
HAL Id: hal-00759149
https://hal.science/hal-00759149v1

Submitted on 30 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Equational Abstraction Refinement for Certified Tree
Regular Model Checking

Yohan Boichut, Benoit Boyer, Thomas Genet, Axel Legay

To cite this version:
Yohan Boichut, Benoit Boyer, Thomas Genet, Axel Legay. Equational Abstraction Refinement for
Certified Tree Regular Model Checking. ICFEM, Nov 2012, Kyoto, Japan. pp.299-315. �hal-00759149�

https://hal.science/hal-00759149v1
https://hal.archives-ouvertes.fr


Equational Abstraction Refinement for Certified
Tree Regular Model Checking

Y. Boichut1, B. Boyer4, T. Genet2, and A. Legay3

1 LIFO - Université Orléans, France
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Abstract. Tree Regular Model Checking (TRMC) is the name of a fam-
ily of techniques for analyzing infinite-state systems in which states are
represented by trees and sets of states by tree automata. The central
problem is to decide whether a set of bad states belongs to the set of
reachable states. An obstacle is that this set is in general neither regular
nor computable in finite time.

This paper proposes a new CounterExample Guided Abstraction Re-
finement (CEGAR) algorithm for TRMC. Our approach relies on a new
equational-abstraction based completion algorithm to compute a regu-
lar overapproximation of the set of reachable states in finite time. This
set is represented by R/E-automata, a new extended tree automaton
formalism whose structure can be exploited to detect and remove false
positives in an efficient manner. Our approach has been implemented in
TimbukCEGAR, a new toolset that is capable of analyzing Java pro-
grams by exploiting an elegant translation from the Java byte code to
term rewriting systems. Experiments show that TimbukCEGAR outper-
forms existing CEGAR-based completion algorithms. Contrary to exist-
ing TRMC toolsets, the answers provided by TimbukCEGAR are certi-
fied by Coq, which means that they are formally proved correct.

1 Introduction

Infinite-state models are often used to avoid potentially artificial assumptions on
data structures and architectures, e.g. an artificial bound on the size of a stack
or on the value of an integer variable. At the heart of most of the techniques
that have been proposed for exploring infinite state spaces, is a symbolic repre-
sentation that can finitely represent infinite sets of states. In this paper, we rely
on Tree Regular Model Checking (TRMC) [19, 31], and assume that states of the
system are represented by trees and sets of states by tree automata. The tran-
sition relation of the system is represented by a set of rewriting rules. Contrary
to approaches that are dedicated to specific applications, TRMC is generic and
expressive enough to describe a broad class of communication protocols [4], vari-
ous C programs [16] with complex data structures, multi-threaded programs [34],
cryptographic protocols [26, 28, 5], and Java [13].



In TRMC, the central objective is to decide whether a set of states repre-
senting some state property belongs to the set of reachable states. An obstacle
is that this set is in general neither regular nor computable in a finite time.
Most existing solutions rely on computing the transitive closure of the transi-
tion relation of the systems through heuristic-based semi-algorithms [31, 4], or
on the computation of some regular abstraction of the set of reachable states
[19, 16]. While the first approach is precise, it is acknowledged to be ineffective
on complex systems. This paper focuses on the second approach.

The first abstraction-based technique for TRMC, Abstract Tree Regular Model
Checking (ATRMC), was proposed by Bouajjani et al [17, 15, 16]. ATRMC com-
putes sequences of automata by successive applications of the rewriting relation
to the automaton representing the initial set of states. After each computation
step, techniques coming from predicate abstraction are used to over-approximate
the set of reachable states. If the property holds on the abstraction, then it also
holds on the concrete system. Otherwise, a counter-example is detected and
the algorithm has to decide if it is a false positive or not. In case of a spuri-
ous counter-example, the algorithm refines the abstraction by backward prop-
agation of the set of rewriting rules. The approach, which may not terminate,
proceeds in a CounterExample Guided Abstraction Refinement fashion by suc-
cessive abstraction/refinement until a decision can be taken. The approach has
been implemented in a toolset capable, in part, to analyse C programs.

Independently, Genet et al. [24] proposed Completion that is another tech-
nique to compute an over-approximation of the set of reachable states. Comple-
tion exploits the structure of the term rewriting system to add new transitions
in the automaton and obtain a possibly overapproximation of the set of one-step
successor states. Completion leads to a direct application of rewriting rules to
the automaton, while other approaches rely on possibly heavy applications of
sequences of transducers to represent this step. Completion alone may not be
sufficient to finitely compute the set of reachable states. A first solution to this
problem is to plug one of the abstraction techniques implemented in ATRMC.
However, in this paper, we prefer another solution that is to apply equational
abstraction [33]. There, the merging of states is induced by a set of equations
that largely exploit the structure of the system under verification and its cor-
responding TRS, hence leading to accurate approximations. We shall see that,
initially, such equations can easily be derived from the structure of the system.
Later, they are refined automatically with our procedure without manual in-
tervention. Completion with equational abstraction has been applied to very
complex case studies such as the verification of (industrial) cryptography proto-
cols [26, 28] and Java bytecode applications [13]. CEGAR algorithms based on
equational-abstraction completion exist [11, 12], but are known to be inefficient.

In this paper, we design the first efficient and certified CEGAR framework
for equational-abstraction based completion algorithm. Our approach relies on
R/E-automata, that is a new tree automaton formalism for representing sets
of reachable states. In R/E-automata, equational abstraction does not merge
states, but rather links them with rewriting rules labeled with equations. Such



technique is made easy by exploiting the nature of the completion step. During
completion steps, such equations are propagated, and the information can be
used to efficiently decide whether a set of terms is reachable from the set of initial
states. If the procedure concludes positively, then the term is indeed reachable.
Else, one has to refine the R/E-automaton and restart the process again.

