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Abstract

We consider the recovery of a finite stream of Dirac pulses at nonuniform locations, from noisy lowpass-

filtered samples. We show that maximum-likelihood estimation of the unknown parameters can be reformulated

as structured low rank approximation of an appropriate matrix. To solve this difficult, even NP-hard, problem, we

propose a new heuristic iterative algorithm, based on a recently proposed splitting method for convex nonsmooth

optimization. Although the algorithm comes, in absence of convexity, with no convergence proof, it converges in

practice to a local solution, and even to the global solution of the problem, when the noise level is not too high.

Thus, the estimation error is smaller than with the classical heuristic method of alternating projections, a.k.a. Cadzow

denoising, while sharing its speed and easiness of implementation.

Index Terms

Recovery of Dirac pulses, finite rate of innovation, maximum likelihood estimation, structured low rank approx-

imation, alternating projections, Cadzow denoising, optimization, splitting

I. INTRODUCTION AND PROBLEM FORMULATION

Reconstruction of signals lying in shift-invariant spaces, including bandlimited signals and splines [1], has received

long attention in sampling theory [2], [3]. Recently, analog reconstruction from discrete samples has been enlarged

to a broader class of signals, with so-called finite rate of innovation (FRI), beyond the classical framework rooted

in Shannon’s work [4]–[7]. Indeed, the estimation of signals ruled by parsimonious models in terms of degrees of

freedom has become of utmost importance in signal processing and engineering, as witnessed by intense research

around the emerging paradigm of sparsity and compressed sensing.

In this paper, we focus on the retrieval of a finite stream of Dirac pulses from uniform, noisy, lowpass-filtered

samples, a problem at the heart of the FRI theory [4], [5], [8]–[11]. More precisely, the sought-after unknown

signal s consists of K Dirac pulses in the finite interval [0, τ [, where the real τ > 0 and the integer K ≥ 1 are

known; that is

s(t) =

K∑

k=1

akδ(t− tk), ∀t ∈ [0, τ [, (1)

where δ(t) is the Dirac mass distribution, {tk}
K
k=1 are the unknown distinct locations in [0, τ [, and {ak}

K
k=1 are the

unknown real nonzero amplitudes. The goal is to obtain estimates of these 2K values, which forms a deterministic

(non-Bayesian) parametric estimation problem. The available data consist of linear uniform noisy measurements

{vn}
N−1
n=0 on s, of the form

vn =

∫ τ

0
s(t)ϕ

(nτ
N

− t
)
dt+ εn (2)

=

K∑

k=1

akϕ
(nτ
N

− tk

)
+ εn, ∀n = 0, . . . , N − 1, (3)
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where ϕ(t) is the sampling function and the εn ∼ N (0, σ2) are independent random realizations of Gaussian noise.

Note that other noise models could be considered as well, by changing the cost function in eqns. (5), (10), (14)

below.

The questions of the choice of the function ϕ and of the number N of measurements allowing perfect reconstruc-

tion, in absence of noise, has been addressed in the literature [10]–[13]. In a nutshell, the condition N ≥ 2K + 1,

which we hereafter assume to be true, is necessary and sufficient, provided that ϕ satisfies some constraints in

Fourier domain. In this work, as the emphasis is on appropriately handling the presence of noise, we adopt the

simplest choice of the Dirichlet sampling function [10], which amounts to periodizing the signal s on the real line

before sampling it with the sinc function:

ϕ(t) =
sin(Nπt/τ)

N sin(πt/τ)
=

1

N

M∑

m=−M

ej2πmt/τ , ∀t ∈ R, (4)

where hereafter we assume, without loss of generality and only to simplify the notations, that N is odd of the form

N = 2M + 1. The extension of the setting to the reconstruction of pulses with real shape, instead of the ideal

Dirac distribution, is of obvious practical interest, for instance in ultrawideband communications [6] or to detect

impulsive signals in biomedical applications [10]. This extension, or equivalently the choice of another sampling

function ϕ, can be addressed without any difficulty, as described in details in [10]; therefore, to keep the derivations

and notations simple, we do not address this general case in this paper.

