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On the product formula on non-compact Grassmannians
P. Graczyk and P. Sawyer ∗

Abstract

We study the absolute continuity of the convolution δ♮
eX

⋆ δ♮
eY

of two orbital measures on
the symmetric space SO0(p, q)/SO(p) × SO(q), q > p. We prove sharp conditions on X,
Y ∈ a for the existence of the density of the convolution measure. This measure intervenes in
the product formula for the spherical functions. We show that the sharp criterion developed
for SO0(p, q)/SO(p) × SO(q) will also serve for the spaces SU(p, q)/S(U(p) × U(q)) and
Sp(p, q)/Sp(p)×Sp(q), q > p. We also apply our results to the study of absolute continuity

of convolution powers of an orbital measure δ♮
eX

.

1 Introduction

The spaces SO0(p, q)/SO(p)× SO(q) where q > p (which we will assume throughout the paper),
are the noncompact duals of real Grassmannians. They are Riemannian symmetric spaces of
noncompact type corresponding to root systems of type ====⇒Bp⇐====. The harmonic
analysis on these spaces has been intensely developed in recent years ([1, 13, 14, 15]).

We use throughout the paper the usual notations of the harmonic analysis on Riemannian
symmetric spaces. The books [9, 10] constitute a standard reference on these topics.

Let X , Y ∈ a and let mK denote the Haar measure of the group K. We define δ♮
eX

=

mK ⋆ δeX ⋆ mK . The question of the absolute continuity of the convolution δ♮
eX

⋆ δ♮
eY

of two K-
invariant orbital measures that we address in our paper has important applications in harmonic
analysis itself (the product formula for the spherical functions) and in probability theory (random
walks, I0 characterization of Gaussian measures).

The spherical Fourier transform of the measure δ♮
eX

is equal to the spherical function φλ(e
X),

where λ is a complex-valued linear form on a. Thus the product φλ(e
X)φλ(e

Y ) is the spherical
Fourier transform of the convolution mX,Y = δ♮

eX
⋆ δ♮

eY
. If we denote by µX,Y the projection of the

measure mX,Y on a via the Cartan decomposition G = KAK, then

φλ(e
X)φλ(e

Y ) =

∫

a
φλ(e

H) dµX,Y (H).

Let δ be the density of the invariant measure on a in polar coordinates. The existence of a kernel
in the last product formula

φλ(e
X)φλ(e

Y ) =

∫

a+
φλ(e

H) k(H,X, Y ) δ(H) dH (1)

is equivalent to the absolute continuity of the measure µX,Y with respect to the Lebesgue measure
on a and to the existence of the density of mX,Y on G, with respect to the invariant measure dg.
When the formula (1) holds, we say that we have a product formula for X and Y ∈ a. Provided
that X , Y ∈ a+, the product formula (1) has been shown previously (see [2] in the rank one case,
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[3] in the complex case and [4] in the general case). In [4] we were able to relax these conditions
and show that µX,Y is absolutely continuous provided one of X or Y is in a+ as long as the other
is nonzero. The density can however exist in some cases when both X and Y are singular. It is a
challenging problem to characterize all such pairs X and Y .

This problem was solved in [7] for symmetric spaces with root system of type An. We solve it
in this paper for the space SO0(p, q)/SO(p)×SO(q): we give a definition of an eligible pair (X, Y )
(Definition 3) and next we prove the necessity (Proposition 5) and the sufficiency (Proposition 5
and Theorem 13) of this property for the absolute continuity of mX,Y .

====⇒By [3, 4], the density k(H,X, Y ) exists if and only if SX,Y = a(eX K eY ), the support
of the measure µX,Y

∣
∣
a+
, has nonempty interior. Similarly, the density of the measure mX,Y exists

if and only if its support KeXKeYK has nonempty interior as seen in [7]. These facts are crucial
in the proofs of the results of this paper.

We show in Corollary 15 that the result for the space SO0(p, q)/SO(p) × SO(q) also implies
the result for the spaces SU(p, q)/S(U(p)×U(q)) and Sp(p, q)/Sp(p)× Sp(q). We conclude the
paper with two further applications of our main result. One of them is a characterization of an
optimal convolution power l of the measure δ♮

eX
, which is absolutely continuous for any X 6= 0,

X ∈ a. Theorem 17 solves on non-compact Grassmannians a problem raised by Ragozin in [12].
⇐====

2 Basic properties

We start by reviewing some useful information on the Lie group SO0(p, q), its Lie algebra so(p, q)
and the corresponding root system. Most of this material was given in [15]. For the convenience
of the reader, we gather below the properties we will need in the sequel.

In this paper, Eij is a rectangular matrix with 0’s everywhere except at at the position (i, j)
where it is 1.

Recall that SO(p, q) is the group of matrices g ∈ SL(p+ q,R) such that gT Ip,q g = Ip,q where

Ip,q =

[
−Ip 0p×q

0q×p Iq

]

. Unless otherwise specified, all 2 × 2 block decompositions in this paper

follow the same pattern.
The group SO0(p, q) is the connected component of SO(p, q) containing the identity. The Lie

algebra so(p, q) of SO0(p, q) consists of the matrices

[
A B
BT D

]

where A and D are skew-symmetric.
A very important element in our investigations is the Cartan decomposition of so(p, q) and

SO(p, q). The maximal compact subgroupK is the subgroup of SO(p, q) consisting of the matrices

[
A 0
0 D

]

of size (p + q)× (p + q) such that A ∈ SO(p) and D ∈ SO(q) (hence K ≃ SO(p)× SO(q)). If k
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is the Lie algebra of K and p is the set of matrices
[

0 B
BT 0

]

then the Cartan decomposition is given by so(p, q) = k ⊕ p with corresponding Cartan involution
θ(X) = −XT .

The Cartan space a ⊂ p is the set of matrices

H =





0p×p DH 0p×(q−p)

DH 0p×p 0p×(q−p)

0(q−p)×p 0(q−p)×p 0(q−p)×(q−p)





where DH = diag[H1, . . . , Hp]. Its canonical basis is given by the matrices

Ai := Ei,p+i + Ep+i,i, 1 ≤ i ≤ p.

