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A NONLINEAR LANDAU-ZENER FORMULA

RÉMI CARLES AND CLOTILDE FERMANIAN-KAMMERER

Abstract. We consider a system of two coupled ordinary differential equa-
tions which appears as an envelope equation in Bose–Einstein Condensation.
This system can be viewed as a nonlinear extension of the celebrated model
introduced by Landau and Zener. We show how the nonlinear system may
appear from different physical models. We focus our attention on the large
time behavior of the solution. We show the existence of a nonlinear scatter-
ing operator, which is reminiscent of long range scattering for the nonlinear
Schrödinger equation, and which can be compared with its linear counterpart.

1. Introduction

1.1. Physical motivation. In the 30’s (see [19] and [24]), Landau and Zener have
studied independently the system

(1.1) − i∂su = V (s, z)u ;u(0) = u0,

where u = t(u1, u2) ∈ C2, and the potential V is given by

V (s, z) =

(
s z
z −s

)
.

This system is the prototype of eigenvalue crossings: the eigenvalues of the matrix
V (s, z) are

√
s2 + z2 and −

√
s2 + z2 and they cross when s = 0 and z = 0. More

recently, a nonlinear version of this system has been introduced in [3], of the form

(1.2) i
∂

∂t

(
u1
u2

)
= H(γ)

(
u1
u2

)
,

with the Hamiltonian given by

(1.3) H(γ) =

(
γ(t) + δ

(
|u2|2 − |u1|2

)
z

z −γ(t)− δ
(
|u2|2 − |u1|2

)
)
,

where γ(t) = αt denotes the level separation, z is the coupling constant between
the two levels, and δ is a nonlinear parameter describing the interaction. This
nonlinear two-level model can be used to understand Landau-Zener tunneling of
a Bose-Einstein condensate between Bloch bands in an optical lattice: this has
been achieved in e.g. [7]. In Section 2, we present a derivation of this model from
the nonlinear Schrödinger equation in a rotating frame and a periodic potential.
Physical properties of the above system have been investigated in e.g. [16, 18, 17,
20]. We also show how this model can arise under the influence of a double-well
potential, as in [17] (see Section 2 for a rapid presentation, and the appendix for a
rigorous proof). The goal of this paper is to recast this model in a mathematical
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SchEq (ANR-12-JS01-0005-01).
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2 R. CARLES AND C. FERMANIAN

background, and to study some of its properties, in particular as far as the large
time regime is concerned.

1.2. Mathematical setting. In the linear case (1.1), classification of crossings, as
performed in [5] and [6] in the one hand, and [11] on the other hand, produces the
model problem

(1.4) − i∂su =

(
s G
G∗ −s

)
u; u(0) = u0 ∈ H2,

where H is a Hilbert space and G an operator on H. Equation (1.2) corresponds
to H = C and G = z ∈ R, as in [19] and [24] (see also [11] and [5]). Other choices
of the pair (H, G) are relevant:

(1) In [6] and [14], G = z1 + iz2 and H = C.
(2) In [6] and [9], G = ∂z − z and H = L2(R).
(3) In [14], [13] and [8], G = q(z) is a quaternion, z ∈ R4 and H = C2.
(4) In [8] and [11], G is a semiclassical pseudodifferential operator on the space

H = L2(Rk), k ∈ N∗.

For this reason, we will focus on the following abstract problem

(1.5) − i∂su =

(
s G
G∗ −s

)
u+ δF (u)u; u(0) = u0 ∈ H2,

which is the nonlinear counterpart of (1.4). The nonlinearity F : C2 → R2×2 is of
the form

F (u) = diag(F1(u), F2(u))

where the functions F1, F2 are gauge invariant, and more precisely,

(1.6) Fj(u) = fj(‖u1‖2H, ‖u2‖2H),

with fj ∈ C2(R2;R) and ∇2fj bounded. In particular, the system (1.2)–(1.3) enters
into this framework. By the change of variable s = t

√
α, we are left with (1.5) with

G = z/
√
α and Fj(u) = (−1)jδα−1/2(|u2|2 − |u1|2) for j ∈ {1, 2}.

We make the following assumption on the operator G:

(1.7) χ(GG∗)G = Gχ(G∗G) and χ(G∗G)G∗ = G∗χ(GG∗).

This assumption is satisfied in the first three examples above. The situation is more
complicated in the fourth one.

We also assume that the domains of GG∗ and of G∗G – D(GG∗) and D(G∗G)
– are dense subsets of H. Note that the domain of the evolution operators eiτGG

∗

and eiτG
∗G are well-defined for any τ ∈ R with domain H.

Lemma 1.1. Let u0 ∈ H2. Under the above assumptions, (1.5) has a unique, global

solution u ∈ C(R;H2). It satisfies the following conservation law

d

ds

(
‖u1(s)‖2H + ‖u2(s)‖2H

)
= 0.

Proof. Denote by U(s2, s1) the linear operator which maps ulin(s1) to ulin(s2),
where ulin solves the linear equation

−i∂sulin =

(
s G
G∗ −s

)
ulin.
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It satisfies U(s, s) = Id, U(s, τ)U(τ, σ) = U(s, σ), and is unitary on H2. By
Duhamel’s principle, (1.5) becomes

u(s) = U(s, 0)u0 + iδ

∫ s

0

U(s, σ) (F (u)u) (σ)dσ.

Local existence follows by a standard fixed point argument (Cauchy-Lipschitz),
with a local existence time which depends only on ‖u0‖H×H. We then note the
conservation law announced in the lemma, which follows from the fact that the
functions Fj are real-valued. This implies global existence, and the lemma. �

We normalize the data so that

(1.8) ‖u1(s)‖2H + ‖u2(s)‖2H = 1, ∀s ∈ R.

In this article, we prove a scattering result for initial data which are in the
range of 1V (0)26R for some R > 0. More precisely, we introduce a cut-off operator
depending on G: let θ be a smooth cut-off function , θ ∈ C∞

0 (R) with 0 6 θ 6 1,
θ(u) = 0 for |u| > 1 and θ(u) = 1 for |u| < 1/2. Then, for R > 0 we set

ΘR = diag

(
θ

(
GG∗

R2

)
, θ

(
G∗G

R2

))
.

Because of (1.7), the operator ΘR commutes with V (s) for all s ∈ R and ΘRV (s) is

a bounded operator on H×H with norm
√
s2 +R2. Besides, a simple computation

shows that uR(s) = ΘRu(s) satisfies 1
i ∂suR = V (s)uR + F (u)uR with uR(0) =

ΘRu0 = u0. Therefore, we have the following result.

Lemma 1.2. Suppose u0 = ΘRu0 for some R > 0, then for all s ∈ R, the solution

of (1.5) satisfies u(s) = ΘRu(s).

Typically, in the physical examples presented in Section 2, the assumption u0 =
ΘRu0 consists in saying that some physical parameter (whose value is fixed in
practise) belongs to a bounded set.

1.3. Scattering. We introduce the phase function ϕ given by

ϕ(s, λ) =
s2

2
+
λ

2
ln|s|.

We can describe the large time asymptotics of u.

Theorem 1.3. Assume that u0 = ΘRu0 for some R > 0. Then, there exist α =
(α1, α2) ∈ H2, ω = (ω1, ω2) ∈ H2, such that:

1. As s goes to −∞,

u1(s) = eiδF1(α)s+iϕ(s,GG
∗)α1 +O

(
R2s−1

)
,

u2(s) = eiδF2(α)s−iϕ(s,G∗G)α2 +O
(
R2s−1

)
.

2. As s goes to +∞,

u1(s) = eiδF1(ω)s+iϕ(s,GG
∗)ω1 +O

(
R2s−1

)
,

u2(s) = eiδF2(ω)s−iϕ(s,G∗G)ω2 +O
(
R2s−1

)
.
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The above result is reminiscent of long range scattering in nonlinear Schrödinger
equations, as described first in [21]: nonlinear effects are present both in the fact
that the amplitude of the functions uj undergoes a nonlinear influence (this is what
happens in nonlinear scattering in general), and in the fact that oscillations are
different from those of the linear case (a typical feature of long range scattering),
since the linear phase ϕ is not enough to describe large time oscillations. An
important difference though is that (1.5) is not a dispersive equation, as can be
seen from (1.8).

Remark 1.4. When δ = 0 and G is scalar (G = z), this result goes back to the 30’s
with the proofs of Landau and Zener [19] and [24]. The original proof is based on
the use of special functions; more recently, the proof of [10] relies on the analysis
of oscillatory integrals. When G is operator-valued, the theorem is proved in the
linear case (δ = 0) in [12, Proposition 7]. We point out that there is a slight
difference with the present framework, due to nonlinear effects. In the linear case,
one associates with u0 scattering states such that the asymptotics hold true for
ΘRu(s). Here, the scattering states depend on R in a non trivial way.

Conversely, wave operators are well-defined, as stated in the following result.

Proposition 1.5. Let α = (α1, α2) ∈ H2 such that α = ΘRα for some R > 0.
There exists C > 0, such that for all ε > 0, there exists a solution uε ∈ C(R;H2)
to (1.5) with

lim sup
s→−∞

∥∥∥uε1(s)− eiδF1(α)s+iϕ(s,GG
∗)α1

∥∥∥
H
+
∥∥∥uε2(s)− eiδF2(α)s−iϕ(s,G∗G)α2

∥∥∥
H

6 C ε.

Remark 1.6. A similar result holds in +∞.

Therefore, there exists K ⊂ H a dense subset of H and an operator Sδ with
domain K which is a nonlinear scattering operator mapping the scattering state
at −∞, α ∈ K, to its counterpart ω at +∞ given by Theorem 1.3: the scattering
operator is defined by ω = Sδα.

Besides, if the unit ball of H is a finite dimension vector space (typically, H = C

in the case of (1.2)), one can extract from uε a converging sequence with limit u
which solves (1.5) and admits the scattering state (α1, α2), and the operator Sδ is
defined on H (K = H).

