
HAL Id: hal-00759131
https://hal.science/hal-00759131v1

Submitted on 30 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical resolution of conservation laws with OpenCL
Anaïs Crestetto, Philippe Helluy, Jonathan Jung

To cite this version:
Anaïs Crestetto, Philippe Helluy, Jonathan Jung. Numerical resolution of conservation laws with
OpenCL. ESAIM: Proceedings, 2013, 40, pp.51-62. �10.1051/proc/201340004�. �hal-00759131�

https://hal.science/hal-00759131v1
https://hal.archives-ouvertes.fr


Numerical resolution of conservation laws with OpenCL

A. Crestetto, P. Helluy, J. Jung

November 30, 2012

IRMA Université de Strasbourg, 7 rue Descartes, 67000 Strasbourg, helluy@unistra.fr

Abstract

We present several numerical simulations of conservation laws on recent multicore processors, such as
GPU’s, using the OpenCL programming framework. Depending on the chosen numerical method, different
implementation strategies have to be considered, for achieving the best performance. We explain how to
program efficiently three methods: a finite volume approach on a structured grid, a high order Discontinuous
Galerkin (DG) method on an unstructured grid and a Particle-In-Cell (PIC) method. The three methods
are respectively applied to a two-fluid computation, a Maxwell simulation and a Vlasov-Maxwell simulation.

1 Introduction

Recent parallel CPU and GPU architectures are very efficient for scientific computing. Several programming
frameworks, such as OpenMP, CUDA or OpenCL are developed for several years in order to help the implemen-
tation of classical algorithms on GPU’s or multicore CPU’s. The implementation is generally not so obvious
and one has to care of some aspects in order to reach efficient simulations. The first point is that, because of
the massive parallelism of some devices, the computations may become negligible compared to data memory
transfers. The data organization into memory becomes the most important point of the algorithms. The second
point is that simple operations in sequential program, such as computing an integral or a maximum on the
computational domain, become non trivial on parallel computers because they imply memory write conflicts.
Such operations have thus to be reorganized in order to perform efficiently in parallel.

In this paper we review three classical methods for solving hyperbolic systems of conservation laws: the struc-
tured Finite Volume method (FV), the high order Discontinuous Galerkin (DG) method and the Particle-In-Cell
(PIC) method. We explain how to program them efficiently on GPU’s, using the OpenCL framework. We also
apply our simulations to realistic 2D test cases coming from physics

2 Multicore architectures and OpenCL

Several computer parallel architectures exist. The Single Instruction Muliple Data (SIMD) model is often
interesting in scientific computing because it allows to perform the same operation on many data in parallel.
The processors share the same instruction unit, which also allows excellent performance/watt ratio (green
computing). Recent GPU devices are of this type, with several hundreds of processors sharing a few instruction
units.

OpenCL is a programming framework for driving such devices. OpenCL is practically available since september
2009 [9]. The specification is managed by the Khronos Group, which is also responsible of the OpenGL API
design and evolutions. OpenCL means “Open Computing Language”.

Many different architectures exist, but OpenCL proposes a unified model for programing generic SIMD machines,
called “devices” in the OpenCL terminology. The generic device can be in practice a GPU, a multicore CPU or
even a computer made of several multicore CPU’s. In this model, a GPU is considered as a device plugged into
a computer, called a “host”. A device is made of (see Figure 1)

• Global memory (typically 1 Gb1)

1the typical values are given for a NVIDIA GeForce GTX 280 GPU

1

mailto:helluy@unistra.fr


 !"#

 !"$ %&'
()"*

+*
,

-."#

 !"/

 !"0 %&'
()"*

+*
,

-."$
1)&

2(
)"*

+*
,

3&45

1 .

Figure 1: A (virtual) GPU with 2 Compute Units and 4 Processing Elements

• Compute units (typically 27).

Each compute unit is made of:

• Processing elements (typically 8).

• Local (or cache) memory (typically 16 kb)

The same program (a kernel) can be executed on all the processing elements at the same time, with the following
rules:

• All the processing elements have access to the global memory.