Our approach has been implemented in TimbukCEGAR. (T)RMC toolsets
result from the combination of several libraries, each of them being implemented
with thousands of lines of code. It is thus impossible to manually prove that those
tools deliver correctly answers. A particularity of TimbukCEGAR is that it is
certified. In order to ensure that the whole set of reachable states has been
explored, any TRMC technique needs to check whether a candidate overapprox-
imation B is indeed a fixed point, that is if L(B) ⊇ R∗(L(A)). Such check has
been implemented in various TRMC toolsets, but there is no guarantee that it
behaves correct. In [20], a checker for tree automata completion was designed and
proved correct using the Coq [9] proof assistant. Any automaton B that passes
the checker can be claimed to formally satisfy the fixed point. TimbukCEGAR
implements an extension of [20] for R/E-automata, which means that the tool
delivers correct answers. Our TimbukCEGAR is capable, in part, of analyzing
Java programs by exploiting a elegant translation from the Java bytecode to
term rewriting systems. Experiments show that TimbukCEGAR outperforms
existing CEGAR-based completion algorithms by orders of magnitude.

Related work. Regular Model Checking (RMC) was first applied to compute
the set of reachable states of systems whose configurations are represented by
words [18, 14, 22]. The approach was then extended to trees and applied to very
simple case studies [4, 19]. Other regular model checking works can be found in [2,
3], where an abstraction of the transition relation allows to exploit well-quasi
ordering for finite termination. Such techniques may introduce false positives;
a CEGAR approach exists for the case of finite word [1], but not for the one
of trees. Learning techniques apply to RMC [38, 39] but trees have not yet been
considered. We mention that our work extends equational abstractions [33, 37]
with counter-example detection and refinement. We mention the existence of
other automata-based works that can handle a specific class of system [34].
CEGAR principles have been implemented in various tools such as ARMC [35]
or SLAM [7]. Those specific tools are more efficient than our approach. On the
other hand, RMC and rewriting rules offers a more general framework in where
the abstraction and the refinements can be computed in a systematic manner.

Structure of the paper. Section 2 introduces the basic definitions and con-
cepts used in the paper. TRMC and Completion are introduced in Section 3.
R/E-automata are introduced in Section 4. A new completion procedure is then
defined in Section 5. Section 6 proposes a CEGAR approach for TRMC and
Completion. Section 7 presents TimbukCEGAR. Section 8 concludes the pa-
per and discusses future research. Due to space constraints proofs are reported
in [10].



2 Background

In this section, we introduce some definitions and concepts that will be used
throughout the rest of the paper (see also [6, 21, 30]). Let F be a finite set of
symbols, each associated with an arity function, and let X be a countable set of
variables. T (F ,X ) denotes the set of terms and T (F) denotes the set of ground
terms (terms without variables). The set of variables of a term t is denoted
by Var(t). A substitution is a function σ from X into T (F ,X ), which can be
uniquely extended to an endomorphism of T (F ,X ). A position p for a term t is
a word over N. The empty sequence λ denotes the top-most position. The set
Pos(t) of positions of a term t is inductively defined by Pos(t) = {λ} if t ∈ X
and Pos(f(t1, . . . , tn)) = {λ} ∪ {i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)} otherwise. If
p ∈ Pos(t), then t|p denotes the subterm of t at position p and t[s]p denotes the
term obtained by replacement of the subterm t|p at position p by the term s.

A term rewriting system (TRS) R is a set of rewrite rules l → r, where
l, r ∈ T (F ,X ), l 6∈ X , and Var(l) ⊇ Var(r). A rewrite rule l → r is left-linear
(resp. right-linear) if each variable of l (resp. r) occurs only once in l. A TRS R
is left-linear if every rewrite rule l→ r of R is left-linear. A TRS R is said to be
linear iff R is left-linear and right-linear. The TRS R induces a rewriting relation
→R on terms as follows. Let s, t ∈ T (F ,X ) and l→ r ∈ R, s→R t denotes that
there exists a position p ∈ Pos(s) and a substitution σ such that s|p = lσ and
t = s[rσ]p. The reflexive transitive closure of→R is denoted by→∗R and s→!

R t
denotes that s →∗R t and t is irreducible by R. The set of R-descendants of a
set of ground terms I is R∗(I) = {t ∈ T (F) | ∃s ∈ I s.t. s →∗R t}. An equation
set E is a set of equations l = r, where l, r ∈ T (F ,X ). The relation =E is the
smallest congruence such that for all substitution σ we have lσ = rσ. Given a
TRS R and a set of equations E, a term s ∈ T (F) is rewritten modulo E into
t ∈ T (F), denoted s →R/E t, if there exist s′ ∈ T (F) and t′ ∈ T (F) such that
s =E s′ →R t′ =E t. Thus, the set of R-descendants modulo E of a set of ground
terms I is R/E∗(I) = {t ∈ T (F) | ∃s ∈ I s.t. s→∗R/E t}.

