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Cadzow Denoising Upgraded: A New Projection

Method for the Recovery of Dirac Pulses from

Noisy Linear Measurements
Laurent Condat and Akira Hirabayashi

Abstract—We consider the recovery of a finite stream of
Dirac pulses at nonuniform locations, from noisy lowpass-filtered
samples. We show that maximum-likelihood estimation of the
unknown parameters amounts to a difficult, even believed NP-
hard, matrix problem of structured low rank approximation. To
solve it, we propose a new heuristic iterative algorithm, based
on a recently proposed splitting method for convex nonsmooth
optimization. Although the algorithm comes, in absence of
convexity, with no convergence proof, it converges in practice to
a local solution, and even to the global solution of the problem,
when the noise level is not too high. Thus, our method improves
upon the classical Cadzow denoising method, for same ease of
implementation and speed.

Index Terms—Recovery of Dirac pulses, spike train, finite rate
of innovation, super-resolution, spectral estimation, maximum
likelihood estimation, structured low rank approximation, alter-
nating projections, Cadzow denoising, optimization, splitting

I. INTRODUCTION AND PROBLEM FORMULATION

Reconstruction of signals lying in linear spaces, including

bandlimited signals and splines, has long been the dominant

paradigm in sampling theory, rooted in Shannon’s work [1].

Recently, analog reconstruction from discrete samples has

been enlarged to a broader class of signals, with so-called finite

rate of innovation, i.e. ruled by parsimonious models [2]–[5].

This emerging theory predates and parallels the framework of

sparse recovery and compressed sensing [6].

In this paper, we focus on the prototypical problem of

estimating a finite stream of Dirac pulses, a.k.a. spike train,

from uniform, noisy, lowpass-filtered samples [2], [3], [7]–

[10]. More precisely, the sought-after unknown signal š con-

sists of K Dirac pulses in the finite interval [0, τ [, where the

real τ > 0 and the integer K ≥ 1 are known; that is

š(t) =

K∑

k=1

ǎkδ(t− ťk), ∀t ∈ [0, τ [, (1)

where δ(t) is the Dirac mass distribution, {ťk}Kk=1 are the

unknown distinct locations in [0, τ [, and {ǎk}
K
k=1 are the
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unknown real nonzero amplitudes1. The goal is to obtain

estimates of these 2K values, which forms a deterministic

(non-Bayesian) parametric estimation problem. The available

data consist of linear, uniform, noisy measurements {vn}
N−1
n=0

on š, of the form

vn =

∫ τ

0

š(t)ϕ
(nτ
N

− t
)
dt+ εn (2)

=

K∑

k=1

ǎkϕ
(nτ
N

− ťk

)
+ εn, ∀n = 0, . . . , N − 1, (3)

where ϕ(t) is the sampling function and the εn ∼ N (0, σ2) are

independent random realizations of Gaussian noise. Note that

other noise models could be considered as well, by changing

the cost function in eqns. (5), (10), (14) below.

The questions of the choice of the function ϕ and of the

number N of measurements allowing perfect reconstruction, in

absence of noise, has been addressed in the literature [9]–[12].

In a nutshell, the condition N ≥ 2K + 1, which we hereafter

assume to be true, is necessary and sufficient, provided that

ϕ satisfies some constraints in Fourier domain. Additionally,

we assume, without loss of generality and only to simplify

the notations, that N is odd, of the form N = 2M + 1.

Since the emphasis in this paper is on appropriately handling

the presence of noise and not on being the most general, we

adopt the simplest choice of the Dirichlet sampling function

[9], which amounts to periodizing the signal s on the real line

before sampling it with the sinc function:

ϕ(t) =
sin(Nπt/τ)

N sin(πt/τ)
=

1

N

M∑

m=−M

ej2πmt/τ , ∀t ∈ R. (4)

The extension of the setting to the reconstruction of pulses

with real shape, instead of the ideal Dirac distribution, is of

practical interest for a wide range of applications, including

ultrawideband communications [4] and the detection of impul-

sive signals in biomedical applications [9]. This generalization,

or equivalently the choice of another sampling function ϕ, can

be addressed without any difficulty, as described in details in

[9]; therefore, to keep the derivations and notations simple, we

do not consider this general case in the paper. We note that the

considered sparse deconvolution problem is sometimes called

super-resolution [13], [14], because it consists in locating the

1The check symbol ˇ is used to distinguish the true parameter values from
other quantities, like their estimates denoted with a tilde .̃
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pulses with precision beyond the resolution limit of τ/N
suggested by the classical sampling theory.