Our final result concerning the large time behavior of solutions to (1.5) consists
in describing the effect of the nonlinearity in Sδ by comparing this operator with
its linear counterpart. We denote by ulin the solution of (1.4), and we associate
with u0 the linear scattering states

αlin =
(
αlin
1 , αlin

2

)
and ωlin =

(
ωlin
1 , ωlin

2

)
.

According to Proposition 7 in [12], the linear scattering operator is given by

(1.9) Slin =

(
a(GG∗) −b(GG∗)G
b(G∗G)G∗ a(G∗G)

)
,

with

a(λ) = e−π
λ
2 , b(λ) =

2iei
π
4

λ
√
π
2−iλ/2e−π

λ
4 Γ

(
1 + i

λ

2

)
sinh

(
πλ

2

)
,

and a(λ)2 + λ|b(λ)|2 = 1.
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When G = z, the coefficient

(1.10) T (z) = a(z2)2 = e−πz
2

is the celebrated Landau-Zener transition coefficient which describes the ratio |ωlin
1 |2/|αlin

1 |2
of the energy which remains on the first component (when αlin

2 = 0). As we shall
see in the next result, the Landau-Zener transition probability remains relevant in
the nonlinear regime and for small δ. Let us define, for j = 1, 2,

Λ+
j =

∫ +∞

0

(
Fj
(
ulin(τ)

)
− Fj

(
ωlin

))
dτ,(1.11)

Λ−
j =

∫ −∞

0

(
Fj
(
ulin(τ)

)
− Fj

(
αlin

))
dτ,(1.12)

and Λ± = diag(Λ±
1 ,Λ

±
2 ).

Theorem 1.7. Let δ > 0. The nonlinear scattering operator Sδ and the linear

scattering operator Slin are related by the formula

Sδ(α) = eiδΛ
+(α)Slin

(
e−iδΛ

−(α)α
)
.

In addition, we have the following asymptotic behavior as δ → 0. There exists a

constant C > 0 such that for all R > 0 and initial data u0 with ΘRu0 = u0, we
have ∥∥Sδ − Slin − iδ

(
Λ+Slin − SlinΛ−)∥∥

L(H×H)
6 C R δ2.

As expected, as δ → 0, Sδ behaves at leading order like the linear scattering
operator. Nonlinear effects show up in the O(δ) corrector (the nonlinearity is
present in the definition of Λ− and Λ+), and are described rather explicitly in
terms of linear scattering and of the nonlinearity F . We note also that if Λ+

1 6= Λ+
2

(F1 6= F2), then S
lin and Λ+ do not commute.

This paper is organized as follows. In Section 2, we sketch the derivation of mod-
els of the form (1.5) from cubic nonlinear Schrödinger equations used to describe
Bose–Einstein Condensation. In Section 3, we set up some technical tools needed
for the large time study of (1.5), and we prove Lemma 1.2. Theorem 1.3 is proved
in Section 4, Proposition 1.5 in Section 5, and Theorem 1.7 in Section 6. Finally,
in Appendix A, we go back to the derivation of (1.5) from physical models, and
establish rigorously that (1.5) can be interpreted as an envelope equation in the
semi-classical limit.

2. Formal derivation of the model

We rapidly describe some cases where (1.5) appears as an approximation to
describe the motion of a Bose–Einstein condensate.

2.1. Condensate in an accelerated optical lattice. As proposed in [3], and
considered in e.g. [16], the motion of a Bose–Einstein condensate in an acceler-
ated 1D optical lattice is described by the equation

i~
∂ψ

∂t
=

1

2m

(
−i~ ∂

∂x
− ωt

)2

ψ + V0 cos (2kLx)ψ +
4π~2as
m

|ψ|2ψ,
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wherem is the atomic mass, kL is the optical lattice wave number, V0 is the strength
of the periodic potential depth, ω is the inertial force, and as is the scattering length.
The adimensionalized form of this equation reads

(2.1) i
∂ψ

∂t
=

1

2

(
−i ∂
∂x

− αt

)2

ψ + v cos(x)ψ + ǫ|ψ|2ψ,

with ǫ = −1 or +1 according to the chemical element considered. The approach
in [3] consists in injecting the ansatz

(2.2) ψ(t, x) = a(t)eikx + b(t)ei(k−1)x

into (2.1), with k = kL = 1/2, corresponding to the Brillouin zone edge (this
approximation amounts to considering that only the ground state and the first
excited state are populated, see [16]). We compute

i∂tψ = iȧeikx + iḃei(k−1)x,

(−i∂x − αt)2 ψ = (k − αt)2 aeikx + (k − 1− αt)2 bei(k−1)x,

cos(x)ψ =
1

2

(
aei(k+1)x + beikx + aei(k−1)x + bei(k−2)x

)
,

|ψ|2ψ =
(
|a|2 + |b|2

)(
aeikx + bei(k−1)x

)
+ |a|2bei(k−1)x + a|b|2eikx

+ a2bei(k+1)x + ab2ei(k−2)x.

Leaving out the new harmonics (the last two exponentials) generated both by band
interaction and nonlinear effects, and identifying the coefficients of eikx and ei(k−1)x,
we come up with:





i∂ta =
1

2
(k − αt)

2
a+

v

2
b+ ǫ

(
|a|2 + 2|b|2

)
a,

i∂tb =
1

2
(k − 1− αt)

2
b+

v

2
a+ ǫ

(
2|a|2 + |b|2

)
b.

We notice the identity ∂t
(
|a|2 + |b|2

)
= 0, so we can write |a|2 + |b|2 = m2

0 > 0
(in [3], m0 = 1). Now recalling the numerical value k = 1/2 and expanding the
squares, we have






i∂ta =
1

8
a− αt

2
a+

(αt)2

2
a+

v

2
b+ ǫ

(
m2

0 + |b|2
)
a,

i∂tb =
1

8
b+

αt

2
b+

(αt)2

2
b+

v

2
a+ ǫ

(
m2

0 + |a|2
)
b.

The above system becomes

i∂t

(
a
b

)
=

(
E0 +

(αt)2

2

)(
a
b

)
+

1

2

(
−αt v
v αt

)(
a
b

)
+
ǫ

2
Diag

(
|b|2, |a|2

)(a
b

)
,

with

E0 =
1

8
+m2

0ǫ.

Using finally the gauge transform
(
u1
u2

)
= e−iE0t−iα2t3/6

(
a
b

)
,
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we end up with

i∂t

(
u1
u2

)
=

1

2

(
−αt v
v αt

)(
u1
u2

)
+
ǫ

2
Diag(|u2|2, |u1|2)

(
u1
u2

)
,

which is of the form (1.2)–(1.3) or (1.5) via the change of variable s = t
√

α
2 ; we

then have G = (2α)−1/2v and F (u) = ε(2α)−1/2Diag(|u2|2, |u1|2). Note that the
only approximation that we have made in this computation consists in neglecting
the other harmonics than e±ix/2, and no linearization was performed, unlike in the
computations of [3].

Theorem 1.3 gives an asymptotic for the profiles a and b of the ansatz (2.2) as t
goes to ±∞. Theorem 1.7 gives an information on the profiles (a+, b+) for t ∼ +∞
in terms of (a−, b−), those for t ∼ −∞. For example if for t ∼ −∞, we have
(a−, b−) = (a, 0), then the profiles for t ∼ +∞ are related via the Landau-Zener
transition coefficient (1.10) for z = (2α)−1/2v: at leading order in δ, they satisfy

|a+|2 = e−π
v2

2α |a|2 and |b+|2 =
(
1− e−π

v2

2α

)
|a|2.

2.2. Condensate in a double-well potential. As suggested in [3], and further
developed in [17], nonlinear Landau–Zener tunneling may be realized in a double-
well potential. Consider

(2.3) i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
=W (t, x)ψ + ǫ|ψ|2ψ.

The potential W is of the form

(2.4) W (t, x) = Vs(x) + κtVa(x),

where Vs is symmetric and Va is antisymmetric. In [17], we find the explicit ex-
pression

(2.5) Vs(x) =
V0

cosh (βx)
, Va(x) =

V0 sinh (βx)

cosh2 (βx)
, β > 0.

Note that Vs is a double-well potential. The main point to be aware of is that the
lowest two eigenvalues λ+ < λ− of the Hamiltonian − 1

2∂
2
x+Vs are non-degenerate,

with associated eigenfunctions ϕ± (see Appendix A for details). The two exponen-
tial functions e±ix/2 of the above model are then replaced by the so-called single-well
states

(2.6) ϕL =
1√
2
(ϕ+ − ϕ−) , ϕR =

1√
2
(ϕ+ + ϕ−) .

We note that this approach can be generalized to a multidimensional framework, in
the spirit of [23] (see Appendix A). We sketch the computation in the simplest 1D
case though, to emphasize the differences with the optical lattice case. We shall
use mostly two properties of ϕL and ϕR, described more precisely in Appendix A:

• ϕR(−x) = ϕL(x).
• The product ϕLϕR is negligible, because ϕL and ϕR are localized at the
two distinct minima of Vs.

Seek ψ of the form
ψ(t, x) = aL(t)ϕL(x) + aR(t)ϕR(x).

Denoting

Ω =
λ− + λ+

2
, ω =

λ− − λ+
2

,
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we compute:

i∂tψ = iȧLϕL + iȧRϕR,

−1

2
∂2xψ + Vsψ = aL (ΩϕL − ωϕR) + aR (ΩϕR − ωϕL)

= (ΩaL − ωaR)ϕL + (ΩR − ωaL)ϕR,

Vaψ = aLVaϕL + aRVaϕR,

|ψ|2ψ =
(
|aL|2|ϕL|2 + |aR|2|ϕR|2 + 2Re (aLaRϕLϕR)

)
(aLϕL + aRϕR) .