Let Q be a finite set of symbols with arity 0, called states, such that Q∩F = ∅.
T (F ∪Q) is called the set of configurations. A transition is a rewrite rule c→ q,
where c is a configuration and q is state. A transition is normalized when
c = f(q1, . . . , qn), f ∈ F is of arity n, and q1, . . . , qn ∈ Q . A ε-transition is
a transition of the form q → q′ where q and q′ are states. A bottom-up nonde-
terministic finite tree automaton (tree automaton for short) over the alphabet
F is a tuple A = 〈F ,Q ,QF , ∆〉, where QF ⊆ Q , ∆ is a set of normalized
transitions and ε-transitions. The transitive and reflexive rewriting relation on
T (F ∪Q) induced by all the transitions of A is denoted by →∗A. The tree lan-
guage recognized by A in a state q is L(A, q) = {t ∈ T (F) | t→∗A q}. We define
L(A) =

⋃
q∈QF

L(A, q).

3 Tree Regular Model Checking with Completion

We first introduce Tree Regular Model Checking (TRMC), a tree automata based
framework to represent possibly infinite-state systems. In TRMC, a program is



represented by a tuple (F ,A,R), where F is an alphabet on which a set of terms
T (F) can be defined; A is the tree automaton representing a possibly infinite
set of configurations I, and R is a set of term rewriting rules that represent a
transition relation Rel. We consider the following problem.

Definition 1 (Reachability Problem (RP)). Consider a program (F ,A,R)
and a set of bad terms Bad. The Reachability Problem consists in checking
whether there exists a term of R∗(L(A)) that belongs to Bad.

For finite-state systems, computing the set of reachable terms (R∗(L(A))) re-
duces to enumerating the terms that can be reached from the initial set of con-
figurations. For infinite-state systems, acceleration-based methods are needed
to perform this possibly infinite enumeration in a finite time. In general, such
accelerations are not precise and the best one can obtain is an R-closed approx-
imation A∗R. A tree automaton A∗R is R-closed if for all terms s, t ∈ T (F) such
that s→R t and s is recognized by A∗R into state q then so is t. It is easy to see
that if A∗R is R-closed and L(A∗R) ⊇ L(A), then L(A∗R) ⊇ R∗(L(A)). A wide
range of acceleration techniques have been developed, most of them have been
discussed in Section 1. Here, we focus on Completion [24], whose objective is to
computes successive automata A0

R = A,A1
R,A

2
R, . . . that represent the effect of

applying the set of rewriting rules to the initial automaton. To compute infinite
sets in a finite time, each completion step is followed by a widening operator.
More precisely, each application of R, which is called a completion step, consists
in searching for critical pairs 〈t, q〉 with s →R t, s →∗A q and t 6→∗A q. The idea
being that the algorithm solves the critical pair by building from Ai

R, a new
tree automaton Ai+1

R with the additional transitions that represent the effect
of applying R. As the language recognized by A may be infinite, it is not pos-
sible to find all the critical pairs by enumerating the terms that it recognizes.
The solution that was promoted in [24] consists in applying sets of substitu-
tions σ : X 7→ Q mapping variables of rewrite rules to states that represent
infinite sets of (recognized) terms. Given a tree automaton Ai

R and a rewrite
rule l → r ∈ R, to find all the critical pairs of l → r on Ai

R, completion uses a
matching algorithm [23] that produces the set of substitutions σ : X 7→ Q and
states q ∈ Q such that lσ →∗

Ai
R
q and rσ 6→∗

Ai
R
q. Solving critical pairs thus

consists in adding new transitions: rσ → q′ and q′ → q. Those new transitions
may have to be normalized in order to satisfy the definition of transitions of tree
automata (see [23] for details). As it was shown in [24], this operation may add
not only new transitions but also new states to the automaton. In the rest of the
paper, the completion-step operation will be represented by C, i.e., the automa-
ton obtained by applying the completion step to Ai

R is denoted C(Ai
R). Observe

that when considering right-linear rewriting rules, we have that C is precise, i.e.
it does not introduce in Ai+1

R terms that cannot be obtain from Ai
R by applying

the set of rewriting rules. Observe also that if the system is non left-linear, then
completion step may not produce all the reachable terms. Non left-linear rules
will not be considered in the present paper.

The problem is that, except for specific classes of systems [23, 25], the au-
tomaton representing the set of reachable terms cannot be obtained by applying



a finite number of completion steps. The computation process thus needs to be
accelerated. For doing so, we apply a widening operator W that uses a set E
of equations5 to merge states and produce an R-closed automaton that is an
over-approximation of the set of reachable terms, i.e., an automaton A∗R,E such
that L(A∗R,E) ⊇ R∗(L(A)). An equation u = v is applied to a tree automaton
A as follows: for all substitution σ : X 7→ Q and distinct states q1 and q2 such
that uσ →∗A q1 and vσ →∗A q2, states q1 and q2 are merged. Completion and
widening steps are applied, i.e., Ai+1

R,E = W(C(Ai
R,E)), until a R-closed fixpoint

A∗R,E is found. Our approximation framework and methodology are close to the
equational abstractions of [33]. In [27], it has been shown that, under some as-
sumptions, the widening operator may be exact, i.e., does not add terms that
are not reachable.

Example 1. LetR = {f(x)→ f(s(s(x)))} be a rewriting system, E = {s(s(x)) =
s(x)} be an equation, and A = 〈F ,Q ,QF , ∆〉 be a tree automaton with QF =
{q0} and ∆ = {a→ q1, f(q1)→ q0}, i.e. L(A) = {f(a)}.
The first completion step finds the following critical pair:
f(q1)→∗A q0 and f(s(s(q1))) 6→∗A q0. Hence, the completion
algorithm produces A1

R = C(A) having all transitions of A
plus {s(q1)→ q2, s(q2)→ q3, f(q3)→ q4, q4 → q0} where

s(s(q1))

A1
R ∗

��

s(q1)

∗ A1
R

��
q3 q2

q2, q3, q4 are new states produced by normalization of f(s(s(q1)))→ q0. Applying
W with the equation s(s(x)) = s(x) on A1

R is equivalent to rename q3 into q2. The
set of transitions of A1

R,E is thus ∆ ∪ {s(q1)→ q2, s(q2)→ q2, f(q2)→ q4, q4 →
q0}. Completion stops on A1

R,E that is R-closed, and thus A∗R,E = A1
R,E .