The paper is organized as follows. In Sect. II, we formulate the maximum likelihood estimation problem and in

Sect. III, we show that it amounts to a low rank matrix approximation problem. The new algorithm to solve it is

presented in Sect. IV. Experimental results illustrate the effectiveness of the approach in Sect. V.

II. MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS

A natural approach to solve parametric estimation problem is maximum likelihood (ML) estimation. It consists

in selecting the model which is the most likely to explain the observed noisy data; that is, the ML estimate is given

by minimizing the anti-log-likelihood of the data, with respect to the model parameters. In our case, since we have

supposed the noise to be Gaussian, this corresponds to solving the nonlinear least-squares problem [14]:

Find (t̃, ã) = argmin
t′∈[0,τ [K ,a′∈RK

N−1∑

n=0

∣∣∣∣∣vn −
K∑

k=1

a′kϕ
(nτ
N

− t′k

)∣∣∣∣∣

2

. (5)

Almost surely, the solution to this problem is unique, the obtained amplitudes ã = {ãk}
K
k=1 are nonzero, and the

obtained locations t̃ = {t̃k}
K
k=1 are distinct.

Now, applying the discrete Fourier transform to the vector of measurements yields the Fourier coefficients defined

by

v̂m =

N−1∑

n=0

vne
−j2πmn/N , ∀m = −M, . . . ,M. (6)

We define the Fourier coefficients {ε̂m}Mm=−M similarly. Combining (3) and (4), we get, for every n = 0, . . . , N−1,

vn − εn =
1

N

K∑

k=1

ak

M∑

m=−M

ej2πm(n/N−tk/τ) (7)

=
1

N

M∑

m=−M

ej2πmn/N

(
K∑

k=1

ake
−j2πmtk/τ

)
. (8)

We recognize the form of the inverse discrete Fourier transform. Thus, by identification, we obtain

v̂m =

K∑

k=1

ake
−j2πmtk/τ + ε̂m, ∀m = −M, . . . ,M. (9)

Since the inverse discrete Fourier transform is unitary, up to a constant, the problem (9) can be rewritten as [14]:
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Fig. 1. (a) Contour plot showing the level lines of the cost function in (10), as a function of t′1 and t′2, on the horizontal and vertical axes,

respectively. (b) plot of the same cost function as a function of t′2, for t′1 = 0.47. For given t′1 and t′2, the values of a′

1 and a′

2 are the

optimal values obtained by solving (21). The setting is the same as in Figs. 3 and 4 (a): the true unknown signal consists of K = 2 Dirac

pulses with τ = 1, (t1, t2) = (0.42, 0.52) and (a1, a2) = (1, 1); we have N = 11 noisy measurements with SNR=15dB.

Maximum likelihood (ML) estimation problem

Find (t̃, ã) = argmin
t′∈[0,τ [K ,a′∈RK

M∑

m=−M

∣∣∣∣∣v̂m −
K∑

k=1

a′ke
−j2πmt′k/τ

∣∣∣∣∣

2

. (10)

We remark that (10) takes the form of a spectral estimation problem, which consists in retrieving the parameters

of a sum of complex exponentials or sinusoids from noisy samples [15]–[17]. This classical problem, which has a

wide range of applications, e.g. in communications, radar, sonar, and geophysical seismology [17], has been studied

extensively in signal processing [18]–[27]. From the perspective of control theory, spectral estimation was studied

as well, with emphasis on the asymptotic optimality as N → +∞, see e.g. [28]; we are not in this context here,

as the number N of available Fourier coefficients of the signal is fixed. Also, when N ≫ K and the locations tk
are not too close to each other, classical spectral estimation techniques like MUSIC [29], [30] and ESPRIT [20],

[31], or greedy strategies [32], can be used; they are fast but statistically suboptimal. In this work, we investigate

the ML estimation problem in its whole generality, without any simplifying assumption.