By integrating in space and neglecting the product ϕLϕR, we get:
{
i∂taL = ΩaL − ωaR + κtγLaL + ǫL|aL|2aL,
i∂taR = ΩaR − ωaL + κtγRaR + ǫR|aR|2aR,

with

γL =

∫

R

Vaϕ
2
L, ǫL = ǫ

∫

R

ϕ4
L, γR =

∫

R

Vaϕ
2
R, ǫR = ǫ

∫

R

ϕ4
R.

By symmetry, γL = −γR, ǫL = ǫR =: δ, so if we set α = κγL, we come up with:
{
i∂taL = ΩaL − ωaR + αtaL + δ|aL|2aL,
i∂taR = ΩaR − ωaL − αtaR + δ|aR|2aR.

Using the gauge transform (
u1
u2

)
=

(
aLe

iΩt

aRe
iΩt

)
,

we find:

i∂t

(
u1
u2

)
=

(
αt −ω
−ω −αt

)(
u1
u2

)
+ δ

(
|u1|2 0
0 |u2|2

)(
u1
u2

)
,

which is of the form (1.5) via the change of variables s =
√
αt with Fj(u) =

α−1/2|uj |2 and G = −ωα−1/2. Therefore, Theorems 1.3 and 1.7 yield similar

results than in the preceding subsection with a Landau-Zener coefficient e−π
ω2

α .

3. Technical preliminaries

In this paragraph, we introduce several operators related with G that will be
useful in the following. We set

(3.1) J :=

(
1 0
0 −1

)
and K := V (0) =

(
0 G
G∗ 0

)
,

so that V (s) writes
V (s) = sJ +K.

We observe that
V (s)2 = Λ(s)2,

where Λ(s) is the diagonal operator

Λ(s) = diag
(√

s2 +GG∗,
√
s2 +G∗G

)
.

For this reason, Λ(s) appears like a diagonalisation of V (s), all the more that if we
set

Π±(s) =
1

2

(
Id± Λ(s)−1V (s)

)
,

then we have the following properties.
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(1) Π±(s)V (s) = V (s)Π±(s) = ±Λ(s)Π±(s) = ±Π±(s)Λ(s).
(2) Π+(s) + Π−(s) = Id.
(3) (Π±(s))∗ = Π±(s).
(4) Π±(s)Π∓(s) = 0 and (Π±(s))2 = Π±(s).

The properties (2)–(4) show that Π±(s) are orthogonal projectors, and the prop-
erty (1) will play the role of a diagonalisation of the operator V (s). The fact that
Π±(s) and V (s) commute with Λ(s) is more general. In fact, V (s) and Π±(s) are in
the subset A of L(H2) defined by: A ∈ A if and only if there exist smooth functions
a, b, c and d such that A = A(a, b, c, d) with

(3.2) A(a, b, c, d) =

(
a(GG∗) b(GG∗)G
c(G∗G)G∗ d(G∗G)

)
.

A simple calculation shows that, because of the commutation property (1.7), oper-
ators of A commutes with Λ(s):

∀A ∈ A, ∀s ∈ R, AΛ(s) = Λ(s)A.

BesidesA is an algebra, as shown by the following lemma which stems from straight-
forward computations

Lemma 3.1. Let a, b, c, d, a′, b′, c′, d′ ∈ C∞(R). We have

A(a, b, c, d)∗ = A(a, c, b, d),

A(a, b, c, d)A(a′, b′, c′, d′) = A(a′′, b′′, c′′, d′′),

with

a′′(λ) = a(λ)a′(λ) + λb(λ)c(λ), b′′(λ) = a(λ)b′(λ) + b(λ)d′(λ),

d′′(λ) = d(λ)d′(λ) + λc(λ)b(λ), c′′(λ) = a′(λ)c(λ) + d(λ)c′(λ).

Operators of A will be called diagonal if

A = Π+(s)AΠ+(s) + Π−(s)AΠ−(s),

and antidiagonal if

A = Π+(s)AΠ−(s) + Π−(s)AΠ+(s).

In particular, V (s), Π+(s) and Π−(s) are diagonal operators of A; on the other
hand, the operators ∂sΠ

+(s) and ∂sΠ
−(s) are antidiagonal elements of A. Indeed,

the relation

∂sΠ
+ = ∂s((Π

+)2) = Π+∂sΠ
+ + ∂sΠ

+Π+

implies that Π±∂sΠ+Π± = 0 (and similarly for Π− since ∂sΠ
− = −∂sΠ+).

Antidiagonal operators have nice properties that we shall use later. Typically,
they can be written as commutators with V (s): if C(s) = Π±(s)C(s)Π∓(s), then
we have

C(s) = ± [B(s), V (s)] ,

with

(3.3) B(s) =
1

2
Λ(s)−1C(s),

which also belongs to A. Because of this property, we have the following lemma.
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Lemma 3.2. Let u be a solution of (1.4), C(s) ∈ A with C(s) = Π+(s)C(s)Π−(s),
and let B(s) be associated with C(s) as in (3.3), then

〈C(s)u(s) , u(s)〉H2 =
1

i

d

ds
〈B(s)u(s) , u(s)〉H2

+ i 〈∂sB(s)u(s) , u(s)〉H2 − 〈[B(s), F (u)]u(s) , u(s)〉H2 .(3.4)

Proof. We write

〈C(s)u(s) , u(s)〉H2 = 〈[B(s) , V (s)]u(s) , u(s)〉H2

=

〈
B(s)

1

i
∂su(s) , u(s)

〉

H2

−
〈
B(s)u(s) ,

1

i
∂su(s)

〉

− 〈[B(s) , F (u)]u(s) , u(s)〉H2

=
1

i

d

ds
〈B(s)u(s) , u(s)〉H2

−1

i
〈∂sB(s)u(s) , u(s)〉H2 − 〈[B(s) , F (u)]u(s) , u(s)〉H2 ,

and the lemma follows. �

4. Existence of scattering states

The proof of the existence of scattering states (Theorem 1.3) consists in three
steps.

(1) We set

u±(s) = Π±(s)u(s),

and we first prove the existence of a limit to ‖u±(s)‖2H2 as s goes to ±∞.
(2) Then, we deduce that for j ∈ {1, 2}, the functions Fj(u) have a limit that

we denote by Fj(ω) (resp. Fj(α)) as s goes to +∞ (resp. −∞). Besides,
we prove that the functions

s 7→
∫ +∞

s

(Fj(u(τ) − Fj(ω)) dτ and s 7→
∫ s

−∞
(Fj(u(τ)− Fj(α)) dτ

are well defined and we study their behavior as s goes to +∞ or −∞,
respectively.

(3) Finally, we deduce the existence of scattering states from the scattering
result for the linear equation and by using Duhamel formula to treat the
nonlinearity.

If one expects the asymptotics behavior of u to be described as in Theorem 1.3, then
the first two steps consist in deriving the asymptotic phase, while the goal of the
final step is to describe the amplitude. This strategy is similar to the one employed
in e.g. [15] to study the long range nonlinear scattering for the one dimensional
cubic Schrödinger equation and for the Hartree equation.

First step. The first step of the proof relies on the following proposition.
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Proposition 4.1. Assume that u0 = ΘRu0 for some R > 0. Then, there exist

Ω±, A± > 0 such that

‖u±(s)‖2H×H − Ω± = O
(
R

s2

)
as s→ +∞,

‖u±(s)‖2H×H −A± = O
(
R

s2

)
as s→ −∞.

Proof. We consider the limit s→ +∞ for the + mode. The limit s→ −∞ and the
case of the−mode can be treated similarly. We are going to prove that ‖u+(s)‖2H×H
is a Cauchy sequence as s→ +∞. In that purpose, we write the equation satisfied
by u+

1

i
∂su

+ = Λ(s)u+ +
1

i
∂sΠ

+(s)u + F (u)u+.

Therefore, for 0 < t < s,

‖u+(s)‖2H2−‖u+(t)‖2H×H(4.1)

= 2Re

(∫ s

t

〈
Π+(σ)∂sΠ

+(σ)u(σ) , u(σ)
〉
H×H dσ

)
.

We are going to use properties of the operator Π+(s)∂sΠ
+(s) that we gather in

the next lemma where we denote by ImC the skew adjoint part of the operator C:
ImC = (C − C∗)/2.

Lemma 4.2. Let C(s) = Π+(s)∂sΠ
+(s) and B(s) = 1

2Λ(s)
−1C(s). Then C(s)

and B(s) are antidiagonal operators of A with C(s) = O
(
1
s

)
, B(s) = O

(
1
s2

)
and

∂sB(s) = O
(

1
s3

)
in L(H2). Moreover,

(4.2) ImC(s) =
1

4
Λ(s)−2

(
0 −G
G∗ 0

)
,

The proof of this lemma is postponed to the end of the section. Using Lemma 3.2,
we obtain∫ s

t

〈C(σ)u(σ) , u(σ)〉H2 dσ

=
1

i
〈B(σ)u(σ) , u(σ)〉H×H

∣∣∣
s

t

+ i

∫ s

t

〈∂sB(σ)u(σ) , u(σ)〉H2 dσ −
∫ s

t

〈[B(σ), F (u)]u(σ) , u(σ)〉H2 dσ.

A short computation gives for s ∈ R,

Re 〈[B(s), F (u)]u(s) , u(s)〉H2 = Re 〈[ImB(s), F (u)]u(s) , u(s)〉H2 ,

with

[ImB(s), F (u)] =
1

4
(F1(u)− F2(u))Λ(s)

−3K.

Therefore,

Re 〈[B(s), F (u)]u(s) , u(s)〉H2 =
1

4
(F1(u)− F2(u))

〈
Λ(s)−3Ku, u

〉
H2 .

Since u(s) = ΘRu(s) with ‖u(s)‖H2 = 1, we have ‖Ku‖H2 6 R. We deduce for all
s ∈ R

|Re 〈[B(s), F (u)]u(s) , u(s)〉H2 | = O
(
R

s3

)
.
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This observation and Lemma 4.2 yield: for s > t ≫ 1,

‖u+(s)‖2H×H − ‖u+(t)‖2H2 = O
(
R

t2

)
.

