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OPENCL NUMERICAL SIMULATIONS OF TWO-FLUID COMPRESSIBLE

FLOWS WITH A 2D RANDOM CHOICE METHOD

PHILIPPE HELLUY, JONATHAN JUNG

Abstract. In this paper, we propose a new very simple numerical method for solving liquid-
gas compressible flows. Such flows are difficult to simulate because classical conservative finite
volume schemes generate pressure oscillations at the liquid-gas interface. We extend to several
dimensions the random choice scheme that we have constructed in [13]. The extension is
performed through Strang dimensional splitting. The resulting scheme exhibits interesting
conservation and stability properties. For achieving high performance, the scheme is tested on
recent muulticore processors and GPU, using the OpenCL environment.

1. Introduction

Compressible two-fluid flows are difficult to numerically simulate. Indeed, as first discovered
in [1] and [14], classical conservative finite volume schemes do not preserve the velocity and
pressure equilibrium at the two-fluid interface. This leads to oscillations, lack of precision and
even, in some liquid-gas simulations, to the crash of the computation.

Several cures have been proposed to obtain better schemes. Among many works, we can
cite [1, 14]. The resulting schemes are generally not conservative. Based on previous works of
Chalons and Goatin [9] and Chalons and Coquel [6], we have proposed in [13] a Lagrange and
remap scheme for solving compressible liquid-gas flows. The remap step of the scheme is based
on the Glimm random choice method at the interface. In [13], we have tested the random
scheme on one-dimensional test cases. The random scheme presents interesting properties:
(statistical) conservation, faster convergence, it preserves the pressure and velocity equilibrium
at the interface, it allows to perform computations that are not feasible with other classical
schemes.

In this paper, we extend the method to two-dimensional equations, thanks to Strang splitting.
The simplicity of the approach allows also an easy implementation of the method on re-

cent multicore processors and Graphic Processing Units (GPU). For this, we use the OpenCL
programming environment.

We then perform several numerical experiments for evaluating the advantages and drawbacks
of the random scheme.

2. Mathematical model

In this paper, we are interested in the numerical resolution of the following system of partial
differential equations, modelling a liquid-gas compressible flow

(2.1) ∂tW + ∂xF (W ) + ∂yG(W ) = 0,

where
W = (ρ, ρu, ρv, ρE, ρϕ)T ,

and

F (W ) = (ρu, ρu2 + p, ρuv, (ρE + p)u, ρuϕ)T , (ρv, ρuv, ρv2 + p, (ρE + p)v, ρvϕ)T .

The unknowns are the density ρ, the two components of the velocity u, v, the internal energy e
and the mass fraction of gas ϕ. The unknowns depend on the space variables x, y and on the
time variable t. The total energy E is the sum of the internal energy and the kinetic energy

E = e+
u2 + v2

2
.
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The pressure p of the two-fluid medium is a function of the other thermodynamical parameters

p = p(ρ, e, ϕ).

In this paper, we consider a stiffened gas pressure law

p(ρ, e, ϕ) = (γ(ϕ)− 1)ρe− γ(ϕ)π(ϕ),

where γ and π are given functions of the mass fraction ϕ, and

γ(ϕ) > 1.

At the initial time, the mass fraction ϕ(x, y, 0) = 1 if the point (x, y) is in the gas region and
ϕ(x, y, 0) = 0 if the point (x, y) is in the liquid region. The mass fraction is also solution of the
transport equation

∂tϕ+ u∂xϕ+ v∂yϕ = 0,

which implies that for any time t > 0, ϕ(x, y, t) can take only the two values 0 or 1.
However, classical numerical schemes generally produce an artificial diffusion of the mass

fraction, and in the numerical approximation we may observe 1 > ϕ > 0. In classical conserva-
tive schemes, the artificial mixing zone implies a loss of the velocity and pressure equilibrium
at the interface. It is possible to recover the equilibrium by relaxing the conservation property
of the scheme as in [20].

3. Random choice numerical method

3.1. Directional splitting. We consider a increasing sequence of time tn, n ∈ N
∗ and an

approximation W n(x, y) of W (x, y, tn). For constructing W n+1 we can use Strang dimensional
splitting [22], which amounts to solve, for a time step ∆t the Cauchy problem

(3.1) ∂tW + ∂xF (W ) = 0,

(3.2) W (x, y, 0) = W n(x, y).

We obtain in this way the solution W (x, y,∆t) at time ∆t. Then we solve

(3.3) ∂tV + ∂yG(V ) = 0,

with the initial condition

V (x, y, 0) = W (x, y,∆t),

and we set

W n+1(x, y) = V (x, y,∆t).

This approximation is consistent with the initial problem (2.1) at order 1 in ∆t. It is classical
and easy to make it second order [22]. In addition, in our application, thanks to the rotationnal
invariance of the Euler equations, the equations (3.1) and (3.3) are equivalent if we simply
exchange the space variables x and y and the velocity components u and v. It is thus enough
to construct a scheme for solving the one dimensional Cauchy problem

(3.4) ∂tW + ∂xF (W ) = 0,

(3.5) W (x, 0) = W0(x).