The optimal statistical properties of ML estimation for spectral estimation are well known [19], [21]–[23], [33]–

[35]. However, solving the problem (10) is a difficult task, as the cost function has a multimodal shape with many

local minima and a narrow trough around the global minimum [36]–[40], see the example of Fig. 1. Stochastic

optimization approaches can be applied [14], [41], [42], but due to the combinatorial nature of the problem, their

computational cost blows up even for moderate values of K and N . Several methods have been proposed to find

a local minimum of the cost function in (10) [43]–[46]; see also [47], [48] for relationship with the well known

expectation maximization (EM) algorithm. These approaches proceed in two steps: 1) a method is used to obtain

a good initial estimate; 2) this estimate is refined iteratively and converges to the closest local minimizer of the

nonconvex cost function in (10). Thus, the quality of the method used for the first step is crucial. A major advantage

of the approach developed in the next section is that it does not necessitate any initialization.

III. THE ANNIHILATION PROPERTY: REFORMULATION OF EQN. (10) AS A MATRIX APPROXIMATION PROBLEM

Let us assume temporarily that there is no noise, i.e. ε̂m = 0 in (9). Then, the sequence of Fourier coefficients

{v̂m}Mm=−M satisfy a linear annihilating difference equation [49], a known property which dates back to de Prony’s



4

work in the eighteenth century [50]. That is, the sequence {hk}
K
k=0 is identically zero:

K∑

k=0

hkv̂m−k = 0, ∀m = −M +K, . . . ,M, (11)

with the (reversed) Z-transform of the annihilating filter defined, up to a constant, as

H(z−1) =

K∑

k=0

hkz
k =

K∏

k=1

(z − ej2πtk/τ ). (12)

In matrix form, the annihilation property is



v̂−M+K · · · v̂−M
...

. . .
...

...
. . .

...

v̂M · · · v̂M−K




︸ ︷︷ ︸
TK




h0
...

hK


 =




0
...

0


 . (13)

Let us define, for every integer P = K, . . . ,M , the Toeplitz—i.e. with constant values along its diagonals—matrix

TP , of size N − P × P + 1, obtained by arranging the values {v̂m}Mm=−M in its first row and column; TK

is depicted in (13). Then, the existence of an annihilating filter of size K + 1 for the sequence {v̂m}Mm=−M is

completely equivalent to the property that TP has rank at most K, for every P = K, . . . ,M .

Hence, turning back to the case when noise is present in the data, we can recast the estimation problem (10) as

the following matrix approximation problem, named structured low rank approximation (SLRA) in the literature

[51]–[53]:

Structured low rank approximation (SLRA) problem

Find T̃P ∈ argmin
T′∈CN−P×P+1

‖T′ −TP‖
2
w (14)

s. t. T
′ is Toeplitz and rank(T′) ≤ K,

for some chosen P ∈ K, . . . ,M , where the weighted Frobenius norm of a matrix A = {ai,j} ∈ CN−P×P+1 is

defined by

‖A‖2w =

N−P∑

i=1

P+1∑

j=1

wi,j |ai,j|
2, (15)

and wi,j is the inverse of the size of the diagonal going through the position (i, j):

wi,j =





1/(i− j + P + 1) if i− j ≤ 0,
1/(P + 1) if 1 ≤ i− j ≤ N − 2P − 1,
1/(j − i+N − P ) if i− j ≥ N − 2P.

(16)

The SLRA problem (14), which consists in projecting a matrix in the intersection of a linear subspace and a

nonconvex manifold, is claimed in several papers to be NP-hard [52], see also [54]–[57]. So, at first glance, we just

have replaced the difficult problem (10) by the SLRA problem of same difficulty. However, the parametric problem

(10) has been reformulated as a matrix denoising problem: the matrix TP , or equivalently the data {vn}
N−1
n=0 ,

is denoised by finding the closest matrix consistent with the model’s structure. The main advantage is that the

initialization problem disappears: an iterative algorithm to solve the SLRA problem proceeds directly, with the

noisy matrix TP as initial estimate of the solution T̃P . Moreover, for a low noise level, an algorithm converging

to a local solution will find the global solution T̃P , as TP , T̃P and the true noiseless matrix will be in the same

catchment area of the cost function in (14).

