
HAL Id: hal-00759069
https://hal.science/hal-00759069

Submitted on 30 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Online Algorithmic Strategies for Several
Two-Player Games with Different or Identical Player

Roles
Mugurel Ionut Andreica, Nicolae Tapus

To cite this version:
Mugurel Ionut Andreica, Nicolae Tapus. Efficient Online Algorithmic Strategies for Several Two-
Player Games with Different or Identical Player Roles. Acta Universitatis Apulensis - Mathematics-
Informatics (ISSN: 1582-5329), 2011, 25, pp.77-97. �hal-00759069�

https://hal.science/hal-00759069
https://hal.archives-ouvertes.fr

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 25/2011
pp.00-00

EFFICIENT ONLINE ALGORITHMIC STRATEGIES FOR

SEVERAL TWO-PLAYER GAMES WITH DIFFERENT OR

IDENTICAL PLAYER ROLES

Mugurel Ionuţ Andreica, Nicolae Ţăpuş

Abstract. In this paper we introduce novel algorithmic strategies for effciently
playing two-player games in which the players have different or identical player
roles. In the case of identical roles, the players compete for the same objective (that
of winning the game). The case with different player roles assumes that one of the
players asks questions in order to identify a secret pattern and the other one answers
them. The purpose of the first player is to ask as few questions as possible (or that
the questions and their number satisfy some previously known constraints) and the
purpose of the secret player is to answer the questions in a way that will maximize
the number of questions asked by the first player (or in a way which forces the first
player to break the constraints of the game). We consider both previously known
games (or extensions of theirs) and new types of games, introduced in this paper.

2000 Mathematics Subject Classification: 91A05, 91A10, 91A12, 91A20, 91A35,
91A40, 91A46, 91A50, 91A80.

1. Introduction

Algorithmic game theory is a topic which has been thouroughly studied because
of its importance in multiple fields, like computer science, economics, social sciences
or mechanism design. Game theory is used for modeling the behaviour of rational
agents, both in conflicting and cooperative situations. The number of considered
agents may vary from 0, 1 and 2, to any number of them. Moreover, the agents may
be seen as pursuing the same goal, or they may have different goals (in both cases,
they may compete or collaborate).

In this paper we consider only two-player games, in most of which the two players
have conflicting goals. In the first part of the paper (Sections 2-6) we discuss games
in which the players have different roles. One of them has to ask questions regarding
a secret pattern (e.g. tree, permutation, fake coin, and so on) and the other one has

1

M. I. Andreica, N. Ţăpuş - Efficient Online Algorithmic Strategies for Several
Two-Player Games with Different or Identical Player Roles

to answer the questions (usually truthfully). The first player wants to minimize the
number of questions (or the asked questions and their number must satisfy some
pre-established constraints), while the player who answers the questions wants to
make the first player ask as many questions as possible (or force it to break the
constraints of the game).

In the second part of the paper (Sections 7-8) we discuss two player games in
which the players have identical roles and they compete in order to win the game.
We name the considered games division games, because their goal is to divide an
initial number repeatedly at a set of given numbers, until the initial number becomes
smaller than a threshold.

In Section 9 we present an extention of the well-known game in which two secret
numbers are chosen, and one player is told their sum, while the other is told their
product. Based on a (collaborative) conversation between the players, the original
two numbers must be guessed.

For each of the games considered in Sections 2-9 we present new algorithmic
strategies for playing the games (almost) optimally (given their constraints). Finally,
in Section 10 we present related work and in Section 11 we conclude and discuss
future work.

2. Guessing a Number with At Most One Lie

Player A thinks of a secret number between 1 and N . Player B must guess the
number by asking questions of the type Q(S) = is the secret number in the set S ?
(S is a subset of {1, . . . , N}). Player A may answer with Y ES or NO and may lie at
most once during the game. We would like to guess the secret number N by asking
as few questions as possible. We will present next a strategy which asks almost the
optimal number of questions.

If player A never lied, we could use binary search in order to guess the number.
We would maintain an interval [a, b] in which the secret number is located for sure.
Initially, a = 1 and b = N . While a < b we:

1. set c = (a + b)/2 (integer division)

2. if Q([a, c]) = Y ES then b = c else a = c + 1.

When a = b, the secret number is a. This way, we asked ⌈log2(N)⌉ questions,
which is the optimal number when no lie is allowed.

When player A can lie, things get more complicated. In the first stage, we will
ask ⌈log2(N)⌉ questions. Before every question i (1 ≤ i ≤ ⌈log2(N)⌉), we will have
i sets of numbers: S(i, j) (0 ≤ j ≤ i − 1) is the set in which the secret number
is located for sure, in case player A lied at the question j. S(i, 0) corresponds

2

M. I. Andreica, N. Ţăpuş - Efficient Online Algorithmic Strategies for Several
Two-Player Games with Different or Identical Player Roles

to the case when player A never lied (so far). Before the first question, we have
S(1, 0) = [1, N]. Let’s consider the general case now, in which we are at the question
i. Each set S(i, j) is an interval [a(i, j), b(i, j)]. For each such set we will choose
the interval IQ(i, j) = [a(i, j), c(i, j) = (a(i, j) + b(i, j))/2] (where (x+ y)/2 denotes
the quotient of the integer division). The intervals IQ(i, j) are disjoint, because
the sets S(i, j) are disjoint. Then, we will construct the set SQ(i) as the union of
all the intervals IQ(i, j) (0 ≤ j ≤ i − 1) and we will ask the question Q(SQ(i)).
If the answer is Y ES, then the new sets S(i + 1, j) will be equal to [a(i + 1, j) =
a(i, j), b(i+1, j) = c(i, j)]; if the answer is NO, the new sets S(i+1, j) will be equal
to [a(i+1, j) = c(i+1, j)+1, b(i+1, j) = b(i, j)] (0 ≤ j ≤ i−1) We will also construct
the set S(i + 1, i), corresponding to the case when player A lied at the question i.
Thus, S(i + 1, i) = S(i, 0) \ S(i + 1, 0). To be more precise, if the answer to the
question i was Y ES, then S(i + 1, i) = [a(i + 1, i) = c(i, 0) + 1, b(i + 1, i) = b(i, 0)];
otherwise, S(i + 1, i) = [a(i + 1, i) = a(i, 0), b(i + 1, i) = c(i, 0)].

After the first stage of the algorithm, every set S(⌈log2(N)⌉, j) (0 ≤ j ≤ ⌈log2(N)⌉)
will contain only one number x(j). We will ask a question Q({x(0)}). If the answer
is Y ES, then x(0) is the secret number. The reason is simple. If player A had lied
to any of the previous questions (before asking Q({x(0)})), then A would have to
answer NO at this question. On the other hand, if A lied at the current question
(but told the truth so far), then the answer should also be NO. If the answer to the
current question is NO, then we know for sure that player A lied once. Thus, from
now on, A will not be able to lie again. Thus, we will consider all the ⌈log2(N)⌉+ 1
numbers, x(0), . . . , x(⌈log2(N)⌉) and we will perform a binary search on the set con-
taining these numbers. We will act as if we had the interval of numbers [0, ⌈log2(N)⌉]
at our disposal and we will use the strategy described in the beginning. The only
change consists of the fact that instead of asking a question Q([a, b]), we will ask
the question Q({x(i)|a ≤ i ≤ b}). In the end, the secret number is x(a).