The restricted roots and associated root vectors for the Lie algebra so(p, q) with respect to a

are given in Table 1.

root α multiplicity root vectors Xα

α(H) = ±Hi q − p X±
ir = Ei 2 p+r + E2 p+r i ± (Ep+i 2p+r −E2p+r p+i)

1 ≤ i ≤ p r = 1, . . . , q − p
α(H) = ±(Hi −Hj) 1 Y ±

ij = ±(Eij −Eji + Ep+i p+j −Ep+j p+i) + Ei p+j + Ep+j i

1 ≤ i, j ≤ p, i < j + Ej p+i + Ep+i j

α(H) = ±(Hi +Hj) 1 Z±
ij = ±(Eij −Eji − Ep+i p+j + Ep+j p+i)− (Ei p+j + Ep+j i)

1 ≤ i, j ≤ p, i < j + Ej p+i + Ep+i j

Table 1: Restricted roots and associated root vectors

The positive roots can be chosen as α(H) = Hi ± Hj, 1 ≤ i < j ≤ p and α(H) = Hi, i = 1,
. . . , p. We therefore have the positive Weyl chamber

a
+ = {H ∈ a : H1 > H2 > · · · > Hp > 0}.

The simple roots are given by αi(H) = Hi −Hi+1, i = 1, . . . , p− 1 and αp(H) = Hp.
The action of the Weyl group. The elements of the Weyl group W act as permutations of

the diagonal entries of DX with eventual sign changes of any number of these entries.
The Lie algebra k is generated by the vectors Xα + θXα. We will use the notation

kt
Xα

= et(Xα+θXα).

The linear space p has a basis formed by Ai ∈ a, 1 ≤ i ≤ p and by the symmetric matrices
Xs

α := 1
2
(Xα − θXα) which have the following form

Xir : = Ei,2p+r + E2p+r,i; 1 ≤ i ≤ p, 1 ≤ r ≤ q − p;

Yij : = Ei,p+j + Ej,p+i + Ep+j,i + Ep+i,j, 1 ≤ i < j ≤ p;

Zij : = Ei,p+j −Ej,p+i + Ep+j,i − Ep+i,j, 1 ≤ i < j ≤ p.
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If we followed the notation of [7], we should write (X+
ir)

s, etc. but we simplify the notation to Xir,
Yij and Zij . If we write a matrix from the space p in the form

[
0 B

BT 0

]

=





0 B1 B2

BT
1 0 0

BT
2 0 0





where B1 is a square p× p matrix and B2 is a p× (q − p) matrix, then the matrices





0 B1 0
BT

1 0 0
0 0 0





are generated by the vectors Ai (for the diagonal entries of B1 and BT
1 ), Yij and Zij (for the

non-diagonal entries), whereas the matrices





0 0 B2

0 0 0
BT

2 0 0





are spanned by the vectors Xir.
We now recall the useful matrix S ∈ SO(p+ q) which allows us to diagonalize simultaneously

all the elements of a. Let

S =





√
2
2
Ip 0p×(q−p)

√
2
2
Jp√

2
2
Ip 0p×(q−p) −

√
2
2
Jp

0(q−p)×p Iq−p 0(q−p)×p





where Jp = (δi,p+1−i) is a matrix of size p×p. If H =





0 DH 0
DH 0 0
0 0 0



 with DH = diag[H1, . . . , Hp]

then ST H S = diag[H1, . . . , Hp,

q−p
︷ ︸︸ ︷

0, . . . , 0,−Hp, . . . ,−H1].
The “group” version of this result is as follows:

ST eH S = diag[eH1 , . . . , eHp ,

q−p
︷ ︸︸ ︷

1, . . . , 1, e−Hp, . . . , e−H1 ].

Remark 1 The Cartan projection a(g) on the group SO0(p, q), defined as usual by

g = k1e
a(g)k2, a(g) ∈ a+, k1, k2 ∈ K

is related to the singular values of g ∈ SO(p, q) in the following way. Recall that the singular
values of g are defined as the non-negative square roots of the eigenvalues of gTg. Let us write
H = a(g). We have

gT g = kT
2 e2H k2 = (kT

2 S) (ST e2H S) (ST k2)

4



where ST e2H S is a diagonal matrix with nonzero entries e2H1, . . . , e2Hp,

q−p
︷ ︸︸ ︷

1, . . . , 1, e−2Hp, . . . ,
e−2H1. Let us write aj = eHj . Thus the set of p + q singular values of g contains the value 1
repeated q − p times and the 2 p values a1, . . . , ap, a

−1
1 , . . . , a−1

p .
Hence, in order to determine a(g), we can compute the p + q singular values of gTg and omit

q − p values 1 always appearing among them. The 2p remaining singular values may be ordered
a1 ≥ . . . ≥ ap ≥ a−1

p ≥ . . . ≥ a−1
1 with a1 ≥ . . . ≥ ap ≥ 1. Then

a(g) =





0 Da(g) 0
Da(g) 0 0
0 0 0



 with Da(g) = diag[log a1, . . . , log ap]

Summarizing, if for g ∈ SO(p, q) ⊂ SL(p + q) the SL(p + q)-Cartan decomposition writes
g = k1e

ã(g)k2, k1, k2 ∈ SO(p + q), then Da(g) = πp(ã(g)), where πp denotes the projection
πp(diag[h1, . . . , hp+q]) = diag[h1, . . . , hp].

Singular elements of a. In what follows, we will consider singular elements X , Y ∈ ∂a+.
As in [7], we need to control the irregularity of X and Y , i.e. consider the simple positive roots
annihilating X and Y . A special attention must be paid to the last simple root αp, different from
the roots αi, i = 1, . . . , p − 1, that generate a root subsystem of type Ap−1. We introduce the
following definition of the configuration of X ∈ a+.

Definition 2 Let X ∈ a+. There exist nonnegative integers s1 ≥ 1, . . . , sr ≥ 1, u ≥ 0 such that

DX = diag[

s1
︷ ︸︸ ︷
x1, . . . , x1,

s2
︷ ︸︸ ︷
x2, . . . , x2, . . . ,

sr
︷ ︸︸ ︷
xr, . . . , xr,

u
︷ ︸︸ ︷

0, . . . , 0 ]

with x1 > x2 > . . . > xr > 0 and
∑

si+u = p. We say that [s1, . . . , sr; u] is the configuration of
X. Writing s = (s1, . . . , sr), we will shorten the notation of the configuration of X to [s; u]. We
will also write X = X [s; u].