The paper is organized as follows. In Sect. II, we formulate

the maximum likelihood estimation problem and in Sect. III,

we show that it amounts to a low rank matrix approxima-

tion problem. The new algorithm to solve it is presented in

Sect. IV. Experimental results illustrate the effectiveness of

the approach in Sect. V.

II. MAXIMUM LIKELIHOOD ESTIMATION OF THE

PARAMETERS

A natural approach to solve parametric estimation prob-

lem is maximum likelihood (ML) estimation; it consists in

selecting the model which is the most likely to explain the

observed noisy data. Since we have assumed Gaussian noise,

this corresponds to solving the nonlinear least-squares problem

[15], [16]:

Find (t̃, ã) = argmin
t∈[0,τ [K,a∈RK

N−1∑

n=0

∣∣∣∣∣vn −
K∑

k=1

akϕ
(nτ
N

− tk

)∣∣∣∣∣

2

.

(5)

Almost surely, the solution to this problem is unique, the

obtained amplitudes ã = {ãk}
K
k=1 are nonzero, and the

obtained locations t̃ = {t̃k}Kk=1 are distinct.

Now, applying the discrete Fourier transform to the vector

of measurements yields the Fourier coefficients defined by

v̂m =

N−1∑

n=0

vne
−j2πmn/N , ∀m = −M, . . . ,M. (6)

We define the Fourier coefficients {ε̂m}Mm=−M similarly. Com-

bining (3) and (4), we get, for every n = 0, . . . , N − 1,

vn − εn =
1

N

K∑

k=1

ǎk

M∑

m=−M

ej2πm(n/N−ťk/τ) (7)

=
1

N

M∑

m=−M

ej2πmn/N

(
K∑

k=1

ǎke
−j2πmťk/τ

)
. (8)

We recognize the form of the inverse discrete Fourier trans-

form. Thus, by identification, we obtain

v̂m =

K∑

k=1

ǎke
−j2πmťk/τ + ε̂m, ∀m = −M, . . . ,M. (9)

Since the inverse discrete Fourier transform is unitary, up to

a constant, the problem (9) can be rewritten as [15]:

Maximum likelihood (ML) estimation problem

Find (t̃, ã) = argmin
t∈[0,τ [K,a∈RK

M∑

m=−M

∣∣∣∣∣v̂m −
K∑

k=1

ake
−j2πm

t
k

τ

∣∣∣∣∣

2

.

(10)

We remark that (10) takes the form of a spectral estimation

problem, which consists in retrieving the parameters of a sum

of complex exponentials or sinusoids from noisy samples [17]–

[19]. This classical problem, which has a wide range of appli-

cations, e.g. in communications, radar, sonar, and geophysical

seismology [19], has been studied extensively [20]–[26]. When

N ≫ K and the locations tk are not too close to each other,

classical spectral estimation techniques like MUSIC [27] and

ESPRIT [28], or greedy strategies [29], can be used; they are

fast but statistically suboptimal. Also, we can mention recent

developments inspired by the theory of compressed sensing,

aiming at spectral estimation from random samples [30]–[34];

this is notably different from our setting, where the Fourier

coefficients are successive and not chosen randomly. In this

work, we investigate the ML estimation problem (10) in its

whole generality, without any simplifying assumption. The

optimal statistical properties of ML estimation for spectral

estimation are well known [21]–[23], [35]–[38]. However,

solving the problem (10) is a difficult task, as the cost function

has a multimodal shape with many local minima and a narrow

trough around the global minimum [39]–[43], see the example

of Fig. 1. Stochastic optimization approaches can be applied

[15], [44], [45], but due to the combinatorial nature of the

problem, their computational cost blows up even for moderate

values of K and N . Several methods have been proposed to

find a local minimum of the cost function in (10) [46]–[49].

These approaches proceed in two steps: 1) a method is used

to obtain a good initial estimate; 2) this estimate is refined

iteratively and converges to the closest local minimizer of

the nonconvex cost function in (10). Thus, the quality of the

method used for the first step is crucial. A major advantage

of the approach developed in the next section is to get rid of

this initialization problem.

III. THE ANNIHILATION PROPERTY: REFORMULATION OF

EQN. (10) AS A MATRIX DENOISING PROBLEM

Let us assume temporarily that there is no noise, i.e. ε̂m = 0
in (9). Then, the sequence of Fourier coefficients {v̂m}Mm=−M

satisfies a linear annihilating difference equation [50], a known

property which dates back to de Prony’s work in the eighteenth

century [51]. That is, the convolution of the sequence of

Fourier coefficients with the annihilating filter {hk}Kk=0 is

identically zero:

K∑

k=0

hkv̂m−k = 0, ∀m = −M +K, . . . ,M, (11)

with the (reversed) Z-transform of the annihilating filter de-

fined, up to a constant, as

H(z−1) =

K∑

k=0

hkz
k =

K∏

k=1

(z − ej2πtk/τ ). (12)

In matrix form, the annihilation property is



v̂−M+K · · · v̂−M

...
. . .