This implies the convergence of ‖u+(s)‖H×H to Ω+ > 0 with

‖u+(s)‖2H2 = Ω+ +O
(
R

s2

)
,

hence the proposition. �

Proof of Lemma 4.2. The proof relies on the computation of C(s) by observing

∂sΠ
+(s) =

1

2

(
Λ(s)−1J − sΛ(s)−3V (s)

)
,

where we have used ∂sΛ(s) = sΛ(s)−1. Since

Π+(s)∂sΠ
+(s) = Π+(s)∂sΠ

+(s)Π−(s),

the operators C(s) and B(s) are antidiagonal. Besides, we have

C(s) = Π+(s)∂sΠ
+(s)Π−(s) =

1

2
Λ(s)−1Π+(s)JΠ−(s)

=
1

8
Λ(s)−1(J + Λ(s)−1[V (s), J ]− Λ(s)−2V (s)JV (s)).

In view of

[V (s), J ] = [K, J ] = 2

(
0 −G
G∗ 0

)
, V (s)JV (s) = s2J +2sK +diag(−GG∗, G∗G),

we obtain

C(s) =
1

4
Λ(s)−3 (diag(GG∗, G∗G)− sK) +

1

4
Λ(s)−2

(
0 −G
G∗ 0

)
,

hence (4.2). Then, the estimates

‖Λ(s)−1‖L(H2) 6 s−1, ‖∂sΛ(s)−1‖L(H2) 6 1(4.3)

‖∂2sΛ(s)‖H2 = ‖Λ(s)−3diag(GG∗, G∗G))‖H2 = O(s−1)

allow to conclude the proof of the lemma. �

Second step. We study F (u) by analyzing the norm of u1(s) and u2(s). Note
that, for |s| ≫ 1, we have

Λ(s)−1ΘR =
1

|s|

(
Id +O

(
R2

s2

))
.

We deduce asymptotics for the operators Π±(s): for s > 0, in L(H2),

Π+(s)ΘR = ΘRE1 +
1

2
Λ(s)−1KΘR +O

(
R2

s2

)
,(4.4)

Π−(s)ΘR = ΘRE2 −
1

2
Λ(s)−1KΘR +O

(
R2

s2

)
,
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and for s < 0, in L(H2),

Π+(s)ΘR = ΘRE2 +
1

2
Λ(s)−1KΘR +O

(
R2

s2

)
,

Π−(s)ΘR = ΘRE1 −
1

2
Λ(s)−1KΘR +O

(
R2

s2

)
,

where K = V (0) has been defined in (3.1),

E1 = diag(1, 0) and E2 = diag(0, 1).

This suggests that as s goes to +∞, u1(s) is related to u+(s) and u2(s) with u
−(s)

while when s goes to −∞, u1(s) is related to u−(s) and u2(s) with u+(s). For this
reason, we denote by F (ω) and F (α) the matrices

F (ω) = F (Ω+,Ω−) and F (α) = F (A−, A+).

We now prove that F (ω) and F (α) are the limits of F (u) as s goes to ±∞. More
precisely, we have the following result.

Proposition 4.3. If ΘRu0 = u0 for some R > 0, then for j ∈ {1, 2},
∫ +∞

s

(Fj (u(τ)) − Fj(ω)) dτ = O
(
R2

s

)
as s→ +∞,

∫ s

−∞
(Fj (u(τ)) − Fj(α)) dτ = O

(
R2

|s|

)
as s→ −∞.

Proof. We first transfer the result of Proposition 4.1 on the coordinates of u(s).
Recall that u0 = ΘRu0 yields that for all s ∈ R, u(s) = ΘRu(s) (by Lemma 1.2).
We claim that for all R > 0, as s→ +∞,

‖u1(s)‖2H − Ω+ = g1(s) +O
(
R2

s2

)
,(4.5)

‖u2(s)‖2H − Ω− = g2(s) +O
(
R2

s2

)
,

where for j ∈ {1, 2}, |gj(s)| = O(Rs−1) and
∣∣∣
∫ +∞
s

gj(σ)dσ
∣∣∣ = O(R2s−1), and that,

as s→ −∞,

‖u1(s)‖2H −A− = g̃1(s) +O
(
R2

s2

)
,

‖u2(s)‖2H −A+ = g̃2(s) +O
(
R2

s2

)
,

where for j ∈ {1, 2}, |g̃j(s)| = O(R|s|−1) and
∣∣∣
∫ +∞
s g̃j(σ)dσ

∣∣∣ = O(R2|s|−1).

Then, one concludes as follows: for τ > 0 and j ∈ {1, 2}, we write

Fj(u(τ)) − Fj(ω) = ∇fj
(
Ω+,Ω−) · (g1(τ), g2(τ))

+

∫ 1

0

∇2fj
(
Ω+ + σg1(τ),Ω

− + σg2(τ)
)
[g1(τ), g2(τ)]

2
(1− σ)dσ +O(R2s−2),

where the f1, f2 are the functions of (1.6). Recall that, for j ∈ {1, 2}, ∇2fj are
bounded, ∇fj are continuous and Ω±

j 6 1 from (1.8). Therefore, the fact that
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|gj(s)| = O(Rs−1) and
∣∣∣
∫ +∞
s gj(τ)

∣∣∣ = O(R2s−1) for all j ∈ {1, 2} yields the lemma

for s→ +∞ (one argues similarly in −∞).

Let us now prove (4.5). Indeed, by Lemma 4.1, there exists Ω+ such that as
s→ +∞,

‖u+(s)‖2H2 = Ω+ +O(Rs−2).

By (4.4), we can write

‖u1(s)‖2H = ‖u+(s)‖2H2 +Re
〈
u+(s) , Λ(s)−1KΘRu(s)

〉
H2 +O

(
R2

s2

)

= ‖u+(s)‖2H2 +Re
〈
KΛ(s)−1Π+(s)ΘRu(s) , u(s)

〉
H2 +O

(
R2

s2

)
.

In view of (4.4) and of the relation

‖Λ(s)−1KΘR‖L(H×H) = O(Rs−1),

we have

Π+(s)ΘR = E1ΘR +O(Rs−1).

This implies that we can write

KΛ(s)−1Π+(s)ΘR = KΛ(s)−1E1ΘR +O
(
R2

s2

)

= E2KΛ(s)−1E1ΘR +O
(
R2

s2

)

= Λ(s)−1Π−(s)KΘRΠ
+(s) +O

(
R2

s2

)

where we have used E2K = KE1, Λ(s)
−1E1 = E1Λ(s)

−1 and the commutation
properties of V (s) and Π±(s) with Λ(s)−1 and ΘR. We set

g1(s) = Re
〈
Λ(s)−1Π−(s)KΘRΠ

+(s)u(s) , u(s)
〉
H2 .

We obtain

(4.6) g1(s) = O(Rs−1) and‖u1(s)‖2H = ‖u+(s)‖2H2 + g1(s) +O
(
R2

s2

)
.

In order to prove the integrability properties of g1, we study the operator

C̃(s) = Λ(s)−1Π−(s)KΘRΠ
+(s).

Lemma 4.4. The operators C̃(s) = Λ(s)−1Π−(s)KΘRΠ
+(s) and B̃(s) = 1

2Λ(s)
−1C̃(s)

are antidiagonal operators of A which satisfy

(4.7) Im C̃(s) =
s

2
Λ(s)−2ΘR

(
0 −G
G∗ 0

)
,

and C̃(s) = O
(
R
s

)
, B̃(s) = O

(
R
s2

)
, ∂sB̃(s) = O

(
R2

s3

)
in L(H2).

We postpone the proof of this lemma. By Lemma 3.2, we write

g1(s) = Re

(
1

i

d

ds

〈
B̃(s)u(s) , u(s)

〉

H2

)
+Re

(
i
〈
∂sB̃(s)u(s) , u(s)

〉

H2

)

− Re
〈
[B̃(s), F (u)]u(s) , u(s)

〉

H2
+O

(
R2

s2

)
.
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In view of
[ImB(s), F (u)] =

s

4
(F1(u)− F2(u))Λ(s)

−3K,

we obtain

g1(s) = Re

(
1

i

d

ds

〈
B̃(s)u(s) , u(s)

〉

H2

)
+Re

(
i
〈
∂sB̃(s)u(s) , u(s)

〉

H2

)

+
s

4
(F1(u)− F2(u))Re

〈
Λ(s)−3Ku(s) , u(s)

〉
H2 +O

(
R2

s2

)
.

By (4.6 and using that sΛ(s)−3 6 s−2, ‖Ku(s)‖H2 6 R and ‖u(s)‖H2 for all s ∈ R,
we infer (4.5) with the properties stated for g1(s). The other assertions of the claim
can be proved similarly. �

It remains to prove Lemma 4.4.

Proof of Lemma 4.4. We write

C̃(s) =
1

4
Λ(s)−1(K + Λ(s)−1[K,V (s)]− Λ(s)−2V (s)KV (s))ΘR.

In view of

[K,V (s)] = 2s

(
0 −G
G∗ 0

)

and

V (s)KV (s) = −s2K + 2s diag(GG∗,−G∗G) +

(
0 GG∗G

G∗GG∗ 0

)
,

we obtain

C̃(s) =
1

4
Λ(s)−1

(
−2sΛ(s)−2diag(GG∗,−G∗G) + (1 + s2Λ(s)−2)K

−Λ(s)−2

(
0 GG∗G

G∗GG∗ 0

)
+ 2sΛ(s)−1

(
0 −G
G∗ 0

))
ΘR

hence (4.7) and the other properties of the Lemma follow from the observation
‖Ku(s)‖H2 = O(R) and from the properties of Λ(s) stated in (4.3). �

Third step. We are now able to prove the existence of scattering states and to
conclude the proof of Theorem 1.3.