Note that X = 0 is equivalent to u = p and has configuration [0; p]. A regular X ∈ a+ has the
configuration [1; 0] = [1p; 0]. We extend naturally the definition of configuration to any X ∈ a,
whose configuration is defined as that of the projection π(X) of X on a+.

In what follows, we will write max s = maxi si and max(s, u) = max(max s, u) . We will show
that in the case of the symmetric spaces SO0(p, q)/SO(p) × SO(q), q > p, the criterion for the
existence of the density of the convolution δ♮

eX
⋆δ♮

eY
is given by the following definition of an eligible

pair X and Y :

Definition 3 Let X = X [s; u] and Y = Y [t; v] be two elements of a. We say that X and Y are
eligible if

max(s, 2u) + max(t, 2v) ≤ 2p.

Observe that if X and Y are eligible, then X 6= 0 and Y 6= 0.
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3 Necessity of the eligibility condition

In the proof of the necessity of the eligibility condition we will use the result stated in [8, Step 1,
page 1767]:

Lemma 4 Let U = diag([
r

︷ ︸︸ ︷
u0, . . . , u0, u1, . . . , uN−r] and V = diag([

N−s
︷ ︸︸ ︷
v0, . . . , v0, v1, . . . , vs]. where

s+1 ≤ r < N , s ≥ 1, and the ui’s and vj’s are arbitrary. Then each element of ã(eU SU(N,F) eV )
has at least r − s entries equal to u0 + v0.

We will use Lemma 4 with N = p+ q in the proofs of Proposition 5 and Theorem 17.

Proposition 5 If X [s; u] and Y [t, v] are not eligible then the measure µX,Y is not absolutely
continuous with respect to the Lebesgue measure on a.

Proof: Suppose max(s, 2 u)+max(t, 2 v) > 2 p and consider the matrices a(eX k eY ), k ∈ SO(p)×
SO(q). Applying Remark 1, the diagonal p× p matrix Da(eX k eY ) contains the p biggest diagonal
terms of the matrix

ã(eXkeY ) = ã(

eS
T X S

︷ ︸︸ ︷

(ST eX S)

∈SO(p+q)
︷ ︸︸ ︷

(ST k S)

eS
T Y S

︷ ︸︸ ︷

(ST eY S))

If u+ v > p then there are r− s = r+ (N − s)−N = (2 u+ q − p) + (2 v + q− p)− (p+ q) =
2 (u+ v − p) + (q − p) repetitions of 0 + 0 = 0 in coefficients of ã(eXkeY ). Therefore 0 occurs at
least u+ v − p > 0 times as a diagonal entry of DH for every H ∈ a(eX K eY ) which implies that
a(eX K eY ) has empty interior.

If 2 u + max(t) > 2 p denote t = max(t). Let Yi 6= 0 be repeated t times in DY . Then there
are r − s = r + (N − s)− N = (2 u+ q − p) + t − (p + q) = 2 u + t − 2p repetitions of Yi + 0 in
coefficients of ã(eXkeY ). Therefore Yi occurs at least 2 u+ t− 2p > 0 times as a diagonal entry of
DH for every H ∈ a(eX K eY ) which implies that a(eX K eY ) has empty interior.

4 Sufficiency of the eligibility condition

We use basic ideas and some results and notations of [7, Section 3].

Proposition 6 (i) The density of the measure mX,Y exists if and only if its support KeXKeYK
has nonempty interior.
(ii) Consider the analytic map T : K ×K ×K → SO0(p, q) defined by

T (k1, k2, k3) = k1 e
X k2 e

Y k3.

If the derivative of T is surjective for some choice of k = (k1, k2, k3), then the set T (K×K×K) =
KeXKeYK contains an open set.

Proof: Part (i) follows from arguments explained in [4] in the case of the support of the measure
µX,Y , equal to a(eX KeY ). Part (ii) is justified for example in [10, p. 479].
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Proposition 7 Let UZ = k+ Ad(Z)k. If there exists k ∈ K such that

U−X + Ad(k)UY = g (2)

then the measure mX,Y is absolutely continuous.

Proof: We want to show that the derivative of T is surjective for some choice of k = (k1, k2, k3).
Let A,B,C ∈ k. The derivative of T at k in the direction of (A,B,C) equals

dTk(A,B,C) =
d

dt

∣
∣
t=0

etAk1 e
X etBk2 e

Y etCk3

= Ak1 e
X k2 e

Y k3 + k1 e
X B k2 e

Y k3 + k1 e
X k2 e

Y C k3 (3)

We now transform the space of all matrices of the form (3) without modifying its dimension:

dim{Ak1 e
X k2 e

Y k3 + k1 e
X B k2 e

Y k3 + k1 e
X k2 e

Y C k3 : A,B,C ∈ k}
= dim{k−1

1 Ak1 e
X k2 e

Y + eX B k2 e
Y + eX k2 e

Y C : A,B,C ∈ k}
= dim{AeX k2 e

Y + eX B k2 e
Y + eX k2 e

Y C : A,B,C ∈ k}
= dim{e−X AeX +B + k2 e

Y C e−Y k−1
2 : A,B,C ∈ k}

The space in the last line equals k+Ad(e−X)(k) + Ad(k2) (Ad(e
Y )(k)) = U−X +Ad(k2)UY .

In order to apply the condition (2), we will consider convenient root vectors and their sym-
metrizations. For Z ∈ a, we define the space

VZ = span{Xs
α | α(Z) 6= 0},

where Xs
α = Xα − θXα. Note that this space would be called V S

Z in the notation of [7].

Lemma 8 Let Z ∈ a. The vector space UZ = k+Ad(eZ)(k) contains the root vectors Xα for which
α(Z) 6= 0. ====⇒Consequently, VZ = V−Z ⊂ U±Z .⇐====

Proof: ====⇒Suppose α is a root such that α(Z) 6= 0.⇐====Note that [Z,Xα] = α(Z)Xα

and [Z, θ(Xα)] = −α(Z) θ(Xα) . Let U = Xα + θ(Xα) ∈ k. Now,

Ad(eZ)U = eadZ (Xα + θ(Xα)) =

∞∑

k=0

(adZ)k

k!
(Xα + θ(Xα))

=

∞∑

k=0

(adZ)k

k!
Xα +

∞∑

k=0

(adZ)k

k!
θ(Xα)

=
∞∑

k=0

(α(Z))k

k!
Xα +

∞∑

k=0

(−1)k (α(Z))k

k!
θ(Xα)

= eα(Z)Xα + e−α(Z) θ(Xα).

