
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method of Tufts and Kumaresan [91], and the matrix pencil method [44]2. The
results obtained with this Matlab code3 are illustrated for several experiments
in Figs. 2–8.

Before discussing the results, we have to choose a criterion to quantify the
estimation error between the true unknown signal š and the estimated signal
s̃ =

∑K
k=1 ãkδ(t − t̃k). We note that this question is related to the notion

of distance between discrete measures in the theory of optimal transportation.
Since the problem is parametric, it is natural to think of a kind of mean squared
error (MSE) between the sets {tk}

K
k=1 and {t̃k}

K
k=1 on one hand, and {ak}

K
k=1 and

{ãk}
K
k=1 on the other hand. But the problem of assigning each estimated pulse

to a true pulse is not trivial, especially because of the intrinsic periodicity of the
setting: the boundaries at t = 0 and t = τ are identified. For the setting of Fig. 2,
with two pulses of same amplitude, we considered the best assignment between
the two possible permutations and computed the mean squared periodic error
(MSPE) [73]. But, in general, this best assignment is not appropriate, because
it does not depend on the amplitudes. Therefore, we adopt as error criterion
the squared L2 distance between the lowpass-filtered signals š ∗ ϕ and s̃ ∗ ϕ,
where ϕ is the Dirichlet kernel defined in (4). From Parseval’s identity, this is
equivalent to considering the squared distance 1

N

∑M
m=−M |ˇ̂vm − ˜̂vm|2 between

the true Fourier coefficients ˇ̂vm of š and the denoised Fourier coefficients ˜̂vm,
which are Fourier coefficients of s̃. We call this error criterion the lowpass mean
squared error.

The first experiment, illustrated in Figs. 2 and 3 (a), corresponds to K = 2
pulses with same amplitude. In that case, the performances can be evaluated
by comparing the MSPE on the locations with the corresponding Cramér–Rao
bound (CRB), which is a lower bound for the expectation of the mean squared
error achievable by any unbiased estimator, calculated like in [11]. The proposed
method outperforms all the other methods over the whole range of signal-to-
noise ratio4 (SNR) values. For an SNR above 12dB, the MSPE of the proposed
method achieves the CRB, which implies that the proposed method yields the
optimal ML estimate. For a lower SNR, the performances are degraded, which
means that the proposed method only achieves a local minimum of the SLRA
problem (18), and not the global solution corresponding to the ML estimate.
Although Cadzow denoising performs well, it does not achieve the CRB, even
asymptotically, contrary to what is claimed in [11]. The proposed approach
outperforms Cadzow denoising consistently. Interestingly, when solving with

2For the method of Tufts and Kumaresan [91] and the matrix pencil method
[44], we used the implementation of Kfir Gedalyahu, found on his webpage at
https://sites.google.com/site/kfirgedal/.

3The Matlab code implementing all the methods men-
tioned is available on the webpage of the first author at
http://www.gipsa-lab.grenoble-inp.fr/∼laurent.condat/publications.html.

4We define the SNR as 20 log10(‖v− ε‖/‖ε‖) = 20 log10(‖v̂− ε̂‖/‖ε̂‖) = 20 log10(‖
ˇ̂
v‖/‖ε̂‖).
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the proposed algorithm the SLRA problem (18) with SNR≥12dB, but with the
Frobenius norm instead of the weighted Frobenius norm (which amounts to

replace W ◦ (T
(l)
P −TP ) by (T

(l)
P −TP ) in the algorithm), the results are almost

exactly the same as with Cadzow denoising; this indicates that the gain provided
by the proposed method is explained by the presence in the problem formulation
of the appropriate cost function.

In Figs. 4–8, we show examples for larger values of K and N . For the
proposed algorithm, we used µ = 1.6 in Figs. 2–4 and µ = 0.1 in Figs. 5, 7, 8.
We set γ = 0.51µ in all cases. Actually, the values for µ and σ yielding fastest
convergence depended on the experiment and on the noise level, and we could
not come to a rule for tuning these parameters. Qualitatively, Cadzow denoising
and the proposed algorithm behave similarly. Yet, the values of lowpass MSE
indicate a slightly better reconstruction with the proposed method.