We use a variant of the scheme developed in [13], which we recall below.
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3.2. Random choice approach. In this section we consider the numerical scheme for solving
(3.1) for (x, t) in [a, b] × R

+. We consider a sequence of time tn, n ∈ N such that the time
step τn := tn+1 − tn > 0. We consider also a space step h = (b − a)/N , where N is a positive
integer. We define the cell centers by xi = a+ (i− 1/2)h, i = 0 · · ·N + 1. The cells i = 0 and
i = N + 1 are used for applying boundary conditions. The cell Ci is the interval ]xi−1/2, xi+1/2[
where xi±1/2 = xi ± h/2. We look for an approximation of W (xi, tn)

W n
i � W (xi, tn).

Each time step of our scheme is made of two stages.

3.2.1. ALE stage. In the first stage, we allow the cell boundaries xi+1/2 to move at a velocity
ξni+1/2. This velocity will be defined below. At the end of the first stage, the cell boundary is

xn+1,−
i+1/2 = xi+1/2 + τnξ

n
i+1/2.

Integrating the conservation law (3.1) on the space time trapezoid

∪
t∈]tn,tn+1[

]xi−1/2 + (t− tn)ξ
n
i−1/2, xi+1/2 + (t− tn)ξ

n
i+1/2[×{t},

we obtain the following finite volume approximation

hn+1,−
i W n+1,−

i − hW n
i + τn(F

n
i+1/2 − F n

i−1/2) = 0.

The new size of cell i is given by

hn+1,−
i = xn+1,−

i+1/2 − xn+1,−
i-1/2 = h+ τn(ξ

n
i+1/2 − ξni−1/2).

The Arbitrary Lagrangian Eulerian (ALE) numerical flux is of the form

F n
i+1/2 = F (W n

i+1/2)− ξni+1/2W
n
i+1/2.

The intermediate state W n
i+1/2 is obtained by the resolution of a Riemann problem. More

precisely, we consider the entropy solution of

∂tV + ∂xF (V ) = 0,

V (x, 0) =

�
VL if x < 0,
VR if x > 0,

which is denoted by

R(VL, VR, x/t) = V (x, t).

The intermediate state is then

W n
i+1/2 = R(W n

i ,W
n
i+1, ξ

n
i+1/2).

In practice, R can be an exact or approximate Riemann solver. We first describe the method for
the exact Riemann solver. A more efficient approximate Riemann solver, based on a relaxation
approach, is also described below.

3.2.2. Choice of the interface velocity. Several choices are possible for the interface velocity
ξni+1/2. The standard Eulerian scheme choice is

(3.6) ξni+1/2 = 0,

and the standard Lagrangian consist to choose

(3.7) ξni+1/2 = un
i+1/2,

where un
i+1/2 is the contact discontinuity velocity in the resolution of the Riemann problem

R(W n
i ,W

n
i+1, x/t).
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A better choice is to take ξni+1/2 = un
i+1/2 only at the liquid-gas interface and ξni+1/2 = 0

elsewhere. We explain below why this choice is better. The cell interface i + 1/2 is at the
liquid-gas interface if the following condition is satisfied

(ϕi − 1/2)(ϕi+1 − 1/2) < 0,

because ϕ = 0 in the liquid and ϕ = 1 in the gas. In short

(3.8) ξni+1/2 =

�
un
i+1/2 if (ϕi − 1/2)(ϕi+1 − 1/2) < 0,

0 else.

In the sequel we will denote by the “Lagrange scheme” the scheme corresponding to choice (3.7)
and by the “ALE scheme” the scheme corresponding to choice (3.8).

3.2.3. Projection stage. The second stage of the time step is needed for returning to the initial
mesh. We have to average on the cells Ci the solution W n+1,−

i , which is naturally defined on
the moved cells Cn+1,−

i =]xn+1,−
i−1/2 , x

n+1,−
i+1/2 [. The averaging is different if the cell touches the liquid

gas interface or not. More precisely, if the cell is not at the interface, i.e. if

(ϕi − 1/2)(ϕi+1 − 1/2) > 0 and (ϕi−1-1/2)(ϕi-1/2)>0,

then we perform the standard averaging

W n+1
i = W n+1,−

i −
τn
h
(max(ξn

i− 1

2

, 0)(W n+1,−
i −W n+1,−

i−1 )(3.9)

+ min(ξn
i+ 1

2

, 0)(W n+1,−
i+1 −W n+1,−

i )).

Remark: if the interface velocity ξni±1/2 = 0, we simply obtain

W n+1
i = W n+1,−

i .

On the other hand, if the cell touches the interface

(ϕi − 1/2)(ϕi+1 − 1/2) < 0 or (ϕi−1-1/2)(ϕi-1/2)<0,

we consider a pseudo random sequence ωn ∈ [0, 1[ and we perform a pseudo-random averaging

(3.10) W n+1
i =





W n+1,−
i−1 , if ωn <

ξn
i−1/2

τn

h
,

W n+1,−
i , if

ξn
i−1/2

τn

h
≤ ωn ≤ 1 +

ξn
i−1/2

τn

h
,

W n+1,−
i+1 , if ωn > 1 +

ξn
i−1/2

τn

h
.

A good choice for the pseudo-random sequence ωn is the (k1, k2) van der Corput sequence,
computed by the following C algorithm

float corput(int n,int k1,int k2){

float corput=0;

float s=1;

while(n>0){

s/=k1;

corput+=(k2*n%k1)%k1*s;

n/=k1;

}

return corput;

}

In this algorithm, k1 and k2 are two relatively prime numbers and k1 > k2 > 0. For more
details, we refer to [23]. In practice, we consider the (5, 3) van der Corput sequence.