...
...

. . .
...

v̂M · · · v̂M−K




︸ ︷︷ ︸
TK




h0

...

hK


 =




0
...

0


 . (13)

Let us define, for any integer P with K ≤ P ≤ M , the

Toeplitz—i.e. with constant values along its diagonals—matrix
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Fig. 1. (a) Contour plot showing the level lines of the cost function in (10), as a function of t1 and t2, on the horizontal and vertical axes, respectively. (b)
plot of the same cost function as a function of t2, for t1 = 0.47. For given t1 and t2, the values of a1 and a2 are the optimal values obtained by solving
(20). The setting is the same as in Figs. 3 and 4 (a): the true unknown signal consists of K = 2 Dirac pulses with τ = 1, (ť1, ť2) = (0.42, 0.52) and
(ǎ1, ǎ2) = (1, 1); we have N = 11 noisy measurements with SNR=15dB.

TP , of size N −P ×P +1, obtained by arranging the values

{v̂m}Mm=−M in its first row and column; TP is depicted in (17)

and in (13) for P = K . Then, the existence of an annihilating

filter of size K+1 for the sequence {v̂m}Mm=−M is completely

equivalent to the property that TP has rank at most K .

Hence, turning back to the case when noise is present in the

data, we can reformulate the estimation problem (10) as the

following matrix approximation problem, named structured

low rank approximation (SLRA) in the literature [52]–[54]:

Structured low rank approximation (SLRA) problem

Find T̃P ∈ argmin
T∈CN−P×P+1

‖T−TP ‖
2
w (14)

s. t. T is Toeplitz and rank(T) ≤ K,

for some chosen P ∈ K, . . . ,M , where the weighted Frobe-

nius norm of a matrix A = {ai,j} ∈ CN−P×P+1 is defined

by

‖A‖2w =
N−P∑

i=1

P+1∑

j=1

wi,j |ai,j |
2, (15)

and wi,j is the inverse of the size of the diagonal going through

the position (i, j):

wi,j =






1/(i− j + P + 1) if i− j ≤ 0,
1/(P + 1) if 1 ≤ i− j ≤ N − 2P − 1,
1/(j − i+N − P ) if i− j ≥ N − 2P.

(16)

The SLRA problem (14), which consists in projecting a

matrix in the intersection of a linear subspace and a nonconvex

manifold, is believed to be NP-hard [53], [55], [56]. So, at first

glance, we just have replaced the difficult problem (10) by the

SLRA problem of same difficulty. However, the parametric

problem (10) has been reformulated as a matrix denoising

problem: the matrix TP , or equivalently the data {vn}
N−1
n=0 ,

is denoised by finding the closest matrix consistent with the

model’s structure. The main advantage is that the initialization

problem disappears: an iterative algorithm to solve the SLRA

problem proceeds directly, with the noisy matrix TP as initial

estimate of the solution T̃P . Moreover, for a low noise level,

an algorithm converging to a local solution will find the global

solution T̃P , as TP , T̃P and the true noiseless matrix will

correspond to the same catchment area of the cost function in

(14).

Since the desired parameters {t̃k}Kk=1 and {ãk}Kk=1 are

somehow encoded in the matrices, we have to describe the

extraction process. The whole reconstruction procedure, also

given in [3], is detailed in Fig. 2. In absence of noise, it

yields perfect reconstruction of the parameters. We note that

the estimation of the locations is decoupled from that of the

amplitudes; since finding the amplitudes given the locations

is a simple linear regression problem, the emphasis is on the

estimation quality of the locations.

We must remark that the estimates {(t̃k, ãk)}Kk=1, obtained

by the procedure, coincide with the ML estimates, solution

to (10), only if the roots {z̃k}Kk=1 are distinct and all on the

complex unit circle. This is guaranteed to be the case2 if the

noise level ‖ε‖ is below some threshold, which depends on

2In details, the matrices TP and T̃P are centro-Hermitian, i.e. their entries
satisfy v̂−m = v̂∗m and ˜̂v−m = ˜̂v∗m, for every m in −M, . . . ,M , where ·∗

denotes complex conjugation. Consequently, the polynomial
∑K

k=0
h̃kz

k is

self-inversive [57], so that its roots {z̃k}
K
k=1

are either on the complex unit
circle or come by pairs with same complex phase and opposite amplitudes.
The perturbation due to noise on the coefficients v̂m yields a proportionally

bounded perturbation on the estimated roots z̃k = ej2πt̃k/τ , with respect

to the true roots žk = ej2πťk/τ , but the roots remain on the complex unit
circle. Only if the perturbation is large enough, two distinct roots (z̃k1

, z̃k2
)

will possibly merge and then split in a pair (z̃k1
, z̃k2

= 1/z̃∗k1
) on both sides

of the unit circle, yielding t̃k1
= t̃k2

.
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Reconstruction Procedure

Input: The Fourier coefficients {v̂m}Mm=−M .