6 Conclusion

We proposed a new heuristic optimization algorithm for structured low rank
approximation. Its combination with Prony’s extraction procedure yields an ef-
ficient method for the reconstruction of Dirac pulses. The maximum-likelihood
parameter estimates are obtained, up to some threshold SNR. Thus, the pro-
posed algorithm outperforms the state-of-the-art approach to date, based on
Cadzow denoising, for same ease of implementation and complexity, essentially
one SVD per iteration. More in-depth analysis of the performances is currently
led by the authors. Many theoretical questions remain open, e.g. on the rela-
tionship between the proposed formalism and the recent developments on total
variation minimization [4, 9, 17]. We should also investigate the possibility to
generalize the method in higher dimensions, a work started in [24], and apply it
to other model identification problems [60].
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la dilatabilité de fluides élastiques et sur celles de la force expansive de
la vapeur de l’eau et de la vapeur de l’alcool à différentes températures,”
Journal de l’École polytechnique, vol. 1, no. 22, pp. 24–76, 1795.

[71] D. C. Rife and R. R. Boorstyn, “Single-tone parameter estimation from
discrete-time observation,” IEEE Trans. Inform. Theory, vol. 20, no. 5,
pp. 591–598, 1974.

[72] J. Rosen, H. Park, and J. Glick, “Total least norm formulation and solution
for structured problems,” SIAM J. Matrix Anal. Appl., vol. 17, pp. 110–
126, 1996.



38 L. CONDAT AND A. HIRABAYASHI

[73] T. Routtenberg and J. Tabrikian, “Non-Bayesian periodic Cramér-Rao
bound,” IEEE Trans. Signal Processing, vol. 61, no. 4, pp. 1019–1032,
2013.

[74] R. Roy, A. Paulraj, and T. Kailath, “ESPRIT–A subspace rotation ap-
proach to estimation of parameters of cisoids in noise,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. 34, no. 5, pp. 1340–1342, Oct.
1986.

[75] R. Schmidt, “Multiple emitter location and signal parameter estimation,”
IEEE Trans. Antennas Propagat., vol. 34, no. 3, pp. 276–280, Mar. 1986.

[76] M. Schuermans, “Weighted low rank approximation: Algorithms and ap-
plications,” Ph.D. dissertation, Katholieke Universiteit Leuven, 2006.

[77] M. Schuermans, P. Lemmerling, and S. Van Huffel, “Structured weighted
low rank approximation,” Numerical Linear Algebra with Applications,
vol. 11, no. 5–6, pp. 609–618, June–Aug. 2004.

[78] S. Shalev-Shwartz, A. Gonen, and O. Shamir, “Large-scale convex mini-
mization with a low-rank constraint,” in Proc. of ICML, Bellevue, WA,
USA, Jun. 2011, pp. 329–336.

[79] C. D. Sinclair and J. D. Vaaler, “Self-inversive polynomials with all zeros
on the unit circle,” in London Mathematical Society Lecture Note Series:
Number Theory and Polynomials, J. McKee and C. Smyth, Eds., 2008,
vol. 352, pp. 312–321.

[80] H. C. So, K. W. Chan, Y. T. Chan, and K. C. Ho, “Linear prediction
approach for efficient frequency estimation of multiple real sinusoids: Al-
gorithms and analysis,” IEEE Trans. Signal Processing, vol. 53, no. 7, pp.
2290–2305, Jul. 2005.

[81] Special issue on spectral estimation, Proc. IEEE, vol. 70, no. 9, Sep. 1982.

[82] P. Stoica, “List of references on spectral line analysis,” Signal Processing,
vol. 31, no. 3, pp. 329–340, Apr. 1993.

[83] P. Stoica and R. Moses, Spectral Analysis of Signals. Prentice Hall, NJ,
2005.