Remark: it is not possible to perform the random averaging in all the cells, because the
resulting scheme is generally not BV stable (see [13] and also a numercial example below).
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3.2.4. Relaxation solver. To simplify the presentation, in this part we first consider the Eulerian
scheme (see equation (3.6) that can be written as

(3.11) W n+1
i = W n

i −
τn
h
(F n

i+1/2 − F n
i−1/2),

where F n
i+1/2 = F (W n

i ,W
n
i+1) is the interface numerical flux. In the particular case of the

Godunov scheme (see[23]), we have

(3.12) F n
i+1/2 = F (W n

i+1/2) = F (R(W n
i ,W

n
i+1, 0)),

where R(W n
i ,W

n
i+1, x/t) = W (x, t) is the solution of the Riemann problem

∂tW + ∂xF (W ) = 0,

W (x, 0) =

�
W n

i if x < 0,
W n

i+1 if x > 0.

The exact solution could be computed (see [3]) but it requires to solve iteratively a non-linear
equation. Numerically, this computation is not efficient on GPU, because it involves many
different branch tests, which are not easy to parallelize.

It is thus indicated to replace the exact Riemann solver by an approximated one. However we
must construct it carefully. Indeed, other classical solvers, such as the Roe or VFRoe Riemann
solvers [8, 18], even with an entropy correction, lead to crashes in the numerical simulations.
The crashes occur because at the liquid-gas interface the internal energy becomes negative. It
is necessary to construct a much more robust solver. An obvious idea is then to adapt the
Harten-Lax-van Leer (HLL) scheme to our case [11]. It appears that it is not so easy because
we are considering two-fluid flows. Then we decided to use an approximate Riemann solver
based on a relaxation approach proposed by Coquel [7] and Bouchut [5]. At some points, we
have to adapt the Bouchut presentation, because we want to consider two-fluid flows.

The relaxation approach consists in solving the following extended system

∂tρ+ ∂x(ρu) = 0,(3.13)

∂t(ρu) + ∂x(ρu
2 + β) = 0,

∂t(ρv) + ∂x(ρuv) = 0,

∂t(ρE) + ∂x((ρE + β)u) = 0,

∂t(ρϕ) + ∂x(ρϕu) = 0,

∂t(
ρβ

c2
) + ∂x(

ρβu

c2
+ u) = 0,

∂t(ρc) + ∂x(ρcu) = 0,

∂t(ρs) + ∂x(ρcs) = 0,(3.14)

with

E = e+
u2 + v2

2
and where there are 8 unknowns (ρ, u, v, e, ϕ, β, c, s) for our initial system of 5 unknows (ρ, u, v, e, ϕ).
The additional unknowkn β represents a relaxed pressure, s represents a relaxed entropy and c
is a convected pressure law parameter (more precisely c/ρ is homogeneous to a sound speed).
One has to take care that in (3.13)-(3.14), ρ, e, s, β and c are understood as independent
variables. We can write the system (3.13)-(3.14) in the conservative form

∂t�W + ∂x �F (�W ) = 0,

where

�W = (ρ, ρu, ρv, ρE, ρϕ,
ρβ

c2
, ρc, ρs)T
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Figure 3.1. Structure of the approximate Riemann solver.

and

�F (�W ) = (ρu, ρu2 + β, ρuv, (ρE + β)u, ρϕu,
ρβu

c2
+ u, ρcu, ρsu)T .

We choose �W such that the first five components of �W are exactly the components of W at the
beginning of the time step. In addition, we have to set β, s and c and explain how we compute
these aditional variables from the state W. In other words, we have to duplicate some variables
computed from W at the beginning of the time step. The duplication has to be performed in
such a way that the resulting solver is consistent with the exact one and that the whole scheme
satisfies some stability properties.

Thanks to the additional relaxed variables, the eigenvalues of the new system are linearly
degenerated. Thus we can compute easily the exact solution to the relaxed Riemann problem.
It has three wave speeds σ1 = u− c

ρ
, σ2 = u, σ3 = u+ c

ρ
, with two intermediate states that we

shall index by .1 and .2 (see Figure 3.1). We notice that c1 = cL and c2 = cR. Then, according
to expression of the Riemann invariants for the first and thirth wave and the fact that u and
β are two independant Riemann invariants for the central wave, the intermediate states are
obtained by the relations

u1 = u2, β1 = β2,

vL = v1, v2 = vR,

sL = s1, s2 = sR,

ϕL = ϕ1, ϕ2 = ϕR,

(β + uc)L = (β + uc)1, (β − uc)2 = (β − uc)R,

(
1

ρ
+

β

c2
)L = (

1

ρ
+

β

c2
)1, (

1

ρ
+

β

c2
)2 = (

1

ρ
+

β

c2
)R,

(e−
β2

2c2
)L = (e−

β2

2c2
)1, (e−

β2

2c2
)2 = (e−

β2

2c2
)R.