The total number of questions is ⌈log2(N)⌉+1+ ⌈log2(⌈log2(N)⌉)⌉ (in the worst
case). For instance, for N = 106, we ask 26 questions. However, the minimum
number of questions for this case is 25.

3. Guessing the Types of M + N + 1 Persons with at Most Two

Questions per Person

We consider M +N +1 persons (numbered from 1 to M +N +1), each of which
is of one of the following three types: T, F, U. Every person of type T answers
the truth when it is asked a question. Every person of type F lies when it is asked
a question. A person of type U tells the truth only at every other question (i.e.
tells the truth at the 1st, 3rd, . . ., question - at all the odd-numbered questions - and
lies at the even-numbered questions). We can ask questions of the following type:

3

M. I. Andreica, N. Ţăpuş - Efficient Online Algorithmic Strategies for Several
Two-Player Games with Different or Identical Player Roles

Q(i, j, G) asks the person i if the person j belongs to the group G (where G can be
only T or F); the answer to such a question is either Y ES or NO. We can never
have i = j at a question and we can never repeat the same two persons i and j (in
this order) as the first two arguments of a question. Moreover, we know the number
of persons of each type: M of type T , N of type F , and one person of type U . We
want to find the type of each person i (type(i)) of the M + N + 1 persons by asking
questions, such that every person i is asked at most 2 questions.

We will start by considering some particular cases. If M = N = 0 then type(1) =
U . If M = 0 and N ≥ 1 then we ask each person i (1 ≤ i ≤ N) the question
Q(i, N + 1, F). If type(N + 1) = U then all the N answers will be Y ES. If
type(N + 1) = F then we will have N − 1 NO answers and one Y ES answer. If
N ≥ 2 then we can distinguish between the two cases:

• if we have N Y ES answers, then all the asked persons are of type F and
person N + 1 is of type U

• otherwise, the only person answering Y ES will be of type U and all the others
will be of type F

If N = 1 then we will ask the extra question Q(2, 1, F). If the answer is NO
then type(2) = U and type(1) = F ; otherwise, type(2) = F and type(1) = U .

The other particular case is M ≥ 1 and N = 0. We will ask the questions
Q(i, M + 1, T) (1 ≤ i ≤ M). If all the M answers are NO, then type(M + 1) = U
and the type of all the other persons is T . Otherwise, the answer to every question
will be Y ES (i.e. type(M + 1) = T). If we are in this subcase and M = 1 then we
can immediately infer that type(1) = U . If M > 1 then we can proceed as follows.
We will ask the question Q(M + 1, 1, T). If the answer if NO, then type(1) = U .
Otherwise, we will ask the questions Q(i, i + 1, T) in increasing order of i (1 ≤
i ≤ M − 1) until we obtain the first NO answer. Let the answer to the question
Q(j, j + 1, T) be NO. Then type(j + 1) = U . After identifying the person of type
U , the type of all the other persons is T .

We will now consider the general case, in which M ≥ 1 and N ≥ 1. We will start
by asking the questions Q(i, M +N +1, T) (1 ≤ i ≤ M +N). If type(M +N +1) = F
(subcase 1) then we will get M + 1 NO answers and N − 1 Y ES answers. Every
person i who answered Y ES has type F . Among the M + 1 persons who answered
NO, M are of type T and one is of type U . If type(M + N + 1) = T (subcase 2)
then we will get M Y ES answers and N NO answers. If type(M + N + 1) = U
(subcase 3) then we will get N Y ES answers and M NO answers.

Let’s consider first the semi-general case, in which M 6= N and also M 6= N −
1. In this case, we can distinguish between the three subcases we mentioned. In
subcase 1, let’s assume that the M + 1 persons who answered NO are numbered

4

M. I. Andreica, N. Ţăpuş - Efficient Online Algorithmic Strategies for Several
Two-Player Games with Different or Identical Player Roles

p(1), . . . , p(M + 1) in some arbitrary order. We will ask the question Q(M + N +
1, p(1), T). If the answer is Y ES then type(p(1)) = U . Otherwise, we will ask the
questions Q(p(i), p(i + 1), T) in increasing order of i (1 ≤ i ≤ M), until we obtain
the answer NO. Let Q(p(j), p(j + 1), T) be the question for which we obtained the
answer NO. Then type(p(j + 1)) = U . After finding the person of type U , the type
of all the other M persons who answered Y ES at the first round of questions will
be T .

If we obtain M Y ES answers (subcase 2), then the type of each of the persons
who answered NO is F . Then, we are in the same case as when M ≥ 1, N = 0 (we
can renumber every person who answered Y ES with a different number from 1 to
M , and we can assign to the person M + N + 1 the new number M + 1), and the
answer to each question in the first round is Y ES.

In an extension of the semi-general case where M 6= N (and M 6= N − 1 or
M = N − 1), if we obtained N Y ES answers in the first round, then:

• every person who answered NO is of type T

• every person who answered Y ES is of type F

A slightly more complicated case occurs when M = N − 1 (and, obviously, M 6=
N). In this case we cannot distinguish between subcases 1 and 2, because we obtain
N NO answers and N − 1 Y ES answers (but subcase 3 is distinguishable). Let’s
consider the N persons who answered NO, numbered as: p(1), . . . , p(N). We will ask
the questions Q(p(i), p(i+1), T) (1 ≤ i ≤ N−1), plus the question Q(p(N), p(1), T).
Let NY be the number of Y ES answers obtained at this round of questions and NN
be the number of NO answers obtained (NY + NN = N). If type(M + N + 1) = T
then the N people who answered NO at the first round of questions are of type F
and we will have NY = N and NN = 0. If type(M + N + 1) = F then among the
N people who answered NO at the first round of questions are N − 1 who are of
type T , and one which is of type U . Thus, we will have NY = N − 1 and NN = 1
(because the person of type U will lie). This way, we can identify the type of the
person M + N + 1. If type(M + N + 1) = F then the N − 1 persons who answered
Y ES at the first round of questions are of type F , the person who answered NO at
the 2nd round of questions is of type U and the other N − 1 persons (who answered
Y ES at the 2nd round of questions) are of type T . If type(M + N + 1) = T then
the N people who answered NO at the first round of questions are of type F . In
order to identify the types of the N − 1 persons who answered Y ES at the first
round of questions, we will ask the questions Q(p(i), p(i+1), T) (1 ≤ i ≤ N −2) and
the question Q(p(N − 1), p(1), T) (if N − 1 > 1), where p(1), . . . , p(N − 1) are these
N − 1 persons. If N − 1 = 1 then p(1) is of type U . Otherwise, the only person p(i)

5

M. I. Andreica, N. Ţăpuş - Efficient Online Algorithmic Strategies for Several
Two-Player Games with Different or Identical Player Roles

which answers NO at this second round of questions is of type U and the others are
of type T .

