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SUMMARY

This paper is devoted to the study of an optimal control problem for a fed-batch bioreactor with one species
and one substrate. Our objective is to obtain an optimal feedback control, steering the system in minimal
time to a given target defined by conditions on the substrate concentration and the volume of the reactor.
The novelty in this work is that a mortality rate for the biomass and hydrolysis of dead biomass are included
in the model. The optimal synthesis (optimal feeding strategy) has been obtained by Moreno (1999) when
both mortality and hydrolysis are considered negligible. Whenever the model includes these effects, the
total mass of the system is no longer conserved, and it is not possible to reduce the dimension of the system.
Thanks to the Pontryagin maximum principle and the Hamilton-Jacobi equation we overcome this difficulty
and provide an optimal synthesis of the problem in the impulsive framework. Copyright c© 2010 John Wiley
& Sons, Ltd.

Received . . .

KEY WORDS: Optimal Control, Minimal Time Problem, Impulsive Control, Pontryagin Maximum
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1. INTRODUCTION

Fed-batch bioreactors are widely used in the industry, in particular for wastewater treatment (see e.g.
[1]). The input flow rate in this system is a key control parameter, and finding an adequate feeding
strategy can significantly increase process performance.

Our objective is to find an optimal control which steers the system to a given target in minimal
time for a reactor with one substrate and one biomass. Following [2, 3], we consider a typical target
(of interest in wastewater treatment) defined as follows: at the terminal time, the volume has reached
the maximal volume of the bioreactor and the substrate concentration is below a value of reference.
The novelty in this work is that we assume that the biomass has a mortality rate [4] and that nutrients
can be regenerated from a fraction of dead biomass with a given hydrolysis rate (see e.g. [5] for
studies of the chemostat model with this phenomena, also called nutrient recycling). Taking into
account these effects is a way to introduce uncertainty in the system and is more realistic.

Following [3], the process can be described by a three-dimensional system (representing the
substrate and biomass concentrations, and the volume). When mortality and hydrolysis are not
present in the model, the system admits a conservation law (the total mass of the system). Thus,
the controlled system can be reduced into a two-dimensional affine system with one input (see
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2 T. BAYEN F. MAIRET M. MAZADE

[3]), and one can obtain an optimal control by using the clock form argument (see [6, 7]). This
tool is essentially related to planar problems and does not require explicit computations of optimal
trajectories (see [8]). When the growth function is of the Monod or the Haldane type (see e.g.
[9, 10]), the optimal synthesis obtained in [3] is as follows:

• For Monod type kinetics, the optimal strategy is called bang-bang (or fill and wait). The first
phase consists in filling the reactor to the maximal volume with the maximum input flow rate.
The second phase consists in applying a null control until the substrate concentration becomes
lower than the reference value.

• For Haldane type kinetics, the optimal strategy is singular (in reference to singular arcs
in optimal control theory). The first phase consists in choosing a control which drives the
substrate concentration in minimal time to a certain constant value (which corresponds to
the substrate concentration maximizing the growth function). The second phase consists in
choosing a control which keeps the substrate concentration equal to this value until reaching
the maximal volume of the reactor. Finally, the null control is applied as in the second phase
of the bang-bang strategy.

These results have been generalized in the impulsive framework in [11] for multi-species and in [12]
for growth functions with two local maxima.

In this paper, our objective is to extend the results above to the case where the model includes
mortality and hydrolysis coefficients. The fundamental difference with the previous works on the
subject is that we cannot reduce the dimension of the system. It turns out that it is no longer possible
to make use of the previous arguments (such as the clock form).

One way to tackle this problem is to follow the approach in [12, 11] and to consider a more
general problem where the input flow rate is considered in the class of impulsive controls. This
corresponds to an instantaneous addition of wasted water in the reactor (that is, an instantaneous
dilution). From a practical point of view, an impulsive control corresponds to fed-batch reactors for
which the input flow is allowed to take very large values: filling becomes fast enough to neglect the
biological phenomena (growth and death) during this time.

In this framework, we characterize optimal feeding strategies in a similar way. Our main result
is Theorem 3.4 which extends the optimality results of [11] to the case where both mortality and
hydrolysis effects are taken into account. We prove that for Monod type kinetics, the optimal strategy
is of type bang-bang. When the growth function is of the Haldane type, the singular arc strategy is
optimal. The proof of these results relies on explicit computation of the switching function and
properties of the adjoint system, which allow excluding extremal trajectories that are not optimal.

The paper is organized as follows. In section 2, the model is presented, and we state some
invariance properties of the system. We then introduce the impulsive framework. In section 3, we
first neglige the hydrolysis coefficient, and we prove the optimality of the bang-bang strategy for
the Monod growth function (via Hamilton-Jacobi equation), and the optimality of the singular arc
strategy for the Haldane growth function (see Theorems 3.1 and 3.3). Finally, we cover the case
with both mortality and hydrolysis coefficients (Theorem 3.4).

2. STATEMENT OF THE PROBLEM

2.1. Presentation of the model

We consider the following controlled system describing a perfectly mixed reactor operated in fed-
batch with a unit yield coefficient†, a mortality rate k > 0 for the biomass and an hydrolysis rate

†This can be achieved through an affine change of variables.
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FED-BATCH BIOREACTOR WITH MORTALITY RATE 3

k′ := αk, 0 ≤ α < 1: 
ẋ =

(
µ(s)− k − u

v

)
x,

ṡ = [−µ(s) + k′]x+ u
v (sin − s),

v̇ = u.