The wave speeds are given by

σ1 = uL −
cL
ρL

, σ2 = u1 = u2, σ3 = uR +
cR
ρR

.
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Then the solution is

1

ρ1
=

1

ρL
+

cR(uR − uL) + βL − βR

cL(cL + cR)
,(3.15)

1

ρ2
=

1

ρR
+

cL(uR − uL) + βR − βL

cR(cL + cR)
,(3.16)

u1 = u2 =
βL − βR + cLuL + cRuR

cR + cL
,(3.17)

v1 = vL, v2 = vR,

β1 = β2 =
cLβR + cRβL + cLcR(uL − uR)

cL + cR
,(3.18)

e1 = eL −
β2
L − β2

1

2c2L
,

e2 = eR −
β2
R − β2

2

2c2R
,

ϕ1 = ϕL, ϕ2 = ϕR.(3.19)

Of course, we have to relate the relaxed Riemann solver to our initial set of variables. In practice,
as we already said, at the beginning of the time step, we duplicate the relaxed variables, which
amounts to set

βL = p(ρL, eL, ϕL), βR = p(ρR, eR, ϕR),(3.20)

sL = s(ρL, eL, ϕL), sR = s(ρR, eR, ϕR).(3.21)

The objective is now to define proper cL and cR and the numerical flux in such a way that
the Riemann solver satisfies good properties. We will study if our scheme is stable, it means
that under some CFL condition, we have

W n
i ∈ W for all i ⇒ W n+1

i ∈ W for all i,

where we denote by W the convex domain

W = {(ρ, ρu, ρv, ρE, ρϕ)T : ρ ≥ 0; e = E −
u2 + v2

2
≥ 0}.

In order to study the stability of the scheme we will use the right and left numerical fluxes
associated to the approximate Riemann solver of the extended system (3.13)-(3.14). These
fluxes are defined by [11]

�FL(�WL,�WR) = �F (�WL)−

0
ˆ

−∞

( �R(�WL,�WR, ω)− �WL)dω,(3.22)

�FR(�WL,�WR) = �F (�WR) +

+∞
ˆ

0

( �R(�WL,�WR, ω)− �WR)dω.(3.23)

The conservativity identity �FL(�WL,�WR) = �FR(�WL,�WR) becomes

σ1(�W1 − �WL) + σ2(�W2 − �W1) + σ3(�WR − �W2) = �F (�WR)− �F (�WL).

Conservativity thus enables to define the intermediate fluxes �F1 and �F2 by

�F1 = �F (�WL) + σ1(�W1 − �WL),

�F2 = �F (�WR)− σ3(�WR − �W2),
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which can be considered as a generalization of the Rankine-Hugoniot relations. The numerical
flux of the extended system (3.13)-(3.14) is then given by

�F (�WL,�WR) = �FL(�WL,�WR) = �FR(�WL,�WR) =





�F (�WL), if 0 ≤ σ1,
�F1, if σ1 ≤ 0 ≤ σ2,
�F2, if σ2 ≤ 0 ≤ σ3,
�F (�WR), if σ3 ≤ 0.

The computation of the intermediate fluxes �F1 and �F2 gives us

�F1 = (ρ1u1, ρ1u
2
1 + β1, ρ1u1v1, (ρ1(e1 +

u2
1 + v21
2

) + β1)u1, ρ1u1ϕ1,
ρ1β1u1

c21
+ u1, ρ1c1u1, ρ1s1u1)

T ,

= �F (�W1),

�F2 = (ρ2u2, ρ2u
2
2 + β2, ρ2u2v2, (ρ2(e2 +

u2
2 + v22
2

) + β2)u2, ρ2u2ϕ2,
ρ2β2u2

c22
+ u2, ρ2c2u2, ρ2s2u2)

T ,

= �F (�W2).

It is remarkable that the intermediate numerical fluxes, which depends in the general cases on
the left and right states, can be expressed as the flux of the corresponding intermediate state

of the relaxed system (i.e. �F (�WL,�WR) = �F (�W∗) for some �W∗ ∈ R
8).

This property is generally not true for the class of so-called “Godunov type finite volume
schemes” as defined by Harten in [11]. For this class of schemes, the numerical flux is defined
by integrating the approximate Riemann solver as in (3.22) and (3.23). And there is no reason
that the numerical flux can be expressed in the form (3.12).

The numerical flux F (WL,WR) for the original system (3.1) is obtain by keeping only the
first five components of our relaxed fluxes, we deduce

(3.24) F (WL,WR) =





F (WL), if 0 ≤ σ1,

F1, if σ1 ≤ 0 ≤ σ2,

F2, if σ2 ≤ 0 ≤ σ3,

F (WR), if σ3 ≤ 0,

where

F1 = (ρ1u1, ρ1u
2
1 + β1, ρ1u1v1, (ρ1(e1 +

u2
1 + v21
2

) + β1)u1, ρ1u1ϕ1)
T ,

F2 = (ρ2u2, ρ2u
2
2 + β2, ρ2u2v2, (ρ2(e2 +

u2
2 + v22
2

) + β2)u2, ρ2u2ϕ2)
T .

Generally β1 �= p(ρ1, e1, ϕ1) and β2 �= p(ρ2, e2, ϕ2), and it is not possible to write the F (WL,WR) =
F (W ∗) for some W ∗ ∈ R

5.
Remark: The positivity of ρ1 and ρ2 is not guaranteed from (3.15)-(3.16). This is a require-

ment that constraints cL and cR to be large enough. Another requirement is that σ1 < σ2 < σ3,
but indeed this property follows from the previous one, since one has σ2 − σ1 = cL