Output: the estimates {t̃k}Kk=1 and {ãk}Kk=1 of the unknown

locations {ťk}Kk=1 and amplitudes {ǎk}Kk=1.

Step 1. Choose an integer P such that K ≤ P ≤ M ; we

recommend P = M . Construct the Toeplitz matrix TP of

size N−P×P+1 by arranging the coefficients {v̂m}Mm=−M

in its first row and column and repeating them along the

diagonals:

TP =




v̂−M+P · · · v̂−M

...
. . .

...
...

. . .
...

v̂M · · · v̂M−P




. (17)

Step 2. Solve the SLRA problem (14).

Step 3. If P > K , reshape the denoised Toeplitz matrix T̃P

to a Toeplitz matrix T̃K of size N −K ×K + 1; that is,

T̃K =




˜̂v−M+K · · · ˜̂v−M

...
. . .

...
...

. . .
...

˜̂vM · · · ˜̂vM−K




. (18)

Note that both T̃P and T̃K have rank K if (14) is solved

exactly.

Step 4. Compute the right singular vector h̃ = [h̃0 · · · h̃K ]T

of T̃K corresponding to the singular value zero (the smallest

singular value in practice); that is, in the singular value

decomposition (SVD) T̃K = LΣR
H, h̃ corresponds to the

last column of R. Then, compute the roots {z̃k}Kk=1 of

the polynomial
∑K

k=0 h̃kz
k; the estimates {t̃k}Kk=1 of the

locations are given by

t̃k =
τ

2π
arg[0,2π[(z̃k), ∀k = 1, . . . ,K. (19)

Step 5. Given the estimates {t̃k}Kk=1, the maximum-

likelihood estimates {ãk}Kk=1 of the amplitudes are obtained

by solving the linear system

Ũ
H
Ũã = Ũ

H
v̂, (20)

where v̂ = [v̂−M · · · v̂M ]T, ·H denotes the Hermitian

transpose, and

Ũ =




ej2πMt̃1/τ · · · ej2πMt̃K/τ

...
...

...

e−j2πMt̃1/τ · · · e−j2πMt̃K/τ


 . (21)

Fig. 2. Procedure to estimate the parameters of a stream of Dirac pulses

š(t) =
∑K

k=1
ǎkδ(t − ťk) from noisy Fourier coefficients.

the separation mink1 6=k2
|ťk1

− ťk2
|.

A. State of the Art for Structured Low Rank Approximation

(SLRA)

The problem of reconstructing a low-rank matrix from

limited, noisy, linear measurements arises in many areas of

engineering and applied sciences, such as signal processing,

machine learning, control, and computer vision. The wide

range of applications includes low-order system identification,

dynamic MRI, quantum state tomography, phase retrieval,

and global positioning from local distances, to mention a

few; see references in [52], [53], [58], [59]. In many of

these problems, the matrix to be recovered is constrained to

have some structure, like being Toeplitz, Hankel, Sylvester,

or positive definite. The SLRA problems have been studied

in the literature under different names; they are equivalent

or have tight connections with constrained or structured total

least-squares, total least-norm, and errors-in-variables [52],

[53], [60]–[65]. Several methods have been proposed, in the

community of numerical algebra, to obtain a local solution

of a SLRA problem, using high-level optimization routines

[42], [62], [66]–[71]. For instance, the iterative approach in

[42] uses the Matlab function fminunc, which is a BFGS

quasi-Newton method with line search. Besides the difficulty

of implementation, the algorithm is very costly, as it requires

many SVD at each iteration. So, to our knowledge, the only

efficient publicly available software package for SLRA is the

one currently in development by I. Markovsky [58]. However,

it only handles real-valued data, whereas the matrices in (14)

are complex-valued with centro-Hermitian symmetry.

Due to the complexity of dedicated solvers for SLRA, a

simple alternative is to use the heuristic method of Cadzow de-

noising [72], [73], a.k.a. alternating projections. This method

is promoted in [3], [9] for the reconstruction of Dirac pulses,

and represents the state of the art for this problem. To describe

the method, let us introduce some notations.