Observe that if the intersection between A∗R,E and Bad is not empty, then it
does not necessarily mean that the system does not satisfy the property. Consider
a set Bad = {f(s(a)), f(s(s(a)))}, the first term of this set is not reachable
from A, but the second is. There is thus the need to successively refine the R-
closed automaton. The latter can be done by using a CounterExample Guided
Abstraction Refinement algorithm (CEGAR). Developing such an algorithm for
completion and equational abstraction is the objective of this paper.

4 R/E-Automata

Existing CEGAR approaches [17, 15, 16, 11] check for spurious counter examples
by performing a sequence of applications of the rewriting rules to A∗R,E . To
avoid this potentially costly step, we suggest to replace the merging of states by
the addition of new rewriting rules giving information on the merging through
equations. Formally:

Definition 2 (R/E-automaton). Given a TRS R and a set E of equations,
an R/E-automaton A is a tuple 〈F ,Q ,QF , ∆∪εR∪εE〉. ∆ is a set of normalized

5 Those equations have to be provided by the user. In many cases, they can be pro-
duced when formalizing the problem in the TRMC framework [37]. The situation is
similar for the predicates used in [17, 15, 16].



transitions. εE is a set of ε-transitions. εR is a set of ε-transitions labeled by
> or conjunctions over predicates of the form Eq(q, q′) where q, q′ ∈ Q, and
q → q′ ∈ εE.

Set εR is used to distinguish a term from its successors that has been obtained
by applying one or several rewriting rules. Instead of merging states according
to the set of equations, A links them with epsilon transitions in εE . During the
completion step, when exploiting critical pairs, the combination of transitions in
εE generates transition in εR that are labeled with a conjunction of equations
representing those transitions in εE . In what follows, we use →∗∆ to denote the
transitive and reflexive closure of ∆. Given a set ∆ of normalized transitions,
the set of representatives of a state q is defined by Rep(q) = {t ∈ T (F)|t→∗∆ q}.

Definition 3 (Run of a R/E-automaton A).

– t|p = f(q1, . . . , qn) and f(q1, . . . , qn)→ q ∈ ∆ then t
>−→A t[q]p

– t|p = q and q → q′ ∈ εE then t
Eq(q,q′)−−−−−→A t[q′]p

– t|p = q and q
α−→ q′ ∈ εR then t

α−→A t[q′]p

– u
α−→A v and v

α′

−→A w then u
α∧α′

−−−→A w

Theorem 1. ∀t ∈ T (F ∪Q), q ∈ Q , t
α−→A q ⇐⇒ t→∗A q

A run
α−→ abstracts a rewriting path of→R/E . If t

α−→ q, then there exists a term
s ∈ Rep(q) such that s→∗R/E t. The formula α denotes the subset of transitions
of εE needed to recognize t into q.

Example 2. Let I = f(a) be an initial set of terms, R = {f(c) → g(c), a → b}
be a set of rewriting rules, and E = {b = c} be a set of equations. We build A
an overapproximation automaton for R∗(I), using E.

Thanks to ε-transitions, the automaton A repre-
sented in Fig. 1 contains some information about
the path used to reach terms using R and E. Each
state has a representative term from which others
are obtained. The equality b = c is represented by
the two transitions qc → qb and qb → qc of εE ,
taking into account that b and c are the repre-
sentatives terms for states qb and qc, respectively.
Consider now State qc, Transition qb → qc indi-
cates that the term b is obtained from Term c by
using the equality. Conversely, Transition qc → qb
leads to the conclusion that Term c is obtained
from Term b.

qf qg

f( qa ) g( qc )

qa qb qc

a b c

Eq(qc, qb)

>

=

=

Fig. 1: Automaton A



The transition qb → qa denotes that the term b is a descendant of a by rewriting.

Using Definition 3, the runs f(c)
Eq(qc,qb)−−−−−−→ qf indicates that to obtain f(c)

from f(a) – the representative term of qf – we used the equality b = c, which
is obtained from qc → qb. We indeed observe f(a) →R f(b) =E f(c). If we
now consider the transition qg → qf we labeled the transition with the formula
Eq(qc, qb). To reach g(c) from f(a), we rewrite f(c). We have seen this term is
reachable thanks to the equivalence relation induced by b = c. By transitivity,
this equivalence is also used to reach the term g(c). We thus label the transition

of εR to save this information. We obtain the run g(c)
Eq(qc,qb)−−−−−−→ qf . We observe

that the transition qb → qa is labeled by the formula > since b is reachable
from a without any equivalence. By congruence, so is f(b) from f(a). The run

f(b)
>−→ qf denotes it.

We now introduce a property that will be used in the refinement procedure
to distinguish between counter-examples and false positives.

Definition 4 (A well-defined R/E-automaton). A is a well-defined R/E-
automaton, if :

– For all states q of A, and all terms v such that v
>−→A q, there exists u a

term representative of q such that u→∗R v

– If q
φ−→ q′ is a transition of εR, then there exist terms s, t ∈ T (F) such that

s
φ→A q, t

>→A q′ and t→R s.