ρ1
and

σ3 − σ2 =
cR
ρ2
.
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Property: In the Riemann problem (3.13)-(3.14) with initially (3.20) and (3.21), if ρL > 0
and ρR > 0, we define the relaxation speeds cL and cR by

if pR − pL ≥ 0,





cL
ρL

=
�

∂p
∂ρ
(ρL, sL, ϕL) + αmax( pR−pL

ρR

�

∂p
∂ρ

(ρR,sR,ϕR)
+ uL − uR, 0),

cR
ρR

=
�

∂p
∂ρ
(ρR, sR, ϕR) + αmax(pL−pR

cL
+ uL − uR, 0),

if pR − pL ≤ 0,





cR
ρR

=
�

∂p
∂ρ
(ρR, sR, ϕR) + αmax( pL−pR

ρL

�

∂p
∂ρ

(ρL,sL,ϕL)
+ uL − uR, 0),

cL
ρL

=
�

∂p
∂ρ
(ρL, sL, ϕL) + αmax(pR−pL

cR
+ uL − uR, 0),

where α = max(γL+1
2

, γR+1
2

), s = p+π
ργ

then ∂p
∂ρ
(ρ, s, ϕ) = γ(ϕ)sργ(ϕ)−1.

If we assume that the time step τn satisfies the CFL condition
�
τn · (σ1)

n
i ≥ −h

2
,

τn · (σ2)
n
i ≤ h

2
,

∀ i(3.25)

then, the Eulerian scheme (3.11) with the interface fluxes given by (3.24) has now the following
properties

(1) it preserves the nonnegativity of ρ,
(2) it preserves the positivity of e,
(3) it satisfies discrete entropy inequalities for single fluid flows,
(4) stationnary contact discontinuities where u = 0, p = cst are exactly resolved,
(5) it handles data with vacuum.

For a proof, we refer to [5]1.
In practice, we do not exactly apply the CFL condition (3.25). We rather compute a local

time step

(3.26) τi,n =
h

2max(|(σ1)ni | , |(σ3)ni |)
,

and deduce an approximation of the stability time step

(3.27) τn = δmin
i

τi,n,

where δ is a safety factor, which satisfies 0 < δ < 1.
The lagrangian scheme (3.7) can be treated in a similar way, in this case the interface flux is

given by a formula that depends only on an intermediate state

F (WL,WR) = (0, β1, 0, u1β1, 0)
T = (0, β2, 0, u2β2, 0)

T ,

where β1 and u1 are given by the same formula (3.17)-(3.18). We can prove similarly at it was
done in [5] that under the CFL condition (3.25) the Lagrangian scheme satisfies the properties
1, 2, 4 and 5 previously given.

We are able to compute a Eulerian and a Lagrangian fluxes that have good properties. We
have thus constructed an ALE flux too.

Numerically, we have observed a excellent robustness of the Lagrange and projection scheme
with the relaxation ALE flux. We were not able to construct a test case leading to a crash of
the simulations. Of course, it is not easy to prove rigorously the stability and convergence of
the scheme, because the projection step, which mixes deterministic and random averaging, is
rather untypical.

1Actually the proof has to be adapted, because we deal with two-fluid flows, but it is very similar.
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Figure 4.1. A (virtual) GPU with 2 Compute Units and 4 Processing Elements

4. GPU and OpenCL implementation

4.1. OpenCL. For performance reasons, we decided to implement the 2D scheme on recent
multicore processor architectures, such as a Graphic Processing Unit (GPU). Many different
hardware exist, but schematically, a GPU can be considered as a device plugged into a computer,
called a host. The device is made of (see Figure 4.1)

• Global memory (typically 1 Gb2)
• Compute units (typically 27).

Each compute unit is made of:

• Processing elements (typically 8).
• Local (or cache) memory (typically 16 kb)

The same program (a kernel) can be executed on all the processing elements at the same time,
with the following rules:

• All the processing elements have access to the global memory.
• The processing elements have only access to the local memory of their compute unit.
• If several processing elements write at the same location at the same time, only one

write is succesful.
• The access to the global memory is slow while the access to the local memory is fast.

In order to operate a GPU, several tools are available. The CUDA environment, for instance,
allows to drive the NVIDIA GPUs. OpenCL is a recent set of tools, which allow to program
many kind of multicore processors, CPU or GPU. OpenCL means “Open Computing Language”.
It includes:

• A library of C functions, called from the host, in order to drive the GPU (or the multicore
CPU);

• A C-like language for writing the kernels that will be executed on the processing ele-
ments.

OpenCL is practically available since september 2009 [16]. The specification is managed by the
Khronos Group, which is also responsible of the OpenGL API design and evolutions. Virtually,

2the typical values are given for a NVIDIA GeForce GTX 280 GPU
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it allows to have as many compute units (work-groups) and processing elements (work-items)
as needed. The threads are sent to the GPU thanks to a mechanism of command queues on
the real compute units and processing elements. The main advantage of the OpenCL API is
its portability. The same program can run on a multicore CPU or a GPU. Many resources are
available on the web for learning OpenCL. For a tutorial and simple examples, see for instance
[10].

4.2. Implementation. We naturally organize the data in a (x, y) grid. In principle, the imple-
mentation is not very difficult because, thanks to the Strang splitting, the full algorithm is easy
to parallelize. For recent GPU devices the number of compute units is of the order of several
hundreds. This implies that the computations are very fast and that the time spent in the
data memory transfers becomes the limiting factor. It is thus very important to well organize
the data into memory. For instance, for computing the x-direction step (3.1), the data are
well aligned into the memory and two successive processing elements access two neighbouring
memories, which allows to achieve optimal memory bandwitdth (coalescing access). For the
y-direction step (3.3), if nothing is done, two successive processing elements access different
rows in memory, which leads to very slow memory access (typically ten times slower than the
coalescing access!). Thus between the two steps, we have to perform an optimized transposition
algorithm, described for instance in [19].

