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Equivalence of the Fleming-Viot and Look-down
models of Muller’s ratchet

Julien Audiffren

Abstract

We consider Muller’s ratchet Fleming-Viot model with compensatory mu-
tations, which is an infinite system of SDE used to study the accumulation of
deleterious mutations in asexual population including mutations and selection.
We construct a specific look-down model, and we prove that it is equivalent to
the previous Muller’s ratchet model.

Keywords : Muller’s ratchet, Fleming-Viot, Look-down, Tightness, SDEs.

Introduction

The look-down model was first introduced by Donnelly and Kurtz (see [5] and [7]).
The idea is to distribute the population on sites indexed by i ≥ 1, with exactly one
individual per site. In the ”modified look-down model” of Donnelly and Kurtz, the
population evolves in continuous time as follows : for each pair of sites (i, j), at rate
c > 0, the individual sitting on site i ∧ j gives birth to an individual sitting on site
i∨ j, and all individuals sitting on a site greater than or equal to i∨ j are shifted to
the right, that is to say each of those individual will move to the site which is at his
right.

The two main differences between this model and the Moran model, are that
first, the arrows representing births are always pointing to the right, that is to say
an individual sitting on site i can only give birth to an individual on a site j with
j > i. This ensures that the infinite model is well defined, since ∀n ≥ 0, the evolution
of the individuals sitting on the first n sites only depends on births happening on
the first n site. The asymmetry which result from this choice is compensated by
exchangeability, which is an important property of the look-down model.

The second difference is that the individual who was sitting on the site were the
offspring took place does not disappear, but instead is moved to the right, just as
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all the individuals which are on a site to his right.In [6] Donnelly and Kurtz added
selection for a finite number of type of individuals to their model, which involved
additional births or possible deaths.

In our model, when a death occurs, the individual who dies is removed from the
population, and each of the individuals sitting on a site to the right of his site are
shifted to the left. This is a model of death different from the one in [6]. Note that
with those deaths, the infinite model is no longer immediately well-defined, since
∀n ≥ 0, the evolution of the individuals sitting on the first n sites depend, in case
of death, on the individual sitting on the following sites. For example, in [3] the
authors show that when there are two type of individuals and one death rate, the
infinite model is well defined. It has also been shown for several specific models (see
e.g. [5], [6], [3]) that the look-down model can be seen as a particle representation
for the Fleming-Viot measure-valued diffusion.

In this paper, we consider a look-down version of the Muller’s ratchet model with
compensatory mutations, which have been suggested by A. Wakolbinger in a personal
communication. The model will have mutations in addition of selection, and will
involve an infinite number of types of individuals, and an infinite number of selection
rates. It is not obvious that in that case the infinite model can be defined, since
the death rate is not bounded (see below for the definition of our look-down model).
Therefore, we will begin by defining our model in a finite population case, and
will show that this model does have a limit (see Theorem 2) when the size of the
population tends to infinity.

More precisely, we will consider an asexual population where two types of muta-
tions occur : first, deleterious mutations which have the same value and are indepen-
dent so they have cumulative effects, and secondly compensatory mutations which
cancel deleterious mutations one by one (and thus not having an effect on individual
who carry no deleterious mutations). Since the type of one individual is determined
by the number of uncanceled deleterious mutations he carries, we will only account
those uncanceled mutations when we will speak about carried mutations. We will also
suppose that all the mutations are transmitted from any individual to his offsprings.
We define a modified look-down model called (Ln), with a finite fixed number n of
individuals. Let ηni (t) be the number of mutations carried by the individual sitting on
level i at time t, 1 ≤ i ≤ n, and Xn

k the proportion of individuals with k deleterious
mutations. We also define Xn = (Xn

k , k ≥ 0). The following events occur :
Mutation : Each individual gains one deleterious mutation at rate λ, and muta-

tions are canceled at rate γ.
Selection : ∀1 ≤ i ≤ n, the individual sitting at site i dies at rate αηni (t). When it
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happens, all individuals sitting on site j with j > i are moved to the left, and we put
at the n-th site an individual, whose number of mutations is randomly chosen in such
a way that this number equals k with probability µ(k) = Xn

k (t−) = 1
n

∑n
i=1 1ηni (t−)=k.

Birth : For each pair of individual sitting at sites i and j with i < j, at rate c,
the leftmost one gives birth to a child with the same number of mutation at site j,
and for all j′ ≥ j the individual sitting on site j′ is moved one step to the right, and
the n-th individual dies.

Similarly, we define the model (L∞) with an infinite population which follows the
same rules as Ln with n = ∞, and X∞ = (X∞k , k ≥ 0) the infinite vector of the
proportions for the model (L∞). As said before, we will prove that such model is
well defined.

For any initial proportion condition x = (xk)k≥0, we construct the initial condition
for our look-down model as follows : ∀0 ≤ k ≤ n, ηnk (0) are i.i.d and P(ηnk (0) = `) =
x`.

Our aim is to prove that this infinite model is equivalent to a the Fleming Viot
model of Muller’s ratchet with compensatory mutations, that is to say that the
proportions X∞k of our model solve the following infinite SDE system (0.1), with the
following notations :

N > 0 a parameter;
Xk(t) the proportion of individuals with k deleterious mutations at time t;
λ (resp. γ) is the rate at which deleterious mutations (resp. compensatory

mutations) occur;
α is the harmfulness of each single deleterious mutation;
{Bk,`, k > ` ≥ 0} are independent brownian motions, and Bk,` = −B`,k;
M1 =

∑
k∈N kXk denotes the mean number of mutations in the total population,

M` =
∑

k∈N(k −M1)
`Xk is the `–th centered moment, ∀` ≥ 2.

The Fleming–Viot model for Muller’s ratchet with compensatory mutations in
continuous time is given by the following infinite set of SDEs



dXk = [α(M1 − k)Xk + λ(Xk−1 −Xk) + γ(Xk+1 −Xk)] dt+
∑

`≥0,` 6=k

√
XkX`

N
dBk,`

= [α(M1 − k)Xk + λ(Xk−1 −Xk) + γ(Xk+1 −Xk)] dt+

√
Xk(1−Xk)

N
dBk

Xk(0) = xk; k ≥ 1.
(0.1)
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and for k = 0,

dX0 = [αM1X0 − λX0 + γX1] dt+
∑

`≥0,` 6=0

√
X0X`

N
dB0,`

= [αM1X0 − λX0 + γX1] dt+

√
X0(1−X0)

N
dB0

X0(0) = x0.

where (Bk, k ≥ 0) are standard brownian motion with ∀k 6= `〈∫ t

0

√
Xk(s)(1−Xk(s))

N
dBk(s),

∫ t

0

√
X`(s)(1−X`(s))

N
dB`(s)ds

〉
= −

∫ t

0

Xk(s)X`(s)

N
ds

.
We choose our initial condition x = (xk)k≥0 such as x ∈ X , where

Xρ =

{
(xk)k≥0, such as ∀k ≥ 0, 0 ≤ xk ≤ 1,

∑
k≥0

xk = 1 and
∑
k≥0

xke
ρk <∞

}
.

and

X = ∪ρ>0Xρ =

{
(xk)k≥0, such as ∀k ≥ 0, 0 ≤ xk ≤ 1,

∑
k≥0

xk = 1 and ∃ρ > 0 such as
∑
k≥0

xke
ρk <∞

}
.