[84] P. Stoica, R. L. Moses, B. Friedlander, and T. Söderström, “Maximum
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Figure 1: (a) Contour plot showing the level lines of the cost function in (10),
as a function of t1 and t2, on the horizontal and vertical axes, respectively. (b)
plot of the same cost function as a function of t2, for t1 = 0.47. For given t1 and
t2, the values of a1 and a2 are the optimal values obtained by solving (22). The
setting is the same as in Figs. 2 and 3 (a): the true unknown signal consists of
K = 2 Dirac pulses with τ = 1, (ť1, ť2) = (0.42, 0.52) and (ǎ1, ǎ2) = (1, 1); we
have N = 11 noisy measurements with SNR=15dB.
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Figure 2: Plot in log-log scale of (a) the mean squared periodic error (MSPE)
min

(
(t̃1 − t1)

2
τ + (t̃2 − t2)

2
τ , (t̃1 − t2)

2
τ + (t̃2 − t1)

2
τ

)
/2, where (x)τ =

(
(x + τ

2 )

mod τ
)
− τ

2 , and (b) the lowpass MSE ‖ˇ̂v − ˜̂v‖2/N , for several reconstruction
methods. The true signal š consists of K = 2 Dirac pulses, with (t1, t2) =
(0.42, 0.52), (a1, a2) = (1, 1), τ = 1, N = 11. The values are averaged over
10,000 noise realizations for every integer value of the SNR.
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Figure 3: The signal consists of K = 2 Dirac pulses, with N = 11 noisy
measurements, and the SNR is 15dB. (a) Same setting as in Fig. 2; (b)
(t1, t2) = (0.42, 0.5) and (a1, a2) = (1, 0.5). In black: true pulses. In blue and
red: reconstructed locations and amplitudes of the pulses with Cadzow denois-
ing and the proposed algorithm, respectively, for 500 different noise realizations.
The difference is small visually, but the proposed algorithm yields smaller esti-
mation errors, with points clouds slightly less dispersed. The computation time
for one reconstruction, with 50 iterations, was 14ms.
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Figure 4: The signal consists of 6 Dirac pulses. We have N = 25 noisy measure-
ments with SNR=25dB. In black: true pulses. In blue and red: reconstructed
locations and amplitudes of the pulses with Cadzow denoising and the proposed
algorithm, respectively, for one particular noise realization. The solid line in
light gray is the lowpass-filtered signal š ∗ ϕ and the gray dots are the noisy
measurements vn. The computation time for one reconstruction, with 50 iter-
ations, was 19ms. (a) Reconstruction with K = 6. The lowpass MSE with
Cadzow denoising and the proposed algorithm is 1.39e-3 and 1.22e-3, respec-
tively. (b) Reconstruction with K = 10, to illustrate the effects of overfitting:
the methods have found imaginary pulses in noise.



CADZOW DENOISING UPGRADED FOR THE RECOVERY OF PULSES 45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

position [units of τ ]

a
m

p
lit

u
d

e

Figure 5: The signal consists of K = 50 Dirac pulses, with N = 1001 noisy
measurements and SNR=35dB. In black: true pulses. In blue and red: recon-
struction with Cadzow denoising and the proposed algorithm, respectively, with
50 iterations. The blue pulses are not visible because they are hidden behind the
red pulses. The computation time of each reconstruction process was 11s. Note
the presence of two very close pulses with same amplitude’s sign around position
0.51, two very close pulses with opposite amplitude’s sign around position 0.2,
and one pulse with very small amplitude around position 0.75. All the pulses
have been correctly identified. The lowpass MSE with Cadzow denoising and
the proposed algorithm is 5.9e-4 vs 5.8e-4, respectively.
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Figure 6: Same setting as in Fig. 5. In black: true pulses. In green: recon-
structed locations and amplitudes of the pulses, by solving the convex problem
(27). The value λ = 0.2 giving the best visual result was used, with µ = 1.9,
γ = 0.51µ. Note the presence of a vertical line around t = 0.47, because a
pair of roots outside the unit circle is obtained at Step. 4 of the reconstruction
procedure. Thus, the procedure has failed to produce K = 50 Dirac pulses at
distinct locations.
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Figure 7: Same setting as in Fig. 5, but with SNR=15dB. Five small pulses
have been incorrectly identified, showing the intrinsic impossibility to distin-
guish small pulses and noise. The lowpass MSE with Cadzow denoising and the
proposed algorithm is 109e-3 vs 107e-3, respectively.
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Figure 8: The signal and the measurements are exactly the same as in Fig. 7,
but the reconstruction is performed with K = 30, to illustrate the effects of
underfitting. Interestingly, the 30 pulses with largest absolute amplitudes have
been identified.