A more complicated situation occurs when M = N and we obtain an equal
number of Y ES and NO answers. In this case, we cannot infer the type of the
person M + N + 1. Let’s set L = M + N + 1. Let A be any person who answered
Y ES and B be any person who answered NO at the first round of questions. We
will ask the questions Q(L, A, T) and Q(L, B, T) (in this order). We will denote the
answers to these questions by Ans(L, A) and Ans(L, B), respectively. If type(L) = T
then Ans(L, A) may be either Y ES (if type(A) = T) or NO (if type(A) = U)
and Ans(L, B) = NO (type(B) = F). If type(L) = U then Ans(L, A) = Y ES
(type(A) = F and the person L lies) and Ans(L, B) = Y ES (type(B) = T and the
person L tells the truth). Thus, if Ans(L, B) = Y ES then type(L) = U , the type
of every person who answered NO at the first round of questions is T , and the type
of every person who answered Y ES at the first round of questions is F .

If Ans(L, B) = NO then type(L) = T . In this case, every person who answered
NO at the first round of questions is of type F . As before, we are in a case similar
to the N = 0 case. We will number all the persons who answered Y ES at the first
round of questions by p(1), . . . , p(M), such that p(1) = A. If Ans(L, A) = NO then
type(A) = U and type(p(j)) = T (2 ≤ j ≤ M). Otherwise, we will repeatedly ask
the questions Q(p(i), p(i + 1), T) in increasing order of i (1 ≤ i ≤ M − 1) until we
obtain a NO answer. Let Q(p(j), p(j + 1), T) be the (first) question for which the
answer is NO. Then type(p(j + 1)) = U and the types of all the other persons p(i)
(1 ≤ i ≤ M, i 6= j) is T .

If M = N or M = N − 1 and we can uniquely identify the subcase after the
first round of questions (a subcase is identified by an ordered pair of numbers,
representing the number of Y ES answers and the number of NO answers at the
first round of questions), then we proceed like in the semi-general case.

We should notice that in each case, every person is asked at most two questions,
no person was asked a question about (him/her)self, and we never asked a question
to the same person i about the same person j. Thus, all the constraints are satisfied.

4. A Generalization of ”The Counterfeit Coin” Problem

We are given n ≥ 3 coins, out of which one is different (lighter or heavier than
the others). We also have a balance with two arms. We can place an equal number
of coins (left or right) on each of the two arms of the balance. The balance will
indicate which of the two sets of coins is heavier, or if they have the same weight.
We want to identify the different coin (and whether it is lighter or heavier than
the others) by using the minimum number of weightings. We will consider the more
general situation, in which the results of m weightings are already given and we need

6

M. I. Andreica, N. Ţăpuş - Efficient Online Algorithmic Strategies for Several
Two-Player Games with Different or Identical Player Roles

to minimize the number of weighting performed from now on (using the information
extracted from the m given weightings).

We present a dynamic programming solution, as follows. We will consider that
each coin can be of one of 4 types: NM (normal), NH (normal or heavier), NL
(normal or lighter), and NHL (normal or heavier or lighter). Initially, we will set
the type of each coin i (1 ≤ i ≤ N) to be type(i) = NHL. Then, we will consider
the m given weightings. For each weighting k, let L(k) be the set of coins located
on the left arm of the balance and R(k) be the set of coins located on the right arm.
Let result(k) be the result of the weighting k: 0 if the sum of the weights of the
coins in L(k) and R(k) are equal, −1 (+1) if the sum of the weights of the coins
in L(k) is smaller (larger) than that of the coins in R(k). Both sets L(k) and R(k)
contain the same number of coins. If result(k) = 0 then we will set the type of each
coin i ∈ (L(k) ∪ R(k)) to type(i) = NM . If result(k) = −1 (+1) then:

• at least one coin i ∈ L(k) must have type(i) = NHL or type(i) = NL (NH),
or at least one coin i ∈ R(k) must have type(i) = NHL or type(i) = NH
(NL); otherwise, the weighting is not valid (i.e. it contradicts the results of
the previous weightings)

• for each coin i ∈ L(k):

– if type(i) = NHL then set type(i) = NL (NH)

– else if type(i) = NH (NL) then set type(i) = NM

• for each coin i ∈ R(k):

– if type(i) = NHL then set type(i) = NH (NL)

– else if type(i) = NL (NH) then set type(i) = NM

• for each coin i ∈ ({1, . . . , n} \ (L(k) ∪ R(k))) set type(i) = NM

After considering all the m weightings, let cntt be the number of coins i for which
type(i) = t (t=NM, NHL, NH, or NL). We have two possibilities:

1. cntNHL > 0 and cntNL = cntNH = 0 (this may occur only if the result of all
the m weightings is 0)

2. cntNL ≥ 0, cntNH ≥ 0 and cntNHL = 0

Note that if we have cntNHL = cntNH = cntNL = 0 then all the coins are
normal and the weightings can be considered invalid (as we assumed that exactly
one counterfeit coins exists). Our dynamic programming algorithm will compute a
table nmin(n, i, j), where:

7

M. I. Andreica, N. Ţăpuş - Efficient Online Algorithmic Strategies for Several
Two-Player Games with Different or Identical Player Roles

• if i ≥ 0 and j ≥ 0 then nmin(n, i, j)=the minimum number of weightings
which need to be performed from the state in which there are i coins of type
NH and j coins of type NL (and n − i − j coins of type NM)

• if j = −1 then nmin(n, i,−1)=the minimum number of weightings which need
to be performed from the state in which there are i coins of type NHL (and
n − i coins of type NM)

We will compute these values in decreasing order of the number of coins of
type NM belonging to a state. Let this number be q (n − 1 ≥ q ≥ 0). Then,
we have n − q coins of the other types. For q = n − 1 the computed values are:
nmin(n, 1, 0) = nmin(n, 0, 1) = 0 (as the only coin of the type NH or NL is the
different one, and if it is of type NH then it is heavier than the others, while if it
is of type NL it is lighter than the other coins) and nmin(n, 1,−1) = 1 (because
although we know which coin is different, we need to perform an extra weighting, in
order to compare its weight to that of a normal coin, in order to know if it is heavier
or lighter). For n − 2 ≥ q, we will procced as follows. First, we will consider all the
ordered pairs (i, j) such that 0 ≤ i, 0 ≤ j and i + j = n − q. For each such ordered
pair (i, j), we will initialize nmin(n, i, j) = +∞. Then, we will consider all the
possible distinct weightings which can be performed from this state. A pseudocode
close to the C programming language for this case is described below:

for (a = 0; a ≤ i and a ≤ n/2; a + +)
for (b = 0; b ≤ j and (a + b) ≤ n/2; b + +)
if (a + b > 0) {
for (c = 0; a + c ≤ i and c ≤ (a + b); c + +)
for (d = 0; b + d ≤ j and (c + d) ≤ (a + b); d + +)
if ((a + b) − (c + d) ≤ q) {
cNH(0) = i − a − c; cNL(0) = j − b − d;
cNH(+1) = a; cNL(+1) = d;
cNH(−1) = c; cNL(−1) = b;
nmin(n,i,j)=min{nmin(n,i,j), 1 + max{nmin(n,cNH(0), cNL(0)),
nmin(n,cNH(+1), cNL(+1)), nmin(n,cNH(−1), cNL(−1))}}; }}

Each weighting considers that there are a + b coins placed on each arm of the
balance. On the left pan there will be a coins of type NH and b coins of type
NL. On the right pan there will be c coins of type NH, d coins of type NL and
(a + b − c − d) coins of type NM . In case the result will be k, then we will remain
with cNH(k) coins of type NH and cNL(k) coins of type NL.