(2.1)

Here x is the biomass concentration, s the substrate concentration, and v is the volume of water in
the tank. If vm is the volume of the tank, the volume v is allowed to take values in (0, vm]. The
parameter sin > 0 is the input substrate concentration, and the parameter α is less than 1 taking
into account that only a fraction of dead biomass can be regenerated into substrate. The control u
represents the dilution rate, and it takes values within the set of admissible controls given by:

U := {u : [0,∞)→ [0, um] | u(·) meas.},

where um represents the maximum value of the dilution rate. In the following, we take um = 1 (by
time scaling). The optimal control problem that we consider throughout the paper can be stated as
follows. First, consider the target T defined by:

T := R∗+ × [0, sref ]× {vm}, (2.2)

where sref is a given reference (low) concentration. Given some initial conditions ξ0 := (x0, s0, v0)
for (2.1), our aim is to minimize the time t(u) with respect to u ∈ U in order to steer (2.1) from ξ0
to the target T :

inf
u∈U

t(u) s.t. (xu(t(u)), su(t(u)), vu(t(u))) ∈ T , (2.3)

where (xu(·), su(·), vu(·)) is the unique solution of (2.1) such that (xu(0), su(0), vu(0)) = ξ0.
We now make more specific assumptions about the system that will ensure the well-posedness

of the problem and the existence of optimal controls. First, we may assume without any loss of
generality that um = 1. The growth function that we consider throughout the paper is either of the
Monod or the Haldane type:

• For a growth function µ of the Monod type, we have: µ(s) = µs
k1+s

.
• For a growth function µ of the Haldane type, we have: µ(s) = h0s

h2s2+s+h1
where hi > 0 and

the unique maximum of µ is achieved at s =
√

h1

h2
.

Next, we assume that k is small enough in order to guarantee that for certain values of substrate
concentration, the growth of biomass is possible. More precisely, we require the following
assumptions for the growth function.

Hypothesis 2.1
If µ is of the Monod type, then we assume that k satisfies:

k < µ. (2.4)

In this case, we call s̃1 the unique substrate concentration s satisfying µ(s̃1) = k′.

Hypothesis 2.2
If µ is of the Haldane type, then we assume that k satisfies:

k < µ(s). (2.5)

In this case, there exist exactly two substrate concentration values s̃′1 and s̃′2 such that s̃′1 < s < s̃′2
and µ(s̃′1) = µ(s̃′2) = k′. In the following, we assume that s̃′2 satisfies:

s̃′2 ≥ sin. (2.6)

Inequality (2.6) is essential in order to determine an invariant domain for (2.1) as shown in the next
Proposition. In fact, if (2.6) is not satisfied, then initial conditions such that s̃′2 ≤ s ≤ sin would
satisfy ṡ ≥ 0 for any control u, and the target would not be reachable.

Copyright c© 2010 John Wiley & Sons, Ltd. (2010)
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4 T. BAYEN F. MAIRET M. MAZADE

Proposition 2.1
(i) In the case where µ is of the Monod type, the domain

Em := R∗+ × [s̃1, sin]×R∗+, (2.7)

is invariant by (2.1).
(ii) In the case where µ is of the Haldane type, and under assumption (2.6), the set

Eh := R∗+ × [s̃′1, sin]×R∗+, (2.8)

is invariant by (2.1).

Hereafter, when α = 0 (that is, k′ = 0), we denote by E := R∗+ × [0, sin]×R∗+ the set given by
(2.8). The proof of the Proposition is based on the following lemma (which is a simple consequence
of Gronwall’s Lemma).

Lemma 2.1
Consider the ordinary differential equation (ODE):

ẏ = f(t, y), (2.9)

where f : R×R→ R is a Caratheodory function local Lipschitz continuous with respect to y.
Assume that f(t, 0) ≥ 0 for all t. Then, R∗+ is invariant by (2.9).

Proof of Proposition 2.1. For a given u ∈ U , consider a trajectory (x, s, v) solution of (2.1). From
Cauchy-Lipschitz Theorem, we have that x0 > 0 implies x(t) > 0 for all t. Now, we can write
ṡ = f(t, s), where f(t, s) := [−µ(s) + k′]x(t) + u(t)

v(t) (sin − s). So, if µ is either of the Monod or
the Haldane type, then we have f(t, sin) ≤ 0 for all t (recall (2.6) in the Haldane case). Lemma
2.1 implies that we have s(t) ≤ sin for all t provided that s(0) ≤ sin. In the case where the growth
function is of the Monod type, we have similarly f(t, s̃1) = u(t)

v(t) (sin − s̃1) ≥ 0, so Lemma 2.1
implies the result. We can apply the same argument in the Haldane case which ends the proof. 2

Now, we discuss some assumptions for the target. In the rest of the paper, we assume that
sref satisfies the following assumption.

• If µ is of the Monod type, we assume that sref > s̃1.
• If µ is of the Haldane type, we assume that sref > s̃′1.

It follows that the target is reachable from any initial condition in Em (in the Monod case) or Eh
(in the Haldane case). Indeed, a simple way to drive the system to the target is to let u = 1 until
reaching vm, and then we take u = 0 until sref (if necessary). When u = 0, we have that s(t) is
strictly decreasing and converges to the equilibrium s̃1 (when µ is of the Monod type) or s̃′1 (when
µ is of the Haldane type). As sref > s̃1 (resp. sref > s̃′1) in the Monod case (resp. in the Haldane
case), the trajectory necessarily reaches the target in finite time.

Remark 2.1
If sref ≤ s̃1 (resp. sref ≤ s̃′1) in the Monod case (resp. Haldane case), then we would have ṡ > 0 for
s = s̃1 (resp. s = s̃′1) for any admissible control u. As a consequence, the target is not reachable in
finite time from a subset of the initial conditions set (in particular if the initial volume is v0 = vm).

The next remark is essential in the analysis of (2.3) and has motivated this work. If k = 0, the
quantity

M := v(x+ s− sin) = v0(x0 + s0 − sin), (2.10)

is conserved along any trajectory of (2.1). It follows that (2.1) can be gathered into a two-
dimensional system by writing x = M

v + sin − s:{
ṡ = −µ(s)

[
M
v + sin − s

]
+ u

v (sin − s),
v̇ = u.

(2.11)

Copyright c© 2010 John Wiley & Sons, Ltd. (2010)
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FED-BATCH BIOREACTOR WITH MORTALITY RATE 5

This makes it possible to solve the minimal time problem by using tools which are more specific to
planar problems such as Green’s Theorem (see [6, 7, 8]). The main feature in this work is that the
previous reduction is not possible as we have:

Ṁ = −k(1− α)xv < 0, (2.12)

hence M is strictly decreasing along any trajectory of (2.1). Solving a minimal time problem in the
three-dimensional setting is more difficult. We will overcome this difficulty by allowing impulsive
controls.