That said, the algorithm for one time step is rather simple:

• we associate a processor to each cell of the grid.
• we compute the stability time step for each cell i (see (3.26). If the local time step

is lower than the global one, then we replace the global time step. This implies, in
some cases, concurrent memory access to the global memory if two work-items modify
together the time step. From the OpenCL norm, we know that exactly one access will
be successful but we cannot know which (see Section 4.1). In order to avoid instabilities
we decrease the global time step by an adequate safety factor. This approach is very
simple but we cannot guarantee that all executions of our program on different devices
will give exactly the same results. It would be possible to implement a parallel reduction
algorithm for computing the time step [4], but it is a little bit more complicated and in
practice our approach is very satisfactory.

• we compute the fluxes balance in the x-direction for each cell of each row of the grid.
A row (or a part of the row) is associated to one compute unit and one cell to one
processor. As of october 2012, the OpenCL implementations generally imposes a limit
(typically 1024) for the number of work-items inside a work-group. This forces us to
split the rows for some large computations.

• we employ a subdomain strategy in order to retain as much data as possible into the
local cache memory of the work-group. When the rows are split, a covering of two cells
is then necessary between the subdomain for ensuring the correctness at the boundary
values. Indeed, the local cache memeory is not shared across work-groups.

• we transpose the grid (exchange x and y) with an optimized memory transfer algorithm.
• we compute the fluxes balance in the y-direction for each row of the transposed grid.

Memory access are optimal.
• we transpose again the grid.

In Table 1, we compare our OpenCL code when it is run on one core or four cores of a multicore
CPU, or on recent GPU. We observe spectacular speedups for the GPU simulations compared
to the one-core simulation. The test case corresponds to the computation of 300 time steps of
the algorithm on a 1024x512 grid.

5. Numerical results

5.1. One-dimensional results. Firstly, we present some numerical results on the one dimen-
sional Euler equations (3.1) where we do not take into account the y-velocity, it means that
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hardware time (s) speedup

AMD A8 3850 (one core) 527 1
AMD A8 3850 (4 cores) 205 2.6
NVIDIA GeForce 320M 56 9.4
AMD Radeon HD 5850 3 175
AMD Radeon HD 7970 2 263

Table 1. Simulation times on different hardware

Quantities Left Right

ρ (kg.m−3) 10 1
u (m.s−1) 50 50

p (Pa) 1.1× 105 1× 105

ϕ 1 0
γ 1.4 1.1
π 0 0

Table 2. Initial left and right states of the Riemann problem to illustrate the
non convergence of the averaging projection.

v = 0 at any time. We compare different choices of projections for the lagrangian approach (see
condition (3.7)). A classical choice is to use the averaging projection (3.9), the advantage of
this projection is to obtain a conservative scheme but the problem is that the fraction of mass
ϕ will be diffused. Indeed, the fourth equation of system (3.1) gives us the transport equation

∂tϕ+ u∂tϕ = 0,

then if at initial time we have ϕ ∈ 0, 1, theoricaly we have ϕ = 0 or ϕ = 1 at any time. With the
averaging projection this is no more the case numerically and we have then to define mixture
parameters law. In [20], it is given by

1

γ(ϕ)− 1
= ϕ

1

γ2 − 1
+ (1− ϕ)

1

γ1 − 1
,

γ(ϕ)π(ϕ)

γ(ϕ)− 1
= ϕ

γ2π2

γ2 − 1
+ (1− ϕ)

γ1π1

γ1 − 1
,

where (γ1, π1) and (γ2, π2) correspond respectively to the pure liquid phase ϕ = 0 and the
pure gas phase ϕ = 1 at the initial time. The resulting scheme has a very poor precision: for
instance, if we consider the Riemann problem where the interface between the two fluids is
located at time t0 = 0 s at position x = 1 m with the left and right states recorded in Table 2,
we observe pressure oscillations for the numerical solution (see figure 5.1).

Another approach is to consider the Glimm projection (3.10) in every cell. The resulting
scheme is not conservative and in some case it does not converge. For instance, if we consider
the Riemann problem where the interface between the two fluids is located at time t0 = 0 s at
position x = 0 m. Left and right initial states are given in Table 3. A typical plot is given in
Figure 5.2, where we compare the exact and the approximated densities at time t = 0.5 s.

We also provide in Figure 5.3 a comparison of the two lagrangian schemes (mixed and averag-
ing projection schemes) and the ALE scheme for the densities for a uniform mesh of 500 points.
It is interesting to observe that the interface position is very well resolved (in only one mesh
point) by the mixed projection scheme and the ALE scheme and that this good resolution of
the contact wave also implies an improvement of the precision in the left rarefaction wave. The
graph obtained with the mixed projection and with the ALE scheme seems to be superposed.
In order to determine the less diffusive scheme we perform a convergence study. In Figure 5.4,
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Figure 5.1. Oscillations on the pressure with the averaging projection for initial
parameters recorded in Table 2.

Quantities Left Right

ρ (kg.m−3) 3.488 1
u (m.s−1) 1.13 −1

p (Pa) 23.33 2
ϕ 1 0
γ 2 1.4
π 7 0

Table 3. Initial left and right states of the Riemann problem to illustrate the
non convergence of the Glimm projection.