After considering all the pairs (i, j) (for the current value of q), we will compute
the value nmin(n, n − q,−1). We initialize nmin(n, n − q,−1) = +∞ and then we
run the following pseudocode:

8

M. I. Andreica, N. Ţăpuş - Efficient Online Algorithmic Strategies for Several
Two-Player Games with Different or Identical Player Roles

for (a = 0; a ≤ n − q and a ≤ n/2; a + +)
for (b = 0; b ≤ a and b ≤ (n − q − a); b + +)
if (a − b ≤ q) {
cNHL(0) = n − q − a − b;
cNH(+1) = a; cNL(+1) = b;
cNH(−1) = b; cNL(−1) = a;
nmin(n,n-q,-1)=min{nmin(n,n-q,-1), 1 + max{nmin(n,cNHL(0),−1),
nmin(n,cNH(+1), cNL(+1)), nmin(n,cNH(−1), cNL(−1))}}; }

Each weighting for the case (n − q,−1) considers that we place a coins of type
NHL on the left arm. On the right arm we place b coins of type NHL and a − b
coins of type NM . The values ct(k) are the numbers of remaining coins of type t if
the result of the weighting is k. The time complexity of the dynamic programming
algorithm is dominated by the stage of computing the values nmin(n, i, j) with i ≥ 0
and j ≥ 0, and is of the order O(n6).

In the end, in order to solve our problem, if cntNHL > 0 then the answer is
nmin(n, cntNHL,−1); otherwise, the answer is nmin(n, cntNH , cntNL). Note that a
very efficient heuristic which seems correct except for some values of n of a certain
type, is the following. We compute the value U = 2 · cntNHL + cntNH + cntNL. U is
the amount of uncertainty left after performing the m weightings. Intuitively, since
each new weighting may provide any of the 3 possible answers, it seems plausible that
there might be a weighting which reduces the uncertainty by a factor of 3. Thus, it is
plausible to assume that the number of extra questions required is around ⌈log3(U)⌉.
In fact, this simple reasoning seems to provide the correct answer every time, except
when n = 3k

−1
2 (in these cases, the real correct answer may sometimes be larger by

1 that the value computed by this heuristic).

5. Reconstructing a Tree by asking a Small Number of LCA(u, v)
Questions

We consider a rooted tree with n vertices. The vertices are identified with num-
bers from 1 to n. Each vertex i (except for the root of the tree, which we will
denote by r) has a unique parent in the tree, parent(i). For each vertex i of the
tree, we conceptually construct a list Li(i) consisting of the vertex i and all of its
descendants:

• if the vertex i has no sons, then Li(i) consists of just the vertex i

• if the vertex i has at least one son, then the first element of Li(i) is the
vertex i; the other elements are obtained by merging (in an arbitrary man-
ner) the lists Li(j) of the sons j of the vertex i; when merging multiple lists
Li(j1), . . . , Li(jk), we obtain a new list Li′ composed of all the elements in

9

M. I. Andreica, N. Ţăpuş - Efficient Online Algorithmic Strategies for Several
Two-Player Games with Different or Identical Player Roles

Li(j1), . . . , Li(jk) - if an element a was located before an element b in one of
the lists Li(jp), then a will also be located before b in Li′

Given Li(r), we want to reconstruct the tree. Except for knowing Li(r), we may
ask questions of the following type LCA(u, v), which returns the lowest common
ancestor in the tree of the vertices u and v. We would like to ask as few questions
LCA(∗, ∗) as possible. We will present a solution which asks O(n · log(n)) such
questions when the maximum number of sons of any vertex is upper bounded by a
constant value C ≥ 2.

We will start by presenting a simple O(C · n2) solution. We will define a
function Compute(x) which determines the subtree rooted at x, given Li(x). If
Li(x) = {x}, then x is a leaf and the function returns. Otherwise, let’s assume that
x, y(1), . . . , y(k(x)) (k(x) ≥ 1) are the elements from Li(x) (in the order in which
they occur in the list). We set parent(y(1)) = x, we initialize Li(y(1)) = {y(1)} and
we initialize Lsons(x) = {y(1)}. Then, we consider the vertices y(j), in increasing
order of j (2 ≤ j ≤ k(x)). For each vertex y(j), we consider, in any order, the
vertices z from Lsons(x). If LCA(z, y(j)) = z then we add y(j) at the end of Li(z)
(and we do not consider the remaining vertices from Li(x)). If LCA(z, y(j)) 6= z
for every vertex z ∈ Li(x), then we add y(j) at the end of Lsons(x), we initialize
Li(y(j)) = {y(j)} and we set parent(y(j)) = x. After all this, the list Lsons(x)
contains all the sons z of x and all the lists Li(z) of vertex x’s sons were correctly
computed. Then, for every son z of x, we call Compute(z). In order to construct
the tree we need to call Compute(r).

Another solution is the following. Let’s consider L(1), . . . , L(n), the vertices of
Li(r), in the order in which they appear in Li(r). Obviously, L(1) is the root r
of the tree. For every vertex u 6= r of the tree we will find its parent. We have
parent(L(2)) = r. For i = 3, . . . , n, we will proceed as follows. The parent of the
vertex L(i) is one of the vertices L(1), . . . , L(i−1). We will initialize t = r, and then
we will set all the vertices L(2), . . . , L(i) as being unmarked (the vertex L(1) will be
marked). While we haven’t found the parent of L(i), we will iterate in a loop LP ,
performing the following steps: 1) while t has at least one unmarked son: {1.1) we
will choose that son f with the maximum number of vertices in its subtree; 1.2) we
mark f ; 1.3) we set t = f ;} 2) we set t = LCA(t, L(i)) (the lowest common ancestor
of the vertices t and L(i)); 3) if all the (current) sons of the vertex t are marked,
then we exit the loop, because t is the parent of the vertex L(i). In order to select
each time the unmarked son f with the largest number of vertices in its subtree, we
will store a value nr(u) for every vertex u, representing the number of vertices in
vertex u’s subtree. Initially, nr(r) = 2 and nr(L(2)) = 1. After we find the parent
t of every vertex L(i) (3 ≤ i ≤ n), we set parent(L(i)) = t and nr(L(i)) = 1. After
this, we traverse all the ancestors a of L(i) (by following the parent pointers starting

10

M. I. Andreica, N. Ţăpuş - Efficient Online Algorithmic Strategies for Several
Two-Player Games with Different or Identical Player Roles

from parent(L(i)) and until we reach the root r) and we increment nr(a) by 1.
The time complexity of the algorithm is O(n2), because, for every vertex L(i),

each of the vertices L(1), . . . , L(i−1) is visited (and marked) at most once. Besides,
in order to obtain this time complexity, before considering a vertex L(i), we need to
sort the sons f of each vertex u in non-increasing order of nr(f). Then, for every
vertex u, we will initialize a counter idx(u) = 1, pointing to the next unmarked
son which needs to be considered (actually, it points to the index of this son in the
sorted order of vertex u’s sons). After selecting an unmarked son f (pointed to by
idx(u)) of the vertex u, we will increment idx(u) by 1. If idx(u) becomes greater
than the number of sons of u, then u has no more unmarked sons. Note that sorting
the sons of each vertex before considering every vertex L(i) is not really required.
After finding parent(L(i)), we need to update only the lists of sons of the ancestors
of L(i). Let u be an ancestor of L(i) and let v be the son of u located on the path
towards L(i) (i.e. parent(v) = u). If v = L(i) then we add L(i) at the end of the
list of sons of the vertex u (as it has the smallest number of vertices in its subtree).
If v 6= L(i) then we need to update the position of v in the list of sorted sons of
the vertex u: we remove v from this list and then we re-insert it to its appropriate
position (considering the newly updated value nr(v)), such that the correct ordering
of vertex u’s sons is maintained.