As the desired parameters {t̃k}
K
k=1 and {ãk}

K
k=1 are somehow encoded in the matrices, we have to describe the

extraction procedure. The whole reconstruction process, also given in [5], is detailed in Fig. 2. In absence of noise,
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it yields perfect reconstruction of the parameters. We also note that the estimation of the locations is decoupled

from that of the amplitudes.

We must remark that the obtained estimates {(t̃k, ãk)}
K
k=1 coincide with the ML estimates, solution to (10), only

if the roots {z̃k}
K
k=1 are distinct and all on the complex unit circle. This is the case in practice, with high probability,

if the noise level is not too high. Indeed, the matrices TP and T̃P are centro-Hermitian, i.e. their entries satisfy

Reconstruction Procedure

Input: The Fourier coefficients {v̂m}Mm=−M .

Output: the estimates {t̃k}
K
k=1 and {ãk}

K
k=1 of the unknown positions {tk}

K
k=1 and amplitudes {ak}

K
k=1.

Step 1. Choose an integer P such that K ≤ P ≤ M ; we recommend P = M . Construct the Toeplitz matrix

TP of size N−P ×P +1 by arranging the coefficients {v̂m}Mm=−M in its first row and column and repeating

them along the diagonals:

TP =




v̂−M+P · · · v̂−M
...

. . .
...

...
. . .

...

v̂M · · · v̂M−P




. (17)

Step 2. Solve the SLRA problem

Find T̃P ∈ argmin
T′∈CN−P×P+1

‖T′ −TP‖
2
w s. t. T

′ is Toeplitz and rank(T′) ≤ K, (18)

where the weighted norm is defined in eqns. (15)–(16).

Step 3. If P > K, reshape the denoised Toeplitz matrix T̃P to a Toeplitz matrix T̃K of size N −K×K+1;

that is,

T̃K =




ṽ−M+K · · · ṽ−M
...

. . .
...

...
. . .

...

ṽM · · · ṽM−K




. (19)

Note that both T̃P and T̃K have rank at most K.

Step 4. Compute the right singular vector h̃ = [h̃0 · · · h̃K ]T of T̃K corresponding to the singular value

zero: in the SVD T̃K = LΣR
H, h̃ corresponds to the last column of R. Since, almost surely, T̃K has rank

exactly K, h̃ is unique, up to a constant. Then, compute the roots {z̃k}
K
k=1 of the polynomial

∑K
k=0 h̃kz

k;

the estimates {t̃k}
K
k=1 of the locations are given by

t̃k =
τ

2π
arg[0,2π[(z̃k), ∀k = 1, . . . ,K. (20)

Step 5. Given the estimates {t̃k}
K
k=1, the maximum-likelihood estimates {ãk}

K
k=1 of the amplitudes are

obtained by solving the linear system

Ũ
H
Ũã = Ũ

H
v̂, (21)

where v̂ = [v̂−M · · · v̂M ]T, ·H denotes the Hermitian transpose, and

Ũ =




ej2πMt̃1/τ · · · ej2πMt̃K/τ

...
...