Note that Xρ is complete for the distance d(x, y) =
∑

k≥0 |xk − yk|eρk.

This model is a slight variation of the one proposed by P. Pfaffelhuber, P.R. Staab
and A. Wakolbinger in [9]. Indeed in their model, they chose a compensatory mu-
tation rate which which was proportional to the number of carried deleterious mu-
tations i.e. γk for the individuals with k deleterious mutations, ∀k ≥ 0. The whole
following proof can be applied to the their model with very little modifications, but
we chose to study our alternative model since in our case, the proof of the con-
vergence to the infinite model (see section 4) is slightly harder, because it involves
getting an upper bound on the mean number of deleterious mutations in the popu-
lation. And in our case, compensatory mutations occur less frequently, then there is
more deleterious mutations, and obtaining the upper-bound is slightly more difficult.
The set X is already used in [9] by P. Pfaffelhuber, P.R. Staab and A. Wakolbinger to
prove existence and uniqueness of the solution of their Fleming-Viot infinite system
of SDE’s starting from an initial condition in X . Their proof can be applied to our
model (all the necessary reckonings are done through this paper, like e.g. exponential
moments) so we have the following Proposition :
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Proposition 0.1 The infinite system of SDE (0.1) is well posed, that is to say there
is one and only one weak solution X = (Xk(t), t ≥ 0, k ≥ 0) for any given initial value
x ∈ X .

In the sequel, X will refer to this unique solution.

To reach our objective, we will proceed as follows :
In a first section, we will calculate the generator of the model (Ln), and consider

its limit when n → ∞. This will give some hints about the equation solved by the
limit of the (Xn), and is used in the proof of existence and unicity in [9] to obtain
the corresponding martingale problem.

In the second section, we will establish the tightness of (Xn, n ≥ 0) by writing
Xn as the solution of an infinite SDE system. Then by calculating the limit of the
previous system of SDE, which will require to carefully study Mn

1 and to prove that

lim
n→∞

∑
k≥0

kXn
k =

∑
k≥0

lim
n→∞

kXn
k ,

we will deduce the first Theorem :

Theorem 1 ∀k ≥ 0, (Xn
k , n ≥ 0) is tight, and the family of the limits in law is the

solution X starting from x of (0.1).

In the third section we will use a method inspired from [3] to construct (L∞) and
show that it is well defined. Then in the fourth section we will prove that (L∞) has
the exchangeability property, like said in the following Theorem :

Theorem 2 The model L∞ is well defined, and is the limit of the Ln when n→∞
as follows : ∀i > 0, ∀t > 0, ηi,nt converges a.s. and we call ηi,∞t its limit. Moreover,
it has the exchangeability property, that is to say if the (ηi,∞0 )i≥1 are exchangeable,
then ∀t > 0, the (ηi,∞t )i≥1 are exchangeable. As a consequence,

X∞ ≡ X (equality in law).

Finally in the fifth section we will combine the previous results we obtained to
improve the obtained convergences. Then we will deduce the third and final Theorem
:

Theorem 3 ∀T ≥ 0, sup0≤t≤T
∑

k≥0 |Xn
k (t)−X∞k (t)| → 0 in probability.
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1 The generator

In this section, we will determine the generator An for the process X = (Xn
k , k ≥ 0),

and consider its limit when n → ∞. This will give some hints about the equa-
tion solved by the limit of the (Xn), and can be used to determine the associated
martingale problem. The proof of the Theorems will begin the next section.

We define enk = (
δ`,k
n
, ` ≥ 0) ∈ ZN

+, and ek = nenk .
For all f ∈ C∈b (Zn+1

+ ,R),
Mutation : Since there are nXk individuals carrying k deleterious mutations,

Amutn f(x) =
∑
k≥0

λnxk
(
f(x− enk + enk+1)− f(x)

)
+
∑
k≥1

γnxk
(
f(x− enk + enk−1)− f(x)

)
.

Selection : Since there are nXk individuals of type k, and X` is the probability
that the new individual has ` deleterious mutations :

Aseln f(x) =
∑

k,`≥0,` 6=k

nαkxkx` (f(x− enk + en` )− f(x)) .

Birth: For each 1 ≤ i ≤ n, the individual sitting on level i gives birth at rate
c(n− i), while the probability that both he carries k deleterious mutations, and the
individual sitting on level n carries ` mutations (` 6= k) is :

P(ηi = k, ηn = `) = P(ηi = k)P(ηn = `|ηi = k)

= XkX`
n

n− 1
.

Therefore,

Abirn f(x) =
∑

k,`≥0,`6=k

c
n(n− 1)

2
xkx`

n

n− 1
(f(x+ enk − en` )− f(x)) .

=
∑

k,`≥0,`6=k

c
n2

2
xkx` (f(x+ enk − en` )− f(x)) .

We obtain the generator for our process :
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Anf(x) = Amutn + Aseln + Abirn

=
∑
k≥0

λnxk
(
f(x− enk + enk+1)− f(x)

)
.+
∑
k≥1

γnxk
(
f(x− enk + enk−1)− f(x)

)
.

+
∑

k,`≥0,`6=k

nαkxkx` (f(x− enk + en` )− f(x)) +
∑

k,`≥0,`6=k

c
n2

2
xkx` (f(x− enk + en` )− f(x)) .

Now we will estimate its limits when n→∞.
∀x ∈ X , ∃ρ > 0 such as x ∈ Xρ, and ∀f ∈ C2b (Xρ,R),

lim
n→∞

Anf(x) = lim
n→∞

Amutn f(x) + lim
n→∞

Aseln f(x) + lim
n→∞

Abirn f(x)

= (−λx0 + γx1)
∂f

∂x0
(x) +

∑
k≥1

(λ(xk−1 − xk) + γ(xk+1 − xk))
∂f

∂xk
(x)

+ α
∑
k≥0

(M1 − k)xk
∂f

∂xk
(x) +

∑
k≥0

c

2
xk(1− xk)

∂2f

∂x2k
(x)− c

2

∑
k≥0

∑
`6=k

xkx`
∂2f

∂xk∂x`
(x).

Note that if we choose c = 1
N

, we obtain the generator corresponding to the SDE
system (0.1). We will prove in the following section that the solution of the Muller’s
ratchet model is indeed the limit in law of Xn.