• The processing elements have only access to the local memory of their compute unit.

• If several processing elements write at the same location at the same time, only one write is successful.

• The access to the global memory is slow while the access to the local memory is fast. We can achieve faster
reads/writes to the global memory if neighbouring processors access neighbouring memory locations.

OpenCL includes:

• A library of C functions, called from the host, in order to drive the GPU (or the multicore CPU);

• A C-like language for writing the kernels that will be executed on the processing elements.

Virtually, it allows having as many compute units and processing elements as needed. The virtual OpenCL
compute units are called “work-groups” and the virtual processing elements are called “work-items”. The threads
are sent to the GPU thanks to a mechanism of command queues on the real compute units and processing
elements of the real device.

The main advantage of OpenCL is its portability. The same program can run on multicore CPU’s or GPU’s of
different brands. It is also possible to drive several devices at the same time for better efficiency. For instance,
in a single PC, a part of the computations can be executed on the CPU while the other part is run on one or
several GPU’s. This allows very important computation power at a very low cost. Recent evolutions indicate
that in the future, the OpenCL devices will share common memory buffers. This will greatly improve the
efficiency of CPU-GPU cooperation by avoiding slow memory copies. Many resources are available on the web
for learning OpenCL. For a tutorial and simple examples, see for instance [7].

2



!"#$%

&'(

)*+,*-

./01("#$%

)*+,*-

.#(21("#$%

/

3

4

Figure 2: Liquid-gas shock-bubble interaction test. Description of the initial conditions.

3 A structured FV approximation of a compressible two-fluid flow

3.1 Shock-bubble interaction

Our first example is devoted to solving a 2D shock-bubble interaction in a compressible medium. The bubble is
made of air inside liquid water. The liquid water is shocked at the left boundary and the planar shock wave will
impinge the bubble. The initial condition of the problem is depicted on Figure 2 with the following parameters

Lx = 2 m, Ly = 1 m, Ls = 0.04 m, X1 = 0.5 m, Y1 = 0.5 m, r = 0.4 m.

The test case is also studied in [11, 15].

We first write the mathematical model, which is a hyperbolic system of conservation laws. We consider the
vector of conservative variables W = (ρ, ρu, ρv, ρE, ρϕ)T depending on the space variable X ∈ R

2 and time t,
where ρ is the density, U = (u, v)T is the velocity, E is the total energy and ϕ the color function (ϕ = 0 in the
liquid and ϕ = 1 in the gas). The internal energy e = E − u2/2 and the pressure p = p(ρ, e, ϕ). Let n ∈ R

2 be
a normal vector, the flux of the system is given by

F (w) · n = (ρU · n, ρ(U · n)UT + pnT , (ρE + p)U · n, ρϕU · n)T ,

and the system of conservation laws reads

∂tW +∇X · F (W ) = 0.

At the boundary we simply apply the data corresponding to the unperturbed initial shock wave.

The pressure law is a stiffened gas Equation Of State (EOS) where the parameters γ and π depend on the color
function ϕ

p(ρ, e, ϕ) = (γ(ϕ)− 1)ρe− γ(ϕ)π(ϕ),

1

γ(ϕ)− 1
= ϕ

1

γgas − 1
+ (1− ϕ)

1

γliq − 1
,

γ(ϕ)π(ϕ)

γ(ϕ)− 1
= ϕ

γgasπgas

γgas − 1
+ (1− ϕ)

γliqπliq

γliq − 1
.

The system is hyperbolic with eigenvalues U · n− c, U · n, U · n, U · n, U · n+ c and c =
�

γ(p+ π)/ρ.

The EOS parameters and initial data are given in Table 1.

For numerically solving this system we will apply Strang dimensional splitting. Therefore, we first we investigate
the 1D framework.

3



Quantities Liquid (post-shock) Liquid (pre-shock) Gas

ρ (kg.m−3) 1030.9 1000.0 1.0
u (m.s−1) 300.0 0 0
v (m.s−1) 0 0 0

p (Pa) 3× 109 105 105

ϕ 0 0 1
γ 4.4 4.4 1.4
π 6.8× 108 6.8× 108 0

Table 1: Liquid-gas/bubble interaction test. Initial data.