...

e−j2πMt̃1/τ · · · e−j2πMt̃K/τ


 . (22)

Fig. 2. Procedure to estimate the parameters of a stream of Dirac pulses s(t) =
∑K

k=1 akδ(t− tk) from noisy Fourier coefficients.
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v̂−m = v̂∗m and ṽ−m = ṽ∗m, for every m = −M, . . . ,M , where ·∗ denotes complex conjugation. Consequently,

the polynomial
∑K

k=0 h̃kz
k is self-inversive [58], so that its roots {z̃k}

K
k=1 are either on the complex unit circle

or come by pairs with same complex phase and opposite amplitudes. In essence, when moving continuously the

variables {vn}
N−1
n=0 from their noiseless version to their actual noisy version, the corresponding estimated roots

{z̃k = ej2πt̃k/τ}Kk=1 deviate continuously from the true roots {zk = ej2πtk/τ}Kk=1, while remaining on the complex

unit circle; only if the perturbation is large enough, two distinct roots (z̃k, z̃k′) will possibly merge and then split

in a pair (z̃k, z̃k′ = 1/z̃∗k) on both sides of the unit circle, yielding t̃k = t̃k′ .

We end this section by getting onto the state of the art of SLRA. The problem of reconstructing a low-rank

matrix from limited, noisy, linear measurements arises in many areas of engineering and applied sciences, such as

signal processing, machine learning, control, and computer vision. The wide range of applications includes low-

order system identification, dynamic MRI, quantum state tomography, phase retrieval, collaborative filtering, global

positioning from local distances, and the now famous Netflix problem, to mention a few; see references in [51],

[52], [59]–[64]. In many of these problems, the matrix to be recovered is constrained to have some structure, like

being Toeplitz, Hankel, Sylvester, or positive definite. The SLRA problems have been studied in the literature under

different names; they are equivalent or have tight connections with constrained or structured total least-squares,

total least-norm, and errors-in-variables [51], [52], [65]–[70].

A possible approach to circumvent the general NP-hardness of low-rank approximation, is to replace the rank

by its convex surrogate, the nuclear norm, in the problem formulation. That is, instead of the SLRA problem (14),

we solve

Find T̃P ∈ argmin
T′∈CN−P×P+1

‖T′ −TP ‖
2
w + λ‖T′‖∗ s. t. T

′ is Toeplitz, (23)

where the nuclear norm ‖ · ‖∗ of a matrix is the sum of its singular values and the Lagrangian parameter λ > 0
controls the tradeoff between the antagonist terms. This approach, initiated in [71], has become popular, due to the

existence of fast polynomial-time semi-definite programming algorithms and good results in many cases [61]–[64],

[72], [73]. However, in our setting, two pulses can be arbitrarily close to each other, so that the measurements can

be highly coherent. Consequently, the estimation quality of the nuclear-norm approach is significantly degraded

[74], [75], see Fig. 6.

Several methods of numerical algebra have been proposed to obtain a local solution of a SLRA problem [39],

[67], [76]–[81]. For instance, the iterative approach in [39] is based on high-level optimization routines, like the

Matlab function fminunc, which is a BFGS quasi-Newton method with line search. Besides the difficulty of

implementation, the algorithm is very costly, as it requires computing many SVD at each iteration. So, to our

knowledge, the only efficient publicly available software package for SLRA is the one currently in development by

I. Markovsky [59]. However, it only handles real-valued data, while the matrices in (14) are complex-valued with

centro-Hermitian symmetry.

On the other hand, the popular heuristic Cadzow denoising method [82], [83], a.k.a. alternating projections, is

promoted in [5], [10] for the reconstruction of Dirac pulses, and represents the state of the art for this problem.

To describe this method, let us denote by M the set of complex matrices of size N − P × P + 1, endowed with

the Frobenius norm. Let T and RK be the closed subsets of M of Toeplitz matrices and matrices of rank at most

K, respectively. We denote by PΩ : H → Ω (a selection of) the closest-point projection onto a closed subset Ω
of a metric space H; that is, for every x ∈ H, PΩ(x) ∈ argminx′∈Ω ‖x − x′‖. If Ω is convex, the minimizer in

this definition is unique. Then, with H = M, “Toeplitzation” PT simply consists in averaging along the diagonals

of the matrix and PRK
corresponds to SVD truncation, according to the classical Schmidt-Eckart-Young theorem

[84] [85, theorem 2.5.3]: if a matrix X has SVD X = LΣR
H, then PRK

(X) is obtained by setting to zero all

except the K largest diagonal elements of Σ, which are the singular values of X. We now have all the ingredients

to describe the Cadzow denoising iterative algorithm, which takes the simple form:

Cadzow denoising algorithm. Set T
(0)
P = TP , given in (17). Then iterate, for every l ≥ 0,∣∣∣T(l+1)

P = PT

(
PRK

(T
(l)
P )
)

.