• We place ourselves in the real Hilbert space H =
CN−P×P+1 of complex-valued matrices of size N −
P × P + 1, having centro-Hermitian symmetry. The

(Frobenius) inner product between two matrices X, X′

of H is 〈X,X′〉 =
∑

i,j xi,jx
′∗
i,j ∈ R.

• We denote by PΩ the projection onto a subset Ω of H,

which maps an element of H to the closest element in

Ω, with respect to the Frobenius norm.

• We define T , the linear subspace of H of Toeplitz ma-

trices. PT consists in averaging along the diagonals; that

is, PT maps a matrix X with entries {xi,j}
j=1,...,P+1
i=1,...,N−P to

a matrix X
′ with entries x′

i,j =





1
i−j+P+1

∑i−j+P+1
k=1 xk,k+j−i if i− j ≤ 0,

1
P+1

∑P+1
k=1 xk+i−j,k if 1 ≤ i− j ≤ N − 2P − 1,

1
j−i+N−P

∑j−i+N−P
k=1 xk+i−j,k if i− j ≥ N − 2P.

(22)

• We define RK , the closed but nonconvex manifold of

matrices of H having rank at most K . PRK
consists

in truncating the SVD of the matrix, according to the
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classical Schmidt-Eckart-Young theorem [74] [75, theo-

rem 2.5.3]: if a matrix X has SVD X = LΣR
H, then

PRK
(X) is obtained by setting to zero all except the K

largest diagonal elements of Σ, which are the singular

values of X.

Then, Cadzow denoising simply consists in applying alter-

nately PRK
and PT to the matrix TP :

Cadzow denoising algorithm. Set T
(0)
P = TP , depicted in

(17). Then iterate, for every l ≥ 0,∣∣∣T(l+1)
P = PT

(
PRK

(T
(l)
P )
)

.

This algorithm seems to always converge in practice to a

matrix T̃P ∈ T ∩ RK , i.e. a Toeplitz matrix of rank at most

K . But contrary to a common belief, this convergence has

not been proved [76]–[79], although some partial convergence

results have been derived recently [80]–[82]. Moreover, even

if Cadzow denoising converges to a Toeplitz matrix of rank at

most K , this matrix is not a local minimizer of the Frobenius

distance or of the weighted Frobenius distance ‖ · −TP ‖w
in the SLRA problem (14), as shown by examples in [42],

[43], [60]. In the next section, we propose a new algorithm

to compute a local solution of the SLRA problem, which thus

improves upon Cadzow denoising, for essentially the same

complexity of one SVD per iteration.

IV. A NEW OPTIMIZATION ALGORITHM FOR SLRA

Before addressing the particular problem (14), let us con-

sider the generic optimization problem:

Find x̃ ∈ argmin
x∈H

F (x) s.t. x ∈ Ω1 ∩Ω2, (23)

where H is a real Hilbert space of finite dimension, Ω1 and Ω2

are two closed subsets of H, and F : H → R is a convex and

differentiable function with β-Lipschitz continuous gradient,

for some β > 0; that is, ‖∇F (x′) − ∇F (x)‖ ≤ β‖x − x′‖,

∀x, x′ ∈ H.

The following algorithm allows to solve (23):

Optimization algorithm. Choose the parameters µ > 0,

γ ∈ ]0, 1[, and the initial estimates x(0), s(0) ∈ H. Then iterate,

for every l ≥ 0,∣∣∣∣
x(l+1) = PΩ1

(
s(l) + γ(x(l) − s(l))− µ∇F (x(l))

)
,

s(l+1) = s(l) − x(l+1) + PΩ2
(2x(l+1) − s(l)).

This algorithm is a particular instance of a more general

proximal splitting algorithm derived recently by the first author

[83]. Consequently, as corollaries of the results derived in [83],

we get the following convergence results.

Theorem 1. In (23), suppose that (i) a solution exists; (ii) the

sets Ω1 and Ω2 are convex; (iii) ri(Ω1) ∩ ri(Ω2) 6= ∅, where

ri denotes the relative interior [84]. In the algorithm, suppose

that (iv) 2γ > βµ. Then, the sequence (x(l))l∈N converges to

some element x̃ solution to the problem (23).

Theorem 2. In (23), suppose that F = 0 and that (i) the

sets Ω1 and Ω2 are convex; (ii) ri(Ω1) ∩ ri(Ω2) 6= ∅. In the

algorithm, suppose that (iii) γ = µ = 0. Then, the algorithm

reverts to the Douglas–Rachford splitting algorithm, well

known in optimization theory [84], [85]. Consequently, the

sequence (x(l))l∈N converges to some element x̃ ∈ Ω1 ∩ Ω2.

Now, we recognize that the SLRA problem (14) is a

particular instance of (23); in the notations introduced in the

previous section, Ω1 = RK , Ω2 = T , and F = 1
2‖ · −TP ‖

2
w.