2.2. Impulsive framework

We now consider the minimal time problem with an extension of (2.1) allowing impulsive controls,
see [12, 11]. From a practical point of view, this assumption corresponds to a maximum dilution
rate um � sups∈[0,sin] µ(s). This framework allows us to compute easily the value function
corresponding to the different strategies (“fill and wait” and “singular arc” strategies; see Definitions
3.1 and 3.2). Our aim is to prove the following result:

• For the Monod type growth function, the“fill and wait” strategy is optimal (Theorem 3.1).
• For the Haldane type growth function, the “singular arc” strategy is optimal (Theorem 3.3).

The proof of these results relies on the case α = 0. The case where α 6= 0 is considered in the
subsection 3.4 and will be a simple consequence of the case α = 0. Therefore, we consider the
initial system (2.1) with α = 0 and an additional control r which plays the role of an impulsive
control. 

ẋ =
(
r[µ(s)− k]− u

v

)
x,

ṡ = −rµ(s)x+ u
v (sin − s),

v̇ = u.

(2.13)

The system (2.13) is obtained by a reparametrization of the time in (2.1) when replacing u by an
impulsive control. More details can be found in [11, 13, 14]. For simplicity, the new time in (2.13)
has still been denoted by t. The set of admissible controls is defined as follows (the subscript i is for
impulsive):

Ui := {u = (r, u) : [0,∞[→ Ω | meas.},

where Ω := ({0, 1} × [0, 1]) \ {(0, 0)}. The control u is the input flow rate as in (2.1) and r
represents an impulsive control. An instantaneous addition of volume v+ − v− (i.e. a jump from
volume v− to volume v+) is achieved by taking r = 0 on some interval of time [τ−, τ+] for system
(2.1), and any measurable control u satisfying the condition:∫ τ+

τ−

u(t)dt = v+ − v−, (2.14)

(see [11] for more details). In particular, there is no uniqueness of u as long as integral (2.14) is
equal to v+ − v−. An addition of volume v+ − v− corresponds to a dilution of the substrate and the
biomass:

s+ =
v−
v+
s− +

(
1− v−

v+

)
sin, x+ =

v−
v+
x−, (2.15)

where s−, x− are the concentrations before dilution, and s+, x+ the ones after dilution. Hereafter,
we also say that the system has an impulse whenever r = 0 on some time interval. Thus, a phase
where u = um from a volume v0 to v1 is represented in the impulsive framework by a jump of the
volume from v0 to v1 (with r = 0), neglecting the biological phenomena during this time interval.

For ξ = (s, x, v) ∈ E and a control u ∈ Ui, let tξ(u) be the first entry time into the target T . In
the impulsive framework, the minimal time problem becomes:

inf
u∈Ui

∫ tξ0 (u)

0

r(t)dt, s.t. (x(tξ0(u)), s(tξ0(u)), v(tξ0(u))) ∈ T , (2.16)

Copyright c© 2010 John Wiley & Sons, Ltd. (2010)
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6 T. BAYEN F. MAIRET M. MAZADE

In other words, the time t(u) in (2.3) is changed into the L1−norm of the control r (see e.g. [11]
for more details on the reparametrization of the minimal time problem with impulsive control).
As Ω is not convex, we apply the Pontryagin maximum principle with control in the set Ω′ :=
[0, 1]× [0, 1]\{(0, 0)}. We will see in sections 3.2 and 3.3 that an optimal feedback control u satisfies
r ∈ {0, 1}.

3. OPTIMALITY RESULTS FOR THE IMPULSIVE SYSTEM

3.1. Pontryagin maximum principle

In this part, we apply the Pontryagin principle (PMP) on the impulsive system which gives necessary
conditions on optimal trajectories. The Hamiltonian H := H(x, s, v, λx, λs, λv, λ0, r, u) associated
to the system is:

H := r [(λx − λs)µ(s)x− kxλx + λ0] + u

[
λv +

λs(sin − s)− λxx
v

]
. (3.1)

Let u an optimal control and ξ := (x, s, v) its associated trajectory. Then, there exists tf > 0,
λ0 ≤ 0 and λ = (λx, λs, λv) : [0, tf ]→ R3 such that (λ0, λ(·)) 6= 0, λ satisfies the adjoint equation
λ̇ = −∂H∂ξ (ξ, λ, λ0,u) for a.e. t ∈ [0, tf ], that is:

λ̇x = −r(λx − λs)µ(s) + rkλx + u
vλx,

λ̇s = −r(λx − λs)xµ′(s) + u
vλs,

λ̇v = (sin−s)λs−xλx
v2 u,

(3.2)

and we have the maximization condition:

u(t) ∈ argmaxv∈Ω′H(ξ(t), λ(t), λ0,v), (3.3)

for a.e. t ∈ [0, tf ]. Finally as x(tf ) is free, we have the transversality condition

λx(tf ) = 0. (3.4)

An extremal trajectory is a quadruplet (ξ(·), λ(·),u(·), tf ) satisfying (2.13)-(3.2)-(3.3). We assume
in the following that optimal trajectories are normal trajectories, that is λ0 6= 0, hence we take
λ0 = −1 (the fact that λ0 cannot be zero will be discussed in the two next subsections). As we
deal with a minimal time problem, the Hamiltonian is zero along an extremal trajectory:

H = r[(λx − λs)µ(s)x− kxλx − 1] + u

[
λv +

(sin − s)λs − xλx
v

]
= 0, (3.5)

Let φ1 (resp. φ2) the switching function associated to the control r (resp. u):{
φ1 := (λx − λs)µ(s)x− kxλx − 1,

φ2 := λv + (sin−s)λs−xλx
v .

The value of an extremal control is given by the sign of φ1 and φ2. For a.e. t ∈ [0, tf ], we have{
φ1 ≤ 0 and φ2 = 0 =⇒ r = 0,

φ2 ≤ 0 and φ1 = 0 =⇒ u = 0,
(3.6)

and we have also:
r(t)φ1(t) + u(t)φ2(t) = 0, (3.7)

for a.e. t ∈ [0, tf ], hence φ1 and φ2 are always negative. When u = 0 on some time interval, we can
take without loss of generality r = 1 as (r, u) 6= (0, 0) (see [12]). When φ1 = φ2 = 0 on some time

Copyright c© 2010 John Wiley & Sons, Ltd. (2010)
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FED-BATCH BIOREACTOR WITH MORTALITY RATE 7

interval, then, we say that the trajectory has a singular arc. By differentiating with respect to t, we
obtain: {

φ̇1 = −uψ,
φ̇2 = rψ,

(3.8)

where:

ψ :=
x(sin − s)

v
(λs − λx)µ′(s). (3.9)

When the derivative of the growth function µ admits a zero (typically in the case where µ is
of the Haldane type), an optimal control can be singular. The following lemma shows that the
characterization of singular arcs is essentially the same as the problem with k = 0 (see section 3.1).