This algorithm seems to always converge in practice to a matrix T̃P ∈ T ∩ RK , i.e. a Toeplitz matrix of rank

at most K. However, contrary to what is sometimes claimed in papers, this convergence has not been proved
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theoretically. A few convergence results are available in the literature for the alternating projections on nonconvex

sets [86]–[89]. To our knowledge, the most advanced results for the Toeplitz and low rank case are the recent ones

in [90]–[92]. Moreover, even if Cadzow denoising converges to a Toeplitz matrix T̃P of rank at most K, there

is no reason for T̃P to be close, in any sense, to the matrix TP from which the algorithm starts. In particular,

the experiments in [39], [40], [65] show that the matrix is not a local minimizer of the Frobenius distance or of

the weighted Frobenius distance ‖ · −TP‖w in the SLRA problem (14). In the next section, we propose a new

algorithm to compute a local solution of the SLRA problem, which thus improves upon Cadzow denoising, for

essentially the same complexity of one SVD per iteration. We end this discussion by mentioning the links between

Cadzow denoising to solve (14) and the technique of singular spectrum analysis (SSA) [93]–[97].

IV. A NEW ITERATIVE OPTIMIZATION METHOD FOR SLRA

We consider the generic optimization problem:

Find x̃ ∈ argmin
x∈H

F (x) s.t. x ∈ Ω1 ∩Ω2, (24)

where H is a real Hilbert space of finite dimension, Ω1 and Ω2 are two closed subsets of H such that Ω1∩Ω2 6= ∅,

and F : H → R is a convex and differentiable function with β-Lipschitz continuous gradient, for some β > 0; that

is, ‖∇F (x′)−∇F (x)‖ ≤ β‖x− x′‖, ∀x, x′ ∈ H.

The proposed algorithm to solve (24) is the following:

Proposed algorithm. Choose the parameters µ > 0, γ ∈ ]0, 1[, and the initial estimates x(0), s(0) ∈ H. Then iterate,

for every i ≥ 0,∣∣∣∣
x(i+1) = PΩ1

(
s(i) + γ(x(i) − s(i))− µ∇F (x(i))

)

s(i+1) = s(i) − x(i+1) + PΩ2
(2x(i+1) − s(i))

.

The following convergence results are corollaries of more general results derived in [98].

Theorem 1. In (24), suppose that the sets Ω1 and Ω2 are convex. In the algorithm, suppose that 2γ > βµ. Then,

the sequence (x(i))i∈N generated by the algorithm converges to some element x̃ solution of the problem (24).

Theorem 2. In (24), suppose that the sets Ω1 and Ω2 are convex and that F = 0. In the algorithm, suppose that

γ = µ = 0. Then, the algorithm reverts to the Douglas-Rachford splitting algorithm, well known in optimization

theory [99]. Consequently, the sequence (x(i))i∈N generated by the algorithm converges to some element x̃ ∈ Ω1∩Ω2.

In absence of convexity, these results do not apply, so that we will use the algorithm as a heuristic. The SLRA

problem (14) can be recast as an instance of (24) as follows: H = CN−P×P+1 is the real Hilbert space of complex-

valued matrices of size N − P × P + 1 with centro-Hermitian symmetry, endowed with Frobenius inner product

〈X,X′〉 =
∑

i,j xi,jx
′∗
i,j ∈ R; Ω1 = RK is the closed nonconvex subset of H of matrices with rank at most K;

Ω2 = T is the linear subspace of H of Toeplitz matrices; F (X) = 1
2‖X−TP ‖

2
w, with ∇F (X) = W ◦ (X−TP ),

where ◦ is the entrywise (Hadamard) product and the entries {wi,j} of the matrix W are defined in (16), with

Lipschitz constant β = max({wi,j}) = 1.