2 Tightness and weak convergence

In order to prove that the limit of the Xn solves (0.1), we first need the process
Xn(t) to converge in some way. We will prove the tightness of (Xn

k )n∈Z+ ∀k ∈ Z+

in D ([0,+∞]) with the Skorohod metric. Since Mn
1 appears in the equations of Xn

(see (2.1)), we will aso need to prove the tightness of (Mn
1 )n∈Z+ .Note that ∀k, n ≥ 0

Xn
k (0) ∈ [0, 1] , which implies that (xn, n ≥ 0) is tight.

Proposition 2.1 ∀k ≥ 0, (Xn
k , n ≥ 0) and (Mn

1 , n ≥ 0) are tight in D ([0,+∞[).

To prove this, we will prove the tightness on [0, T ] ∀T > 0. We will establish the
system of SDEs which the Xn

k ’s and Mn
1 solve, and prove some estimates regarding

the moments of (Xn
k , k ≥ 0).
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Let
{
P 1
k , P

2
k , P

3,`
k , P 5,`

k , k, ` ≥ 0
}

be standard Poisson point processes on R+, which

are mutually independent, except that P 2
0 = 0. We also define ∀k, l ≥ 0 P 4,k

` = P 3,`
k

and P 5,k
` = P 6,`

k , and for all n, j ∈ Z+, En
j =

∑∞
k=0 k

jXn
k .

We have :

Xn
k (t) = Xn

k (0) +
1

n
P 1
k−1

(
λn

∫ t

0

Xn
k−1(s)ds

)
− 1

n
P 1
k

(
λn

∫ t

0

Xn
k (s)ds

)
+

1

n
P 2
k+1

(
γn

∫ t

0

Xn
k+1(s)ds

)
− 1

n
P 2
k

(
γn

∫ t

0

Xn
k (s)ds

)
+

1

n

∞∑
`=0,` 6=k

P 3,`
k

(
αn`

∫ t

0

Xn
k (s)Xn

` (s)ds

)
− 1

n

∞∑
`=0,` 6=k

P 4,`
k

(
αnk

∫ t

0

Xn
k (s)Xn

` (s)ds

)

+
1

n

∞∑
`=0,` 6=k

P 5,`
k

(
c
n2

2

∫ t

0

Xn
k (s)Xn

` (s)ds

)
− 1

n

∞∑
`=0,`6=k

P 6,`
k

(
c
n2

2

∫ t

0

Xn
k (s)Xn

` (s)ds

)
.

Note that one can rewrite those equations as follows for k ≥ 1, and without the
term −γ

∫ t
0
Xn
k (s)ds for k = 0 :

Xn
k (t) = Xn

k (0) + λ

∫ t

0

Xn
k−1(s)ds− λ

∫ t

0

Xn
k (s)ds+ γ

∫ t

0

Xn
k+1(s)ds− γ

∫ t

0

Xn
k (s)ds

+ α

∫ t

0

Xn
k (s)(Mn

1 (s)− kXn
k (s))ds− αk

∫ t

0

Xn
k (s)(1−Xn

k (s))ds+Mn,k
t

= Xn
k (0) + λ

∫ t

0

(
Xn
k−1(s)−Xn

k (s)
)
ds+ γ

∫ t

0

(
Xn
k+1(s)−Xn

k (s)
)
ds

+ α

∫ t

0

Xn
k (s)(Mn

1 (s)− k)ds+Mn,k
t , (2.1)

where ∀k ≥ 0 Mn,k
t is a martingale such that〈

Mn,k
〉
t

=
1

n
λ

∫ t

0

(
Xn
k−1(s) +Xn

k (s)
)
ds+

1

n
γ

∫ t

0

(
Xn
k+1(s) +Xn

k (s)
)
ds

+
1

n
α

∫ t

0

Xn
k (s) (Mn

1 (s)− 2kXn
k (s) + k) ds+ c

∫ t

0

Xn
k (s) (1−Xn

k (s)) ds.
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and, ∀k 6= `,

〈
Mn,k,Mn,`

〉
t

= − 1

n
1|`−k|=1λ

∫ t

0

Xn
k∧`(s)ds−

1

n
1|`−k|=1γ

∫ t

0

Xn
k∨`(s)ds

− 1

n
α(`+ k)

∫ t

0

Xn
k (s)Xn

` (s)ds+ c

∫ t

0

Xn
k (s)Xn

` (s)ds.

Let us define, except as usual for k = 0 where the term −γX0 is absent,

φnk(s) = λ
(
Xn
k−1(s)−Xn

k (s)
)

+ γ
(
Xn
k+1(s)−Xn

k (s)
)

+ αXn
k (s)(Mn

1 (s)− k),

ψnk (s) =
1

n
λ
(
Xn
k−1(s) +Xn

k (s)
)

+
1

n
γ
(
Xn
k+1(s) +Xn

k (s)
)

+
1

n
αXn

k (s) (Mn
1 (s)− 2kXn

k (s) + k)

+ cXn
k (s) (1−Xn

k (s)) .

From the relations between our Poisson processes, we deduce the following iden-
tities :

n∑
k=1

k
1

n

(
P 1
k−1

(
λn

∫ t

0

Xn
k−1(s)ds

)
− P 1

k

(
λn

∫ t

0

Xn
k (s)ds

))
+

n∑
k=1

k
1

n

(
P 2
k+1

(
γn

∫ t

0

Xn
k+1(s)ds

)
− P 2

k

(
γn

∫ t

0

Xn
k (s)ds

))
=

n∑
k=0

1

n
P 1
k

(
λn

∫ t

0

Xn
k (s)ds

)
−

n∑
k=1

1

n
P 2
k

(
γn

∫ t

0

Xn
k (s)ds

)

n∑
k=0

k
1

n

∞∑
`=0,` 6=k

P 3,`
k

(
αn`

∫ t

0

Xn
k (s)Xn

` (s)ds

)
−

n∑
k=0

k
1

n

∞∑
`=0,`6=k

P 4,`
k

(
αnk

∫ t

0

Xn
k (s)Xn

` (s)ds

)

=
n∑
k=0

1

n

∞∑
`=0,` 6=k

(k − `)P 3,`
k

(
αn`

∫ t

0

Xn
k (s)Xn

` (s)ds

)
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n∑
k=0

k
1

n

∞∑
`=0,` 6=k

P 5,`
k

(
c
n2

2

∫ t

0

Xn
k (s)Xn

` (s)ds

)
−

n∑
k=0

k
1

n

∞∑
`=0,` 6=k

P 6,`
k

(
c
n2

2

∫ t

0

Xn
k (s)Xn

` (s)ds

)

=
n∑
k=0

1

n

∞∑
`=0,` 6=k

(k − `)P 5,`
k

(
c
n2

2

∫ t

0

Xn
k (s)Xn

` (s)ds

)

Now, since Mn
1 (t) =

∑∞
k=0 kX

n
k (t), we obtain :