Figure 5.2. Non convergence of the Glimm projection for initial parameters
recorded in Table 3.
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Figure 5.3. Comparison of the mixed and averaging projection schemes for
initial parameters recorded in Table 3.

Figure 5.4. Convergence study in L1 norm for initial parameters recorded in
Table 3.

we compare the convergence in L1 norm of the different schemes: the ALE scheme is a little
bit less diffuse that the mixed projection scheme.

The convergence rate for the averaging projection is approximately 0.5, while it is 0.8 for the
mixed projection and the ALE scheme.
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t = 0 s. t = 0.0067 s.

Figure 5.5. Inital place of the bubble on top left, final place of the bubble on
the top right and zoom on the bubble interface on the bottom.

5.2. Pure convection. Now, we consider two-dimensional numerical tests for which we use
the Strang dimensional splitting approach. The first test is to consider the convection of a
spherical bubble of gas in a liquid phase. At time t = 0 the bubble is in the left top corner (see
Figure 5.5).

The initial parameters are presented in Table 4, the bubble moves to the bottom right corner.
The results was performed with the ALE scheme and a uniform mesh of 512 × 512 points on
the domain [0, 1] × [0, 1]. On this test case without pressure waves, the results are the same
with the mixed projection scheme. The radius of the bubble is 0.1 m and the final time of
computation is tfinal = 0.0067 s. For the boundary conditions, we impose the initial data at
every time. As our algorithms do not diffuse the fraction of mass of gas ϕ, in fact ϕ = 1 in the
bubble and ϕ = 0 outside the bubble at every time, we choose to plot ϕ to localize the bubble
interface. We see in Figure 5.5 that the bubble moves correctly, the bubble at the final time
is superimposed with the exact solution, which is plot in yellow dotted line. The last picture
of the Figure 5.5 shows that the iterface bubble is not smooth. This lack of smoothness is of
course due to the pseudo-random nature of the Glimm projection.

5.3. Test of Zalesak. Now, we consider another classical two dimensional numerical test.
Firstly, we want to test dimensional splitting coupled with the Glimm projection. It is the test
proposed by Zalesak [24] and consists of a computing the rotation of a complex solid shape. In
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Quantities Inside the bubble Outside the bubble

ρ (kg.m−3) 1.225 1000
u (m.s−1) 100 100
v (m.s−1) −75 −75
p (Pa) 1.01325× 105 1.01325× 105

ϕ 1 0
γ 1.4 3
π 0 7.499× 108

Table 4. Inital datas for the test of a convected bubble.

fact, we just solve the equation

(5.1) ∂tρ+ ∂x(ρu) + ∂y(ρv) = 0,

where u = −Ω(y−y0) and v = Ω(x−x0). Here Ω is the constant angular velocity in rad/s and
(x0, y0) is the axis of rotation. In order to solve this equation we use the dimentional splitting,
then we just precise the numerical scheme used to solve

∂tρ+ ∂x(ρu).

In fact, we use the ALE numerical scheme

hn+1,−
i ρn+1,−

i = hiρ
n
i −∆t(((ρu)i+1/2 − ζi+1/2ρi+1/2)− ((ρu)i−1/2 − ζi−1/2ρi−1/2)),

where ui+1/2 = (−Ω(y − y0))i+1/2 = −Ω(y − y0) does not depend on i (it just depends on y)
and

ρi+1/2 =

�
ρi, if ui+1/2 < 0,

ρi+1, if ui+1/2 ≥ 0.

The domain is [0, 1] × [0, 1] and the solid considered is a cylinder of radius 0.15m, through
which a slot has been cut of witdth 0.05m. We assume that the density inside the cuted cylinder
is ρ = 3 and outside we have ρ = 1. The rotational speed is chosen such that after 628 s the
cylinder will effect one complete revolution about the central point, i.e. Ω = 2π

628
rad.s−1. The

results was performed with the ALE scheme and a uniform mesh of 1000 × 1000 points, the
results were the same with the mixed projection scheme. The time step is chosen such that the
quantity hn+1,−

i stay positive, we choose

∆t ≤
1

2

∆x

max
i

�
u2
i + v2i

.

Remark: As we just consider the equation (5.1), the system is hyperbolic with only one wave
speed σ = u then the CFL condition is less restrictive than for system (2.1).

In Figure 5.6, we compare the shape of the cuted cylinder after different time. Features to
be compared are the filling-in of the gap, erosion of the “bridge,” and the relative sharpness
of the profiles decking the front surface of the cylinder. Even after 10 revolutions, the global
aspect of the solid is preserved. The length of the “bridge” seems to be the same on the top
and the bottom. The interface is not so badly solved, considering the simplicity of the Glimm
approach, even if after 2 revolutions we observe that there are some part of the solid in the
bridge.

5.4. Shock-droplet interaction. We now present a two-dimensional test that consists in
simulating the impact of a Mach 1.22 shock travelling though air onto a cylinder of R22 gas.
The shock speed is σ = 415m.s−1. This test aims at simulating the experiment of [12] and has
been considered by several authors such as [17, 21, 15]. The initial conditions are depicted in
Figure 5.7: a cylinder of R22 is surrounded by air within a Lx × Ly rectangular domain. At
t = 0, the cylinder is at rest and its center is located at (X1, Y1). We denote by r the initial
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t = 0 s. t = 314 s.(1
2

revolution)

t = 628 s.(1 revolution) t = 1256 s.(2 revolutions)

t = 3140 s.(5 revolutions) t = 6280 s.(10 revolutions)
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Figure 5.7. Air-R22 shock/cylinder interaction test. Description of the initial conditions.