Proof of Theorem 1.3. Let us focus on the case s → +∞. Because of Lemma 4.3,
we can define v(s) = (v1(s), v2(s)) with for j = 1, 2,

vj(s) = uj(s) exp

(
−isδFj(ω)− iδ

∫ s

0

(Fj(u(τ)) − Fj(ω)dτ

)
.

We have

(4.8)
1

i
∂sv = V (s)v; v|s=0 = u0.

The linear scattering result of [12, Proposition 7] can then be applied to v. This
gives the existence of ω̃ = (ω̃1, ω̃2) (independent of R) such that

v1(s) = eiϕ(s,GG
∗)θ(GG∗/R2)ω̃1 + o(1),

v2(s) = e−iϕ(s,G
∗G)θ(G∗G/R2)ω̃2 + o(1),

where θ is the smooth cut-off function used for defining the operator ΘR. Besides,
the rest term o(1) which comes from the o(1) in Lemma 7 in [12] (or equivalently
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Lemma 11 in [11]) has been studied in the proof of Proposition 5.5 of [13] and
proved to be O(R2s−1). Therefore, we have

v1(s) = eiϕ(s,GG
∗)θ(GG∗/R2)ω̃1 +O(R2s−1),

v2(s) = e−iϕ(s,G
∗G)θ(G∗G/R2)ω̃2 +O(R2s−1),

Note that v does not need to be truncated by ΘR since it is associated with a initial
data which is already truncated by ΘR (u0 = ΘRu0). Again by Lemma 4.3, we
have

exp

(
iδ

∫ +∞

s

(Fj(u(τ)) − Fj(ω))dτ

)
= 1 +O

(
R2

s

)
.

Therefore,

u1(s) = eisδF1(ω)v1(s) = eisδF1(ω)+iϕ(s,GG
∗)ω1 +O(R2s−1),

u2(s) = eisδF2(ω)v2(s) = eisδF2(ω)−iϕ(s,G∗G)ω2 +O(R2s−1),

with

ω1 = exp
[
iδ
∫ +∞
0

(F1(u(τ))− F1(ω))
]
θ(GG∗/R2)ω̃1,(4.9)

ω2 = exp
[
iδ
∫ +∞
0 (F2(u(τ))− F2(ω))

]
θ(G∗G/R2)ω̃2,

and the existence of scattering states in +∞ is proved. We point out that

‖u1(s)‖2H = ‖v1(s)‖2H, ‖u2(s)‖2H = ‖v2(s)‖2H,
so that we have

Ω+ = ‖θ(GG∗/R2)ω̃1‖2H = ‖ω1‖2H,
Ω− = ‖θ(G∗G/R2)ω̃2‖2H = ‖ω2‖2H,

which justifies the notation F (ω) = F (Ω+,Ω−).
A similar argument allows to define the scattering states in −∞. �

5. Existence of wave operators

In this section, we prove Proposition 1.5. Let α = (α1, α2) ∈ H2 such that
α1 ∈ D(GG∗) and α2 ∈ D(G∗G) with

‖α1‖2H + ‖α2‖2H 6 1 and ‖GG∗α1‖H + ‖G∗Gα2‖H 6 R2

for some R > 0. This assumption implies that ‖G∗α1‖H + ‖Gα2‖H 6 R.

The strategy is the following. We first introduce an ansatz which solves (1.5)
up to an integrable source term. Then, for ε > 0, we infer the existence of an
exact solution which is at distance ε > 0 of this ansatz as s → −∞. We conclude
by noticing that the ansatz is an O(1/|s|) perturbation of the expected reference
solution.

Step 1. Construction of the ansatz . We consider a continuous function from
R to H2, ũ(s) = (ũ1(s), ũ2(s)), with

ũ1(s) = eiθ1(s)α1 + eiθ̃2(s)
(
β1
s

+
γ1
s2

)
+ e−is

2/2κ1(s)

s2
+ e3is

2/2 κ̃1(s)

s2
,

ũ2(s) = eiθ2(s)α2 + eiθ̃1(s)
(
β2
s

+
γ2
s2

)
+ eis

2/2 κ2(s)

s2
+ e−3is2/2 κ̃2(s)

s2
.
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The phase operators θ1 and θ2 correspond to the phases obtained in the previous
section, and are given by

θ1(s) =
s2

2
+ φ1(s), φ1(s) =

1

2
(ln|s|)GG∗ + δsF1(α),

θ2(s) = −s
2

2
+ φ2(s), φ2(s) = −1

2
(ln|s|)G∗G+ δsF2(α).

Similarly, we define

θ̃1(s) =
s2

2
+

1

2
(ln|s|)G∗G+ δsF1(α),

θ̃2(s) = −s
2

2
− 1

2
(ln|s|)GG∗ + δsF2(α),

so that we have

eiθ̃1G∗ = G∗eiθ1 and G eiθ̃1 = eiθ1G,(5.1)

eiθ̃2G = G eiθ2 and G∗eiθ̃2 = eiθ2G∗.

The coefficients βj , γj and κj , j ∈ {1, 2} satisfy

β2 =
1

2
G∗α1, β1 = −1

2
Gα2,

γ1 =
δ

2
(F2(α)− F1(α))β1, γ2 =

δ

2
(F2(α)− F1(α))β2,

κ1(s) = − δ
2
eiψ1α1

(
∂1f1(α)

〈
β1, e

i(ln|s|)GG∗

α1

〉

H
+ ∂2f1(α)

〈
e−i(ln|s|)G

∗Gα2, β2

〉

H

)
,

κ2(s) =
δ

2
eiψ2α2

(
∂1f2(α)

〈
ei(ln|s|)GG

∗

α1, β1

〉

H
+ ∂2f2(α)

〈
β2, e

−i(ln|s|)G∗Gα2

〉

H

)
,

κ̃1(s) =
δ

2
eiψ̃1α1

(
∂1f1(α)

〈
ei(ln|s|)GG

∗

α1, β1

〉

H
+ ∂2f1(α)

〈
β2, e

−i(ln|s|)G∗Gα2

〉

H

)
,

κ̃2(s) = − δ
2
eiψ̃2α2

(
∂1f2(α)

〈
β1, e

i(ln|s|)G∗Gα1

〉

H
+ ∂2f2(α)

〈
e−i(ln|s|)G

∗Gα2, β2

〉

H

)
,

with

ψ1 = φ1 − δs(F1(α)− F2(α)) =
1

2
(ln|s|)GG∗ + δsF2(α),

ψ̃1 = φ1 + δs(F1(α)− F2(α)) =
1

2
(ln|s|)GG∗ + δs(2F1(α)− F2(α)),

and

ψ2 = φ2 + δs(F1(α)− F2(α)) = −1

2
(ln|s|)G∗G+ δsF1(α),

ψ̃2 = φ2 − δs(F1(α)− F2(α)) = −1

2
(ln|s|)G∗G+ δs(2F2(α)− F1(α)).

We have denoted by ∂ifj(α) the real-number ∂ifj(‖α1‖2H, ‖α2‖2H).
We observe that for j ∈ {1, 2},

‖βj‖H = O(R) and ‖γj‖H = O(R),(5.2)

‖κj(s)‖H + ‖κ̃j(s)‖H = O(R) and ‖∂sκj(s)‖H + ‖∂sκ̃j(s)‖H = O(R3s−1).

We begin by studying each term of the equation (1.5): s-derivatives, linear term,
nonlinear term. Then we project on each family of oscillations generated by the
operator-valued phases.
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Derivatives. Using (5.2), we get

−i∂sũ1 = eiθ1
(
s+

1

2s
GG∗ + δF1(α)

)
α1 + eiθ̃2

(
−β1 +

δ

s
F2(α)β1 −

γ1
s

)

− 1

s
e−i

s2

2 κ1(s) +
3

s
e3i

s2

2 κ̃1(s) +O(R3s−2),

−i∂sũ2 = eiθ2
(
−s− 1

2s
G∗G+ δF2(α)

)
α2 + eiθ̃1

(
β2 +

δ

s
F1(α)β2 +

γ2
s

)

+
1

s
ei

s2

2 κ2(s)−
3

s
e−3i s

2

2 κ̃2(s) +O(R3s−2).

Linear part. Using (5.1) and (5.2), we get

sũ1 +Gũ2 = eiθ1
(
sα1 +

1

s
Gβ2

)
+ eiθ2

(
β1 +

1

s
γ1 +Gα2

)

+
1

s
e−i

s2

2 κ1(s) +
1

s
e3i

s2

2 κ̃1(s) +O(R2s−2),

−sũ2 +G∗ũ1 = eiθ2
(
−sα2 +

1

s
G∗β1

)
+ eiθ1

(
−β2 −

1

s
γ2 +G∗α1

)

− 1

s
ei

s2

2 κ2(s)−
1

s
e−3i s

2

2 κ̃2(s) +O(R2s−2).

Nonlinear part. We begin by expanding Fj(ũ) = fj(‖ũ1‖2H, ‖ũ2‖2H) for j ∈ {1, 2}.
We observe

‖ũ1‖2H = ‖α1‖2H +
2

s
Re
〈
eiθ1α1, e

iθ̃2β1

〉

H
+O(R2s−2),

‖ũ2‖2H = ‖α2‖2H +
2

s
Re
〈
eiθ2α2, e

iθ̃1β2

〉

H
+O(R2s−2).

We deduce

(5.3)
Fj(ũ) = Fj(α) +

2

s
∂1fj(α)Re

〈
eiθ1α1, e

iθ̃2β1

〉

H

+
2

s
∂2fj(α)Re

〈
eiθ2α2, e

iθ̃1β2

〉

H
+O(R2s−2).

Note that

(5.4)
e−iθ̃2eiθ1 = eis

2+iδs(F1(α)−F2(α))ei(ln|s|)GG
∗

,

e−iθ̃1eiθ2 = e−is
2−iδs(F1(α)−F2(α))e−i(ln|s|)G

∗G.