Lemma 3.1
Let I = [t1, t2] a singular arc. Then, we have s(t) = s for t ∈ [t1, t2].

Proof
We have φ1(t) = φ2(t) = 0 for all t ∈ I . By differentiating, we obtain (λs(t)− λx(t))µ′(s(t)) = 0
for all t ∈ I . Let us prove that λs − λx does not vanish on some time interval J := [t′1, t

′
2].

Otherwise, we would have λs(t)− λx(t) = λ̇s − λ̇x(t) = 0 for all t ∈ J . This condition together
with the adjoint system implies that λx(t) = 0 for all t ∈ J . On the other hand, the expression of
the Hamiltonian along the singular arc yields that −kxλx + 1 = 0 contradicting the fact that λx is
vanishing on J . Now, by the continuity property of λs − λx and a similar argument, we can prove
that λs − λx has a finite number of zeros. Consequently, we have µ′(s(t)) = 0 for all t ∈ I , which
proves the Lemma.

To study properties of singular arcs, we define

α :=
µ(s)

sin − s
, β := µ(s)− k > 0, x := (sin − s)

[
1− k

µ(s)

]
.

Proposition 3.1
Let us consider a singular arc with r = 1 on some time interval [t0, t1] starting at some point
(x0, s, v0). Then, the biomass concentration, the singular control us, and the time t(v, x0, v0) to
steer (2.13) from a volume v0 to v are given by:

x(v) =
v0
v
x0 +

[
1− v0

v

]
x, us(v) = αxv, t(v, x0, v0) = t0 +

1

β
ln

(
x0v0 + x[v − v0]

x0v0

)
. (3.10)

Proof
The value of the singular control is straightforward using ṡ = 0 along the singular arc. Let ρ :=
xv. By differentiating, we have ρ̇ = βρ which gives x(t)v(t) = x0v0e

β(t−t0). Now we have v̇ =
αxv = αx0v0e

β(t−t0), and by integrating, we obtain v = v0 + x0

x v0e
β(t−t0) − x0

x v0. Combining this
expression with the one of ρ gives the desired expression of x. Finally, the expression of ρ gives that
t(v, x0, v0)− t0 = 1

β ln( xv
x0v0

), and we find the desired expression of t(v, x0, v0) by replacing x by
its expression.

Next, we assume the following condition that will ensure the controllability of the singular arc
with r = 1 for the problem with mortality (see also [2, 12]):

Hypothesis 3.1
Initial conditions in E are such that:

µ(s)

[
M0

sin − s
+ vm

]
≤ um = 1, (3.11)

where M0 = v0(x0 + s0 − sin).

Copyright c© 2010 John Wiley & Sons, Ltd. (2010)
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8 T. BAYEN F. MAIRET M. MAZADE

Recall that along a trajectory, we have M = v(x+ s− sin), where M is strictly decreasing by
(2.12). Together with (3.10), we obtain for 0 < v ≤ vm:

us(v) = α [M + v(sin − s)] ≤ α[M0 + vm(sin − s)] ≤ 1,

where the second inequality follows from Hypothesis 3.1. It follows that this hypothesis guarantees
that the singular control satisfies the bound us ≤ 1.

Remark 3.1
(i) For given volume 0 < v0 < v1, one can show that the mapping

k 7−→ 1

µ(s)− k
ln

(
1 +

sin − s
x0

[
v1
v0
− 1

] [
1− k

µ(s)

])
,

is increasing with respect to k, therefore the time to steer the system from v0 to v1 along the singular
arc is greater than the one in absence of mortality.
(ii). Given Hypothesis 3.1, we have us(v) ∈ [0, 1], for all v ∈ [v0, vm], which proves that the singular
arc is always controllable. This means that for any volume v ∈ [v0, vm], the solution of (2.13) with
u = us(v) satisfies s = s̄.

We can also compute the time of an arc u = 0.

Lemma 3.2
Let us consider a time interval [t0, t1] where u = 0 and r = 1 from (x0, s0, v0) ∈ E with x0 > 0 to
(x1, s1, v0) ∈ E with 0 < s1 < s0. Then, we have:

x1 = x0 + s0 − s+ k

∫ s1

s0

dσ

µ(σ)
, t1 = t0 +

∫ s1

s0

− ds

µ(s)(x0 + s0 − s+ k
∫ s
s0

dσ
µ(σ) )

(3.12)

Proof
A straightforward computation shows that we have dx

ds = k−µ(s)
µ(s) , which gives the desired

expressions after an integration (recall that if s0 > 0 and x0 > 0, then we have x(t) > 0 and s(t) > 0
for all t so that the integrals are well defined).

Also, one can see immediately from (3.12) that the time of an arc u = 0 is greater with mortality
than when k = 0.

3.2. Optimality result for the Monod growth function

We consider in this section the case where the growth function is of the Monod type and we prove
that the strategy ”fill and wait” (see Definition 3.1) is optimal for any value of k > 0.

Let us first prove that λ0 6= 0. Define the dilution curve C0 which passes through the point
(sref , vm) by:

γ0(s) := vm
sin − sref
sin − s

, s ∈ (0, sref ].

Also, we define a subset Ẽ ⊂ E by:

Ẽ := {(x, s, v) ∈ E | v ≤ vm, v < γ0(s))}. (3.13)

Proposition 3.2
Any optimal trajectory is such that λ0 6= 0.