Therefore Xα = (eα(Z)−e−α(Z))−1
(
−e−α(Z) U +Ad(eZ)U

)
∈ k+Ad(eZ)(k) = UZ . The vector θXα

is a root vector for the root −α, so we also have θXα ∈ UZ .

====⇒
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Proposition 9 If there exists k ∈ K such that

VX + Ad(k) VY = p (4)

then the measure mX,Y is absolutely continuous.

Proof: We want to prove formula (2). By Lemma 8, we know that VX = V−X ⊂ U−X and
VY ⊂ UY . As k ⊂ UX , we see that the formula (4) implies (2).

⇐====
Later in this section,(Theorem 13), we will show that the hypotheses of the last Proposition

are always satisfied for X and Y eligible. For technical reasons, in order to make an induction
proof work, we will show more, i.e. that a “better” matrix k ∈ K exists such that the formula
(4) holds. The meaning of a “better” k will be similar to the notion of a total matrix given in
Definition 10. Here is a definition and a lemma about total matrices in K. The reasonning of
the proof of this lemma will be used in a more general setting in Steps 2 and 3 of the proof of
Theorem 13.

Definition 10 We say that a square n× n matrix k is total if by removing any r < n rows and
r columns of k we always obtain a nonsingular matrix.

Note that this definition of totality is more restrictive than in [7, Definition 3.7].

Lemma 11 The set of matrices in SO(n) which are total is dense and open in SO(n).

Proof: Consider first the set MI,J = M{i1,...,ij},{j1,...,jr} ⊂ SO(n) of orthogonal matrices which
remain nonsingular once the rows of indices i1, . . . , ij and the columns of indices j1, . . . , jr are
removed. To see that such matrices exist, take the identity matrix (whose determinant is 1 if we
remove, say, the first r rows and columns). By taking convenient permutations of the rows and
columns of the identity matrix, we obtain an element ofMI,J . Given that SO(n)\MI,J corresponds
to the set of zeros of a certain determinant function, it must be closed and nowhere dense in SO(n).

To conclude, it suffices to notice that the set of total matrices in SO(n) is the finite intersection
of all the sets MI,J .

In the proof of the main Theorem 13 we will need the following technical lemma.

Lemma 12 (i) For the root vectors X+
ir , Z

+
ij , Y

+
ij , we have

Ad(et (X
+

ir+θ X+

ir))(Xir) = cos(2 t)Xir + 2 sin(2 t)Ai,

Ad(et (Y
+

ij +θ Y +

ij ))(Yij) = cos(4 t) Yij + 2 sin(4 t) (Ai −Aj),

Ad(et (Zij+
+θ Z+

ij))(Zij) = cos(4 t)Zij + 2 sin(4 t) (Ai + Aj).

(ii) The functions Ad(et (X
+

ir+θX+

ir)), Ad(et (Y
+

ij +θ Y +

ij )) and Ad(et (Z
+

ij+θ Z+

ij)) applied to the other sym-
metrized root vectors do not produce any components in a.

8



Proof: It is just a matter of carefully evaluating

Ad(et (Z+θ Z))(W ) = et ad(Z+θ Z)(W ) =
∞∑

k=0

(ad(Z + θ Z))k(W )
tk

k!
.

For (ii), use the well known properties of the root system: [gα, gβ] ∈ gα+β and [Xα, θXα] ∈ a.

By Proposition 9, in order to justify the sufficiency of the eligibility condition, it is enough to
prove the following theorem. This is the main result of this section.

Theorem 13 Let G = SO0(p, q) and let X, Y ∈ a. If X and Y are eligible then there exists a
matrix k ∈ K such that

VX + Ad(k) VY = p. (5)

Proof: We will assume that X = X [s; u] and Y = Y [t; v]. Observe that the spaces VX and VY

depend on the Weyl chambers where X and Y belong. However, see [7, Lemma 3.3 and Reduction
1, p. 759], the property (5) is equivalent to Vw1X + Ad(k′) Vw2Y = p for any w1, w2 ∈ W and a
convenient k′ ∈ K. Throughout the proof we will assume that the diagonal entries of DX and DY

are non-negative and we will arrange (permute) them conveniently.
To lighten the notation, for a matrix c of size p × q, we will consider the (p + q) × (p + q)

symmetric matrix

cs =

[
0 c
cT 0

]

∈ p.

The proof will be organized in the following way:

1. Proof for q = p+ 1 using induction on p

(a) Proof for p = 2 and q = 3

(b) Proof of the induction step

i. Proof in the case u > 0 or v > 0

ii. Proof in the case X [p; 0], Y [p; 0]

2. Proof that the case (p, q) implies the case (p, q + 1).

1. Proof for q = p + 1 using induction on p

(a) Proof for p = 2 and q = 3
This corresponds to the space SO0(2, 3). Only two configurations [2; 0] and [1; 1] may be

realized by singular non-zero X and Y . When Z ∈ a+, we have DZ[1;1] = diag[z, 0], and DZ[2;0] =
diag[z, z], z 6= 0. It is easy to check that in all 3 possible cases:

(i) X [2; 0], Y [2; 0] (ii)X [2; 0], Y [1; 1] orX [1; 1], Y [2; 0] (iii)X [1; 1], Y [1; 1],

9



X and Y are eligible. Note that

p =

{ [
h1 a b
c h2 d

]s

: h1, h2, a, b, c, d ∈ R

}

,

VZ[2;0] =

{ [
0 a b
−a 0 c

]s

: a, b, c ∈ R

}

,

VZ[1;1] =

{ [
0 a c
b 0 0

]s

: a, b, c ∈ R

}

.