Finally, we have

F1(ũ)ũ1 = F1(α)e
iθ1α1 +

1

s
F1(α)e

iθ̃2β1

+
1

s
e−i

s2

2
+iψ1α1

(
∂1f1(α)

〈
β1, e

i(ln|s|)GG∗

α1

〉

H
+ ∂2f1(α)

〈
e−i(ln|s|)G

∗Gα2, β2

〉

H

)

+
1

s
e3i

s2

2
+iψ̃1α1

(
∂1f1(α)

〈
ei(ln|s|)GG

∗

α1, β1

〉

H
+ ∂2f1(α)

〈
β2, e

−i(ln|s|)G∗Gα2

〉

H

)

+O(R2s−2).
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Similarly, we obtain

F2(ũ)ũ2 = F2(α)e
iθ2α2 +

1

s
F2(α)e

iθ̃1β2

+
1

s
ei

s2

2
+iψ2α2

(
∂1f2(α)

〈
ei(ln|s|)GG

∗

α1, β1

〉

H
+ ∂2f2(α)

〈
β2, e

−i(ln|s|)G∗Gα2

〉

H

)

+
1

s
e−3i s

2

2
+iψ̃2α2

(
∂1f2(α)

〈
β1, e

i(ln|s|)G∗Gα1

〉

H
+ ∂2f2(α)

〈
e−i(ln|s|)G

∗Gα2, β2

〉

H

)

+O(R2s−2).

By the definition of βj , γj , κj and κ̃j for j ∈ {1, 2}, one gets that ũ(s) satisfies

−i∂sũ = V (s)ũ + F (ũ)ũ +O(R3s−2).

Step 2. Existence of an exact solution with prescribed behavior. We first
prove the result in the linear setting. Consider

v−(s) =

(
eis

2/2+i(ln |s|)GG∗/2α1

e−is
2/2−i(ln |s|)G∗G/2α2

)
,

s0 ∈ R+ such that R3s−1
0 ≤ ε, ṽ0 = ũδ=0 and vε = (vε1, v

ε
2) solution to the linear

equation
−i∂svε = V (s)vε; vε|s=−s0 = v−(s0).

Then, by step 1,
d

ds
‖ṽ0(s)− vε(s)‖H2 = O(R3s−2).

Therefore, there exists C > 0 such that for s < −s0,
‖ṽ0(s)− vε(s)‖H2 6 Cε.

Consequently,

(5.5) ‖v−(s)− vε(s)‖H2 6 Cε.

In particular, this implies that the scattering states (αlin,ε
1 , αlin,ε

2 ) associated with vε
satisfy ‖αlin,ε

j − αj‖H 6 Cε for j ∈ {1, 2}.
Let us now study the nonlinear case. We set

Φ̃j(s) =

∫ s

−∞
(Fj(ũ(t)) − Fj(α)) dt.

This integral is well-defined, in view of (5.3)–(5.4), since integration by parts yields

Φ̃j(s) = O
(

1

|s|

)
as s→ −∞.

Define ṽ by ṽj = e−iδsFj(α)−iδΦ̃j(s)ũj(s). In view of the first step, it satisfies

−i∂sṽ = V (s)ṽ +O(R3s−2).

Moreover, by construction,

‖ṽ(s)− v−(s)‖H2 −→
s→−∞

0,

so in view of
d

ds
‖vε(s)− ṽ(s)‖H2 = O(R3s−2),

there exists a constant C > 0 such that, for s < −s0,
‖v(s)− ṽ(s)‖H2 6 Cε.
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Now set

uεj(s) = vεj (s)e
iδsFj (α)+iδΦj(s), Φj(s) =

∫ s

−∞
(Fj(v

ε(t))− Fj(α)) dt.

Then uε solves (1.5), and since F is gauge invariant,

Φj(s) =

∫ s

−∞
(Fj(u

ε(t))− Fj(α)) dt = O
(

1

|s|

)
as s→ −∞.

We infer

(5.6) ∃C > 0, ∀s < −s0, ‖uε(s)− ũ(s)‖ < Cε

and the scattering states (αε1, α
ε
2) associated with uε satisfy ‖αεj − αj‖H 6 Cε for

j ∈ {1, 2}.
Finally, if the unit ball of H is compact, we can extract from uε a converging

sequence which still solves (1.5) and whose scattering states are (α1, α2).

6. Analysis of the Scattering Operator

We now prove Proposition 1.7 and we take into account the dependence of the
nonlinear term with respect to the parameter δ. Because of (4.9), we have ωlin =
ΘRω̃ and

ω = exp

(
iδ

∫ +∞

0

(F (u(τ))− F (ω)) dτ

)
ωlin.

Similarly,

α = exp

(
iδ

∫ −∞

0

(F (u(τ))− F (α)) dτ

)
αlin.

In particular, we have F (ω) = F (ωlin) and F (α) = F (αlin) since

(6.1) ‖ωj‖H = ‖ωlin
j ‖H and ‖αj‖H = ‖αlin

j ‖H for j ∈ {1, 2}.
Besides, in view of

u(s) = exp

(
iδ

∫ s

0

F (u(τ))dτ

)
ulin,

we obtain F (u) = F (ulin). We deduce

ω = exp

(
iδ

∫ +∞

0

(
F (ulin(τ)) − F (ωlin)

)
dτ

)
ωlin = eiδΛ

+

ωlin,

α = exp

(
iδ

∫ −∞

0

(
F (ulin(τ)) − F (αlin)

)
dτ

)
αlin = eiδΛ

−

αlin,

where Λ± = diag(Λ±
1 ,Λ

±
2 ), and Λ±

j are defined in (1.11) and (1.12), respectively.

Therefore, the nonlinear scattering operator Sδ = Sδ(α) such that ω = Sδα satisfies

(6.2) Sδ(α) = eiδΛ
+(α)Slin

(
e−iδΛ

−(α)α
)
,

and the scattering operator Sδ has the following expansion

Sδ = Slin + iδ
(
Λ+Slin − SlinΛ−)+OR(δ

2)

where OR(δ
2) =

∑
j∈{1,2}

(
O(δ2‖Λ+

j ‖2) +O(δ2‖Λ−
j ‖2)

)
.

It remains to obtain an upper bound for Λ±. We write

Λ+
j =

∫ s0

0

(Fj(u(s))− Fj(ω)) ds+

∫ +∞

s0

(Fj(u(s))− Fj(ω)) ds.
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By the continuity of the functions f1 and f2 (defined in (1.6)) and because of
‖u1‖2H + ‖u2‖2H = ‖ω1‖2H + ‖ω2‖2H = 1, we have

∣∣∣∣
∫ s0

0

(Fj(u(s))− Fj(ω)) ds

∣∣∣∣ 6 2

(
sup
S1

|f |
)
s0.

Lemma 4.3 gives the existence of a constant C such that,

(6.3)

∣∣∣∣
∫ +∞

s0

(Fj(u(s, z))− Fj(ω(z))) ds

∣∣∣∣ 6 CR2s−1
0 .

In order to optimize the upper bound, we choose s0 = R whence

OR(δ
2) = O(Rδ2),

which completes the proof of Theorem 1.7.

Appendix A. Rigorous derivation for a double-well potential

A.1. Mathematical framework. We give more details concerning the derivation
of (1.5) in the case of a condensate in a double well. This is achieved by adapting
the approach from [23], from which several intermediary results are borrowed (see
also [1] for some refinements to [23] in the confining, one-dimensional case). We
shall derive the model (A.3) as an envelope equation in the semi-classical limit.
Rewrite (2.3) in the presence of physical constants:

(A.1) i~
∂ψ~

∂t
+

~2

2
∆ψ~ = V ~(t, x)ψ~ + ǫ(~)|ψ~|2ψ~,

where ǫ(~) is a coupling constant whose value will be discussed later on. Note that
we consider a slightly more general framework than in Section 2: x ∈ R

d, with
d > 1. We assume that V ~(t, x) = Vs(x)+κ(~)tVa(x), with Vs and Va independent
of ~.

We first describe the assumptions performed on the potential Vs and discuss the
first consequences.

Assumption A.1 (Symmetric potential). The potential Vs ∈ C∞(Rd) is a smooth

real-valued function such that:

(1) The potential Vs is at most quadratic,

∂αVs ∈ L∞(Rd), ∀|α| > 2.

(2) Vs is symmetric with respect to the first coordinate:

Vs(−x1, x2, . . . , xd) = Vs(x1, x2, . . . , xd), ∀x ∈ R
d.

(3) Vs admits two minima at x = x±, where x− and x+ are distinct and sym-

metric with respect to the first axis. Moreover,

Vs(x) > V min
s = V (x±), ∀x ∈ R

d, x 6= x±,

and

V min
s < lim inf

|x|→∞
Vs(x) =: V −

∞ .

(4) The minima x+ and x− are non-degenerate critical points: ∇V (x±) = 0
and ∇2V (x±) > 0.

Remark A.2. As noted in [23], the last assumption (non-degeneracy) is not crucial.
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We denote by

H0 = −~2

2
∆ + Vs.

The operator H0 admits a self-adjoint realization (still denoted by H0) on L
2(Rd)

(see e.g. [22]). Let σ(H0) = σd ∪ σess be the spectrum of the self-adjoint operator
H0, where σd denotes the discrete spectrum and σess denotes the essential spectrum.
It follows that

σd ⊂ (V min
s , V −

∞) and σess = [V −
∞ ,+∞).

Furthermore, the following two lemmas hold, which follow from [2]:

Lemma A.3 (Lemma 1 from [23]). For any ~ ∈ (0, ~∗], for some ~∗ fixed, it follows

that:

(i) σd is not empty and, in particular, it contains two eigenvalues at least.

(ii) The lowest two eigenvalues λ~± of H0 are non-degenerate, in particular,

λ~+ < λ~−. There exists C > 0, independent of ~, such that

λ~± = V min
s +O(~); inf

λ∈σ(H0)\[λ~

+
,λ~

−
]

(
λ− λ~±

)
> C~.