Mn
1 (t) = Mn

1 (0) + λt− γ
∫ t

0

(1−Xn
0 (s))ds− α

∫ t

0

Mn
2 (s)ds+Mn

t

where Mn
t is a martingale, and

〈Mn〉t =
1

n
λt+

1

n
γ

∫ t

0

(1−X0)ds+
1

n
α

∫ t

0

En
2 (s)Mn

1 (s)ds− 2

n
α

∫ t

0

En
2 (s)Mn

1 (s)ds

+
1

n
α

∫ t

0

En
3 (s)ds+ c

∫ t

0

En
2 (s)ds− c

∫ t

0

Mn
1 (s)2ds

=
1

n

(
λt+ γ

∫ t

0

(1−X0)ds+ α

∫ t

0

En
3 (s)ds− α

∫ t

0

En
2 (s)Mn

1 (s)ds

)
− c

∫ t

0

Mn
2 (s)ds

Like for the equations of Xn
k , we define :

φn(s) = λ− γ(1−Xn
0 (s)) + αMn

2 (s),

ψn(s) =
1

n
(λ+ γ(1−Xn

0 (s)) + αEn
3 (s)− αEn

2 (s)Mn
1 (s)d) + cMn

2 (s)

As a preparation for estimating the above quantities, we first establish the

Lemma 2.2 ∀T > 0, ∀k > 0, supn∈Z+
sup0≤t≤T E(En

k (t)) <∞.

Proof :
∀k ≥ 0, (except for k = 0 where −γXn

0 is absent.)
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E(Xn
k (s)) = E(Xn

k (0)) + λE
∫ t

0

(
Xn
k−1(s)−Xn

k (s)
)
ds+ γE

∫ t

0

(
Xn
k+1(s)−Xn

k (s)
)
ds

+ αE
∫ t

0

(Xn
k (s)Mn

1 (s)− kXn
k (s)) ds− αE

∫ t

0

(kXn
k (s)(1−Xn

k (s))) ds

= E(Xn
k (0)) + λE

∫ t

0

(
Xn
k−1(s)−Xn

k (s)
)
ds+ γE

∫ t

0

(
Xn
k+1(s)−Xn

k (s)
)
ds

+ αE
∫ t

0

(Mn
1 − k)Xn

k (s)ds.

Then we will use a slight variation of Lemma 2.5 from [2], and we obtain that,
with the notation Ψn(t, ρ) = E(

∑
k≤0 e

ρkXn
k ), ∃ρ0 > 0, ∀n, t > 0, 0 ≤ ρ ≤ ρ0

Ψn(t, ρ) ≤ Ψn(0, ρ)eλ(e
ρ−1)t,

which is an important inequality since xk ∈ X , so Ψ∞(0, ρ) < ∞, and hence
supn≥0 Ψn(0, ρ) <∞, and therefore prove the Lemma 2.2.

We recall here the argument (see [2] for more details) :
Let, for C > 0

Φn (t, ρ) =
∑
k≥0

Xn
k (t) eρk,

ΦC
n (t, ρ) =

∑
k≥0

Xn
k (t) (eρk ∧ C).

ΨC
n = EΦC

n .

We deduce from Ito’s formula

ΨC
n (t, ρ) = ΨC

n (0, ρ) + E
∫ t

0

∑
k≥0

(
λ (Xk−1 (r)−Xk (r)) + α

(
−k +

∑
j≥0

jXj (r)

)
Xk (r)

)(
eρk ∧ C

)
dr

+ E
∫ t

0

(
γX1(1 ∧ C) +

∑
k≥1

γ (Xk+1 (r)−Xk (r))
(
eρk ∧ C

))
dr

≤ ΨC
n (0, ρ) + E

∫ t

0

(
λ
(
eρΦC

n (r)− ΦC
n (r)

)
− α

∑
k≥0

kXk (r)
(
eρk ∧ C

)
+ α

∑
j≥0

jXj (r) ΦC
n (r)

)
dr,
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because we work with ρ > 0, so Ce−ρ ≤ C and

γX1(1∧C)+
∑
k≥1

γ (Xk−1 (r)−Xk (r))
(
eρk ∧ C

)
= γ

∑
k≥1

Xk

(
eρ(k−1) ∧ C − eρk ∧ C

)
≤ 0.

Moreover, we have (see Corollary 2.4 in [2]) :∑
j≥0

jXn
j (r) ΦC

n (r)−
∑
j≥0

j
(
eρj ∧ C

)
Xn
j ≤ 0,

and since our functions are bounded, we can invert E and
∫

,

ΨC
n (t, ρ) ≤ ΨC

n (0, ρ) +

∫ t

0

(λ (eρ − 1)) ΨC
n (r, ρ) dr.

The result is a consequence of the Gronwall inequality, and the monotone con-
vergence Theorem. ♦

Proof of Proposition 2.1 : Now we take a T > 0. Lemma 2.2 implies that
∃c1 > 0 such as supn∈Z+

sup0≤t≤T E(Mn
1 (t)) < c1. Hence,

sup
n∈Z+

sup
0≤t≤T

E(|φnk(s)|) ≤ λ+ γ + α

(
sup
n∈Z+

sup
0≤t≤T

E(Mn
1 (s)) ∨ k

)
,

≤ λ+ γ + α (c1 ∨ k) ,

sup
n∈Z+

sup
0≤t≤T

E(|ψnk (s)|) ≤ c+
2

n
(λ+ γ) +

1

n
α(k + c1 ∨ k).

And, for any family of stopping time (τn)n≥0, ∀η > 0, ∀ε > 0, if we choose
θ = εη

λ+γ+α(c1∨k) ,

sup
n∈Z+

sup
δ≤θ

P(|
∫ τn+δ

τn

φnk(s)ds|) ≥ η) ≤ sup
n∈Z+

sup
δ≤θ

P(

∫ τn+δ

τn

|φnk(s)|ds) ≥ η)

≤ sup
n∈Z+

sup
δ≤θ

θ

η
sup

0≤s≤T
E(|φnk(s)|))

≤ θ

η
(λ+ γ + α (c1 ∨ k)) ≤ ε.

Likewise, for ψnk , by choosing θ = εη

c+ 2
n
(λ+γ)+ 1

n
α(k+c1∨k)

,
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sup
n∈Z+

sup
δ≤θ

P(|
∫ τn+δ

τn

ψnk (s)ds|) ≥ η) ≤ θ

η

(
c+

2

n
(λ+ γ) +

1

n
α(k + c1 ∨ k)

)
≤ ε.

The bounded variation term satisfies Aldous’ tighness criterion. Since
〈
Mn,k

〉
t

satisfies the criterion as well, so does Mn,k by Rebolledo’s result, then Xn
k is tight

(see [8]).
Similarly, from Lemma 2.2, ∃c2 ≥ c1 such as

sup
n∈Z+

sup
0≤t≤T

E(Mn
1 (t)) < c2,

sup
n∈Z+

sup
0≤t≤T

E(Mn
2 (t)) ≤ sup

n∈Z+

sup
0≤t≤T

E(En
2 (t)) < c2,

sup
n∈Z+

sup
0≤t≤T

E(En
3 (t)) < c2.