If k1 =









√
2/2 −

√
2/2 0 0 0√

2/2
√
2/2 0 0 0

0 0 1 0 0

0 0 0
√
2/2 −

√
2/2

0 0 0
√
2/2

√
2/2









then

Ad(k1) VZ[2;0] =

{ [ √
2 a/2 (a− b+ c)/2 (a + b− c)/2

−
√
2 a/2 (a− b− c)/2 (a+ b+ c)/2

]s

: a, b, c ∈ R

}

,

and

Ad(k1) VZ[1;1] =

{ [
−
√
2 b/2 (a− c)/2 (a + c)/2√
2 b/2 (a− c)/2 (a + c)/2

]s

: a, b, c ∈ R

}

If k2 =









√
2/2 −

√
2/2 0 0 0√

2/2
√
2/2 0 0 0

0 0
√
2/2 0 −

√
2/2

0 0 0 1 0

0 0
√
2/2 0

√
2/2









then

Ad(k2) VZ[1;1] =

{ [
−(b+ c)/2

√
2 a/2 (−b+ c)/2

(b− c)/2
√
2 a/2 (b+ c)/2

]s

: a, b, c ∈ R

}

.

We verify easily that in the cases (i) and (iii) we have VX +Ad(k1) VY = p. For X [2; 0] and Y [1; 1],
we can see that VX +Ad(k2) VY = p.

(b) Proof of the induction step

(i) Proof in the case u > 0 or v > 0
We consider the space SO0(p, p+1)/SO(p)×SO(p+1) with p > 2 and the case when X [s; u]

and Y [t; v] are such that u > 0 or v > 0. We assume u ≥ v. We choose the predecessors in
SO0(p− 1, p)/SO(p− 1)× SO(p) in the following way:

X ′ = X ′[s; u− 1], Y ′ = Y ′[t′; v]

where t′ means that we supress one term from the longest block of size max t. Note that if p > 2
then t′ is not the zero partition (otherwise, t would have been the partition [1] meaning that
u ≥ v = p− 1 which would make X and Y ineligible).
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We arrange X , X ′, Y , Y ′ in the following way.
1. The first diagonal entry of DX is zero and all the other zeros are at the end. The diagonal
entries of DX′ are those of DX without the first zero:

DX = diag[0,

6=0
︷ ︸︸ ︷
x1, . . . , xp−u,

u−1
︷ ︸︸ ︷

0, . . . , 0], DX′ = diag[

6=0
︷ ︸︸ ︷
x1, . . . , xp−u,

u−1
︷ ︸︸ ︷

0, . . . , 0]

2. We put a longest block of size t of equal diagonal entries y1 of DY in the beginning of Y .
The diagonal entries of DY ′ are those of DY with the first entry omitted:

DY = diag[

t
︷ ︸︸ ︷
y1, . . . , y1, y2, . . . , ys], DY ′ = diag[

t−1
︷ ︸︸ ︷
y1, . . . , y1, y2, . . . , ys].

It is easy to check that if X , Y are eligible in SO0(p, p + 1) then X ′, Y ′ are eligible in
SO0(p− 1, p).

Step 1. By the induction hypothesis, there exists a matrix k0 ∈ SO(p− 1)× SO(p) such that

VX′ +Ad(k0)VY ′ = p
′. (6)

We embed K ′ = SO(p− 1)× SO(p) in SO(p)× SO(p+ 1) in the following way

K ′ =







1
SO(p− 1)

1
SO(p)






⊂

[
SO(p)

SO(p+ 1)

]

.

Hence, we have (taking the natural embedding of p′ into p)

V1 := VX′ +Ad(k0)VY ′ = p
′ =

[
0 B′

B′T 0

]

(7)

where B′ =

[
01×1 01×p

0p×1 B′′
(p−1)×p

]

and B′′ is arbitrary (note that p′ is of dimension (p − 1)p). We

must show that for some k ∈ K, the space VX +Ad(k) VY = p, i.e. that

(i) VX +Ad(k) VY contains p′ embedded into p as in (7).

(ii) VX +Ad(k) VY contains all the matrices of the form

C =








∗ ∗ · · · ∗
∗
... 0(p−1)×p

∗








s

.

New vectors in VX and VY . In order to prove the induction conclusion, we must now use the
elements of VX and VY which do not come from VX′ or VY ′. They appear by the interaction of,
respectively, the first diagonal entry of DX with the others of DX and the interaction of the first
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entry of DY with the others of DY . We see that the new independent root vectors in VX and VY

are respectively

NX = {Y1j, Z1j , j = 2, . . . , p+ 1− u}, NY = {X1, Y1i, i = t+ 1, . . . , p, Z1j, j = 2 . . . , p}
where t = max t > 1 and we wrote X1 for X11. Note that NX has 2p− 2u elements while NY has
2 p− t.

Step 2. We show that there exists k′
0 ∈ SO(p − 1) × SO(p) for which (6) holds, and with the

following property:

The space V2 := Ad(k′
0)span(NY ) is of dimension 2p− t and its elements can be written in the

form













0 σ1 . . . σr a1 . . . ap−r

τ1
...
τs 0

ap−r+1
...

a2 p−t














s

(8)

with r = [(t−1)/2], s = t−1−r, ai ∈ R arbitrary, σi = σi(a1, . . . , a2 p−t) and τj = τj(a1, . . . , a2 p−t),
i ≤ r, j ≤ s.
We will not need to write explicitely the functions σi and τj. Note that s = r if t is odd and
s = r + 1 if t is even.

To justify Step 2, we write

k0 =







1
k01

1
k02







where k01 ∈ SO(p− 1) and k02 ∈ SO(p). Let α1, . . . , αp−1 be the columns of the matrix k01 and
β1, . . . , βp the columns of the matrix k02. A simple block multiplication to compute the action of
Ad(k0) on the elements of NY gives the linearly independent matrices

Ad(k0)X1 =

[
0 βT

p

0 0

]s

, Ad(k0)Y1i =

[
0 βT

i−1

αi−1 0

]s

, i = t+ 1, . . . , p,

Ad(k0)Z1i =

[
0 βT

i−1

−αi−1 0

]s

, i = 2, . . . , p. (9)

Let us write β ′
i for a column βi from which we have removed the first r entries and α′

i for a
column αi with the first s entries omitted. In order to prove the statement of Step 2, we must show
that the matrices obtained by replacing βi by β ′

i and αi by α′
i in (9) are still linearly independent.