Let’s now analyze the number of questions LCA(a, b) asked by the algorithm.
Let’s notice that we only ask one question for the whole group of vertices marked
during step 1 of one iteration of the LP loop. Let’s consider the vertex t obtained at
the end of an iteration of the LP loop. If t is not the parent of L(i), then at the next
iteration of the LP loop we will not consider any vertex in the subtrees of the marked
sons f of the vertex t which were selected during the current or previous iterations.
Thus, the number of vertices which are still potential parents for L(i) is at most
(C−nsel(t))·nr(t)/C, where nsel(t) denotes the number of marked sons of the vertex
t. Thus, after at most C −1 consecutive questions, the number of vertices which are
potential parents of L(i) drops by a factor of C. This proves that the total number
of questions asked for finding parent(L(i)) is O((C − 1) · logC(n)) = O(log(n)). The
total number of questions is O(n · (C − 1) · logC(n)) = O(n · log(n)).

6. Reconstructing a Permutation by Asking a Bounded Number of

Distance Questions per Element

We consider an unknown permutation with N elements (numbered from 1 to
N). We want to reconstruct the permutation by asking a small number of questions
of the following type: D(i, j) asks for the distance between the elements i and j
(i.e. the absolute difference between their positions in the permutation). In fact, we
would like for each element i to occur at most 3 times as an argument to a question
D(i, j) (or D(j, i)).

11

M. I. Andreica, N. Ţăpuş - Efficient Online Algorithmic Strategies for Several
Two-Player Games with Different or Identical Player Roles

We will assume that element 1 is located on position 0 and we will determine the
positions of the other elements relative to this. We will denote by x(i) the position
of the element i. We will start by asking the questions D(1, 2), D(1, 3) and D(2, 3).
From these questions we will be able to compute exactly the positions of the elements
2 and 3. For instance, if D(1, 2)+D(1, 3) = D(2, 3) we will have x(2) = −D(1, 2) and
x(3) = D(1, 3); if D(1, 2)+D(2, 3) = D(1, 3) then x(2) = D(1, 2) and x(3) = D(1, 3),
and so on.

We will now consider the elements 4, . . . , N (in this order), in pairs of two con-
scutive elements. Let’s assume that we are now considering the elements i and i+1
and that the positions of all the elements 1, . . . , i − 1 have already been computed.
During the algorithm we will maintain the following invariant. We will always have
3 elements from the set {1, . . . , i−1} which occurred only two times as an argument
to a question. Let these elements be x, y, and z. Initially, x = 1, y = 2 and z = 3.
When considering the elements i and i + 1 we will first ask the question D(i, i + 1).
Then, we will choose two elements a and b from the set {x, y, z} and we will ask the
questions D(a, i) and D(b, i + 1). Let’s now analyze the problem locally. We have
4 elements: a, b, i and i + 1. We know x(a), x(b), and the distances D(i, i + 1),
D(a, i) and D(b, i + 1). The only two possibilities for x(i) are x(a) − D(a, i) and
x(a) + D(a, i), while for x(i + 1) are x(b) − D(b, i + 1) and x(b) + D(b, i + 1). We
will consider all the 2x2 possibilities and we would like to have only one valid pos-
sibility, i.e. only one possibility for which |x(i) − x(i + 1) = D(i, i + 1). In most
cases, the solution will be unique. However, if Dab = |x(b)− x(a)| = D(i, i + 1) and
D(a, i) = D(b, i + 1), then there are two valid solutions among the 4 possibilities.
We could solve the ambiguity by asking the question D(a, i + 1) (which will only be
satisfied by one of the two valid solutions), but this would mean that element a was
given as an argument to 4 questions. We can avoid this case by carefully choosing
the elements a and b from the set {x, y, z}. We will choose two elements a and b
such that |x(b) − x(a)| 6= D(i, i + 1). Note that there are three distances between
the three elements x, y, and z, out of which at most 2 can be equal. Thus, we can
always find a pair (a, b) among x, y, and z, such that |x(b) − x(a)| 6= D(i, i + 1).

After finding the positions x(i) and x(i+1), the new set of three elements which
were given as question arguments only two times will be {i, i+1}∪({x, y, z}\{a, b}).

If N is even, in the end, we will have an element (N) which has no pair. For this
element we will choose two elements a and b among x, y and z, and we will ask the
questions D(a, N) and D(b, N). Based on these distances and on Dab = |x(a)−x(b)|
we will uniquely determine x(N).

After all these we just need to shift the positions of the elements to the interval
[1, N]. We will compute xmin = min{x(i)|1 ≤ i ≤ N}. Then, we will modify each
position as follows: x(i) = x(i) − xmin + 1 (1 ≤ i ≤ N).

12

M. I. Andreica, N. Ţăpuş - Efficient Online Algorithmic Strategies for Several
Two-Player Games with Different or Identical Player Roles

7. The Division Game with Integer Numbers

We consider a natural number N ≥ 0 and a list of K ≥ 1 distinct natural
numbers: P (1), . . . , P (K) (P (i) ≥ 2; 1 ≤ i ≤ K). Two players take turns alternately.
At its turn, a player will replace the number N by any number ⌊ N

P (i)⌋, where 1 ≤ i ≤

K. If N ≤ L (for a given L ≥ 0) then the player who has to perform the next move
loses the game. A simple dynamic programming strategy is the following. For every
natural number q (0 ≤ q ≤ N) we compute win(q) = 1 if the current player has a
winning strategy when its current value is q, or 0, otherwise. win(0 ≤ q ≤ L) = 0.
For L + 1 ≤ q ≤ N we consider all the numbers q′ = ⌊ q

P (i)⌋ (1 ≤ i ≤ K). If we have

win(q′) = 0 for at least one such number, then win(q) = 1; otherwise (if win(q′) = 1
for all the values q′) then win(q) = 0.

The problem with this approach is that it is inefficient for large values of N ,
because it has to compute O(N) win(∗) values. We will use a recursive approach
instead, coupled with memoization. We will maintain a hash table H with pairs
(key = q, value = win(q)). Then, we will call the function computeWin(N).
computeWin(q) computes the value win(q) and returns it. The function works
as follows. If the key q is located within H, then it returns the value associated
to the key q. Otherwise, if q ≤ L, it returns the value 0. If q ≥ L + 1, the
function considers every value q′ = ⌊ q

P (i)⌋ (1 ≤ P ≤ K). For each such value,

it performs the call computeWin(q′) in order to obtain the value win(q′). Then,
win(q) is computed using the same rules as before. After computing win(q), the
pair (key = q, value = win(q)) is inserted into H and the value win(q) is returned.
The number of processed values q is significantly smaller than N .