Proof
Let (x0, s0, v0) ∈ E, and consider an optimal trajectory starting at this point and satisfying λ0 = 0.
If v0 ≥ γ0(s0), the target T can be reached by a single impulse (of null cost) on some time interval
[0, tf ] (which is necessarily the optimal trajectory), and we have φ1 ≤ 0 and φ2 = 0 on this interval.
By differentiating, it follows that λs − λx is zero (as µ′ 6= 0) which gives λx = 0 from the adjoint
equation. Now φ2 = 0 implies that λv = 0, and we have a contradiction as (λ(·), λ0) is non-zero.
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Let us now assume that v0 < γ0(s0). There exists a time interval I := (t1, t2) where the optimal
trajectory is such that u = 0 and such that either t1 or t2 is a switching point between an impulse and
an arc u = 0 (otherwise the trajectory would not reach the target). We have φ1 = 0 and φ2 ≤ 0 on
I , and by differentiating we obtain similarly as in the case above λs − λx = 0 on I . By the adjoint
equation, we obtain that λx = λs = 0 on I . Now, at the switching time, φ2 is vanishing, and so is
λv. It follows that the pair (λ(·), λ0) is zero, which contradicts the PMP.

We now make use of the Hamilton-Jacobi equation associated to (2.16) to characterize optimal
trajectories for Monod type kinetics. From the expression of the Hamiltonian, the Hamilton-Jacobi
equation associated to the problem reads as follows:

min

(
0, 1 + x0(µ(s0)− k)

∂v

∂x0
− x0µ(s0)

∂v

∂s0

)
+ min

(
0,
∂v

∂v0
+
sin − s0
v0

∂v

∂s0
− x0
v0

∂v

∂x0

)
= 0,

(3.14)
where (x0, s0, v0) ∈ E, together with the boundary condition v(x0, s0, v0) = 0 on the target T . If
ω : E → R is a given function of class C1, we define:{

Hω
1 (x0, s0, v0) := 1 + x0(µ(s0)− k) ∂ω∂x0

(x0, s0, v0)− x0µ(s0) ∂ω∂s0 (x0, s0, v0),

Hω
2 (x0, s0, v0) := ∂ω

∂v0
(x0, s0, v0) + sin−s0

v0
∂ω
∂s0

(x0, s0, v0)− x0

v0
∂ω
∂x0

(x0, s0, v0),
(3.15)

hence (3.14) is equivalent to the two variational inequalities{
Hv

1 (x0, s0, v0) ≥ 0,

Hv
2 (x0, s0, v0) ≥ 0,

(3.16)

for any (x0, s0, v0) ∈ E.

Remark 3.2
We can expect that when k goes to zero, the value function associated to (2.16) converges to the
value function associated to the problem with k = 0. First, this property is not obvious (some
arguments can be found in [15]). Second, such a property is not sufficient in order to deduce optimal
feedback controls for (2.16) from the case k = 0.

Consider a point (x0, s0, v0) and let (x′0, s
′
0, vm) the point which is obtained by an instantaneous

dilution until the maximal volume vm. Recall from (2.15) that the new biomass and substrate
concentrations are given by:

x′0 =
v0
vm

x0, s
′
0 =

v0
vm

s0 +

(
1− v0

vm

)
sin. (3.17)

Definition 3.1
From any point (x0, s0, v0) ∈ E, the strategy fill and wait (FW) is r = 0 until v = vm, and then
u = 0 until s ≤ sref if s′0 > sref . The cost w of this strategy is given by:
(i) If v0 ≥ γ0(s0), then w(x0, s0, v0) = 0.
(ii) If v0 < γ0(s0), then w(x0, s0, v0) =

∫ sref
s′0
− ds
µ(s)[x′0+s

′
0−s+k

∫ s
s′
0

dσ
µ(σ)

]

Lemma 3.3
The mapping w is continuous on E and of class C1 on Ẽ. Moreover, it satisfies:

Hw
1 (x0, s0, v0) ≥ 0, Hw

2 (x0, s0, v0) = 0. (3.18)

Proof
For convenience, we define:

ρξ0(s) := x′0 +

∫ s

s′0

k − µ(σ)

µ(σ)
dσ, sref ≤ s ≤ s′0,
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10 T. BAYEN F. MAIRET M. MAZADE

where ξ0 := (x0, s0, v0) ∈ E. Notice that we have ρξ0(s) ≥ x′0 as sref ≥ s̃1.
Now, one can see that we have w = 0 on E\Ẽ, and w > 0 on Ẽ. Let (xn, sn, vn) ∈ Ẽ a sequence

of points which converges to a point (x0, s0, v0) ∈ E such that (s0, v0) ∈ C0, i.e. v0 = γ0(s0).
We have that the sequence s′n := vn

vm
sn +

(
1− vn

vm

)
sin converges to sref and s 7−→ −1

µ(s)ρξ0 (s)
is

uniformly bounded by 1
µ(sref )x′0

. So, w(xn, sn, vn) converges to zero, which proves the continuity
of w over C0. Moreover, by the regularity property of the integral, the function w is continuous on
Ẽ, which proves the continuity of w in E.

Now, take a point (x0, s0, v0) ∈ Ẽ, i.e. v0 < γ0(s0). Recall from (3.17) that x′0 and s′0 depend
on (x0, s0, v0) in a continuously differentiable fashion. It follows from the definition of w (see
Definition 3.1) that it is of class C1 on Ẽ.

By taking the derivative of w with respect to x0, s0 and v0 , we get:

∂w

∂x0
(x0, s0, v0) =

v0
vm

∫ sref

s′0

ds

µ(s)ρ2ξ0(s)
ds,

∂w

∂s0
(x0, s0, v0) =

v0
vm

1

x′0µ(s′0)
+
v0
vm

(
1− k

µ(s′0)

)∫ sref

s′0

ds

µ(s)ρ2ξ0(s)
ds,

∂w

∂v0
(x0, s0, v0) =

1

x′0µ(s′0)

s0 − sin
vm

+

(
x0
vm
− s0 − sin

vm

k − µ(s′0)

µ(s′0)

)∫ sref

s′0

ds

µ(s)ρ2ξ0(s)
ds.

It follows that

Hw
1 (x0, s0, v0) = 1− µ(s0)

µ(s′0)
+ kx′0

(
µ(s0)

µ(s′0)
− 1

)∫ sref

s′0

ds

µ(s)ρ2ξ0(s)
ds.

But, one has µ(s0) ≤ µ(s′0) as s0 ≤ s′0, and the integral above is negative as s′0 > sref , hence
Hw

1 (x0, s0, v0) ≥ 0. Moreover, a direct computation shows that Hw
2 (x0, s0, v0) = 0, and the result

follows.