Lemma A.4 ([2], and Lemma 2 from [23]). Let ϕ~
± be the normalized eigenvectors

associated to λ~±, then:

(i) ϕ~
± can be chosen to be real-valued functions such that

ϕ~

±(−x1, x2, . . . , xd) = ±ϕ~

±(x1, x2, . . . , xd).

(ii) ϕ~
± ∈ Σ ∩ L∞(Rd), where

Σ = {f ∈ H1(Rd), x 7→ |x|f(x) ∈ L2(Rd)}.
(iii) There exists C independent of ~ such that for all ~ ∈ (0, ~∗],

‖ϕ~

±‖Lp(Rd) 6 C~−
d
2 (

1
2
− 1

p ), ∀p ∈ [2,∞],

‖∇ϕ~

±‖L2(Rd) 6 C~−1/2, ‖xϕ~

±‖L2(Rd) 6 C.

The single-well states are then defined as in (2.6). They satisfy:

• ϕ~

R(−x1, x2, . . . , xd) = ϕ~

L(x1, x2, . . . , xd).

• ‖ϕ~

Lϕ
~

R‖L∞ = O
(
e−c/~

)
for all c < Γ, where Γ denotes the Agmon distance

between the two wells

Γ = inf
γ connecting the two wells

∫

γ

√
Vs(x) − V min

s dx > 0.

• For any r > 0, there exists C > 0 such that
∫

B(x+,r)

|ϕ~

R(x)|2dx = 1 +O
(
e−C/~

)
,

∫

B(x−,r)

|ϕ~

L(x)|2dx = 1+O
(
e−C/~

)
.

We denote by
Π~

c = 1−
(〈
ϕ~

+, ·
〉
ϕ~

+ +
〈
ϕ~

−, ·
〉
ϕ~

−
)

the projection onto the eigenspace orthogonal to the bi-dimensional space associated
to λ~±. Finally, we define the splitting between the lowest two eigenvalues

(A.2) ω~ =
λ~− − λ~+

2
.

Then for all c < Γ, ω~ = O
(
e−c/~

)
.
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We now describe the assumptions made on the potential Va.

Assumption A.5 (Antisymmetric potential). The potential Va ∈ C∞(Rd) is a

smooth real-valued function such that:

(1) The potential Va is bounded, as well as its derivatives,

∂αVa ∈ L∞(Rd), ∀|α| > 0.

(2) Va is antisymmetric with respect to the first coordinate:

Va(−x1, x2, . . . , xd) = −Va(x1, x2, . . . , xd), ∀x ∈ R
d.

Remark A.6. We note that Assumption A.1 and A.5 are satisfied in the case (2.5)
borrowed from [17].

A.2. An approximation result. In this section, we prove:

Proposition A.7. Let d 6 2. Let V ~ be as in Section A.1, with

κ = κ(~) = η
(ω~)2

~
,

for some η ∈ R independent of ~. Suppose that ǫ(~) is given by

ǫ(~) = δω~
~
d/2,

where δ > 0 does not depend on ~. Suppose also that the initial datum is of the

form

ψ~(0, x) = αLϕ
~

L(x) + αRϕ
~

R(x), αL, αR ∈ C independent of ~.

Define the approximation solution ψapp by

ψ~

app(t, x) = aL

(
ω~t

~

)
ϕ~

L(x) + aR

(
ω~t

~

)
ϕ~

R(x),

where (aL, aR) = (aL(τ), aR(τ)) solves

(A.3)

{
i∂τaL = ητaL − aR + δ~|aL|2aL; aL|τ=0 = αL,

i∂τaR = −ητaR − aL + δ~|aR|2aR; aR|τ=0 = αR,

and

δ~ = δ~d/2
∫

Rd

ϕ4
L = δ~d/2

∫

Rd

ϕ4
R

is uniformly bounded in ~ ∈ (0, ~∗]. Then we have the following error estimate:

there exist c, C independent of ~ such that for all γ < Γ,

sup
|t|6c

√
~/ω~

‖ψ~(t)− e−it(λ
~

−
+λ~

+)/(2~)ψ~

app(t)‖L2 6 Ce−γ/~.

Remark A.8. The case d = 1 and δ < 0 could be considered as well, leading to the
same result. Considering this case would just make the proof a bit longer, and we
refer to [23] for the adaptation.

Remark A.9. Since the range for the slow time τ = ω~t/~ is −c/
√
~ 6 τ 6 c/

√
~,

the above approximation result is a large time result, which is consistent with the
large time study of (A.3), or, more generally, of (1.5) to which one reduces thanks
to the change of variables s =

√
ητ (we then have G = −η−1/2 and δF (u) =

η−1/2δ~Diag(|u1|2, |u2|2)). When ~ is small, Theorem 1.3 gives asymptotics for the

profiles aL and aR of ψ~
app for large times (|t| ≤ c

√
~/ω~) and the connexion between
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the profiles for t < 0 and t > 0 involves the Landau-Zener transition coefficient e
− π

η2

(at leading order when ~ goes to 0).

Proof. For simplicity, we write the proof for t > 0 and it naturally extends to t 6 0.
Step 1: Preliminaries. We begin by proving estimates on ψ~, then we perform
the rescaling suggested by the form of the approximation solution. First, it follows
from Lemma A.4 and [4] that for fixed ~ > 0, (A.1) has a unique, global solution
ψ~ ∈ C(R; Σ) (Σ is defined in Lemma A.4). In addition, if we set

Mass: M~(t) = ‖ψ~(t)‖2L2 ,

Energy: E~(t) =
1

2
‖~∇ψ~(t)‖2L2 +

ǫ(~)

2
‖ψ~(t)‖4L4 +

∫

Rd

V (t, x)|ψ~(t, x)|2dx,

then we have the a priori estimates:

dM~

dt
= 0,

dE~

dt
=

∫

Rd

∂tV (t, x)|ψ~(t, x)|2dx = κ(~)

∫

Rd

Va(x)|ψ~(t, x)|2dx,

where we have used (2.4) for the last equality. Note that (A.1) is not a Hamiltonian
equation, unlike the one studied in [1], where the Hamiltonian structure is crucial.
The conservation of mass and the form of the initial data yield

M~(t) = ‖ψ~(t)‖L2 = ‖ψ~(0)‖L2 =M~(0) 6 C,

for some C independent of ~. We have

E~(0) =
〈
αLϕ

~

L + αRϕ
~

R, αLH0ϕ
~

L + αRH0ϕ
~

R

〉
+
ǫ(~)

2
‖αLϕ~

L + αRϕ
~

R‖4L4 .

Introduce Ω~ = (λ~− + λ~+)/2 and notice that Ω~ = V min
s + O(~) by Lemma A.3.

Noting the identities

(A.4) H0ϕ
~

L = Ω~ϕ~

L − ω~ϕ~

R; H0ϕ
~

R = Ω~ϕ~

R − ω~ϕ~

L,

we infer from Lemma A.3 and Lemma A.4 that

E~(0) = V min
s M~(0) +O(~).

Therefore, since Va is bounded,

‖~∇ψ~(t)‖2L2 6 2E~(t)− 2V min
s M~(t) + Cκ(~)tM~(t)

6 2E~(0)− 2V min
s M~(0) + 2κ(~)

∫ t

0

∫

Rd

Va(x)|ψ~(t, x)|2dx+ Cκ(~)t

6 C~+ C
(ω~)2

~
t.

Next, as in [23], we consider the slow time

τ =
ω~t

~
> 0,

and the new unknown function

Ψ~(τ, x) = ψ~(t, x)eiΩ
~t/~ = ψ~(t, x)eiΩ

~τ/ω~

.

It solves

(A.5) i∂τΨ
~ =

1

ω~

(
H0 − Ω~

)
Ψ~ + ητVaΨ

~ + δ~d/2|Ψ~|2Ψ~,
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and in view of the above estimates,

(A.6) ‖Ψ~(τ)‖L2 = ‖Ψ~(0)‖L2 = O(1); ‖∇Ψ~(τ)‖2L2 6 C

(
1

~
+
ω~

~2
τ

)
.

We decompose Ψ~ as

(A.7) Ψ~ = ϕ~ + ψ~

c , ψ~

c = Π~

cΨ
~,

so we can write ϕ~ as

ϕ~(τ, x) = a
~

L(τ)ϕ
~

L(x) + a
~

R(τ)ϕ
~

R(x),

for some complex-valued coefficients a~L and a
~

R. Projecting (A.5), and using (A.4),
we find:

iȧ~L = −a
~

R + ητ

∫

Rd

VaΨ
~ϕ~

L + δ~d/2
∫

Rd

|Ψ~|2Ψ~ϕ~

L,

iȧ~R = −a
~

L + ητ

∫

Rd

VaΨ
~ϕ~

R + δ~d/2
∫

Rd

|Ψ~|2Ψ~ϕ~

R,

i∂τψ
~

c =
1

ω~

(
H0 − Ω~

)
ψ~

c + ητΠ~

c

(
VaΨ

~
)
+ δ~d/2Π~

c

(
|Ψ~|2Ψ~

)
.

The proof of Proposition A.7 consists in showing that a~L/R are close to aL/R, and

that ψ~
c is small. This is achieved in two more steps.

Step 2. A priori estimates on a
~

R, a
~

L and ψ~
c . By definition, we have a

~

L =∫
Rd Ψ

~ϕ~

L, so Cauchy–Schwarz inequality yields

‖ϕ~(τ)‖2L2 = |a~L(τ)|2 + |a~R(τ)|2 6
(
M~
)2 (‖ϕ~

L‖2L2 + ‖ϕ~

R‖2L2

)
6 2

(
M~
)2
.

Decompose the nonlinearity acting on Ψ~ as

|Ψ~|2Ψ~ = |ϕ~|2ϕ~ + R
~.

Using the a priori estimates on a
~ and Lemma A.4, we have

∥∥|ϕ~|2ϕ~
∥∥
L2 6 ‖ϕ~‖2L∞‖ϕ~‖L2 6 C

(
‖ϕ~

L‖2L∞ + ‖ϕ~

R‖2L∞

)
6 C~−d/2.