3.2 One-dimensional scheme

We set X = (x, y)T , and we suppose that W = W (x, t), n = (1, 0)T . The system of conservation laws become

∂tW + ∂x(F (W ) · n) = 0. (1)

As is well known, standard conservative finite volume schemes for solving such a system give very low precision
results (see for instance [2] and included references). We have proposed in [1] a new Lagrange and remap
scheme that we will apply here. We first recall how it works. As usual, we consider a 1D mesh of cells
Ci =]xi−1/2, xi+1/2[. The size of cell Ci is hn

i = xi+1/2 − xi−1/2. The time step is noted τn = tn+1 − tn and
Wn

i � W (xitn).

Each time step of our scheme is made of two stages: an Arbitrary Lagrangian Eulerian (ALE) step and remap
step for going back to the Eulerian mesh. In the first stage, we approximate the solution with a ALE scheme

hn+1,−
i Wn+1,−

i − hn
i W

n
i + τn

�

Fn
i+1/2 − Fn

i−1/2

�

= 0.

For a left state WL, a right state WR and a velocity x/t, we denote by R(WL,WR, x/t) an exact or ap-
proximate Riemann solver for the problem (1). The Lagrange numerical flux is then defined by Wn

i+1/2 =

R(Wn
i ,W

n
i+1, x/t = un

i+1/2) and

Fn
i+1/2 = F (Wn

i+1/2)− un
i+1/2W

n
i+1/2,

Wn
i+1/2 = R(Wn

i ,W
n
i+1, u

n
i+1/2),

where the cell boundary xi+1/2 moves at the (yet unknown) velocity un
i+1/2

xn+1,−
i+1/2 = xi+1/2 + τnu

n
i+1/2.

At the end of the ALE step, the new cell size is thus

hn+1,−
i = xn+1,−

i+1/2 − xn+1,−
i−1/2 = hn

i + τn(u
n
i+1/2 − un

i−1/2).

For returning to the initial Euler mesh, we use a random remap step, which is justified in [1]. We construct a
sequence of random or pseudo-random numbers ωn ∈ [0, 1[. According to this number we take [5]

Wn+1

i = W
n+1/2
i−1 if ωn <

τn
hi

max(un
i−1/2, 0),

Wn+1

i = W
n+1/2
i+1 if ωn > 1 +

τn
hi

min(un
i+1/2, 0),

Wn
i = W

n+1/2
i if

τn
hi

max(un
i−1/2, 0) ≤ ωn ≤ 1 +

τn
hi

min(un
i+1/2, 0).

A good choice for the pseudo-random sequence ωn is the (k1, k2) van der Corput sequence, computed by the
following C algorithm

float corput(int n,int k1,int k2){

float corput=0;

float s=1;

while(n>0){

s/=k1;

corput+=(k2*n%k1)%k1*s;

n/=k1;}

return corput;

}

4



In this algorithm, k1 and k2 are two relatively prime numbers and k1 > k2 > 0. As advised in [16], in practice
we consider the (5, 3) van der Corput sequence.

The scheme is completely described if we provide the interface ALE velocities un
i+1/2. In the resolution of

the Riemann problem R(Wn
i ,W

n
i+1, x/t) we find four waves. The characteristic fields 2 and 3 are linearly

degenerated and λ2(w) = λ3(w) = u, thus the velocity is constant across these waves. It is natural to consider
u as the interface velocity. We denote it by u∗(Wi,Wi+1). Our choice for the ALE velocity is then

un
i+1/2 =

�

u∗(Wi,Wi+1) if ϕn
i �= ϕn

i+1,
0 if ϕn

i = ϕn
i+1.

(2)

Remarks:

• the natural full Lagrange choice
un
i+1/2 = u∗(Wi,Wi+1),

leads to a scheme that is not BV stable (see [1]).

• If un
i+1/2 = 0, we recover a standard Eulerian scheme. It means that with the choice (2) we follow

a Lagrange approach at the interface and a Eulerian approach elsewhere. The random remap is only
performed at the interface.