Theorem 3.1
The feedback control law uFW given by

uFW (s0, x0, v0) :=

{
(0, u), if v0 < vm,

(1, 0), if v0 = vm and s0 > sref ,
(3.19)

is optimal, and the value function associated to (2.16) satisfies v = w.

Proof
Lemma 3.3 allows us to apply Proposition 5.4 of [11] (giving a sufficient condition for a feedback
control law to be optimal). First, any solution of (2.13) with the feedback (3.19) is absolutely
continuous and reaches the target in finite time. Moreover, the feedback uFW is such that:

• The function w is continuous over E and of class C1 on Ẽ (the set of points where w > 0).
• The function w fulfills (3.18) and consequently (3.14), together with the boundary condition
w = 0 on the target T .

• The function w satisfies r = 0 for any point in Ẽ such that w = 0.

We can conclude that this strategy is optimal. Note that in (3.25), u is any measurable control taking
values in [0, 1] such that its integral on the period of the dilution is equal to vm − v0, see (2.14).
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3.3. Optimality result for the Haldane growth function

We assume in this subsection that µ is of the Haldane type, and that s > sref . We will prove that the
singular arc strategy (see Definition 3.2) is optimal for any value of k. The Hamilton-Jacobi equation
is a direct way to prove optimality if we have a candidate for the value function, which is the case
here. Unfortunately, the expression (3.24) provided by this strategy seems delicate to handle in this
case. So, we have used the Pontryagin maximum principle, which allows us to exclude extremal
trajectories, and to prove the optimality of the singular arc strategy.

First, we can prove similarly as in the case of the Monod type growth function that λ0 6= 0 (see
Proposition 3.2). The next lemma gives properties of the trajectory during an impulse of volume.

Lemma 3.4
Consider an extremal trajectory starting at some point (x0, s0, v0) ∈ E with v0 < vm. Assume that
we have r = 0 on some time interval [0, t1] where t1 is a switching point. Then, we have:

[λ0x − λ0s][µ(s(t1))− µ(s0)] ≥ 0, (3.20)

where λ0 := (λ0x, λ
0
s, λ

0
v) is the initial adjoint vector.

Proof
One can see that on [0, t1], we have λ̇x = v̇

vλx, λ̇s = v̇
vλs, thus λx = v

v0
λ0x and λs = v

v0
λ0s. This

gives
φ1 = (λ0x − λ0s)x0µ(s)− 1− kx0λ0x. (3.21)

As r = 0 on the interval [0, t1], we have φ1(0) ≤ 0 and φ1(t1) = 0 (as t1 is a switching point). The
lemma follows from (3.21).

We now prove that it is not possible to have an impulse from a point in (x0, s0, v0) ∈ E with
v0 < vm and s0 > s to the maximal volume.

Lemma 3.5
Assume that an extremal trajectory satisfies r = 0 from a point (x0, s0, v0) ∈ E with v0 < vm and
s0 > s until the maximum volume vm. Then, the trajectory is not optimal.

Proof
Suppose that we have r = 0 until vm and let t1 the time where the trajectory reaches the maximal
volume. We then have u = 0 on [t1, tf ] where tf > t1 is such that s(tf ) = sref (first entry time into
the target). We have φ1 = 0 on the interval [t1, tf ], therefore

λx − λs =
1 + kxλx
µ(s)x

.

From the adjoint equation, we get that λ̇x = − 1
x , so λx is decreasing, and using (3.4), we obtain that

λx ≥ 0 on [t1, tf ]. Consequently, λx − λs is non-negative on [t1, tf ], thus λx(t1)− λs(t1) ≥ 0. By
(3.20), and from the fact that µ(s0)− µ(s(t1)) > 0, we obtain

λ0x − λ0s < 0,

where λ0 := (λ0x, λ
0
s, λ

0
v) is the initial adjoint vector. Recall from Lemma 3.20 that along the

impulse, we have λx − λs = v
v0

[λ0x − λ0s]. It follows that at time t1, we have λx(t1)− λs(t1) =
vm
v0

[λ0x − λ0s] < 0, which is a contradiction.

Corollary 3.1
Any extremal trajectory starting at some point (x0, s0, v0) ∈ E with v0 < vm, s0 > s, and such that
s(t) > s for all t such that v(t) < vm is not optimal.

Proof
Such a trajectory is necessarily a concatenation of arcs u = 0 and r = 0, and it contains a non-trivial
impulse to the maximal volume vm, and we can use Lemma 3.5 to conclude.
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Similarly, we show that a trajectory which has a switching point from an arc u = 0 to an impulse
at a substrate concentration strictly greater than s, is not optimal.

Lemma 3.6
Let us consider an extremal trajectory starting at some point (x0, s0, v0) ∈ E with v0 < vm, s0 > s.
Assume that it satisfies u = 0 on [0, t0] and r = 0 on [t0, t1] where s(t0) > s. Then, the trajectory is
not optimal.

Proof
As we have φ2 < 0 on [0, t0), we get that φ̇2(t0) = limt→t0

φ2(t)−φ2(t0)
t−t0 ≥ 0. We obtain from

(3.9) that φ̇2 = ψ, thus λs(t0)− λx(t0) ≤ 0 (recall that µ′(s(t0)) < 0 as s(t0) > s). From the
impulse at time t0 and from Lemma 3.4, we obtain that necessarily λx(t0)− λs(t0) < 0 which
is a contradiction.

We now investigate the case where an extremal trajectory has a switching point at a substrate
concentration lower than s and for a volume value strictly less than vm.

Lemma 3.7
Consider an extremal trajectory starting at some point (x0, s0, v0) ∈ E with v0 < vm, s0 < s.
Assume that it satisfies u = 0 on [0, t0] and r = 0 on [t0, t1]. Then, the trajectory is not optimal.

Proof
We have φ2 < 0 on the interval (0, t0) and φ2(t0) = 0, therefore φ̇2(t0) ≥ 0. On the interval [0, t0],
the switching function φ2 satisfies φ̇2 = ψ, therefore we get λs(t0)− λx(t0) ≥ 0. From Lemma 3.4,
we obtain that λx(t0)− λs(t0) > 0 (because µ is increasing on [0, s]), hence λs(t0)− λx(t0) < 0,
which is a contradiction.