Since we have the pointwise estimate

|R~| 6 C
(
|ϕ~|2|ψ~

c |+ |ψ~

c |3
)
,

we infer

‖R~‖L2 6 C
(
~
−d/2‖ψ~

c ‖L2 + ‖ψ~

c ‖3L6

)
,

and Gagliardo–Nirenberg inequality yields (d 6 2)

‖ψ~

c ‖3L6(Rd) 6 C‖ψ~

c ‖3−dL2(Rd)
‖∇ψ~

c ‖dL2(Rd).

Since d 6 2, we can factor out ‖ψ~
c ‖L2(Rd), and (A.6) gives

‖ψ~

c ‖3L6(Rd) 6 C‖ψ~

c ‖L2(Rd)~
−d/2

(
1 +

(
ω~τ

~

)d/2)
.

Therefore,

(A.8) ‖R~‖L2 6 C~−d/2
(
1 +

(
ω~τ

~

)d/2)
‖ψ~

c ‖L2 ,
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and |Ψ~|2Ψ~ satisfies a similar estimate. We infer

∣∣ȧ~L(τ)
∣∣ +
∣∣ȧ~R(τ)

∣∣ 6 C (1 + τ) + C

(
1 +

(
ω~τ

~

)d/2)
.

Since d 6 2 and ω~ = O(e−c/~), we can simplify the above estimate:
∣∣ȧ~L(τ)

∣∣ +
∣∣ȧ~R(τ)

∣∣ 6 C (1 + τ) , ∀τ > 0.

From this we infer

(A.9)
∥∥∂τϕ~

∥∥
L2 6

∣∣ȧ~L(τ)
∣∣ ‖ϕ~

L‖L2 +
∣∣ȧ~R(τ)

∣∣ ‖ϕ~

R‖L2 6 C(1 + τ),

and, again from Lemma A.4,

(A.10)
∥∥∂τ

(
|ϕ~|2ϕ~

)∥∥
L2 6 3‖ϕ~‖2L∞

∥∥∂τϕ~
∥∥
L2 6 C~−d/2(1 + τ).

Step 3. Stability estimates. In view of (A.7), we first prove that ψ~
c is small.

Since ψ~

c|τ=0 = 0, Duhamel’s formula yields

ψ~

c (τ) = −iη
∫ τ

0

e−i(H0−Ω~)(τ−s)/ω~ (
sΠ~

c

(
VaΨ

~
)
(s)
)
ds(A.11)

− iδ~d/2
∫ τ

0

e−i(H0−Ω~)(τ−s)/ω~

Π~

c

(
|Ψ~|2Ψ~

)
(s)ds.

Each term is treated in a similar fashion: when Ψ~ is replaced by ϕ~, we perform
an integration by parts, and for the remaining term, we use directly the a priori

estimates. For the first part of (A.11), we write

Π~

c

(
VaΨ

~
)
= Π~

c

(
Vaϕ

~
)
+Π~

c

(
Vaψ

~

c

)
,

and set

I~1 (τ) =

∫ τ

0

e−i(H0−Ω~)(τ−s)/ω~ (
sΠ~

c

(
Vaϕ

~
)
(s)
)
ds,

I~2 (τ) =

∫ τ

0

e−i(H0−Ω~)(τ−s)/ω~ (
sΠ~

c

(
Vaψ

~

c

)
(s)
)
ds.

Integrating by parts,

I~1 (τ) = −iω~e−i(H0−Ω~)(τ−s)/ω~ (
H0 − Ω~

)−1
Π~

c

(
sVaϕ

~
)
(s)
∣∣∣
τ

0

+iω~

∫ τ

0

e−i(H0−Ω~)(τ−s)/ω~ (
H0 − Ω~

)−1 (
Π~

c

(
Vaϕ

~
)
+ sΠ~

c

(
Va∂τϕ

~
))

(s)ds.

From Lemma A.3, there exists C independent of ~ ∈ (0, ~∗] such that
∥∥∥~
(
H0 − Ω~

)−1
Π~

c

∥∥∥
L2→L2

6 C.

We infer, using (A.9),

|I~1 (τ)| 6 C
ω~

~

(
τ + τ3

)
.

For I~2 , we have directly

|I~2 (τ)| 6 C

∫ τ

0

s‖ψ~

c (s)‖L2ds.

For the nonlinear term in Duhamel’s formula (the second term of (A.11)), we also
write

Π~

c (|Ψ~|2Ψ~) = Π~

c (|ϕ~|2ϕ~) + Π~

cR
~,
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and set

I~3 (τ) = ~
d/2

∫ τ

0

e−i(H0−Ω~)(τ−s)/ω~

Π~

c

(
|ϕ~|2ϕ~

)
(s)ds,

I~4 (τ) = ~
d/2

∫ τ

0

e−i(H0−Ω~)(τ−s)/ω~

Π~

cR
~(s)ds.

We have, directly from (A.8),

|I~4 (τ)| 6 C

∫ τ

0

(
1 +

(
ω~s

~

)d/2)
‖ψ~

c (s)‖L2ds,

and performing an integration by parts for I~3 , using (A.10), we have

|I~3 (τ)| 6 C
ω~

~

(
1 + τ2

)
.

Since d 6 2 and ω~ decays exponentially, we come up with:

‖ψ~

c (τ)‖L2 6 C

(
ω~

~

(
1 + τ3

)
+

∫ τ

0

(1 + s)‖ψ~

c (s)‖L2ds

)
.

Gronwall lemma yields

‖ψ~

c (τ)‖L2 6 C
ω~

~
(1 + τ3)eC(τ+τ2).

Recalling again that ω~ decays exponentially, we can write that for all c0 < Γ (the
Agmon distance between the two wells),

‖ψ~

c (τ)‖L2 6 C(1 + τ3)eC(τ+τ2)−c0/~.

This is small as ~ → 0, provided that τ2 ≪ /~. More precisely, there exist c1, c2 > 0
independent of ~ such that

(A.12) ‖ψ~

c (τ)‖L2 6 Ce−c1/~, 0 6 τ 6
c2√
~
.

To conclude the proof of the proposition, set

w
~

L = a
~

L − aL; w
~

R = a
~

R − aR.

Subtracting the equation for aL from the equation for a~L, we have

iẇ~L = −w
~

R + ητ

∫

Rd

Va
(
Ψ~ − aLϕ

~

L

)
ϕ~

L

+ δ~d/2
∫

Rd

(
|Ψ~|2Ψ~ − |aL|2aL|ϕ~

L|2ϕ~

L

)
ϕ~

L.

We have
∫

Rd

Va
(
Ψ~ − aLϕ

~

L

)
ϕ~

L =

∫

Rd

Va
(
a
~

Rϕ
~

R + ψ~

c + w
~

Lϕ
~

L

)
ϕ~

L,

therefore, since the product ϕ~

Lϕ
~

R decays exponentially in ~,
∣∣∣∣
∫

Rd

Va
(
Ψ~ − aLϕ

~

L

)
ϕ~

L

∣∣∣∣ 6 C
(
e−c/~ + ‖ψ~

c ‖L2 + |w~L|
)
.
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A similar estimate can be established for the other source term in the equation for
w
~

L. The equation for w~R is handled in the same fashion, and using (A.12), we end
up with:

|ẇ~L(τ)| + |ẇ~R(τ)| 6 C
(
|w~L(τ)| + |w~R(τ)| + e−c/~

)
, 0 6 τ 6

c2√
~
.

Gronwall lemma and (A.12) then yield Proposition A.7. �
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Ann. Henri Poincaré, 4 (2003), pp. 513–552.
[13] C. Fermanian Kammerer and C. Lasser, Propagation through generic level crossings: a

surface hopping semigroup, SIAM J. Math. Anal., 40 (2008), pp. 103–133.
[14] G. A. Hagedorn, Molecular propagation through electron energy level crossings, Mem. Amer.

Math. Soc., 111 (1994), pp. vi+130.
[15] N. Hayashi and P. Naumkin, Asymptotics for large time of solutions to the nonlinear

Schrödinger and Hartree equations, Amer. J. Math., 120 (1998), pp. 369–389.
[16] M. Jona-Lasinio, O. Morsch, M. Cristiani, N. Malossi, J. H. Müller, E. Courtade,

M. Anderlini, and E. Arimondo, Asymmetric Landau-Zener tunneling in a periodic po-

tential, Phys. Rev. Lett., 91 (2003), p. 230406.
[17] R. Khomeriki, Nonlinear Landau-Zener tunneling in coupled waveguide arrays, Phys. Rev.

A, 82 (2010), p. 013839.
[18] R. Khomeriki and S. Ruffo, Nonadiabatic Landau-Zener tunneling in waveguide arrays

with a step in the refractive index, Phys. Rev. Lett., 94 (2005), p. 113904.
[19] L. D. Landau, Collected papers of L. D. Landau, Edited and with an introduction by D. ter

Haar. Second printing, Gordon and Breach Science Publishers, New York, 1967.

[20] J. Liu, L. Fu, B.-Y. Ou, S.-G. Chen, D.-I. Choi, B. Wu, and Q. Niu, Theory of nonlinear

Landau-Zener tunneling, Phys. Rev. A, 66 (2002), p. 023404.
[21] T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimen-

sion, Comm. Math. Phys., 139 (1991), pp. 479–493.



NONLINEAR LANDAU-ZENER FORMULA 29

[22] M. Reed and B. Simon, Methods of modern mathematical physics. II. Fourier analysis,

self-adjointness, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1975.
[23] A. Sacchetti, Nonlinear double well Schrödinger equations in the semiclassical limit, J.

Stat. Phys., 119 (2005), pp. 1347–1382.
[24] C. Zener, Non-adiabatic crossing of energy levels, Proc. Roy. Soc. London Ser. A, 137 (1932),

pp. 696–702.
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