For achieving more robustness, we have also constructed an approximate Riemann solver based on relaxation
techniques. The construction is adapted from [4]. The resulting scheme has a full set of desired properties:

• it is positive and handles vacuum.

• It is entropy dissipative (at least in the pure fluid regions).

• The constant (u, p) states are exactly preserved.

• The gas fraction is not smeared at all: ϕn
i ∈ {0, 1}.

• It is statistically conservative.

3.3 GPU implementation and numerical results

In order to perform 2D computations, we use dimensional splitting. For advancing a time step τ , we first
numerically solve

W ∗ −Wn

τ
+ ∂xF

1(Wn) = 0, (3)

and then
Wn+1 −W ∗

τ
+ ∂yF

2(W ∗) = 0, (4)

with the Lagrange and remap scheme. An interesting point is that we can keep the same pseudo-random number
ωn for the two substeps.

For performance reasons, we implement the algorithm on a GPU. We organize the data in a (x, y) grid. We have
to take care of the memory access. Indeed, when we solve the problem (3) in the x−direction, memory access
are very fast because two neighbouring work-items access neighbouring memory locations. If nothing is done,
when solving (4), the y−direction memory access are slow because two neighbouring work-items access different
rows. Between the x and y steps, we therefore perform a transposition of the grid data. This transposition is
performed in an optimized way, using cache memory. The transposition algorithm is described for instance in
[14]. Without this trick, the whole algorithm is still fast but approximately ten times slower than the optimized
algorithm. This behavior is classical in GPU programing: because the computations are very fast, the limiting
factor is often imposed by data read or write operations into the GPU memory.

For each time step the algorithm is thus:

• compute the fluxes balance in the x-direction for each cell of each row of the grid. A row is associated to
one work-group and one cell to one work-item;

• transpose the grid (exchange x and y) with an optimized memory transfer algorithm;

5



Table 2: Simulation times for several CPU and GPU devices

• compute the fluxes balance in the y-direction for each row of the transposed grid. Memory access are
optimal.

• transpose again the grid.

In Table 2, we give the computation time of the resulting algorithm for different CPU and GPU devices. The
mesh is a 256x256 grid. We have used exactly the same OpenCL implementation. We observe an excellent
scaling of our implementation on massively parallel GPU devices.

In Figure 3, we present the density and pressure profiles for the shock-bubble interaction at time t = 600µs.
The grid for this computation is made of 3000x1000 cells. The numerical simulation is so fast that it is possible
to display the numerical results interactively, using OpenCL-OpenGL interoperations.

4 An unstructured DG approximation of electromagnetic waves

We will now present a different application of GPU simulation. Figure 4 represents a diode. The diode is used
for generating electron beams. If the beam is intense enough, it is possible to generate X-rays when the electrons
impinge the anode. Such devices, designed by Marie Curie, were used during World War I in France for healing
wounded soldiers. At first, we model only the electromagnetic waves. The electrons will be addressed in Section
5.

We consider the electric field E = (E1, E2, 0)
T , the electric current J = (j1, j2, 0)

T and the magnetic field
H = (0, 0, H3)

T . We write the 2D Maxwell equations in the so-called Transverse Electric (TE) mode as a first
order linear hyperbolic system

W = (E1, E2, H3)
T ,

∂tW +Ai∂iW = J (sum on repeated indices) (5)

A1 =





0 0 0
0 0 1
0 1 0



 , A2 =





0 0 −1
0 0 0
−1 0 0



 , J =





j1
j2
0



 ,

with the boundary conditions

H3 − n1E2 + n2E1 = s on ΓS , −n1E2 + n2E1 = 0 on ΓM .

The boundary term s is given, for instance, by the incident field

s = H inc
3 − n1E

inc
2 + n2E

inc
1 .

For simplicity, we have written only the Maxwell equations in cartesian geometry. It is also possible to consider
the axisymmetric equations (see [6]). The numerical results presented in Figure 5 are done in axisymmetric
geometry.