The first item in Definition 4 guarantees that every term recognized by using
transitions labeled with the formula > is indeed reachable from the initial set.
The second item is used to refine the automaton. A rewriting step of →R/E
denoted by q

φ−→ q′ holds thanks to some transitions of εE that occurs in φ. If we
remove transitions in εE in such a way that φ does not hold, then the transition

q
φ−→ q′ should also be removed.
According to the above construction, a term t that is recognized by using at

least a transition labeled with a formula different from > can be removed from
the language of the R/E-automaton by removing some transitions in εE . This
“pruning” operation will be detailed in Section 6.

5 Solving the Reachability Problem with R/E-automaton

In this section, we extend the completion and widening principles introduced
in Section 3 to take advantage of the structure of R/E−automata. We con-
sider an initial set I that can be represented by a tree automaton A0

R,E =

〈F ,Q0,QF , ∆
0〉, and transition relation represented by a set of linear rewriting

rules R. In the next section, we will see that the right-linearity condition may
be relaxed using additionnal hypotheses. We compute successive approximations
Ai
R,E = 〈F ,Q i,Qf , ∆

i∪εiR∪εiE〉 from A0
R,E using Ai+1

R,E = W(C(Ai
R,E)). Observe

that A0
R,E is well-defined as the sets ε0R and ε0E are empty.



5.1 The Completion step C

Extending completion to R/E-automaton requires to modify the concept of crit-
ical pair and so the algorithm to compute them. A critical pair for a R/E-

automaton is a triple 〈rσ, α, q〉 such that lσ → rσ, lσ
α−→Ai

R,E
q and there is no

formula α′ such that rσ
α′

−→Ai
R,E

q. The resolution of such a critical pair consists

of adding to C(Ai
R,E) the transitions to obtain rσ

α−→C(Ai
R,E) q. This is followed

by a normalization step Norm whose definition is similar to the one for classical
tree automata.

Definition 5 (Normalization). The normalization is done in two mutually
inductive steps parametrized by the configuration c to recognize, and by the set
of transitions ∆ to extend. Let Q∆

new be a set of (new) states not occurring in ∆.
Norm(c,∆) = Slice(d,∆), for one d s.t. c→∗∆ d, with c, d ∈ T (F ∪Q)
Slice(q,∆) = ∆, q ∈ Q
Slice(f(q1, . . . , qn), ∆) = ∆ ∪ {f(q1, . . . , qn)→ q}, qi ∈ Q and one q ∈ Q∆

new

Slice(f(t1, . . . , tn), ∆) = Norm(f(t1, . . . , tn), Slice(ti, ∆)),∃ti ∈ T (F ∪Q) \Q

Definition 6 (Resolution of a critical pair). Given a R/E-automaton A =
〈F ,Q ,Qf , ∆ ∪ εR ∪ εE〉 and a critical pair p = 〈rσ, α, q〉, the resolution of p on
A is the R/E-automaton A′ = 〈F ,Q ′,Qf , ∆

′ ∪ ε′R ∪ εE〉 where

– ∆′ = ∆ ∪ Norm(rσ,∆ \∆0);

– ε′R = εR ∪ {q′
α−→ q} where q′ is the state such that rσ →∆′\∆0

q′;
– Q ′ is the union of Q with the set of states added when creating ∆′.

Note that ∆0, the set of transitions of A0
R, is not used in the normalization pro-

cess. This is to guarantee that A′ is well-defined. The R/E-automaton C(Ai
R,E)

is obtained by recursively applying the above resolution principle to all critical
pairs p of the set of critical pairs between R and Ai

R,E .
The set of all critical pairs is obtained by solving the matching problems lEq

for all rewrite rules l→ r ∈ R and all states q ∈ Ai
R,E . Solving lEq is performed

in two steps. First, one computes S, that is the set of all pairs (α, σ) such that

α is a formula, σ is a substitution of X 7→ Q i, and lσ
α−→ q. The formula α is a

conjunction of Predicates Eq(q′, q′′) that denotes the used transitions of εE to
rewrite lσ in q, in accordance with Definition 3. Due to space constraints the
algorithm, which always terminates, can be found in [10].

Second, after having computed S for l E q, we identify elements of the set
that correspond to critical pairs. By definition of S, we know that there exists a

transition lσ
α−→Ai

R,E
q for (α, σ) ∈ S. If there exists a transition rσ

α′

−→Ai
R,E

q,

then rσ has already been added to Ai
R,E . If there does not exist a transition of

the form rσ
α′

−→Ai
R,E

q, then 〈rσ, α′, q〉 is a critical pair to solve on Ai
R,E . The

following theorem shows that our methodology is complete.



Theorem 2. If Ai
R,E is well-defined then so is C(Ai

R,E), and ∀q ∈ Q i, ∀t ∈
L(Ai

R,E , q), ∀t′ ∈ T (F), t→R t′ =⇒ t′ ∈ L(C(Ai
R,E), q).

Example 3. Let R = {f(x) → f(s(s(x)))} be a set of rewriting rules and
A0
R,E = 〈F ,Q ,QF , ∆

0〉 be a tree automaton such that QF = {q0} and ∆0 =
{a → q1, f(q1) → q0}. The solution of the matching problem f(x) E q0 is

S = {(σ, φ)}, with σ = {x→ q1} and φ = >. Hence, since f(s(s(q1))) 6 >−→A0
R,E

q0,

〈f(s(s(q1))),>, q0〉 is the only critical pair to be solved. So, we have C(A0
R,E) =

〈F ,Q1,QF , ∆
1 ∪ ε1R ∪ ε0E〉, with:

∆1 = Norm(f(s(s(q1))), ∅) ∪∆0 = {s(q1)→ q2, s(q2)→ q3, f(q3)→ q4} ∪∆0,

ε1R = {q4
>−→ q0}, since f(s(s(q1)))→∆1\∆0 q4, ε0E = ∅ and Q1 = {q0, q1, q2, q3, q4}.