Hence for Mn
1 we have :

sup
n∈Z+

sup
0≤t≤T

E(|φn(s)|) ≤ λ+ γ + αc2,

sup
n∈Z+

sup
0≤t≤T

E(|ψn(s)|) ≤ 1

n

(
λ+ γ + α(c2 + c22)

)
+ 2c2,

so by choosing θ = εη
λ+γ+αc2

for phin and θ = εη
1
n(λ+γ+α(c2+c22))+2cc2

for ψn, we can

hold the same reasoning and use Aldous’ tighness criterion. Hence the result. ♦

Now we can proceed with the
proof of Theorem 1 : From Proposition 2.1, we consider a strictly increasing
sequence (n`)`∈N of integers, constructed by the diagonal extraction procedure, such
that ∀k ≥ 0, the family

(
Mn`

1 , X
n`
j , 0 ≤ j ≤ k

)
converges weakly, for the Skorohod

topology of D([0,∞] ,Rk+2) when `→∞, and we call
(
M ′

1, X
′
j, 0 ≤ j ≤ k

)
its limit.

We will continue to write (Xn
k ) for (Xn`

k ) and Mn
1 for Mn`

1 to ease the notations.
In order to prove that the limit solves the Muller’s ratchet Fleming-Viot system

of SDEs (0.1), we first need to prove that M ′
1 =

∑
k≥0 kX

′
k.

Since we know that (Mn
1 (t), n ≥ 0) is tight in D ([0, T ]), all we need to prove is

that

∀f ∈ Cb([0, T ] ,R+),E
(∫ T

0

f(t)Mn
1 (t)dt

)
→n→∞ E

(∫ T

0

f(t)M1(t)dt

)
.
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Exploiting Lemma 2.2, ∀ε > 0, we can choose K = Kε > 0 such that

K ≥ ε

‖f‖∞
sup
n≥1

sup
t∈[0,T ]

E (En
2 (t))

,

E
(∫ T

0

f(t)Mn
1 (t)dt

)
= E

(∫ T

0

f(t)
K∑
k=0

kXn
k (t)dt

)
+ E

(∫ T

0

f(t)
∞∑

k=K+1

kXn
k (t)dt

)
.

The first term in the previous right-hand side tends to E
(∫ T

0
f(t)

∑K
k=0 kXk(t)dt

)
since ∀k ≥ 0, Xn

k ⇒ Xk and only a finite number of them appear.
As for the second term :

E

(∫ T

0

f(t)
∞∑

k=K+1

kXn
k (t)dt

)
≤ 1

K + 1
E
(∫ T

0

f(t)En
2 (t)

)
≤ ε,

E

(∫ T

0

f(t)
∞∑

k=K+1

kXk(t)dt

)
≤ ε.

Now, ∀k 6= `, we can take the joined limit of (Xn
k , X

n
` ) noted (X ′k, X

′
`), and from

the equation (2.1) we obtain that :



X ′k(t) = X ′k(0) + λ

∫ t

0

(
X ′k−1(s)−X ′k(s)

)
ds+ γ

∫ t

0

(
X ′k+1(s)−X ′k(s)

)
ds

+ α

∫ t

0

X ′k(s)(M
′
1(s)− k)ds+M′k

t ,

X ′`(t) = X ′`(0) + λ

∫ t

0

(
X ′`−1(s)−X ′`(s)

)
ds+ γ

∫ t

0

(
X ′`+1(s)−X ′`(s)

)
ds

+ α

∫ t

0

X ′`(s)(M
′
1(s)− `)ds+M′`

t,

where
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〈〈(
M′k

M′`

)〉〉
t

= c

(∫ t
0
X ′k(s) (1−X ′k(s)) ds −

∫ t
0
X ′k(s)X

′
`(s)

−
∫ t
0
X ′k(s)X

′
`(s)

∫ t
0
X ′`(s) (1−X ′`(s)) ds

)
From this we deduce that X ′ satisfies (0.1), hence from the uniqueness in Propo-

sition 0.1 we deduce Theorem 1.

3 Infinite look-down model

In the previous sections, we studied the convergence and the limit of Xn. In this
third part, we will study ηn, and show that one can define a look-down model similar
to the (L∞) with an infinite population, and that our truncated system converges
towards it as n → ∞. This will be the proof of Proposition 3.2, which is the first
part of Theorem 2.

This section has been inspired by [3].
Let us define ξi,nt as follows : ξi,n0 = i, and ∀t > 0, whenever there is a birth

at time t in (Ln) on a level smaller than or equal to ξi,nt− , we have ξi,nt = ξi,nt− + 1;

whenever there is a death at time t in (Ln) on a level smaller than or equal to ξi,nt− ,

we have ξi,nt = ξi,nt− − 1. ξi,ns = i; so ξi,nt denotes the level on which the individual
who was sitting on level i at time 0 is at time t, with the convention that when this
individual is killed, we follow his left neighbor.

We will write n
2

instead of bn
2
c to ease the notations.

We will prove the following result, with pn as defined below (see (3.3)).

Proposition 3.1 ∀n ≥ 64α(M2n
1 (0) + 5

√
n),

P
(
∃1 ≤ i ≤ n

2
, 0 ≤ t ≤ T such that ηni (t) 6= η2ni (t)

)
≤ n

(
16αn(M2n

1 (0) + 5
√
n)

cn2

)n
2

+p2n.

This can be seen as follows :for n large enough, with a probability which tends
to 1, the n/2 first individuals only depends on the n first individuals regarding their
evolution. With this idea, we will prove the following Proposition which define the
infinite model as the limit of the Ln :

Proposition 3.2 The model L∞ is well defined, and is the limit of the Ln when
n→∞ as follows : ∀i > 0, ∀t > 0, ηi,nt converges a.s. and we call ηi,∞t its limit.
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Proof of Proposition 3.1 : This will be a three steps proof. In the first step,
we will couple our process with a birth and death process. Then, in the second step,
we will get some estimate for the rate of death, which will give us the Proposition 3.3.
Finally, in a third step we will combine the previous sections to prove the Proposition
3.1.

First Step : Note that{
∃1 ≤ i ≤ n

2
, 0 ≤ t ≤ T such that ηni (t) 6= η2ni (t)

}
⊂
{
∃1 ≤ i ≤ n+ 1, 0 ≤ s < t ≤ T such that ξi,2ns > n, ξi,2nt =

n

2

}

Indeed, in order to have the first property we need that at least one individual from
the (L2n) model reaches the level n+ 1, then the level n

2
, hence the inclusion.