Cadzow denoising and the Douglas-Rachford algorithm are two heuristic methods, which aim at finding an

element in the intersection of two closed subsets of a metric space, by alternately enforcing closeness to the two

constraint sets. A large body of empirical evidence shows that these two algorithms actually work in a surprisingly

broad range of applications and achieve comparable results to much more sophisticated, special purpose algorithms.

They have been used for protein fold prediction, phase retrieval in optics, crystallography, graph coloring, and solving

Sudokus [100]–[103]. The Douglas-Rachford iteration generally outperforms the alternating projections for these

applications [100], [102], [103]. The motivation for applying the new proposed algorithm, which can be viewed as

a Douglas-Rachford iteration with an adequately plugged gradient descent, stems from this practical success.

We leave for future work the convergence study of the proposed algorithm. Especially, we would like to prove

that if the algorithm converges to some element, then this element is necessarily a local solution to (24), i.e. a local
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minimizer of the cost function F lying in Ω1 ∩Ω2. As a first step in this direction, it is easy to see that for every

fixed point (x̃, s̃) of the algorithm, x̃ ∈ Ω1 ∩Ω2.

In practice, when using the proposed algorithm to solve the SLRA problem (14), we observed that the algorithm

almost always converges; only when the noise level is very high, and in rare cases, it gets trapped in a cycle and

does not converge. But, in such cases, running again the algorithm with lower values of µ and γ—for instance,

dividing them by three—seemed sufficient to obtain convergence; this is what we did to generate the results of

Fig. 3. More extensive use of the algorithm will be necessary to understand its behavior and the appropriate values

of µ and γ to use. When the algorithm converges, it always does so to a Toeplitz matrix of rank at most K, which

is a local minimizer of the weighted Frobenius cost function. More precisely, we checked that the positions {t̃k}
K
k=1

and amplitudes {ãk}
K
k=1 obtained at convergence of the algorithm are local solutions of the ML problem (10) as

follows. As remarked in [65, Sect. IV.C], in the case of K = 1 Dirac pulse, all the local minima of the least

squares cost function (10) with respect to the position are roots of a particular polynomial Q constructed from the

data. More precisely, setting the partial derivative with respect to t to zero in
∑M

m=−M |v̂m − ae−j2πmt/τ |2 yields∑M
m=−M mzmv̂∗m = 0, where z = e−j2πmt/τ . Equivalently, t is a local solution only if z is a root on the unit circle

of the polynomial

Q(z) =

2M∑

m=0

(m−M)v̂∗m−Mzm. (25)

Therefore, in our case of multiple Dirac pulses, we can subtract to the data {v̂m}Mm=−M the sequences {ãke
−j2πmt̃k/τ}Mm=−M

for all values of k except one value k0 and try to fit one Dirac pulse on this residual sequence. We observed

empirically that, when z̃k0
in (20) has unit amplitude, it is always a root of the corresponding polynomial Q.

V. EXPERIMENTAL RESULTS

The reconstruction procedure described in Sect. III was implemented in Matlab, with the choice between Cadzow

denoising and the proposed algorithm to solve the SLRA problem. The code is freely available on the webpage of

the first author. The results obtained with this code for several experiments are illustrated in Figs. 3–10. We used

P = M in all cases, because we observed faster convergence for the two algorithms in that case. In Fig. 4–10,

τ = 1 and we set µ = 0.1 and γ = 0.51µ. Actually, the value of µ yielding fastest convergence depended on the

experiment and the noise level, and we could not come to a rule for tuning this parameter.