Quantities Air (post-shock) Air (pre-shock) R22

ρ (kg.m−3) 1.686 1.225 3.863
u (m.s−1) −113.5 0 0
v (m.s−1) 0 0 0
p (Pa) 1.59× 105 1.01325× 105 1.01325× 105

ϕ 0 0 1
γ 1.4 1.4 1.249
π 0 0 0

Table 5. Air-R22 shock/cylinder interaction test. Initial data.

radius of the cylinder. The planar shock is initially located at x = Ls and moves from right to
left towards the cylinder. The parameters for this test are

Lx = 445 mm, Ly = 89 mm, Ls = 275 mm, X1 = 225 mm, Y1 = 44.5 mm, r = 25 mm.

Both R22 and air are modelled by two perfect gases whose coefficients γ and initial states are
given in Table 5.

The domain is discretized with a 5000 × 1000 regular mesh. Top and bottom boundary
conditions are set to solid walls while we use constant state boundary conditions for the left
and right boundaries.

The shock reaches the R22 bulk after approximatively 60 µs. In the following we shall
consider this time as the time origin t = 0. Figure 5.8 and Figure 5.9 display the evolution of
the cylinder shape obtained with the ALE scheme and the experience of Hass and Sturtevant
[12]. We can also compare our results to the computations of Kokh and Lagoutiere [15] because
we consider the same test-case with the same initial datas. The profiles are obtained thank to
the fraction of mass of gas ϕ: our scheme preserved ϕ = 1 in the gas and ϕ = 0 in the liquid.
The overall location of the bulk is quite similar to the experimental results. The shape of the
two vortices is not exactly the same on the top and the bottom, it comes from the random part
of the Glimm projection. In fact, the Glimm projection in the y-direction use the velocity v
and this velocity field is symetric with respect to the axis (O, x) where O is the center of the
domain.

5.5. Shock-bubble. We perform another shock/interface interaction test proposed in [20, 15]
that involves a gas bubble surrounded by a liquid. The geometry of the initial condition is
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t = 55µs.

t = 115µs.

t = 135µs.

t = 187µs.

t = 247µs.

Figure 5.8. Air-R22 shock cylinder interaction test. Pressure fied and interface
on the left; experience of Hass and Sturtevant [12] on the right.

depicted in Figure 5.7 with the following parameters values:

Lx = 2 m, Ly = 1 m, Ls = 0.04 m, X1 = 0.5 m, Y1 = 0.5 m, r = 0.4 m.

The gas within the bubble is governed by a perfect gas law while the liquid is modelled with
the stiffened gas law. The EOS parameters and initial states are given in Table 6.

The computation domain is discretized with a 3000×1000 grid and we use solid wall boundary
conditions for the top and bottom boundaries, while we impose constant states at the left and
right boundaries. The speed of the shock is σ = 10008m.s−1.

Figure 5.11 and 5.12 display the mapping of respectively the density and the pressure at
several instants. For the graph of pressure, as the maximum pressure increase with the time,
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t = 318µs.

t = 342µs.

t = 417µs.

t = 1020µs.

Figure 5.9. Air-R22 shock cylinder interaction test. Pressure fied and interface
on the left; experience of Hass and Sturtevant [12] on the right.

Quantities Liquid (post-shock) Liquid (pre-shock) Gas

ρ (kg.m−3) 1030.9 1000.0 1.0
u (m.s−1) 300.0 0 0
v (m.s−1) 0 0 0
p (Pa) 3× 109 105 105

ϕ 0 0 1
γ 4.4 4.4 1.4
π 6.8× 108 6.8× 108 0

Table 6. Liquid-gas/bubble interaction test. Initial data.

we can not use the same scale to plot all the graph: the first two graph are plot with different
scales from the last two. As the difference of density inside and outside the bubble is huge,
we can not see the shock position, but we can easily see the interface bubble by observing the
density field. One can clearly see the important variation of the interface topology and more
specially the creation of two symetrical vortices on each side of the axis (O, x) where O is the
center the domain.
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Figure 5.10. Liquid-gas shock/bubble interaction test. Description of the initial conditions.

t = 225µs. t = 225µs.

t = 375µs. t = 375µs.

Figure 5.11. Liquid-gas/bubble interaction test. Density on the left and pres-
sure fied on the right.

Remark: At some times, we obtain negative pressures in the liquid. This is not a problem
because the internal energy e = p+γπ

ρ
stays positive, indeed as p � −6 × 106Pa, γliquid = 4.4,

πliquid = 6.8× 108 and ρ > 0 we obtain e > 0.

6. Conclusion

We have proposed a new method for computing 2D compressible flows with interface. Our
approach is based on a robust relaxation Riemann solver, coupled with a very simple random
choice sampling projection at the interface. The properties of the resulting scheme are very
interesting :

• it preserves constant velocity and pressure states;
• the mass fraction is not diffused at all;
• it allows vacuum.

In addition, the algorithm is easy to paralelize on recent multicore architectures. We have
implemented the scheme in the OpenCL environment. The efficiency is spectacular: compared
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t = 450µs. t = 450µs.

t = 600µs. t = 600µs.

Figure 5.12. Liquid-gas/bubble interaction test. Density on the left and pres-
sure fied on the right.

to a standard CPU implementation, we observed that the GPU computations are more than
hundred times faster.
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