Let us chose 1 ≤ i0 ≤ n, 0 ≤ s0 < t such that ξi0,2ns0
> n, ξi0,2nt = n

2
. The rate

υn1 (t) at which ξi0,2nt decreases at time t due to deaths is such that

υn1 (s) ≤
2n∑
k=1

αη2nk (s) =
∞∑
k=0

α2nkX2n
k (s)

≤ α2nM2n
1 (s)

Moreover, the rate υn2 (s) at which ξi0,2nt increases after it has reached n and before

it reached n
2

for t ≥ s0 is greater than or equal to cn(n−3)
8

.
Second step : Now we need some estimate of Mn

1 (t) (in fact we need those
estimate for M2n

t , but we work with Mn
t instead to ease the notation, since the

inequality still holds, see after the Proposition 3.3). We will use a similar reasoning
as in Lemma 3.2 from [2]. Note that we have : ∀t > 0, ∀0 ≤ r ≤ T − t,

Mn
1 (t+ r) ≤Mn

1 (t) + λr − α
∫ t+r

t

Mn
2 (s)ds+Mn

t+r −Mn
t

≤Mn
1 (t) + λr +

1

2n

(
λr + γr + α

∫ t+r

t

En
3 (s)ds

)
+

4∑
i=1

Zni (t, r),
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where, with B1
t , B

2
t , B

3
t and B4

t four different Brownian motions,

Z1(t, r) =

√
λ

n

∫ t+r

t

dB1
s −

λr

2n

Z2(t, r) =

√
α

n

∫ t+r

t

√
En

3 (s)dB2
s −

α

2n

∫ t+r

t

En
3 (s)ds

Z3(t, r) = c

∫ t+r

t

√
Mn

2 dB
3
s − α

∫ t+r

t

Mn
2 ds

Z4(t, r) =

√
γ

n

∫ t+r

t

√
1−Xn

0 (s)dB4
s −

γ

2n

∫ t+r

t

(1−Xn
0 (s)) ds.

We note that exp (Zn1 ), exp (Zn2 ), exp (Zn4 ) and exp
(
2 α
c2
Zn3
)

are both local mar-
tingales and super-martingales. Hence, like in [2], one can easily deduce that ∀C > 0,

P
(

sup
0≤r≤T−t

Zni (t, r) ≥ C

)
≤ exp(−C), i = 1, 2 or 4

P
(

sup
0≤r≤T−t

Zn3 (t, r) ≥ C

)
≤ exp(−2

α

c2
C).

Hence,

P
(

sup
0≤r≤T−t

Zn1 (t, r) + Zn2 (t, r) + Zn3 (t, r) + Zn4 (t, r) ≥ 4C

)
≤ exp(−2

α

c2
C) + 3 exp(−C).

(3.1)

On the other hand, a consequence of Lemma 2.2 is that ∃c3(λ, γ, δ), > 0 (since
E6

3 ≤ E18) such that

sup
n∈Z+

sup
0≤s≤T

E

((
λ+

1

2n
(λ+ γ + αEn

3 (s))

)6
)
≤ c3(λ, γ, δ).

Then,

P
(∫ t+r

t

λ+
1

2n
(λ+ γ + αEn

3 (s)) ds > C

)
= P

((∫ t+r

t

λ+
1

2n
(λ+ γ + αEn

3 (s)) ds

)6

> C6

)

≤ r7

C6
(c3(λ, γ, δ)) . (3.2)

Finally, by using (3.1) and (3.2), we finally obtain the following Lemma :
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Lemma 3.3 ∀n > 0, ∀0 ≤ t ≤ T, ∀C > 0,

P
(

sup
0≤r≤T−t

Mn
1 (t+ r)−Mn

1 (t) ≥ 5C

)
≤ exp(−2

α

c2
C) + 3 exp(−C) +

T 7

C6
(c3(λ, γ, δ)) .

Note that, as announced before, the right member of the inequality is a decreasing
function of n, so it is also true for M2n

t . Also, if we take C =
√
n, the quantity

pn = exp(−2
α

c2
√
n) + 3 exp(−

√
n) +

T 7

n3
(c3(λ, γ, δ)) (3.3)

is such that
∑

n≥0 pn <∞.
Third step : Let ρnt (resp. ρ̃nt ) be a birth and death process, starting from ρn0 = n

(resp. ρ̃n0 = n), with a birth rate υn2 (t) (resp cn(n−2)
8

), and a death rate υn1 (t) (resp.

αn(M2n
1 (0) + 5

√
n)). Let τn = inf

{
t > 0, ρ̃nt = n

2

}
and τ ′i,n = inf

{
t > 0, ξi,2nt = n

}
.

Then

P
{
∃1 ≤ i ≤ n, 0 ≤ s0 ≤ T, 0 ≤ t ≤ T such that ξi,2ns0

= n, inf
s0≤s≤t

ξi,2ns = n/2

}
≤ P

{
∃1 ≤ i ≤ n, τ ′i,n < T, inf

0≤s≤T−τ ′i,n
ξ2n,2ns = n/2

}

≤ P

{
∃1 ≤ i ≤ n, τ ′i,n < T, inf

0≤s≤T−τ ′i,n
ρns = n/2

}

≤ P
{

inf
0≤s≤T

ρns = n/2

}
≤ P

{
inf

0≤s≤T
ρns = n/2

}⋂{
sup

0≤r≤T
M2n

1 (r)−M2n
1 (0) ≤ 5

√
n

}
+ p2n

≤ P
{
, ∃0 ≤ s0 ≤ T, ρ̃ns0 =

n

2

}
+ p2n

≤ P {τn < T}+ p2n

≤ P {τn <∞}+ p2n.

The rest of this proof is an adaptation from Lemma 1.2 in [3]. We now work
with n great enough to have n ≥ 64α(M2n

1 (0) + 5
√
n). Let (Ak)k≥1 and (Bk)k≥1 be

two mutually independent sequences of i.i.d. exponential random variables, the Ak
having cn(n−2)

8
for parameter, and the Bk αn(M2n

1 (0) + 5
√
n). We have
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P(τn <∞) ≤
∞∑
k=0

P(A1 + ...+ Ak > B1 + ...+Bk+n
2
)

≤
∞∑
k=0

P
(

exp

(
cn(n− 2)

8

(
A1 + ...+ Ak −B1 + ...−Bk+n

2

))
> 1

)

≤
∞∑
k=0

(
E
(

exp

(
cn(n− 2)

16
A1

)))k (
E
(

exp

(
−cn(n− 2)

16
B1

)))k+n
2

=
∞∑
k=0

2k

(
αn(M2n

1 (0) + 5
√
n)

αn(M2n
1 (0) + 5

√
n) + cn(n−2)

16

)k+n
2

≤
∞∑
k=0

(
32αn(M2n

1 (0) + 5
√
n)

cn2

)k (
16αn(M2n

1 (0) + 5
√
n)

cn2

)n
2

≤
(

16αn(M2n
1 (0) + 5

√
n)

cn2

)n
2

♦

Proof of Proposition 3.2 : Since

∑
n≥0

(
n

(
16αn(M2n

1 (0) + 5
√
n)

cn2

)n
2

+ p2n

)
<∞,

it follows from the Borel Cantelli Lemma that

P
(
∃N0,∀n ≥ N0, ∀1 ≤ i ≤ n

2
, 0 ≤ t ≤ T , ηni (t) = η2ni (t)

)
= 1

♦



4 EXCHANGEABILITY 20

4 Exchangeability

In this section, inspired from [3] as well, we will show that this look-down model
preserves the exchangeability property, according to the following Proposition, with
η = η∞ :

Proposition 4.1 If (η0(i))i≥1 are exchangeable random variables, then ∀t > 0,
(ηt(i))i≥1 are exchangeable.