This is equivalent to the linear independence of the matrices
[

0 β ′T
i

−α′
i 0

]s

, i = 1, . . . , t− 1,

[
0 β ′T

i

0 0

]s

, i = t, . . . , p,

[
0 0
α′
i 0

]s

i = t, . . . , p− 1. (10)
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We will reason in the same way as in Lemma 11.
It is enough to show that there exists at least a choice of matrices k01 and k02 such that the

matrices in (10) are linearly independent. Then, as in Lemma 11, it will follow that such matrices
form a dense open subset in SO(p−1)×SO(p). By choosing k′

0 with the matrices in (10) linearly
independent and close enough to k0, the property (6) will be preserved for k′

0.
Pick k01 = Ip−1 which implies that α′

i = 0 for i = 1, . . . , s and α′
i = ei−s for i > s. With this

choice, (10) becomes

[
0 β ′T

i

0 0

]s

, i = 1, . . . , s,

[
0 β ′T

i

−ei−s 0

]s

, i = s+ 1, . . . , t− 1,

[
0 β ′T

i

0 0

]s

, i = t, . . . , p,

[
0 0

ei−s 0

]s

i = t, . . . , p− 1

which are linearly independent provided that

[
0 β ′T

i

0 0

]s

, i = 1, . . . , s,

[
0 β ′T

i

0 0

]s

, i = t, . . . , p

are linearly independent. This is the case for a total matrix k02 ∈ SO(p) or by taking convenient
permutations of the rows and columns of the identity matrix Ip.

Step 3.We show that there exists a proper subset N ′
X of NX such that, if

V3 := span(N ′
X) + VX′ + Ad(k′

0)VY = span(N ′
X) + V1 + V2

then dimV3 = p q − 1 = dim p− 1 and V3 is given by

V3 =














0 a1 a2 . . . ap
ap+1
... p′

a2p−1








s

, a1, . . . a2p−1 ∈ R







. (11)

Note that in matrices from the space V2, there are r = [(t−1)/2] pairs (σi, τi) plus possibly an
extra τs if t is even and therefore s = r+1. Note also that t+2 u ≤ 2 p implies that p−u ≥ s ≥ r.

For j ≤ r ≤ p − u, each pair Y1j =

[
0 eTj−1

ej−1 0

]s

, Z1j =

[
0 eTj−1

−ej−1 0

]s

of elements of NX

allows us to replace σj and τj by independent variables. If t is odd, all the σj ’s and τj ’s will be
taken care off and at least 2 elements of NX will remain off N ′

X . If t is even, all the σj and τj ’s,
1 ≤ j ≤ r will be replaced by independent variables and only τs will remain. Now, letting the
coefficient a1 “vis-à-vis” the remaining τs be equal to 1 and all the other variables ai equal to 0,
either τs = 1 or −1 or τs 6= ±1. If τs = 1 then Z1s allows us to introduce the missing independent
variable, if τs = −1 then adding Y1s to N ′

X will do the trick. In the case τs 6= ±1 we choose
indifferently between Y1s and Z1s. In all cases the set NX \N ′

X has at least one element.

Step 4. Let v1 be the positive root vector corresponding to an element of NX \ N ′
X . We denote

kt
1 = kt

v1
. There exists ǫ > 0 such that for t ∈ (0, ǫ)

V t
4 := Ad(kt

1)(span(N
′
X) + VX′) + Ad(k′

0)VY = V3.
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Observe that v1 is equal to Z+
1j or Y

+
1j for one of the remaining Z1j or Y1j that was not used in

the preceding step. The space V t
4 ⊂ V 0

4 for all t according to Lemma 12 (ii).
Recall the definition of kt

Xα
= et(Xα+θXα), t > 0. Let d(t) = dimV t

4 ; for t = 0 we have k0
1 = Id,

and Ad(k0
1)(span(N

′
X) + VX′) + Ad(k′

0)VY = V3 is of dimension pq − 1, so d(0) = pq − 1. The
equality d(t) = d(0) is equivalent to non-nullity of an appropriate determinant continuous in t.
Thus d(t) = pq − 1 holds for t ∈ (0, ǫ) for some ǫ > 0. As V t

4 ⊂ V 0
4 , the statement of Step 4

follows.

Step 5. Generation of A1. By Lemma 12, we have Ad(kt
1)v

s
1 = atv

s
1 + btA1 + ctAj with j 6= 1 and

bt 6= 0 for t ∈ (0, ǫ) with ǫ small enough. Consequently

Ad(kt
1)span(v

s
1) + V t

4 = p.

Conclusion. We have p = Ad(kt
1)(Rvs1 + spanN ′

X + VX′) + Ad(k′
0)VY ⊂ Ad(kt

1)VX + Ad(k′
0)VY ,

so Ad(kt
1)VX +Ad(k′

0)VY = p. It follows that

VX +Ad((kt
1)

−1k′
0)VY = p.

(ii) Proof in the case X [p; 0], Y [p; 0]
This case must be treated separately because the predecessors X ′, Y ′ and consequently the

sets NX and NY are different than in case (i). The structure of the induction proof is identical as
in (i), with the Steps 2 and 3 executed together.

We choose both predecessors X ′[p − 1; 0], Y ′[p − 1; 0] and arrange X,X ′, Y, Y ′ in the same
way as we did in the first part of the proof with Y [t; v] and Y ′[t′; v]. In that case, NX =
{X1, Z12, . . . , Z1p} = NY and the space Ad(k′

0)(NY ) is generated by

[
0 βT

i

−αi 0

]s

, i = 1, . . . , p− 1 and

[
0 βT

p

0 0

]s

. (12)

Recall that

Z1j =

[
0 eTj−1

−ej−1 0

]s

, j = 2, . . . , p. (13)

We want to show that the matrices in (12) together with those of (13) are linearly independent

for a k′
0 ∈ SO(p− 1)× SO(p) for which the equality (6) holds. Note that if k′

0 =

[
−Ip−1 0

0 Ip

]

(p odd) or k′
0 =

[
Ip−1 0

0 −Ip

]

(p even) then the matrices (12) and (13) are linearly independent.

Using once more the reasonning in Lemma 11, this implies that the set of matrices k′
0 for which

this is true, is open and dense in SO(p− 1)× SO(p).
We conclude that if N ′

X = NX\{X1} then span (N ′
X + VX′) + Ad(k′

0)VY has the form given in
(11).

We reproduce the previous Step 4 and Step 5 using v1 = X+
1 . The rest follows.