Observe that if C(Ai
R,E) = Ai

R,E , then we have reached a fixpoint.

5.2 The Widening Step W

Consider a R/E-automaton A = 〈F ,Q ,Qf , ∆ ∪ εR ∪ εE〉, the widening consists
in computing a R/E-automaton W(A) that is obtained from A by using E.
For each equation l = r in E, we consider all pair (q, q′) of distinct
states of Q i such that there exists a substitution σ to obtain the
following diagram. Observe that

=−→A, the transitive and reflexive
rewriting relation induced by ∆∪ εE , defines particular runs which
exclude transitions of εR. This allows us to build a more accurate
approximation. The improvement in accurary is detailed in [27].

lσ
E

=A

��

rσ

=A
��

q q′

Intuitively, if we have u
=−→A q, then we know that there exists a term

t of Rep(q) such that t =E u. The automaton W(A) is given by the tuple
〈F ,Q ,Qf , ∆ ∪ εR ∪ ε′E〉, where ε′E is obtained by adding the transitions q → q′

and q′ → q to εE (for each pair (q, q′)).

Theorem 3. Assuming that A is well-defined, we have A syntactically included
in W(A), and W(A) is well-defined.

Example 4. Consider the R/E-automaton C(A0
R,E) given in Example 3.

Using Equation s(s(x)) = s(x), we compute A1
R,E =

W(C(A0
R,E)). We have σ = {x 7→ q1} and the following

diagram. We then obtain A1
R,E = 〈F ,Q1,Qf , ∆

1∪ε1R∪
ε1E〉, where ε1E = ε0E ∪{q3 → q2, q2 → q3} and ε0E = ∅.

s(s(q1))
E

=C(A0
R,E)

��

s(q1)

=C(A0
R,E)

��
q3 q2

Observe that A1
R,E is a fixpoint, i.e., C(A1

R,E) = A1
R,E .

6 A CEGAR procedure for R/E-automata

Let R be a TRS, I be a set of initial terms characterized by the R/E−automaton
A0
R,E and Bad the set of forbidden terms represented by ABad. We now complete

our CEGAR approach by proposing a technique that checks whether a term is



indeed reachable from the initial set of terms. If the term is a spurious counter-
example i.e. a counter-example of the approximation, then it has to be removed
from the approximation automatically, else one can deduce that the involved
term is actually reachable.

Let Ak
R,E = 〈F ,Qk,Qf , ∆

k ∪εkR∪εkE〉 be a R/E-automaton obtained after k

steps of completion and widening from A0
R,E and assume that L(Ak

R,E)∩Bad 6=
∅. Let SAk

R,E∩ABad
be a set of triples 〈q, q′, φ〉 where q is a final state of Ak

R,E ,

q′ is a final state of ABad and φ is a formula on transitions of εkE and such
that for each triple (q, q′, φ), the formula φ holds if and only if there exists

t ∈ L(Ak
R,E , q) ∩ L(ABad, q

′) and t
φ−→Ak

R,E
q. Note that SAk

R,E∩ABad
can be

obtained using an intersection based algorithm defined in [10]. We consider two
cases. First, as Ak

R,E is well-defined, if φ = >, we deduce that t is indeed a reach-
able term. Otherwise, φ is a formula whose atoms are of the form Eq(qj , q

′
j), and

t is possibly a spurious counter-example, and the run t
φ−→Ak

R,E
q must be re-

moved. Refinement consists in computing a pruned version P(Ak
R,E , SAk

R,E∩ABad
)

of Ak
R,E .

Definition 7. Given an R/E−automaton A = 〈F ,Q ,QF , ∆0 ∪ ∆ ∪ εR ∪ εE〉
and a set of terms specified by the automaton ABad, the prune process is defined
by

P(A, SA∩ABad
) =


P(A′, SA′∩ABad

) if SA′∩ABad
6= ∅ and with

A′ = Clean(A, SA∩ABad
)

A if SA∩ABad
= ∅ or there exists t ∈ Bad

s.t. t
>−→A qf and qf ∈ QF .

where Clean(A, SA∩ABad
), consists of removing transitions of εE until for

each 〈qf , q′f , φ〉 ∈ SA∩ABad
, φ does not hold, i.e., φ =⊥ with qf , q

′
f respectively

two final states of A and ABad.

To replace Predicate Eq(q, q′) by ⊥ in φ, we have to remove the transition q → q′

from εE . In addition, we also have to remove all transitions q
α−→ q′ ∈ εR, where

the conjunction α contains some predicates Eq(q1, q2) whose transition q1 → q2
has been removed from εE . In general, removing Transition q → q′ may be
too rough. Indeed, assuming that there also exists a transition q′′ → q of εE ,
removing the transition q → q′ also avoids the induced reduction q′′ → q′ from
the automaton and then, unconcerned terms of q′′ are also removed. To save
those terms, Transition q′′ → q′ is added to εE , but only if it has never been
removed by a pruning step. This point is important to refine the automaton with
accuracy. The prune step is called recursively as inferred transitions may keep
the intersection non-empty.

Theorem 4. Let t ∈ Bad be a spurious counter-example. The pruning process

always terminates, and removes all the runs of the form t
φ−→ q.