This motivates the use of the proposed optimization algorithm

to solve the SLRA problem. Let us rewrite explicitly the

algorithm in this setting. For this, we remark that ∇F (X) =
W ◦ (X−TP ), where ◦ is the entrywise (Hadamard) product

and the entries wi,j of the matrix W are defined in (16). The

Lipschitz constant of ∇F is β = maxi,j |wi,j | = 1.

Proposed algorithm for SLRA. Choose the parameters

µ > 0, γ ∈ ]0, 1[, such that 2γ > µ, and set

T
(0)
P = S

(0)
P = TP . Then iterate, for every l ≥ 0,∣∣∣∣∣

T
(l+1)
P = PRK

(
S
(l)
P + γ(T

(l)
P −S

(l)
P )− µW◦(T

(l)
P −TP )

)
,

S
(l+1)
P = S

(l)
P −T

(l+1)
P + PT (2T

(l+1)
P − S

(l)
P ).

However, we remark that one of the assumption in Theo-

rem 1 is not met in our context: the set RK is not convex.

Therefore, the convergence of the proposed algorithm to a

local solution of the problem (14) is not guaranteed, and we

will use the algorithm as a heuristic. In fact, Cadzow denoising

and the Douglas–Rachford algorithm are also heuristic meth-

ods for nonconvex problems, but a large body of empirical

evidence shows that these two algorithms actually work in

a surprisingly broad range of applications and achieve com-

parable results to much more sophisticated, special purpose

algorithms. They have been used for protein fold prediction,

phase retrieval in optics, crystallography, graph coloring, and

solving Sudokus [86]–[89]. The Douglas–Rachford iteration

generally outperforms Cadzow denoising for these applications

[86], [88], [89]. The motivation for applying the new proposed

algorithm to SLRA stems from this practical success, since

it can be viewed as a Douglas–Rachford iteration with an

adequately plugged gradient descent with respect to the cost

function. However, there are almost no convergence results

for the Douglas–Rachford algorithm in the nonconvex case, as

the behavior of such iterative methods is particularly difficult

to analyze [89]. Still, we can mention the following good

property: for every fixed point (T̃P , S̃P ) of the proposed

algorithm, T̃P ∈ RK ∩ T .

In practice, when using the proposed algorithm to solve

the SLRA problem (14), we observed that it almost always

converges. Only when the noise level is very high, and in rare

cases, it gets trapped in a cycle and does not converge; if this

happens, running again the algorithm with lower values of

the parameters µ and γ is sufficient to obtain convergence.

More extensive use of the algorithm will be necessary to

understand its behavior and the appropriate values of µ and γ
to use. When the algorithm converges, it always does so to a

Toeplitz matrix of rank K , which is a local minimizer of the

weighted Frobenius cost function. More precisely, we checked

that the locations {t̃k}
K
k=1 and amplitudes {ãk}

K
k=1 obtained

at convergence of the algorithm are local solutions of the ML



6

problem (10) as follows. As remarked in [60, Sect. IV.C], in

the case of K = 1 Dirac pulse, all the local minima of the

least squares cost function (10) with respect to the location are

roots of a particular polynomial Q constructed from the data.

That is, setting the partial derivative with respect to t to zero in∑M
m=−M |v̂m − ae−j2πmt/τ |2 yields

∑M
m=−M mzmv̂∗m = 0,

where z = e−j2πmt/τ . Equivalently, t is a local solution only

if z is a root on the unit circle of the polynomial

Q(z) =

2M∑

m=0

(m−M)v̂∗m−Mzm. (24)

Therefore, in our case of multiple Dirac pulses, we can subtract

to the data {v̂m}Mm=−M the sequences {ãke−j2πmt̃k/τ}Mm=−M

for all values of k except one value k0 and check whether z̃k0
,

defined in (19), is a root of the corresponding polynomial Q.

We observed empirically that this is always the case.

A. A Convex Variant of the Approach

To circumvent the difficulty of achieving the ML estimate

for spike train recovery from noisy Fourier coefficients, a

convex surrogate of the problem has been proposed in recent

papers, based on the minimization of the so-called total

variation measure [13], [14], [90]. The main limitation of this

approach is the necessity of a minimal separation between the

pulses, like mink1 6=k2
|ťk1

− ťk2
| ≥ 2τ/M . In this section, we

propose another convex relaxation of the problem, which is

free of such assumption of minimal separation. It is obtained

by replacing the rank in the SLRA problem (14) by its convex

surrogate, the nuclear norm [91]:

Convex approximation of the SLRA problem

Find T̃P ∈ argmin
T∈CN−P×P+1

1
2‖T−TP ‖

2
w + λ‖T‖∗ (25)

s. t. T is Toeplitz,

where the nuclear norm ‖ · ‖∗ of a matrix is the sum of its

singular values and the Lagrangian parameter λ > 0 controls

the tradeoff between the antagonist terms.