The Proposition will follow from the four following lemmata :

Lemma 4.2 For any stopping time τ , any N valued Fτ -measurable random variable
X , if the random vector ηXτ = (ητ (1), ..., ητ (X )) is exchangeable, and τ ′ is the first
time after τ ′ of an arrow pointing to a level ≤ X , a death or a mutation at a level
≤ X , then conditionally upon the fact that τ ′ is the time of a birth, the random vector
ηX+1
τ ′ = (ητ ′(1), ..., ητ ′(X + 1)) is exchangeable.

Proof : To ease the notation we will condition upon X = n and τ ′ = t, and denote
by P the associated conditional probability. Let an+1 be a n+ 1 dimensional vector,
and for 1 ≤ i < j ≤ n

Ai,jt = { The birth which occurs at time t involves the pair (i,j) } .

∀π ∈ Sn+1, i.e. π is a permutation of the set {1, 2, ...., n+ 1}

P(π(ηn+1
t ) = an+1) =

∑
1≤i<j≤n

P(ηn+1
t = π−1(an+1), Ai,jt )

=
∑

1≤i<j≤n

P(ηt(1) = aπ1 , ..., ηt(n+ 1) = aπn+1, A
i,j
t )

By definition of Ai,jt ,

Ai,jt ∩
{
ηn+1
t = (aπ1 , ..., a

π
n+1)

}
⊂
{
aπi = aπj

}
,

hence, defining the projection ρj:Nn+1 → Nn

ρj(b1, ...bn+1) = (b1, ..., bj−1, bj+1, ...bn+1),
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we obtain

P(π(ηn+1
t ) = an+1) =

∑
1≤i<j≤n

1aπi =aπj P(ηnt− = ρj(π
−1(an+1)), Ai,jt )

=
2

n(n− 1)

∑
1≤i<j≤n

1aπi =aπj P(ηnt− = ρj(π
−1(an+1)))

=
2

n(n− 1)

∑
1≤i<j≤n

1aπi =aπj P(ηnt− = ρj(a
n+1))

where the second line is obtained by independence of Ai,jt and
{
ηnt− = ρj(π

−1(an+1))
}

,
and the last one is a consequence of the exchangeability of ηn+1

t− . The result follows.
♦

Lemma 4.3 For any stopping time τ , any N valued Fτ -measurable random variable
X , if the random vector ηXτ = (ητ (1), ..., ητ (X )) is exchangeable, and τ ′ is the first
time after τof an arrow pointing to a level ≤ X , a death or a mutation at a level
≤ X , then conditionally upon the fact that τ ′ is the time of a deleterious mutation,
the random vector ηXτ ′ = (ητ ′(1), ..., ητ ′(X )) is exchangeable.

Proof : To ease the notation we will condition upon X = n and τ ′ = t, and denote
by P the associated conditional probability. Let an be a n dimensional vector, and
for 1 ≤ j ≤ n

Bj
t = { The deleterious mutation which occurs at time t involves the individual sitting on site j) } .
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∀π ∈ Sn,

P(π(ηnt ) = an) =
∑

1≤j≤n

P(ηnt = π−1(an), Bj
t )

=
∑

1≤j≤n

P(ηt(1) = aπ1 , ..., ηt(n) = aπn, B
j
t )

=
∑

1≤j≤n

P(ηt−(1) = aπ1 , ..., ηt−(j − 1) = aπj−1, ηt−(j) = aπj − 1, ηt−(j + 1) = aπj+1, ...ηt−(n) = aπn, B
j
t )

=
∑

1≤j≤n

1aπj ≥1

1 +
∑n

`=1,` 6=j 1aπ`≥1
P(ηt−(π(k)) = a(k),∀1 ≤ k ≤ n, k 6= j, ηt−(π(j)) = a(j)− 1)

=
∑

1≤i≤n

1ai≥1

1 +
∑n

`=1,` 6=i 1a`≥1
P(ηt−(k) = a(k),∀1 ≤ k ≤ n, k 6= j, ηt−(j) = a(j)− 1)

where the third line is obtained using the conditional probability of Bj
t , and the

last one is a consequence of the exchangeability of ηnt− . The result follows since the
equality also holds for π = Id. ♦

Lemma 4.4 For any stopping time τ , any N valued Fτ -measurable random variable
X , if the random vector ηXτ = (ητ (1), ..., ητ (X )) is exchangeable, and τ ′ is the first
time after τof an arrow pointing to a level ≤ X , a death or a mutation at a level
≤ X , then conditionally upon the fact that τ ′ is the time of a compensatory mutation,
the random vector ηXτ ′ = (ητ ′(1), ..., ητ ′(X )) is exchangeable.

Proof : This proof is really similar to the previous one, except that the term before

the P which was
1aj≥1

1+
∑n
`=1,` 6=j 1a`≥1

is now 1
n
. ♦

Lemma 4.5 For any stopping time τ , any N valued Fτ -measurable random variable
X , if the random vector ηXτ = (ητ (1), ..., ητ (X )) is exchangeable, and τ ′ is the first
time after τof an arrow pointing to a level ≤ X , a death or a mutation at a level
≤ X , then conditionally upon the fact that τ ′ is the time of a k-type death, the random
vector ηXτ ′ = (ητ ′(1), ..., ητ ′(X − 1)) is exchangeable.

Proof : To ease the notation we will condition upon X = n and τ ′ = t, and denote
P the associated conditional probability. Let an−1 be a n − 1 dimensional vector,
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and ∀1 ≤ j ≤ n

Cj,k
t = { The k-th type death which occurs at time t involves the individual sitting on site j) } .

∀π ∈ Sn−1,

P(π(ηn−1t ) = an−1) =
∑

1≤j≤n−1

P(ηn−1t = π−1(an−1), Cj,k
t )

=
∑

1≤j≤n

P(ηt(1) = aπ1 , ..., ηt(n− 1) = aπn−1, C
j,k
t )

=
∑

1≤j≤n

P(ηt−(1) = aπ1 , ..., ηt−(j − 1) = aπj−1, ηt−(j) = k, ηt−(j + 1) = aπj , ...ηt−(n) = aπn−1, C
j,k
t )

=
1

1 +
∑

1≤`≤n−1 1aπ`=k

∑
1≤j≤n

P(ηt−(1) = aπ1 , ..., ηt−(j − 1) = aπj−1, ηt−(j) = k,

ηt−(j + 1) = aπj , ...ηt−(n) = aπn−1).