Notice that this Lemma implies that it is not possible for an optimal trajectory to cross the singular
arc with u = 0 at a volume v0 < vm.

We now prove that it is not optimal for a trajectory to leave the singular arc before reaching the
maximal volume. Hereafter, S[t1,t2], I[t1,t2], and NF[t1,t2] denote a singular arc, an arc r = 0, and
an arc u = 0 on some time interval [t1, t2].

Proposition 3.3
Consider an extremal trajectory starting at some point (x0, s, v0) ∈ E at time 0 with v0 < vm and
which contains a singular arc on some time interval [0, t1]. If the trajectory is optimal, then it is
singular until the maximal volume.

Proof
Without any loss of generality, we may assume that the trajectory is singular until the time t1 and
that v(t1) < vm. From Lemma 3.7, the trajectory cannot switch to u = 0 at time t1, therefore, if it is
optimal, we necessarily have that r = 0 (a dilution) in a right neigbourhood of t1. If we have r = 0
until the maximal volume, we know from Lemma 3.5 that the trajectory is not optimal. Similarly, if
the impulse does not reach the maximal volume, but if the extremal trajectory contains a sequence
I[t1,t2]NF[t2,t3]I[t3,t4] with 0 < t1 < t2 < t3 < t4, v(t3) < vm and s(t3) > s, then we know from
Lemma 3.6 that the trajectory is not optimal.

We deduce that the extremal trajectory necessarily consists of sequences of singular arcs followed
by a dilution r = 0 and an arc u = 0 until s. This means that there exists t2 > t1 such that r = 0 on
[t1, t2] with s(t2) > s, and that at time t2, we have u = 0 until the singular arc which is reached at
time t3. Therefore, the only possibility for the trajectory is to contain a concatenation of sequences
of type S[0,t1]I[t1,t2]NF[t2,t3] until reaching the maximal volume vm (by a singular arc from Lemma
3.5).

We now prove that the existence of such a sequence implies a contradiction, which will prove
that it is optimal for a trajectory to be singular until the maximal volume. Let ϕ := λx − λs.
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Claim 3.1
A sequence I[t1,t2]NF[t2,t3] such that s(t1) = s(t3) = s satisfies ϕ < 0 on [t1, t3].

Let us prove Claim 3.1. From Lemma 3.4, we have ϕ(t1) < 0 and ϕ(t2) < 0. Now, as u = 0
on [t2, t3], we have φ1 = 0 and ϕµ(s)x = 1 + kxλx on this interval. Combining with the adjoint
equation gives:

ϕ̇ = xµ′(s)ϕ− 1

x
. (3.22)

Assume that there exists τ ≤ t3 such that ϕ is vanishing. We can assume that ϕ < 0 on [t2, τ) so that
ϕ̇(τ) ≥ 0. On the other hand, (3.22) implies that ϕ̇(τ) = − 1

x(τ) < 0, and we have a contradiction,
which proves the claim.

Claim 3.2
If a sequence S[t3,t4] satisfies ϕ(t3) < 0, then we have ϕ(t4) < 0.

Let us prove Claim 3.2. On the interval [t3, t4], we have φ1 = φ2 = 0 and µ′(s) = 0 which gives:

ϕ̇ =
us
v
ϕ− 1

x
, (3.23)

where us is the singular control (recall (3.10)). From (3.23) and Gronwall’s Lemma, we obtain that
ϕ(t3) < 0 implies ϕ(t4) < 0, as was to be proved.

To conclude the proof of the Proposition, note that from our assumption, there exists at least
one sequence S[0,t1]I[t1,t2]NF[t2,t3] as above. Combining Lemma 3.4, Claims 3.1 and 3.2, yields
that ϕ(t1) < 0, ϕ(t2) < 0 and ϕ(t3) < 0. By repeating this argument on each such sequence if
necessary, we obtain that there exists a time t > 0 such that s(t) = s, v(t) = vm, and ϕ(t) < 0.
Now, the transversality condition at the terminal time implies that

ϕ(tf ) =
1

µ(sref )x(tf )
> 0,

which contradicts ϕ(t) < 0 and Claim 3.1 (recall that Claim 3.1 together with ϕ(t) < 0 implies
ϕ(tf ) < 0). This concludes the proof.

Let C1 the dilution curve which passes through the point (s, vm), and whose equation is given by
γ1(s) := vm

sin−s
sin−s . The singular arc strategy is defined as follows.

Definition 3.2
Let (x0, s0, v0) ∈ E.
(i) If v0 ≥ γ1(s0), the singular arc strategy coincides with the strategy fill and wait.
(ii) If s0 ≤ s, and v0 < γ1(s0), the singular arc strategy consists of an impulse from s0 to s, followed
by a singular arc until reaching v = vm and then an arc u = 0 until sref .
(iii) If s0 ≥ s, the singular arc strategy consists of an arc u = 0 until reaching s, a singular arc until
v = vm and then an arc u = 0 until sref .

The singular strategy satisfies the following property.

Theorem 3.2
For any point (x0, s0, v0) ∈ E, the optimal feeding policy is the singular arc strategy.

Proof
Let (x0, s0, v0) ∈ E with v0 < vm. First, assume that s0 < s. If, v0 > γ1(s0), Lemma 3.7 implies
that r = 0 until vm. In this case, the singular arc strategy coincides with the strategy fill and wait.
If v0 < γ1(s0), Lemma 3.7 implies that r = 0 until reaching the singular arc. Otherwise, we would
have a switching point to an arc u = 0 at some time t0 with v(t0) < vm, s(t0) ≤ s. As v(t0) < vm,
the trajectory necessary contains a switching point to r = 0 at some time t1 > t0, and we can apply
Lemma 3.7 to exclude this possibility. Now, Proposition 3.3 implies that the trajectory is singular
until v = vm.
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Assume now that s0 > s. From corollary 3.1 and Lemma 3.6, we have u = 0 until the singular
arc. From Proposition 3.3, the trajectory remains singular until vm, which ends the proof.