The main advantage of this formulation is to be a strongly

convex semi-definite program, for which many efficient algo-

rithms exist to compute the unique solution. Also, replacing

the rank by the nuclear norm has proved successful for several

problems, like matrix completion [59], [92], [93]. However, in

our setting, two pulses can be arbitrarily close to each other,

so that the measurements can be highly coherent. Therefore,

the quality of the solution to a problem like (25) can be

significantly degraded in comparison with the SLRA solution,

as shown in another context in [94], [95]. For our problem,

the solution of (25) seems significantly worse than the estimate

given by the algorithm proposed in Sect. IV, as shown by the

example in Fig. 7. Moreover, the choice of the value of λ to

use is problematic; a stability analysis of the kind of the one

for total variation minimization in [96] would be desirable, but

we leave this difficult study for future work.

We note that a minor modification of the proposed algorithm

for SLRA can compute the solution of (25): we simply have to

replace the operator PRK
, which performs hard-thresholding

of the singular values, by soft-thresholding Sµλ of the singular

values: in the SVD X = LΣR
H, Sµλ(X) is obtained by

replacing each of the diagonal elements {σi,i}
P+1
i=1 of the

matrix Σ by max(σi,i−µλ, 0). As a consequence of the results

in [83], the sequence (T
(l)
P )l∈N generated by this algorithm

converges to some matrix T̃P solution to (25).

V. EXPERIMENTAL RESULTS

The reconstruction procedure described in Sect. III was

implemented in Matlab, with the choice between Cadzow

denoising and the algorithm proposed in Sect. IV to solve the

SLRA problem (with P = M ), or with no denoising (starting

directly the procedure described in Fig. 2 at Step 3, with

T̃K = TK ; this method is called total least squares in [3]).

We also implemented several methods of spectral estimation:

MUSIC [27] (we used the function pmusic of Matlab), the

method of Tufts and Kumaresan [21], and the matrix pencil

method [97]3. The results obtained with this Matlab code4 are

illustrated for several experiments in Figs. 3–9.

Before discussing the results, we have to choose a criterion

to quantify the estimation error between the true unknown

signal š and the estimated signal s̃ =
∑K

k=1 ãkδ(t − t̃k).
We note that this question is related to the notion of distance

between discrete measures in the theory of optimal transporta-

tion. Since the problem is parametric, it is natural to think of

a kind of mean squared error (MSE) between the sets {tk}Kk=1

and {t̃k}Kk=1 on one hand, and {ak}Kk=1 and {ãk}Kk=1 on

the other hand. But the problem of assigning each estimated

pulse to a true pulse is not trivial, especially because of the

intrinsic periodicity of the setting: the boundaries at t = 0
and t = τ are identified. For the setting of Fig. 3, with two

pulses of same amplitude, we considered the best assignment

between the two possible permutations and computed the mean

squared periodic error (MSPE) [98]. But, in general, this best

assignment is not appropriate, because it does not depend

on the amplitudes. Therefore, we adopt as error criterion the

squared L2 distance between the lowpass-filtered signals š∗ϕ
and s̃∗ϕ, where ϕ is the Dirichlet kernel defined in (4). From

Parseval’s identity, this is equivalent to considering the squared

distance 1
N

∑M
m=−M |ˇ̂vm − ˜̂vm|2 between the true Fourier

coefficients ˇ̂vm of š and the denoised Fourier coefficients ˜̂vm,

which are Fourier coefficients of s̃. We call this error criterion

the lowpass mean squared error.

The first experiment, illustrated in Figs. 3 and 4 (a),

corresponds to K = 2 pulses with same amplitude. In that

case, the performances can be evaluated by comparing the

MSPE on the locations with the corresponding Cramér–Rao

bound (CRB), which is a lower bound for the expectation of

the mean squared error achievable by any unbiased estimator,

calculated like in [3]. The proposed method outperforms all

the other methods over the whole range of signal-to-noise

3For the method of Tufts and Kumaresan [21] and the matrix pencil method
[97], we we used the implementation of Kfir Gedalyahu, found on his webpage
at https://sites.google.com/site/kfirgedal/.