2. Proof that the case (p, q) implies the case (p, q + 1)

14



====⇒We will show by induction that for any q > p, there exists a matrix k ∈ K such that
(5) holds.⇐====We know by the first part of the proof that this is true for SO0(p, p+ 1).

Assume thatX and Y are eligible in SO0(p, q+1). Their configurations are eligible in SO0(p, q).
We write X ′, Y ′ when we work in SO0(p, q).

We embed K ′ = SO(p)× SO(q) in K = SO(p)× SO(q + 1) in the following way

K ′ =





SO(p)
SO(q)

1



 ⊂
[
SO(p)

SO(q + 1)

]

.

The space p′ is formed by matrices
[

0 B
BT 0

]

,

where B are p× q matrices. We embed p′ in p by adding a last column of zeros to B.

Step 1. We suppose that there exists a matrix k0 ∈ K ′ such that

VX′ +Ad(k0)VY ′ = p
′. (14)

Then, by [7, Lemma 3.3], for any permutations s1 and s2 of the diagonal entries of DX′ and
DY ′ , there exists k0 ∈ K ′ such that

Vs1X′ + Ad(k0)Vs2Y ′ = p
′

so we can permute the elements of X ′ and Y ′ in a convenient way and still have the equality (14).
We will arrange them in the following way (where the stars denote nonzero entries):

DX′ = diag[

u
︷ ︸︸ ︷

0, . . . , 0, ⋆, . . . , ⋆], DY ′ = diag[⋆, . . . , ⋆,

v
︷ ︸︸ ︷

0, . . . , 0].

Let us denote k01 ∈ SO(p) and k02 ∈ SO(q) the matrices compositing k0 corresponding in (14) to
such X ′ and Y ′. We can suppose that the matrix k01 is total.

By the eligibility of X and Y , u + v ≤ p, so no two zeros in DX′ and DY ′ are at the same
position.

Let N = {Xi,q+1}pi=1. We set NX := VX ∩ N = {Xu+1,q+1, . . . , Xp,q+1}, NY := VY ∩ N =
{X1,q+1, . . . , Xp−v,q+1}. We have p− v ≥ u.

Step 2. Let

k1 =





k01
k02

1





where k01 ∈ SO(p) and k02 ∈ SO(q) are the blocks compositing k0. We then have

VX′ +Ad(k1)VY ′ =
[
p′ 0

]s
. (15)

The space VX + Ad(k1)VY contains, in addition to the matrices in (15), the linear span of
NX +Ad(k1)NY .
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Denote the columns of the matrix k01 by c1, . . . , cp. By block multiplication in SO0(p, q + 1),
we obtain

Ad(k1)Xj,q+1 =
[
0p×q cj

]s
.

This implies that the linear span of NX+Ad(k1)NY contains the following symmetric matrices:
[
0p×q c1

]s
, . . . ,

[
0p×q cu

]s
,
[
0p×q eu+1

]s
, . . . ,

[
0p×q ep

]s
,

which are linearly independent by the totality of k01. Thus VX +Ad(k1)VY = p.

====⇒
We conclude this section with an example to illustrate our proof.

Example 14 Consider X = X [2; 1], Y = Y [1, 1; 1] in so(3, 4). We write X and Y in such a way
that DX = diag[0, a, a] and DY = diag[b, c, 0]. Their predecessors in so(2, 3) are X ′ and Y ′ such
that DX′ = diag[a, a] and DY ′ = diag[c, 0].

Note that X and Y form an eligible pair and so are X ′ = X [2; 0] and Y ′ = Y ′[1; 1]. In Step 1,

we show that there exists a matrix k0 =







1 0 0 0
0 k0,1 0 0
0 0 1 0
0 0 0 k02







with k01 ∈ SO(2) and k0,2 ∈ SO(3)

such that

VX′ + Ad(k0) VY ′ =





0 0 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗





s

where ∗ designates an arbitrary element. We have

NX = {Z12, Y12, Z13, Y13}, NY = {X1, Z12, Y12, Z13, Y13}.

In Step 2, we observe that

Ad(k0)span(NY ) =











0 a1 a2 a3
a4
a5 0





s

, a1, . . . a6 ∈ R







since the matrices
[

0 βT
1

−α1 0

]s

,

[
0 βT

1

α1 0

]s

,

[
0 βT

2

−α2 0

]s

,

[
0 βT

2

α2 0

]s

,

[
0 βT

3

0 0

]s

are linearly independent. Note that in this case, there are no σi and no τi.

Now, VX = span

NX
︷ ︸︸ ︷

{Z12, Y12, Z13, Y13}∪VX′ while VY = span

NY
︷ ︸︸ ︷

{X1, Z12, Z13, Z14, Y13}∪VY ′. We
can show that

Ad(et (Z
+

1,2+θ Z+

1,2))(VX′) + Ad(k0) (spanNY ∪ VY ′)

=





0 ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗





s
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for t small enough (with t small enough, the dimension will not decrease). Now,

Ad(et (Z
+

1,2+θ Z+

1,2))

⊂VX
︷ ︸︸ ︷

(span{Z12} ∪ VX′) +Ad(k0) (

VY
︷ ︸︸ ︷

spanNY ∪ VY ′) =





∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗





s

= p

if t close to 0 since Ad(et (Z
+

12
+θ Z+

12
))(Z12) = cos(4 t)Z12 + 2 sin(4 t) (A1 + A2). Therefore,

VX + Ad(

k
︷ ︸︸ ︷

e−t (Z+

1,2+θ Z+

1,2) k0) VY = Ad(e−t (Z+

1,2+θ Z+

1,2))p = p

which means that the density exists.

⇐====

5 Applications

====⇒We now extend our results to the complex and quaternion cases.⇐====
Recall that SU(p, q) is the subgroup of SL(p + q,C) such that g∗ Ip,q g = Ip,q while Sp(p, q)

is the subgroup of SL(p + q,H) such that g∗ Ip,q g = Ip,q. Their respective maximal compact
subgroups are S(U(p)×U(q)) and Sp(p)× Sp(q) ≡ SU(p,H)× SU(q,H).

Their subspaces p can be described as

[
0 B
B∗ 0

]

where B is an arbitrary complex (respectively

quaternionic) matrix of size p×q. The Cartan subalgebra a is chosen in the same way as for so(p, q).