6



Figure 3: Shock-bubble interaction at time t = 600µs on a 3000x1000 grid. Density (top) and pressure (bottom).

7



Figure 4: Diode in axisymmetric geometry. The entry of the electromagnetic pulse is at the left. The (positive)
cathode and (negative) anode are represented by metallic boundary conditions. The space between the cathode
and the anode is at vacuum. The mesh of the computational domain is also represented.

We consider a mesh of the domain Ω, such as in Figure 4. In each cell L the fields are approximated by

WL(x, t) � wL,j(t)ψL,j(x), {ψL,j} basis of P2(R
2)3

The Discontinuous Galerkin (DG) upwind weak formulation [12], [8], [3] reads

ˆ

L

∂tWL · ψL −

ˆ

L

WL ·Ai∂iψL +

ˆ

∂L

(Ain+

i WL +Ain−
i WR) · ψL =

ˆ

L

J · ψL, (6)

where n is the normal vector on ∂L oriented from the cell L to the neighbouring cells R and

x+ = max(0, x), x− = min(0, x).

Setting ψL = ψL,j in 6, we end up with a system of ordinary linear differential equations for the wL,j(t). We
list below a few features of our implementation:

• The cells are quadratic curved quadrilaterals.

• We use an exact numerical integration (16 Gauss-Legendre quadrature points in the cells and 4 points on
each edge).

• We use a divergence-cleaning correction, described in [13], in order to enforce the divergence free condition
on the electric field

∂1E1 + ∂2E2 = 0.

Theoretically, it should be sufficient to impose this condition at the initial time, but for better results, it
is important to enforce it also numerically at all times.

• Initialization: we compute and invert on the CPU the local mass matrix of each cell. These matrices come
from the following term of the DG formulation (6)

ˆ

L

∂tWL · ψL.

We then send (all) the data to the GPU.

• In the first pass of each time step, we associate to each Gauss point of each edge one work-item. We
compute the flux and store it into global memory. Our approach is different from [10].

8



time (s)

AMD Phenom II x4 945 (1 core) 563
AMD Phenom II x4 945 (4 cores) 185

NVIDIA NV320M 146
AMD Radeon HD5850 23

NVIDIA Geforce GTX260 17
NVIDIA Geforce GTX470 3

Table 3: DG Maxwell solver simulation times for several CPU and GPU devices.

• In the second pass, we associate to each basis function of each element a work-item. We compute the time
derivative of the wL,j using the volume terms in the DG weak formulation (6), the previously computed
fluxes and the stored inverted mass matrices. It is not possible to perform the fluxes pass and the
volumic pass at the same time, because with this approach two different processors will try to add their
contributions at the same memory location at the same time, which leads to wrong results. That’s why
we have to store the intermediate results and “reorganize the parallelism” between the two passes.

• For the time integration, we use a simple second order Heun scheme.

• We do not use the linearity of the equations, so that our algorithm can be reused for other hyperbolic
systems.

• For the diode test case, we use a curved structured grid, but our implementation can also handle fully
unstructured grids.

It must be noted that the implementation is rather different compared to the shock-bubble interaction. We
associate a processor to each Gauss point instead of each cell. This choice is here again imposed by the memory
access pattern. Because of the high order approximation, each cell owns a relatively high quantity of data. If
we had associated a processor to each cell, two neigbouring work-items would not access neighbouring data in
memory. With a finer grain parallelism, we achieve better memory bandwidth.

In Table 3, we compare the same OpenCL implementation for several multicore devices. We obtain very
interesting speedups for GPU devices.

5 A PIC approximation of charged particle beams

In this section, we explain how we compute the electron beam and how we couple it with the previously
presented Maxwell solver. We have to approximate the electron distribution function f(x, v, t), which measures
the quantity of electrons having the velocity v and position x at time t. The distribution function satisfies the
Vlasov equation (see (7) below). In addition, the motions of electrons generate a current J at the right hand
side of the Maxwell equations (5). In principle, the Vlasov equation is a first order hyperbolic conservation
law that could be solved also by a DG scheme. However, because it is set in four-dimensional phase space, it
is very expensive to solve it with this method. We will follow a more economical approach based on particle
approximation: the Particle-In-Cell method.