Example 5. We consider the R/E-automaton A of Example 2. It is easy to see

that A recognizes the term g(c). Indeed, by Definition 3, we have g(c)
Eq(qc,qb)−−−−−−→

qf . Consider now the rewriting path f(a) →R f(b) =E f(c) →R g(c). If we
remove the step f(b) =E f(c) denoted by the transition qc → qb, then g(c)
becomes unreachable and should also be removed. The first step in pruning A
consists thus in removing this transition. In a second step, we propagate the
information by removing all transition of εR labeled by a formula that contains
Eq(qc, qb). This is done to remove all terms obtained by rewriting with the
equivalence b =E c. After having pruned all the transitions, we observe that the
terms recognized by A are given by the set {f(a), f(b)}.

Let us now characterize the soundness and completness of our approach.

Theorem 5 (Soundness on left-linear TRS). Consider a left-linear TRS
R, a set of terms Bad, a set of equations E and a well-defined R/E−automaton
A0. Let A∗R,E be a fixpoint R/E-automaton of P(A′, SA′∩ABad

) and A′ = W(C(Ai))
for i ≥ 0. If L(A∗R,E) ∩Bad = ∅, then Bad ∩R∗(L(A0)) = ∅.

Theorem 6 (Completeness on Linear TRS). Given a linear TRS R, a
set of terms Bad defined by automata ABad, a set of equations E and a well-
defined R/E−automaton A0. For any i > 0, let Ai be the R/E−automaton
obtained from Ai−1 in such a way: Ai = P(A′, SA′∩ABad

) and A′ = W(C(Ai−1)).

If Bad∩R∗(L(A0)) 6= ∅ then there exists t ∈ Bad and j > 0 such that t
>→Aj

qf
and qf is a final state of Aj.

This result also extends to left-linear TRS with a finite set of initial terms (car-
dinality of Rep(q) is 1 for all state q of A0).

Theorem 7 (Completeness on Left-Linear TRS). Theorem 6 extends to
left-linear TRS if for any state q of A0, the cardinality of Rep(q) is 1.

7 Implementation, Application and Certification

Our approach has been implemented in TimbukCEGAR that is an extension of
the Timbuk 3.1 toolset [29]. Timbuk is a well-acknowledged tree automata li-
brary that implements several variants of the completion approach. TimbukCE-
GAR consists of around 11000 lines of OCaml, 75% of which are common with
Timbuk 3.1. TimbukCEGAR exploits a BDD-based representation of equation
formulas through the Buddy BDD library [32].

A particularity of TimbukCEGAR is that it is certified. At the heart of
any abstraction algorithm there is the need to check whether a candidate over-
approximation B is indeed a fixed point, that is if L(B) ⊇ R∗(L(A)). Such check
has been implemented in various TRMC toolsets, but there is no guarantee that
it behaves correctly, i.e., that the TRMC toolset gives a correct answer. In [20], a
checker for tree automata completion was designed and proved correct using the
Coq [9] proof assistant. As such, any TRMC toolset that produces an automa-
ton B that passes the checker can be claimed to work properly. TimbukCEGAR



implements a straightforward extension of [20] for R/E-automata, which means
that the tool delivers provably correct answers. In what follows, we describe how
Java programs can be analyzed using our approach. Both Timbuk and Tim-
bukCEGAR are available at http://www.irisa.fr/celtique/genet/timbuk/.

In a french initiative called RAVAJ [36], we have defined a generic certified
verification chain based on TRMC. This chain is composed of three main links.
The two first links rely on an encoding of the operational semantics of the pro-
gramming language as a term rewriting system and a set of rewrite rules. The
third link is a TRMC toolset, here TimbukCEGAR. With regards to classical
static analysis, the objective is to use TRMC and particularly tree automata
completion as a foundation mechanism for ensuring, by construction, safety of
static analyzers. For Java, using approximation rules instead of abstract domains
makes the analysis easier to fine-tune. Moreover, our approach relies on a checker
that certifies the answer to be correct.

We now give more details and report some experimental results. We used
Copster [8], to compile a Java .class file into a TRS. The obtained TRS mod-
els exactly a subset of the semantics6 of the Java Virtual Machine (JVM) by
rewriting a term representing the state of the JVM [13]. States are of the form
IO(st,in,out) where st is a program state, in is an input stream and out an
output stream. A program state is a term of the form state(f,fs,h,k) where
f is current frame, fs is the stack of calling frames, h a heap and k a static
heap. A frame is a term of the form frame(m,pc,s,l) where m is a fully qual-
ified method name, pc a program counter, s an operand stack and t an array
of local variables. The frame stack is the call stack of the frame currently being
executed: f. We consider the following program:
class List{

List next;
int val;
public List(int elt, List l){

next= l;
if (elt<0) val= -elt;
else val= elt;

}
public void printSum(){

List l= this;
int sum= 0;
while (l != null){

sum= sum+l.val;
l= l.next;

}
System.out.println(sum);

}}

class TestList{
public static void main(String[] argv){

List ls= null;
int x= 0;
while (x!=-1) {

try {x= System.in.read();}
catch(java.io.IOException e){};
ls= new List(x,ls);

}
ls.printSum();

}
}

Let us now check that the sum output by the program can never be equal to
zero, for all non-empty input stream of integers. The TRS generated by Copster
has 879 rules encoding both the JVM semantics and the bytecode of the above
Java program. Note that, this example is bigger than those generally used by
other TRMC techniques. The complete TRS is available with TimbukCEGAR
distribution. Initial terms are of the form IO(s,lin,nilout) where s is the
initial JVM state, lin is a non-empty unbounded list of integers and nilout is

6 essentially basic types, arithmetic, object creation, field manipulation, virtual
method invocation, as well as a subset of the String library.



the empty list of outputs. Starting from this initial set of terms, completion is
likely to diverge without approximations. Indeed, the program is going to allocate
infinitely many objects of class List in the heap and, furthermore, compute an
unbounded sum in the method printSum. In the heap, there is one separate heap
for each class. Each heap consists of a list of objects. For instance, in the heap
for class List, objects are stored using a list constructor stackHeapList(x,y).
Thus, to enforce termination we can approximate the heap for objects of class
List using the following equation stackHeapList(x,y)=y. The effect of this
equation is to collapse all the possible lists built using stackHeapList, hence
all the possible heaps for class List. The other equations are succ(x)=x and
pred(x)=x for approximating infinitely growing or decreasing integers.