A much simpler solution when the list of numbers P (1), . . . , P (K) is 2, . . . , K+1
and L = 0 is the following. If N = L then the first player to move loses the game.
Otherwise, we set Q = N and M = K + 1. While Q ≥ (2 · M) we set Q = Q div
(2 · M) (integer division). In the end, if Q < M the first player to move (for the
number N) has a winning strategy; if Q ≥ M then the second player to move has a
winning strategy.

8. The Division Game with Real Numbers

In this section we consider the same game as in the previous section, except
that the division is a real division (not integer), and the numbers N , L and P (i)
(1 ≤ i ≤ K) are real numbers (moreover, P (i) > 1.0). We can use the same solution
based on memoization as in the previous problem, but now the number of distinct
numbers encountered would be too large. In this case, we will divide the real axis
into disjoint intervals of equivalent numbers. The equivalence of two numbers a and
b implies, among other things, that the (optimal) result of the game when N = a

13

M. I. Andreica, N. Ţăpuş - Efficient Online Algorithmic Strategies for Several
Two-Player Games with Different or Identical Player Roles

is the same as when N = b. For each interval (a, b] of equivalent numbers we will
compute its winning value: win((a, b]) = 1, if the next player to move wins the game
when the current value is a number from the interval (a, b], and 0, otherwise. The
initial interval is (0, L] and win((0, L]) = 0.

A first solution is the following. We will maintain a balanced tree T with the
intervals computed so far and a heap H (initially empty). Let (a, b] be the last
interval computed. We will compute the intervals from left to right. Initially, a = 0,
b = L and T contains only the interval (0, L]. While b < N we perform the following
steps. We will insert into H the values b · P (i) (1 ≤ i ≤ K). Then, we extract from
H the minimum value x. We set a = b and then b = x. We will compute win((a, b])
as follows. We choose a number y from the interval (a, b] (e.g. y = (a + b)/2 or
y = b). Then, we consider all the values y′ = y/P (i) (1 ≤ i ≤ K). For each value y′,
we search T (in O(log(|T |)) time) in order to find the interval (u, v] containing y′.
If win((u, v]) = 0 then we set win((a, b]) = 1. If none of the values win((u, v]) is 0
(for all the values y′), then we set win((a, b]) = 0. Afterwards, we insert the interval
(a, b] into T . As soon as b ≥ N we stop. The result of the game is determined
by the value win((a, b]). The disadvantage of this approach is that it may end up
computing many intervals. Moreover, there may be many consecutive intervals with
the same win value. Collapsing all such intervals into one larger interval will help
from the memory point of view, but not from that of the running time.

A more efficient approach is presented next. First, we will consider a data struc-
ture DS which will store disjoint intervals (a, b] and which supports the following
types of operations:

• insert an interval (a, b] into DS

– before inserting it, all the intervals (c, d] fully included in (a, b] are re-
moved from DS

– if there is an interval (c, d] with c < a and a ≤ d ≤ b in DS then we set
a = c and then we remove (c, d] from DS

– if there is an interval (c, d] with d > b and a ≤ c ≤ b in DS then we set
b = d and then we remove (c, d] from DS

– if there is no interval (c, d] with c ≤ a and d ≥ b in DS then we insert
(a, b] into DS

• find the interval (a, b] with the minimum value of a

• remove a given interval (a, b] from DS

• find the interval (a, b] with the smallest value b such that b ≥ x for a given
value of x

14

M. I. Andreica, N. Ţăpuş - Efficient Online Algorithmic Strategies for Several
Two-Player Games with Different or Identical Player Roles

DS can be implemented easily by using any balanced tree. Every operation is
supported in O(log(m)) time (where m is the number of intervals in DS), except for
the insertion operation, which takes O((q +1) · log(m)) time (or even O(q + log(m))
time), where q is the number of intervals intersected by the newly inserted interval
(a, b].

We will maintain K + 1 data structures DS. The first one, T1 will contain
intervals for which the first player to move will be the winner (considering an optimal
strategy). Then, we will have K data structures T0(i) (1 ≤ i ≤ K), with the property
that for any number x of an interval (a, b] from T0(i), x/P (i) belongs to an interval
(c, d] with win(c, d] = 1. We consider the operation of expanding an interval (a, b].
For each value P (i), we compute an interval (c(i) = max{P (i) ·a, b}, d(i) = P (i) · b],
such that for every x ∈ (c(i), d(i)], we have that x/P (i) ∈ (a, b] (1 ≤ i ≤ K). Then,
we insert every such interval (c(i), d(i)] in T1. We also consider the operation of
K − expanding an interval (a, b]. For each value P (i) we compute the same interval
(c(i), d(i)] mentioned earlier and we insert it into T0(i) (1 ≤ i ≤ K).

The algorithm proceeds as follows. Let (a, b] be the last computed interval.
Initially, we have a = 0, b = L, and win((a, b]) = 0. While b < N we proceed as
follows:

1. for each data structure T0(i) (1 ≤ i ≤ K), while T0(i) is not empty and
the interval (c(i), d(i)] with the minimum value of c(i) has the property that
d(i) ≤ b, we remove (c(i), d(i)] from T0(i).

2. if T1 is not empty, then let (c, d] be the interval with the minimum value of c
in T1: if c = b then:

(a) if win((a, b]) = 1 then set b = d else set (a, b] = (c, d]

(b) set win((a, b]) = 1

(c) K-expand the interval (a, b]

(d) remove the interval (c, d] from T1

3. if, however, T1 is empty or c > b then:

(a) let (u(i), v(i)] be the interval with the smallest value v(i) from T0(i) such
that v(i) ≥ b (1 ≤ i ≤ K)

(b) let bmin = min{b(i)|1 ≤ i ≤ K}

(c) if win((a, b]) = 0 then set b = bmin else set a = b and then b = bmin

(d) set win((a, b]) = 0

(e) expand the interval (a, b]

15

M. I. Andreica, N. Ţăpuş - Efficient Online Algorithmic Strategies for Several
Two-Player Games with Different or Identical Player Roles

In the end, if win((a, b]) = 1 (with a < N ≤ b) then the first player to move
wins; otherwise, the second player has a winning strategy. The time complexity is
O(M ·K · log(M)), where m is the total number of iterations of the ”while (b < N)”
loop.

9. An Extension of the Sum-Product Game

We consider an extension of the well-known game concerning the sum and prod-
uct of two numbers. There are two players, S and P . S knows the sum of two
numbers a and b, while P knows their product. a and b are integer numbers from
the interval [1, N]. We consider both the case when a and b must be distinct num-
bers, as well as the case when they may be equal. A conversation between S and P
takes place. Each player makes an affirmation alternately. There are M +1 affirma-
tions made overall by the two players. Each of the first m affirmations is ”I don’t
know the numbers.”. The last affirmation is ”I know the numbers.”. We would like
to know all the possible pairs of numbers (a, b) which could have generated the given
conversation.