In this method, the distribution function of electrons f is approximated by weighted particles

f(x, v, t) =
�

k

ωkδ(x− xk(t))δ(v − x�
k(t)).

The particles move according to the Newton’s equations of motion

mx��
k = q(E + x�

k ∧H), E = (E1, E2, 0)
T , H = (0, 0, H3)

T .

And the electronic current is given by

j(x, t) =
�

k

ωkδ(x− xk(t))x
�
k(t).

We can recover the following equations

9



• Vlasov equation

∂tf + v · ∇xf +
q

m
(E + v ∧H) · ∇vf = 0. (7)

• Charge conservation

∂tρ+∇ · j = 0, ρ(x, t) = q

ˆ

v

f(x, v, t)dv.

• Electric field divergence condition (if true at time t = 0)

∇ · E = ρ.

At the initial time, there is no charge in the diode. The electrons are emitted at the cathode if the normal
electric field is strong enough, until it cancels (this is the so-called Child-Langmuir law).

More precisely, we use the following algorithm for a cell L that touches the cathode (n is the outward normal
vector on the cell boundary):

• if E · n > 0 on ∂L ∩ ΓC then compute

δL = ρL −

ˆ

∂L\ΓC

E · n

where ρL =
�

xk∈L ωk is the charge in the cell L

• if δL < 0, create ne random particles in the cell L with weights δL/ne

When the particles arrive at the anode, they simply leave the domain.

The simple part of the PIC algorithm then consists in the following steps:

• emission: we use the previously given algorithm. The random positions are given by independent van der
Corput sequences.

• Particle moves: at each time step we associate one work-item to each particle. We move the particle and
find its new cell location. We assume that the particle does not cross more than one cell. The algorithm
works on an unstructured grid.

Then we have to compute the contribution of the electric current in the right hand side of the DG formulation
(6). This is a more subtle part because we have to avoid concurrent memory write operations. This requires a
preliminary sorting of the list of the particles. The electric current algorithm is the following:

• we first sort the list of particles according to their cell numbers. For this, we use an OpenCL optimized
radix sorting algorithm described in[?]2. Then, it is easy to know how many particles are in each cell.

• we sort the cells list according to the number of particles inside the cells.

• we associate to each cell a work-item. Then, for each cell it is possible to loop on its particles in order to
compute their contributions to the current

ˆ

L

J · ψL =
�

xk∈L

ωk(x
�
1,k(t), x

�
2,k(t), 0)

T · ψL(xk(t))

• thanks to the sorting, neighbouring processors have approximately the same number of particles and they
do not wait too much for each other.

We compare the full DG-PIC coupling algorithm for several CPU and GPU devices in Table 4. We still observe
good GPU performances, but because of the necessary sorting in the PIC current computation, the speedups
are less interesting than for the full DG algorithm.

We also present in Figure 5 the electron beam and the radial electric field at three different times.

2Programming such an algorithm in OpenCL is an excellent exercise, because it allows to understand almost all the subtleties

of GPU programming...

10



Table 4: PIC-DG coupling algorithm. Performance comparison of several CPU and GPU devices.

Figure 5: PIC-DG coupling. The colors represent the radial component of the electric field. The black dots
represent the positions of the particles. The simulation times are t = 0.22 (top), t = 0.33 (middle) t = 0.55
(bottom).

11



6 Conclusion

We have implemented three different conservation laws solvers with OpenCL that works both for multicore
CPU and GPU. The solvers are: a first order Finite Volume solver, a high order Discontinuous Galerkin solver,
a Particle-In-Cell solver. For achieving good performance, we had to deal with several important features of
multicore programming. The most important feature is related to memory access. Because of the high number
of processors, the computations are very fast and the memory access becomes the limiting factor. We have to
organize the data into memory in such a way that neighbouring processors access neighbouring data. This leads
to different implementations of the first order scheme and the high order scheme.