We now give the cost associated to this strategy. When s0 < s and v0 < γ1(s0), we call x′0 the
biomass concentration corresponding to a dilution from s0 to s, v′0 the new volume, and x′′0 the
biomass concentration at the end of the singular arc (at volume vm):

x′0 = x0
sin − s
sin − s0

, v′0 = v0
sin − s0
sin − s

, x′′0 = x+
v′0
vm

(x′0 − x).

When s0 > s, we call x̃′0 the biomass concentration corresponding to an arc u = 0 until s, and x̃′′0
the biomass concentration at the end of the singular arc (at volume vm):

x̃′0 = x0 + s0 − s+ k

∫ s

s0

dσ

µ(σ)
, x̃′′0 = x+

v0
vm

(x̃′0 − x).

The cost of the singular arc strategy is:

ω(x0, s0, v0) =



w(x0, s0, v0), if v0 ≥ γ1(s0),
1
β ln

(
x′0v
′
0+x(vm−v

′
0)

x0v0

)
+
∫ sref
s

−ds
µ(s)[x′′0 +

∫ s
s

k−µ(σ)
µ(σ)

dσ]
, if v0 < γ1(s0),∫ s

s0
−ds

µ(s)[x0+s0−s+k
∫ s
s0

dσ
µ(σ)

]
+ 1

β ln
[
x̃′0v0+x(vm−v0)

x̃′0v0

]
+
∫ sref
s

−ds
µ(s)[x̃′′0 +

∫ s
s

k−µ(σ)
µ(σ)

]
, if s0 > s.

(3.24)

Theorem 3.2 implies the following result.

Theorem 3.3
The feedback control law uSA given by

uSA(s0, x0, v0) :=


(0, u), if s0 < s, v0 < vm,

(1, us(v)), if s = s, v0 < vm,

(1, 0), if v0 = vm or s0 > s,

(3.25)

is optimal, and the value function associated to (2.16) satisfies v = ω.

Proof
The result is a rephrasing of Theorem 3.2 in term of feedback control. Note that in (3.25), u is any
measurable control taking values in [0, 1] such that its integral on the period of the dilution is equal
to vm − v0 (see Definition 2.14).

3.4. Fed-batch bioreactor with mortality and Hydrolysis

In this section, we investigate the case where both coefficients k and k′ are non-zero. So, in the
impulsive framework, (2.1) becomes:

ẋ =
(
r[µ(s)− k]− u

v

)
x,

ṡ = r[−µ(s) + k′]x+ u
v (sin − s),

v̇ = u.

(3.26)

Now, by setting ν(s) := µ(s)− k′, (3.26) becomes:
ẋ =

(
r[ν(s)− k′′]− u

v

)
x,

ṡ = −rν(s)x+ u
v (sin − s),

v̇ = u,

(3.27)
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where k′′ = k − k′ > 0. In view of Proposition 2.1, we are in position to apply the result of Theorem
3.1 and 3.3 to the system (3.27) on the domain Em ⊂ E (in the case of a Monod type growth
function) or Eα ⊂ E (in the case of Haldane type kinetics). Indeed, both domains Em and Eα
remain invariant for (3.27). Moreover, if µ is of the Monod type, then ν is increasing on [s̃1,+∞],
and if µ is of the Haldane type, ν is increasing on [s̃′1, s], and decreasing over [s, sin]. So, we can
apply the optimality result on these sets with ν in place of µ and state our main result.

Theorem 3.4
(i) When µ is of the Monod type, the strategy fill and wait is optimal in the domain Em.
(ii) When µ is of the Haldane type, the singular arc strategy is optimal in the domain Eα.

3.5. Numerical simulations

Finally, we have compared the cost of the optimal strategy with respect to the initial volume value
and the mortality coefficient k in order to measure the effect of the mortality on the system.
Numerical results are depicted in tables I,II for k = 0, 10−4, 10−3, see also Fig. 1. As expected,
the time of the optimal strategy is increasing as a function of k and decreasing with respect to v0.
When k is small and when the initial volume is close to the target, the time of the optimal trajectory
is close to the optimal one with k = 0. Notice also that even if k is small, the time to reach the target
significantly differs with the one with k = 0 when the initial point is far from the target.
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Figure 1. Plot of the projection of the singular arc strategy into the plane (s, v) in the impulsive framework
for different initial volume values, with a mortality coefficient k = 10−4. Parameter values (arbitrary units)
of simulations are taken as follows: h0 = 0.033, h1 = 4, h2 = 1

4 , sin = 10, sref = 0.1, vm = 30, x0 = 13.

Table I. Time tk(v0) of the singular arc strategy with s0 = 9 and k0 = 0, k1 = 10−4, k2 = 10−3.

v0 1 5 9 13 17 21 25 29
tk0(v0) 310.1651 167.2351 117.1540 86.8963 65.5134 50.3793 37.8862 21.1462
tk1(v0) 312.2648 168.1458 117.6926 87.2484 65.7451 50.4975 37.9331 21.1720
tk2(v0) 332.5485 176.9264 122.7791 90.5304 67.8569 52.8893 38.3771 21.4075

4. CONCLUSIONS

Thanks to a careful study of the switching functions provided by the Pontryagin maximum principle,
we could generalize the results of [3, 11] to the case where the model includes mortality and
hydrolysis of dead biomass. We can conclude that the optimal feedback control law, which is
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Table II. Time tk(v0) of the singular arc strategy with s0 = 0.5 and k0 = 0, k1 = 10−4, k2 = 10−3.

v0 1 5 9 13 17 21 25 29
tk0(v0) 314.8341 179.7194 135.5225 110.7341 93.7733 81.4263 71.9633 64.4641
tk1(v0) 316.9834 180.6965 136.1483 111.1780 94.1084 81.6887 72.1743 64.6373
tk2(v0) 338.4241 190.5360 142.9312 115.8383 97.7176 84.5983 74.5905 66.6930

either bang-bang (for Monod type kinetics) or singular (for Haldane type kinetics), is robust in the
presence of mortality and hydrolysis effects. In fact, when these parameters are not exactly known,
the optimal synthesis obtained in [3] remains valid, and it can be implemented in the same way (see
[1]). As a future work, we plan to study this optimal control problem when the hydrolysis acts on the
system with delay or when it depends on the state of the system. Characterizing feedback controls
in this setting is a more difficult question and needs further investigations.
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