We will start by generating all the sums (products) of all the possible pairs (a, b).
For each sum s (product p) we will store the number of valid pairs (a, b) whose sum
(product) is s (p): snum(s) (pnum(p)). We can compute this in O(N2) time, using
a hash table HS (HP) in which the key is the sum (product) and the value is the
number of pairs encountered so far (while generating all the valid pairs) whose sum
(product) is s (p). Moreover, we will also maintain a set SP with all the possible
valid pairs (initially, SP contains all the valid pairs (a, b)). SP can be implemented
as a hash table, too. Then, we will perform m rounds of eliminating pairs. Let’s
assume that we are at round R (1 ≤ R ≤ M). If R is odd, it is the turn of the player
S to make an affirmation; otherwise, it is the turn of player P . If it S’s (P ’s) turn,
we will consider all the sums (products) s (p) with snum(s) = 1 (pnum(p) = 1).
For each such sum (product) s (p), we will remove from SP the pair (a, b) with
a + b = s (a · b = p). After removing (a, b) from SP , we will also decrease by 1
the values snum(a + b) and pnum(a · b). After performing the m rounds, if M + 1
is odd (even), then the last affirmation is made by S (P). If it is S’s (P ’s) turn,
then we will report as possible solutions all the pairs (a, b) with snum(a + b) = 1
(pnum(a · b) = 1).

10. Related Work

Guessing secret numbers when lies are allowed has been previously considered
in several papers, like [5] and [6]. Our solution, however, is new and of independent
theoretical interest.

16

M. I. Andreica, N. Ţăpuş - Efficient Online Algorithmic Strategies for Several
Two-Player Games with Different or Identical Player Roles

The counterfeit coin problem (without the initial given weightings) has been
considered in many papers (e.g. [1, 2, 3, 4]), from multiple perspectives, like multiple
counterfeit coins, having the knowledge that the different coin is lighter (heavier)
than the others, obtaining mathematical equations for the minimum number of
required weightings, and so on. [4] presents a greedy algorithm for the counterfeit
coin problem, focused on reducing the uncertainty as much as possible. Although
that algorithm starts from the case when no weightings are given, it is straight-
forward to run that algorithm from the state obtained after considering all the
initial given weightings.

Algorithms for reconstructing trees efficiently have been considered in many pa-
pers (e.g. [7, 8]), because of their applications in biology (reconstruction of philogeny
trees).

(Multi-)permutation guessing problems using different types of questions were
considered in several papers. In [9], the problem of guessing a permutation by asking
questions in which the argument is a candidate permutation and the answer is the
number of positions in which the secret permutation and the candidate permutation
coincide. In [10], a similar problem was considered, but for multi-permutations (with
known number of occurrences of each element).

A reference book in algorithmic game theory is [11], in which many topics re-
garding both collaborative and conflicting agents are considered. However, the types
of situations considered in [11] are of a somewhat different nature than the ones con-
sidered in this paper.

Besides the published material, we are aware of several related problems whose
solutions were mentioned to us in personal communications. We will briefly discuss
some of these problems and their solutions here, with the permission of the solutions’
authors.

The first problem considers the reconstruction of a tree from distance data be-
tween leaves. We know the number K ≥ 3 of leaves of a tree. The leaves are
numbered from 1 to K. We can ask questions of the type D(x, y) for which the
answer is the number of edges on the unique path between the vertices x and y in
the tree (both x and y must be leaves). An O(K2) algorithm is presented first. We
ask for the distance D(1, 2) between the leaves 1 and 2 of the tree. Then we ask
the distances D(1, 3) and D(2, 3). Based on this information we can find at which
vertex x on the path from 1 to 2 branches the path towards the leaf 3. Let D(i, j)
be the distance between the vertices i and j (whether they are leaves or not). We
have D(1, x) + D(x, 3) = D(1, 3) and D(1, 2) − D(1, x) + D(x, 3) = D(2, 3). From
this system with two equations and two unknown variables we can easily compute
D(1, x) and D(x, 3). We will add a path from x to 3, containing D(x, 3)−1 internal
vertices. For each internal vertex p we will maintain a list of leaves L(p) (which

17

M. I. Andreica, N. Ţăpuş - Efficient Online Algorithmic Strategies for Several
Two-Player Games with Different or Identical Player Roles

contains all the leaves q for which a path from p to q was added in the tree). At the
moment when an internal vertex p is added to the tree, the list L(p) will be empty.
Initially, only the list L(x) (x was computed as described above) will contain the leaf
3. |L(p)| will denote the number of elements in the list L(p) (this number is main-
tained as a counter which is incremented by 1 every time a new element is added to
the list). We will also maintain an index idx(x) and a timestamp tstamp(x) for each
internal vertex x (when the vertex is added to the tree, these values are initialized
to 0).

We denote by B(u, v, q)=the vertex at which the path between u and q branches
from the path between u and v. We will store all the computed values B(u, v, q).
We saw earlier how we can compute B(u, v, q) when we know the distances D(u, v),
D(u, q) and D(v, q) (just substitute 1, 2 and 3 by u, v and q in the previous para-
graph). Then, for each leaf i = 4, . . . ,K, we proceed as follows. We start with a = 1
and b = 2. While idx(B(a, b, i)) < |L(B(a, b, i))|:

1. let x = B(a, b, i)

2. let j be the leaf on the position idx(x) + 1 from the list L(x)

3. set idx(x) = idx(x) + 1

4. set b = j

During the algorithm we never ask the same question twice (i.e. we store the
values D(i, j) in a hash table after they are asked for). When computing B(a, b, q) we
ask all the distances which are still unknown (among D(a, b), D(a, q) and D(b, q)). In
the end, let x = B(a, b, i). We add a path from the vertex x to the leaf i, containing
D(x, i) − 1 internal vertices. Note that this distance is computed as part of finding
B(a, b, i). Then we add the leaf i at the end of L(x). The presented algorithm may
ask O(K2) questions.

An improvement which asks O(K · log(K)) questions is the following. We will
determine an order o(1), . . . , o(K) of the K leaves, such that they correspond to the
order in which they may be visisted by a DFS traversal starting from the vertex
adjacent to o(1). The property of this ordering is that D(o(i), B(o(i), o(j), o(q))) ≤
D(o(i), B(o(i), o(j), o(q′)), for i < q < q′ < j. After computing this order, the tree
can be constructed easily. We first add the path between o(1) and o(2). Then, for
3 ≤ i ≤ K (in this order), we add the path from B(o(i − 2), o(i − 1), o(i)) to o(i).
In order to find this ordering we will start with an initial ordering consisting of the
leaves o(i) = i (1 ≤ i ≤ 3). Then we will consider every leaf 4 ≤ i ≤ K. We will
binary search the position where this leaf will be inserted. We will start with an
interval [a = 1, b = i − 1]. While b − a ≥ 2 we perform the following steps:

18

M. I. Andreica, N. Ţăpuş - Efficient Online Algorithmic Strategies for Several
Two-Player Games with Different or Identical Player Roles

1. c=(a+b) div 2 (integer division)

2. let x = B(o(a), o(b), i) and y = B(o(a), o(b), c)

3. if D(o(a), x) ≤ D(o(a), y) then b = c else a = c

In the end, we insert the leaf i between the positions a and b = a + 1 in the leaf
ordering. It is obvious that only O(log(K)) questions are asked for each leaf. The
O(K2) solution is an original solution for this problem, but the idea for the O(K ·
log(K)) refinement was mentioned to us by A. Vladu in a personal communication.