Another important feature is that the GPU’s are SIMD computers: the processors share the same memory. We
have thus to avoid concurrent memory access that would give wrong numerical results. In some cases this leads
to complicated algorithms, such as particle sorting in the PIC method.

Anyway, despite these complications, the resulting performances are very impressive. The observed speedups
are of the order 100 compared to a standard single core CPU implementation. It is also possible to solve real
life problems on complex geometries.

This leads us to believe that multicore processors and corresponding software frameworks, such as OpenCL,
could not be avoided in the future of scientifc computing.

References

[1] Mathieu Bachmann, Philippe Helluy, Jonathan Jung, Hélène Mathis, Siegfried Müller. Ran-
dom sampling remap for compressible two-phase flows, 2011, submitted. Preprint at http:

//hal.archives-ouvertes.fr/hal-00546919

[2] Thomas Barberon, Philippe Helluy, and Sandra Rouy. Practical computation of axisymmetrical
multifluid flows. Int. J. Finite Vol., 1(1):34, 2004.

[3] F. Bourdel, P.-A. Mazet, and P. Helluy. Resolution of the non-stationary or harmonic maxwell
equations by a discontinuous finite element method. In 10th international conference on computing
methods in applied sciences and engineering, pages 1–18. Nova Science Publishers, Inc., New York,
1992.

[4] Bouchut, François Nonlinear stability of finite volume methods for hyperbolic conservation laws
and well-balanced schemes for sources. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2004.

[5] C. Chalons, F. Coquel. Computing material fronts with Lagrange-Projection approach. HYP2010
Proc. http://hal.archives-ouvertes.fr/hal-00548938/fr/.

[6] Crestetto, A. Optimisation de méthodes numériques pour la physique des plasmas. Application
aux faisceaux de particules chargées. PhD thesis. Strasbourg, 2012.

[7] Crestetto A., Helluy P. An OpenCL tutorial. 2010. http://www-irma.u-strasbg.fr/~helluy/
OPENCL/tut-opencl.html

[8] Johnson, C.; Pitkäranta, J. An analysis of the discontinuous Galerkin method for a scalar hyperbolic
equation. Math. Comp. 46 (1986), no. 173, 1–26

[9] Khronos Group. OpenCL online documentation. http://www.khronos.org/opencl/

[10] A. Klockner, T. Warburton, J. Bridge, J.S. Hesthaven, Nodal discontinuous Galerkin methods on
graphics processors, Journal of Computational Physics, Volume 228, Issue 21, 20 November 2009,
Pages 7863-7882

[11] S. Kokh, F. Lagoutière. An anti-diffusive numerical scheme for the simulation of interfaces between
compressible fluids by means of the five-equation model. J. Computational Physics, 229, 2773-2809,
2010.

[12] Lesaint, P.; Raviart, P.-A. On a finite element method for solving the neutron transport equation.
1974

[13] Munz C. D., Sonnendrücker E. Hyperbolic divergence cleaning for the Maxwell equations.

12

http://hal.archives-ouvertes.fr/hal-00546919
http://hal.archives-ouvertes.fr/hal-00546919
http://www-irma.u-strasbg.fr/~helluy/OPENCL/tut-opencl.html
http://www-irma.u-strasbg.fr/~helluy/OPENCL/tut-opencl.html
http://www.khronos.org/opencl/


[14] Ruetsch, G., Micikevicius, P. Optimizing Matrix Transpose in CUDA. NVIDIA GPU Computing
SDK, 1 – 24. 2009.

[15] Saurel, R.; Abgrall, R. A simple method for compressible multifluid flows. SIAM J. Sci. Comput.
21 (1999), no. 3, 1115–1145

[16] E. F. Toro. Riemann solvers and numerical methods for fluid dynamics, 2nd edition. Springer, 1999

13


	Introduction
	Multicore architectures and OpenCL
	A structured FV approximation of a compressible two-fluid flow
	Shock-bubble interaction
	One-dimensional scheme
	GPU implementation and numerical results

	An unstructured DG approximation of electromagnetic waves
	A PIC approximation of charged particle beams
	Conclusion