By using those equations, TimbukCEGAR finds a counterexample. This is
due to the fact that, amongst all considered input streams, an input stream
consisting of a list of 0 results into a 0 sum. The solution is to restrict the
initial language to non-empty non-zero integer streams. However, refinement of
equations is needed since succ(x)=x and pred(x)=x put 0 and all the other
integers in the same equivalence class. Refining those equations by hand is hard,
e.g. using equations succ(succ(x))=succ(x) and pred(pred(x))=pred(x) is
not enough to eliminate spurious counterexamples. After 334 completion steps
and 4 refinement steps, TimbukCEGAR is able to complete the automaton and
achieve the certified proof. The resulting automaton produced by the tool has
3688 transitions which are produced in 128s. Then, it can be Coq-certified in
17017s. The memory usage for the whole process does not exceed 531Mb. One
of the reasons for which certifying automata produced by TimbukCEGAR takes
more time than for Timbuk 3.1 is that the checker has to normalize epsilon tran-
sitions of R/E-automata. This is straightforward but may cause an explosion of
the size of the tree automaton to be checked. However this can be improved a lot
by defining a specific Coq-checker forR/E-automata. It is worth mentioning that
the TRS produced by Copster from Java programs are left-linear but not right-
linear. Hence, our soundness theorem applies but not the completeness theorem,
since the TRS is not right-linear and the initial language is not finite. However,
here completion steps do not introduce spurious counter examples. Some other
examples of application can be found in [10]. Those experiments show, in par-
ticular, that the overhead due to the use of R/E-automata in completion can
be limited thanks to BDDs. As a consequence, TimbukCEGAR performances
are similar to those of Timbuk 3.1 when no refinement is performed, and Tim-
bukCEGAR outperforms the other known CEGAR completion implementation
when refinement is needed.

8 Conclusion

We have presented a new CounterExample Guided Abstraction Refinement pro-
cedure for TRMC based on equational abstraction. Our approach has been im-
plemented in TimbukCEGAR that is the first TRMC toolset certified correct.
Our approach leads, in particular, to a Java program analyzer starting from code
to verification. Unlike most of existing works, our method works with the Java



semantics itself rather than with some abstract model that is statically or even
manually derived from the code. One additional feature is that the complete
verification is certified by an external proof assistant. We are convinced that
our work open news doors in application of RMC approaches to rigorous system
design. One challenge for future work is definitively to consider non left-linear
TRS – a formalism that can be used to model cryptographic protocols. In [25,
26, 28, 5], it has been shown that an extension of the completion algorithm can
lead to a powerful verification toolset for cryptographic protocols. However, this
existing setting is still lacking an abstraction refinement procedure to be made
fully automatic. On the one side, the theoretical challenge is thus to extend the
CEGAR completion to non left-linear TRS. On the other side, the technical
challenge is to extend the Coq checker to handle non left-linear TRS and R/E-
automata, in order to improve the Coq-checking time. Tackling those two goals
will allow us to propose the first certified automatic verification tool for security
protocols, a major advance in the formal verification area.

Acknowledgements Thanks to F. Besson for his help in integrating Buddy.
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9. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment. Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. Springer Verlag, 2004.

10. Y. Boichut, B. Boyer, T. Genet, and A. Legay. Fast Equational Abstraction
Refinement for Regular Tree Model Checking. Technical report, INRIA, 2010.
http://hal.inria.fr/inria-00501487.

11. Y. Boichut, R. Courbis, P.-C. Heam, and O. Kouchnarenko. Finer is better: Ab-
straction refinement for rewriting approximations. In RTA, LNCS. Springer, 2008.

12. Y. Boichut, T.-B.-H. Dao, and V. Murat. Characterizing conclusive approximations
by logical formulae. In RP, volume 6945 of LNCS, pages 72–84. Springer, 2011.

13. Y. Boichut, T. Genet, T. Jensen, and L. Leroux. Rewriting Approximations for
Fast Prototyping of Static Analyzers. In RTA, LNCS 4533, pages 48–62, 2007.



14. B. Boigelot, A. Legay, and P. Wolper. Iterating transducers in the large (extended
abstract). In CAV, LNCS, pages 223–235. Springer, 2003.

15. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract regular tree
model checking. ENTCS, 149(1):37–48, 2006.

16. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract rmc of
complex dynamic data structures. In SAS, LNCS. Springer, 2006.

17. A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model checking. In
CAV, volume 3114 of LNCS, pages 372–386. Springer, 2004.

18. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In
CAV, volume 1855 of LNCS, pages 403–418. Springer-Verlag, 2000.

19. A. Bouajjani and T. Touili. Extrapolating tree transformations. In CAV, volume
2404 of LNCS, pages 539–554. Springer, 2002.

20. B. Boyer, T. Genet, and T. Jensen. Certifying a Tree Automata Completion
Checker. In IJCAR’08, volume 5195 of LNCS. Springer, 2008.

21. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Löding, S. Tison,
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