4The Matlab code implementing all the methods men-
tioned is available on the webpage of the first author at
http://www.gipsa-lab.grenoble-inp.fr/∼laurent.condat/
publications.html.
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Fig. 3. Plot in log-log scale of (a) the mean squared periodic error (MSPE) min
(
(t̃1−t1)2τ +(t̃2−t2)2τ , (t̃1−t2)2τ +(t̃2−t1)2τ

)
/2, where (x)τ =

(
(x+ τ

2
)

mod τ
)
− τ

2
, and (b) the lowpass MSE ‖ˇ̂v − ˜̂v‖2/N , for several reconstruction methods. The true signal š consists of K = 2 Dirac pulses, with

(t1, t2) = (0.42, 0.52), (a1, a2) = (1, 1), τ = 1, N = 11. The values are averaged over 10,000 noise realizations for every integer value of the
signal-to-noise ratio (SNR).

0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56

0

0.2

0.4

0.6

0.8

1

1.2

position [units of τ ]

a
m

p
lit

u
d
e

0.35 0.4 0.45 0.5 0.55

0

0.2

0.4

0.6

0.8

1

1.2

position [units of τ ]

a
m

p
lit

u
d
e
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Fig. 4. The signal consists of K = 2 Dirac pulses, with N = 11 noisy measurements, and the SNR is 15dB. (a) Same setting as in Fig. 3; (b)
(t1, t2) = (0.42, 0.5) and (a1, a2) = (1, 0.5). In black: true pulses. In blue and red: reconstructed locations and amplitudes of the pulses with Cadzow
denoising and the proposed algorithm, respectively, for 500 different noise realizations. The difference is small visually, but the proposed algorithm yields
smaller estimation errors, with points clouds slightly less dispersed. The computation time for one reconstruction, with 50 iterations, was 14ms.

ratio5 (SNR) values. For a SNR above 12dB, the MSPE of

the proposed method achieves the CRB, which implies that the

proposed method yields the optimal ML estimate. For a lower

SNR, the performances are degraded, which means that the

proposed method only achieves a local minimum of the SLRA

problem (14), and not the global solution corresponding to the

ML estimate. Although Cadzow denoising performs well, it

does not achieve the CRB, even asymptotically, contrary to

what is claimed in [3]. The proposed approach outperforms

5We define the SNR as 20 log10(‖v − ε‖/‖ε‖) = 20 log10(‖v̂ −
ε̂‖/‖ε̂‖) = 20 log10(‖

ˇ̂v‖/‖ε̂‖).

Cadzow denoising consistently, with errors on the locations

about 10% lower in average. Interestingly, when solving with

the proposed algorithm the SLRA problem (14), but with

the Frobenius norm instead of the weighted Frobenius norm

(which amounts to replace W ◦ (T
(l)
P −TP ) by (T

(l)
P −TP )

in the algorithm), the results are almost exactly the same as

with Cadzow denoising; this indicates that the gain provided

by the proposed method is explained by the presence in the

problem formulation of the appropriate cost function.

In Figs. 5–9, we show examples for larger values of K
and N . For the proposed algorithm, we used µ = 0.1 and
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Fig. 5. The signal consists of 6 Dirac pulses. We have N = 25 noisy measurements with SNR=25dB. In black: true pulses. In blue and red: reconstructed
locations and amplitudes of the pulses with Cadzow denoising and the proposed algorithm, respectively, for one particular noise realization. The solid line in
light gray is the lowpass-filtered signal š∗ϕ and the gray dots are the noisy measurements vn. The computation time for one reconstruction, with 50 iterations,
was 19ms. (a) Reconstruction with K = 6. The lowpass MSE with Cadzow denoising and the proposed algorithm is 1.39e-3 and 1.22e-3, respectively. (b)
Reconstruction with K = 10, to illustrate the effects of overfitting: the methods have found imaginary pulses in noise.

γ = 0.51µ. Actually, the values for µ and σ yielding fastest

convergence depended on the experiment and on the noise

level, and we could not come to a rule for tuning these

parameters. Qualitatively, Cadzow denoising and the proposed

algorithm behave similarly. Yet, the values of lowpass MSE

indicate a slightly better reconstruction with the proposed

method.

VI. CONCLUSION

We proposed a new heuristic optimization algorithm for

structured low rank approximation. Its combination with

Prony’s extraction procedure yields an efficient method for

the reconstruction of Dirac pulses. The maximum-likelihood

parameter estimates are obtained, up to some threshold SNR.

Thus, the proposed algorithm outperforms the state-of-the-

art approach to date, based on Cadzow denoising, for same

ease of implementation and complexity, essentially one SVD

per iteration. More in-depth analysis of the performances

is currently led by the authors. Many theoretical questions

remain open, e.g. on the relationship between the proposed

formalism and the very recent developments on total variation

minimization [13], [14], [90]. We should also investigate the

possibility to generalize the method in higher dimensions and

apply it to other model identification problems [53].
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