Corollary 15 Consider the symmetric spaces SO0(p, q)/SO(p) × SO(q), SU(p, q)/S(U(p) ×
U(q)) and Sp(p, q)/Sp(p)× Sp(q), q > p.

Let X, Y ∈ a. Then the measure δ♮
eX

⋆ δ♮
eY

is absolutely continuous if and only if X and Y are
eligible, as defined in Definition 3.

Proof: Let X , Y ∈ a. If they are eligible then since

a(eX (SO(p)× SO(q)) eY ) ⊂ a(eX S(U(p)×U(q)) eY ) ⊂ a(eX (Sp(p)× Sp(q)) eY ),

it follows from Theorem 13 that these sets have nonempty interior. Hence the density exists in all
three cases.

On the other hand, given Lemma 4, one can reproduce Proposition 5 using F = C and F = H
to show that the eligibility condition is necessary in the complex and quaternionic cases.

We will conclude this paper with two further applications.

Proposition 16 Let X and Y ∈ a be such that
(

δ♮
eX

)∗2
and

(

δ♮
eY

)∗2
are absolutely continuous.

Then δ♮
eX

∗ δ♮
eY

is absolutely continuous.
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Proof: ====⇒Let X = X [s; u] and Y = Y [t; v].⇐====We know that the couple (X,X) is
eligible; therefore

2 max{s, 2 u} ≤ 2 p.

In the same manner, max{t, 2 v} ≤ p. Hence,

max{s, 2 u}+max{t, 2 v} ≤ p+ p = 2 p

which means that X and Y are eligible. Consequently, δ♮
eX

∗ δ♮
eY

is absolutely continuous.

If X ∈ a and X 6= 0, it is important to know for which convolution powers l the measure
(

δ♮
eX

)l

is absolutely continuous. This problem is equivalent to the study of the absolute continuity of
convolution powers of uniform orbital measures δ♮g = mK ∗ δg ∗mK for g 6∈ K.

It was proved in [8, Corollary 7] that it is always the case for l ≥ r + 1, where r is the rank
of the symmetric space G/K. It was also conjectured ([8, Conjecture 10]) that r + 1 is optimal
for this property, which was effectively proved for symmetric spaces of type An([8, Corollary
18]). In the following theorem, the conjecture is shown not to hold on symmetric spaces of type
====⇒Bp⇐====, where r = p. Thanks to the rich structure of the root system Bp, already
all p-th powers of orbital measures are absolutely continuous and p is optimal for this property.

Theorem 17 On symmetric spaces SO0(p, q)/SO(p) × SO(q), SU(p, q)/S(U(p) × U(q)) and
Sp(p, q)/Sp(p)× Sp(q), q > p, for every nonzero X ∈ a, the measure (δ♮

eX
)p is absolutely contin-

uous. Moreover, p is the smallest value for which this is true: if X has a configuration [1; p− 1]
then the measure (δ♮

eX
)p−1 is singular.

Proof: We will write Sl
X for the set a(eX K . . . ,K eX) where the factor eX appears l times. Note

that (δ♮
eX
)l is absolutely continuous if and only if Sl

X has nonempty interior.

We prove first that for l < p, the measure (δ♮
eX
)l may not be absolutely continuous. Let

X = X [1; p − 1]. Using Lemma 4 repeatedly, as in the proof of Proposition 5, we show that for
l < p, there are at least p − l diagonal entries of DH which are equal to 0 for every H ∈ Sl

X .
Consequently, Sl

X has empty interior and (δ♮
eX
)l is not absolutely continuous when l ≤ p− 1.

We will now show that (δ♮
eX
)p has a density for every X 6= 0.

If X = X [s; 0] then the measure (δ♮
eX
)2 is already absolutely continuous (the couple (X,X) is

eligible). Suppose then that X = X [s; u] ∈ a+, u > 0.
Remark that if H ∈ Sl

X then a(eX K eH) ⊂ Sl+1
X . Indeed, we have eX k1E

X . . . kl−1 e
X =

ka e
H kb and therefore a(eX K eH) = a(eX K ka e

H kb) = a(eX K eX k1 . . . kl−1 e
X) ⊂ Sl+1

X .
We claim that there exists H ∈ Sp−1

X such that H = H [1p−1; 1] or H ∈ a+.
We prove the claim using induction on p. If p = 2 then Sp−1

X = {X} and the result follows (in
that case, u cannot be higher than 1 for X 6= 0).

Suppose that the claim is true for p − 1 ≥ 2. Let K0 =







SO(p− 1) 0 0 0
0 1 0 0
0 0 SO(q − 1) 0
0 0 0 1






.

Consider the set B = a(eX K0 e
X . . . eX) with p − 1 factors eX . By the induction hypothesis,

there exists H0 ∈ B with H0 = H0[1
p−2; 2] or H0 = H0[1

p−1; 1]. In the second case, we are done.
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If H0 = H0[1
p−2; 2] ∈ B, we can assume that the diagonal entries which are 0 in DX and in

H0 are at the end. We note that X and H0 considered without their last entries are eligible in
SO0(p−1, q−1), their configurations being [s; u−1] and [1p−2; 1] respectively. Hence a(eX K0 e

H0)
has nonempty interior in the subspace a+∩{Hp = 0}. Therefore, there exists H ∈ a(eX K0 e

H0) ⊂
Sp−1
X with H = H [1p−1; 1] which proves the claim.
To conclude, we take H ∈ Sp−1

X with H ∈ a+ or H = H [1p−1; 1]. In both cases, X and H are
eligible, so by Corollary 15 the set a(eX K eH) has nonempty interior. As a(eX K eH) ⊂ Sp

X , this
ends the proof.

6 Conclusion

With this paper and with [7], we have now obtained sharp criteria on singular X and Y for the
existence of the density of δ♮

eX
⋆ δ♮

eY
for the root systems of type An and type Bp. Thanks to [8]

and Theorem 17 of the present paper, sharp criteria are now given for the l-th convolution powers
(δ♮

eX
)l to be absolutely continuous for any X 6= 0, X ∈ a.
Although there is considerable similarity between the criteria for both type of spaces, a char-

acterization of eligibility that would be applicable for all Riemannian symmetric spaces of non-
compact type has yet to emerge. The solution of the second problem in Theorem 17 seems to
indicate that the answer may depend on the type of the symmetric space.
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