The second problem, whose solution was mentioned to us by N. Moţ in a personal
communication, is the following. There is a secret (ordered) tuple (x, y, z), where
x, y and z are (not necessarily distinct) numbers from the set {1, . . . , N}. In order
to find the secret tuple, we can ask questions of the following type: Ask(a, b, c).
The answer to a question Ask(a, b, c) is 1 if at least two values from the multiset
{x − a, y − b, z − c} are zero, and 0 otherwise. We want to find the secret tuple
(x, y, z) using as few questions as possible.

We will denote by try(a, b, c) the answer to the question Ask(a, b, c). Using at
most N2 questions, we can find a tuple (a, b, c) (in which not all the three numbers
are equal), such that try(a, b, c) = 1. For this, we will consider every possible values
for a and b, while c will be chosen such that it is different from both a and b (if such
a value exists). Note that finding such a tuple is always possible for N ≥ 2 (and
the problem is trivial for N = 1). Then, by using 3 more questions, we will identify
which of the three positions coincide with the positions from the secret tuple. We
swap, one at a time, a and b (obtaining the tuple (b, a, c)), then a and c (obtaining
the tuple (c, b, a)), and then b and c (obtaining the tuple (a, c, b)). The pair (u, v)
of swapped numbers for which try(e, f, g) = 0 (where (e, f, g) is the tuple obtained
after the swap) determines the two positions which coincide with the secret tuple
(i.e. the numbers u and v coincide with the numbers on the same positions as u and
v from the secret tuple). Then, using N more questions, we can also identify the 3rd

number. We will replace the number u by a value u′ different from u in the tuple
(a, b, c). Then, we will consider each of the N possible values for the 3rd number
(the one different from u and v). The value w for which we get a 1 answer for the
obtained tuple is the correct value for the 3rd number. Thus, we were able to find
the secret tuple using at most N2 + N + 3 questions.

However, we can do better than this. In particular, the initial stage of finding
a tuple in which two numbers coincide with the corresponding numbers from the
secret tuple can be optimized. We will split the set {1, . . . , N} into two sets S1 with
⌊N/2⌋ elements and S2 with N −⌊N/2⌋ elements, respectively. This way we can be
certain that at least two of the numbers from the secret tuple belong to the same set
(either S1 or S2). Then, with at most ⌊N/2⌋ · ⌊N/2⌋ + (N − ⌊N/2⌋) · (N − ⌊N/2⌋)

19

M. I. Andreica, N. Ţăpuş - Efficient Online Algorithmic Strategies for Several
Two-Player Games with Different or Identical Player Roles

questions we can find a ”good” tuple (for which two of his numbers coincide with
the corresponding numbers from the secret tuple). Let the numbers of the set Si be
numbered as x(i, 0), . . . , x(i, k(i)− 1) (i = 1, 2). For each set i (i = 1, 2) we will ask
questions for tuples of the form (x(i, u), x(i, v), x(i, w)) such that (u + v + w) mod
k(i) = 0. After choosing the indices u and v for such a tuple, we can choose the index
w in only a single way (it is uniquely determined by u and v: w = (2·k(i)−u−v) mod
k(i)). We ask k(i)2 questions for each set i (i = 1, 2), where k(i) is the cardinality of
the set i. It is guaranteed that we will find a tuple (a, b, c) for which try(a, b, c) = 1
among the considered tuples.

11. Conclusions and Future Work

In this paper we presented novel algorithmic strategies for playing optimally sev-
eral two player games, in which the players may have different or identical roles. The
considered games are either previously studied games (or extensions of theirs), or
new games which are introduced in this paper. The games and the presented strate-
gies fit quite nicely in the framework provided by the domain of algorithmic game
theory. All the discussed solutions are specific to each problem. As future work, we
intend to research the possibility of devising a more generic algorithmic framework
for computing optimal strategies for multiple two-player games with different player
roles, similar to the ones mentioned in this paper.

Acknowledgements

The work presented in this paper has been supported by CNCSIS-UEFISCSU
under research grants PD 240/2010 (contract no. 33/28.07.2010) and ID 1679/2008
(contract no. 736/2009), and by the Sectoral Operational Programme Human Re-
sources Development 2007-2013 of the Romanian Ministry of Labour, Family and
Social Protection through the Financial Agreement POSDRU/89/1.5/S/62557.

References

[1] M. Aigner, and L. Anping, Searching for Counterfeit Coins, Graphs and
Combinatorics, vol. 13, (1997), pp. 9-20.

[2] B. Manvel, Counterfeit Coin Problems, Mathematics Magazine, vol. 50, no.
2, (1977), pp. 90-92.

[3] L. Pyber, How to Find Many Counterfeit Coins?, Graphs and Combinatorics,
vol. 2, (1986), pp. 173-177.

[4] M. I. Andreica, Algorithmic Decision Optimization Techniques for Multiple
Types of Agents with Contrasting Interests, Metalurgia International, vol. 14, spe-
cial issue no. 11, (2009), pp. 162-170.

20

M. I. Andreica, N. Ţăpuş - Efficient Online Algorithmic Strategies for Several
Two-Player Games with Different or Identical Player Roles

[5] J. Spencer, Guess a Number - with Lying, Mathematics Magazine, vol. 57,
no. 2, (1984), pp. 105-108.

[6] F. Cicalese, and U. Vaccaro, Optimal Strategies against a Liar, Theoretical
Computer Science, vol. 230, (1999), pp. 167-193.

[7] J. J. Hein, An Optimal Algorithm to Reconstruct Trees from Additive Dis-
tance Data, Bulletin of Mathematical Biology, vol. 51, no. 5, (1989), pp. 597-603.

[8] V. King, L. Zhang, and Y. Zhou, On the Complexity of Distance-based Evo-
lutionary Tree Reconstruction, Proceedings of the 14th ACM-SIAM Symposium on
Discrete Algorithms, (2003), pp. 444-453.

[9] K.-I. Ko, and S.-C. Teng, On the Number of Queries Necessary to Identify a
Permutation, J. of Algorithms, vol. 7 (4), (1986), pp. 449-462.

[10] M. I. Andreica, A. Grigorean, N. Tapus, Algorithms for Identifying Sequence
Patterns with Several Types of Occurrence Constraints, Proc. of the IEEE Intl.
Conf. on Symbolic and Numeric Algorithms (SYNASC), (2009).

[11] N. Nisam, et al., Algorithmic Game Theory, Cambridge University Press,
2007.

Mugurel Ionuţ Andreica, Nicolae Ţăpuş
Department of Computer Science and Engineering
Politehnica University of Bucharest
Splaiul Independenţei 313, sector 6, Bucharest, Romania
email:{mugurel.andreica, nicolae.tapus}@cs.pub.ro

21