The results in Figs. 3–10 show that the two algorithms behave quite similarly; in a given setting, they succeed

and fail in estimating the same Dirac pulses, in average. We could not find an experimental setting where the

two methods would behave differently and consistently for different noise realizations. This is remarkable, because

Cadzow denoising does not minimize any criterion, while our method aims at reaching the optimal maximum-

likelihood estimate. However, as is clearly visible in Fig. 3, in average, the precision in the estimated positions is

higher with the proposed method; the error was about 10% lower in average in comparison with Cadzow denoising,

for a large range of values of the signal-to-noise ratio (SNR). Especially, contrary to what is claimed in the literature,

Cadzow denoising does not reach the ML estimate when the noise level tends to zero. The price to pay for the

optimality of our method is that a bit more iterations are needed to achieve convergence, for large values of K
and N . In the experiment of Fig. 3, the proposed algorithm yields the exact, global solution of the SLRA problem

(14), which is the ML estimate, for SNR above 12dB. We checked this property empirically by solving (10) with

brute force, by exhaustive search over the space of parameters.

We note that the choice of a criterion to quantify the estimation error between the true unknown signal and the

estimated signal is far from trivial. Using an analog distance like ‖s−s̃‖Lp
does not make sense for streams of Dirac

distributions. Since the problem is parametric, it is natural to think of a kind of mean squared error (MSE) between

the sets {tk}
K
k=1 and {t̃k}

K
k=1 on one hand, and {ak}

K
k=1 and {ãk}

K
k=1 on the other hand. But what is the best way

to assign each estimated pulse to a true pulse? Sorting the values in increasing order as 0 ≤ t1 < . . . < tk < τ is

incorrect, because of the intrinsic periodicity of the setting: the boundaries at t = 0 and t = τ are identified. In

Fig. 3, we considered the best assignment between the two possible permutations and computed the mean squared

periodic error (MSPE). But for more than two pulses, this best assignment is not stable and can be irrelevant,

because the insertion of a pulse with small amplitude, which does not correspond to a true pulse, at some position,

can drastically modify the MSPE. Moreover, the MSPE on the positions is blind with respect to the amplitudes,
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Fig. 3. Plot in log-log scale of the mean squared periodic error (MSPE) min
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(t̃1 − t1)
2
τ + (t̃2 − t2)

2
τ , (t̃1 − t2)

2
τ + (t̃2 − t1)

2
τ

)

, where

(x)τ =
(

(x+ τ

2
) mod τ

)

− τ

2
, for the estimation of the locations of K = 2 Dirac pulses, averaged over 10,000 noise realizations for every

integer value of the signal-to-noise ratio (SNR). The true parameters were (t1, t2) = (0.42, 0.52) and (a1, a2) = (1, 1), with τ = 1, N = 11.

The proposed algorithm is compared to Cadzow denoising, with P = M = 5, µ = 1, γ = 0.51µ, x(0) = s(0) = TP . Both algorithms

converge within machine precision in about 100 iterations in average. An upper bound for the error is given by the naive estimator, which

sets t̃1 and t̃2 randomly and uniformly in [0, τ [, with MSPE 41
300

.

while we would like an error on the small pulses to have less weight than on the large pulses. Finally, the ℓ2
distance between the true noiseless Fourier coefficients and the estimated ones {ṽm}Mm=−M in (19) can be a good

numerical criterion, but it does not have a natural interpretation.

VI. CONCLUSION

We showed that the maximum-likelihood estimation of the parameters of Dirac pulses from noisy lowpass-

filtered samples can be recast as a structured low-rank approximation problem. We discussed several aspects of the

problem and provided a synthesis of many relevant results spread in the literature. We proposed a new heuristic

optimization algorithm, which converges to a local solution of the NP-hard nonconvex problem. Preliminary results

show that it outperforms the state-of-the-art approach based on Cadzow denoising, for same ease of implementation

and complexity, essentially one SVD per iteration. More in-depth analysis of the performances, including the

computation of Cramér-Rao bounds [5], [9], [104], [105], is currently led by the authors.
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