=
1

1 +
∑

1≤`≤n−1 1a`=k

∑
1≤j≤n

P(ηt−(1) = a1, ...ηt−(n− 1) = an−1, ηt−(n) = k).

where the last one is a consequence of the exchangeability of ηnt− and
∑

1≤`≤n−1 1aπ`=k =∑
1≤`≤n−1 1a`=k. The result follows. ♦

Proof of Proposition 4.1 : Let us define ξnt = ξn,∞t . We have, ∀T > 0,

inf
0≤t≤T

ξnt →n→∞ ∞. (4.1)

Indeed, ∀N > 0, ∀T > 0, with the same ideas as the proof of Proposition 3.1
with ρ̃nt a birth and death process, starting from ρ̃n0 = n, with a birth rate cn(n−2)

8
),
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and a death rate 2n(M2n
1 (0) + 4

√
n), τn = inf {t > 0, ρ̃nt = n/2}, we have :

P
({

inf
0≤s≤T

ξNs ≤ N/2

})
≤ P

({
∃0 ≤ s0 < s1 ≤ T, ξNs0 = N, ξNs1 = N/2, max

s0≤s≤s1
ξNs = N

})
≤ P

({
∃0 ≤ s ≤ T, ρ̃Ns = N/2

}⋂{
sup

0≤r≤T
M2N

1 (r)−M2N
1 (0) ≤ 4

√
N

}
⋂{
∀1 ≤ i ≤ N, 0 ≤ t ≤ T η2Ni (t) = ηi(t)

})
+ p2N +

∑
k≥N

k(16αk(M2k
1 (0) + 4

√
k)

ck2

) k
2

+ p2k


≤ P

({
τN <∞

})
+ p2N +

∑
k≥N

k(16αk(M2k
1 (0) + 5

√
k)

ck2

) k
2

+ p2k


≤ p2N +N

(
16αN(M2N

1 (0) + 5
√
N)

cN2

)N
2

+
∑
k≥N

k(16αk(M2k
1 (0) + 5

√
k)

ck2

) k
2

+ p2k



where the second line follows from Proposition 3.1 and from :

{
∃1 ≤ i ≤ N, 0 ≤ t ≤ T such that η2Ni (t) 6= ηi(t)

}
⊂
⋃
k≥N

{
∃1 ≤ i ≤ k, 0 ≤ t ≤ T such that η2ki (t) 6= η4ki (t)

}
,

since the rate at which ξNs decreases on the set writen on the second line is

α

ξNs∑
k=0

ηk(s) ≤ α
N∑
k=0

ηk(s) = α
N∑
k=0

η2Nk (s)

≤ α

2N∑
k=0

η2Nk (s) = 2NαM2N
1 (s)

Note that if we call qN the upper-bound in the last line, we have
∑

N≥1 qN <∞,
so (4.1) is a consequence of Borel-Cantelli Lemma . It follows from the previous
Lemma that for each t > 0, n ≥ 1, (ηt(1), ..., ηt(ξ

n,n
t )) is an exchangeable random

vector. Consequently, for any t > 0, n′ ≥ 1, π ∈ Sn, an
′ ∈ Nn′ ,

|P(ηn
′

t = an
′
)− P(ηn

′

t = π−1(an
′
))| ≤ P(ξnt ≤ n′)
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which goes to zero, as n→∞. The result follows. ♦

Theorem 2 results from Proposition 3.2 and Proposition 4.1.
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5 A stronger convergence result

Now that we have defined the infinite model L∞ and shown the convergence ηn,i ⇒
η∞,i, we can improve the convergence by using tightness, de Finetti theorem and
some of our previous results. Note that a similar result appears in [5], Lemma A2.1.
First, let us recall the theorem we will be using (see [1]).

Theorem 4 An exchangeable (countably infinite) sequence {Yn, n ≥ 1} of random
variables is a mixture of i.i.d. sequences, in the sense that conditionally upon G (the
tail σ−field of the sequence {Yn, n ≥ 1}) the Yn s are i.i.d.

From this one can deduce the following corollary (see corollary 1.6 in [3]) :

Corollary 5.1 ∀k ≥ 0, ∀T > 0, ∀t ∈ [0, T ] ,

Xn
k (t)→ Xk(t) a.s. .

Then we can prove the following Proposition:

Proposition 5.2 ∀k ≥ 0, ∀η > 0, ∀ε > 0, ∃n0 ∈ N such as ∀n ≥ n0 P(sup0≤t≤T |Xn
k (t)−

Xk(t)| ≥ η) ≤ ε

Proof :
We define t` = ` δ

2
∀0 ≤ ` ≤ 2T

δ
. Hence ∀0 ≤ t ≤ T ∃` such as |t − t`| ≤ δ/2.

Then,

sup
0≤t≤T

|Xn
k (t)−Xk(t)| ≤ sup

0≤`≤2T
δ

sup
|r|≤δ/2

|Xn
k (t` + r)−Xn

k (t`)|+ sup
0≤`≤2T

δ

|Xn
k (t`)−Xk(t`)|

+ sup
0≤`≤2T

δ

sup
|r|≤δ/2

|Xk(t` + r)−Xk(t`)|

We fix k ≥ 0, and let ε, η > 0 be arbitrary. The third term tends to 0 when δ tends
to 0 since Xk(t) is a continuous process, then

∃δ0 > 0, such that ∀δ ≤ δ0,P

(
sup

0≤`≤2T
δ

sup
|r|≤δ/2

|Xk(t` + r)−Xk(t`)| ≥
η

3

)
≤ ε

3
.

For the first term, let us define, like in [4],
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ωnk (δ) = sup
t,s∈[0,T ]|t−s|≤δ

|Xn
k (t)−Xn

k (s)|

ω′nk (δ) = inf
(ti,i≥0)δ-sparse

max
i≥0

sup
t,s∈[ti,ti+1]

|Xn
k (t)−Xn

k (s)|.

Since the size of the jump of the process Xn are 1/n, from (12.9) in [4] we have
ωnk (δ) ≤ 2ω′nk (δ) + 1/n. Moreover, since (Xn

k , n ≥ 0) is tight in D ([0, T ]), (see
Theorem 13.2 in [4]) :

∃δ1 ≤ δ0,∀δ ≤ δ1 ∈ N, ∃n0 ∈ N such that ∀n ≥ n0,P (ω′nk (δ) ≥ η/6) ≤ ε/6.

By combining those two results, we obtain that

∃δ2 ≤ δ0,∀δ ≤ δ2 ∃n1 ∈ N such that ∀n ≥ n1,∀k ∈ N,P (ωnk (δ) ≥ η/3) ≤ ε/3

which is true for the first term since :

sup
0≤`≤2T

δ

sup
|r|≤δ/2

|Xn
k (t` + r)−Xn

k (t`)| ≤ ωnk (δ).

The second term tends to 0 as n→ +∞ due to the previous Corollary, as Xn
k (t`)

converge a.s. for each `, and there are only a finite number of ` (which is a function
of δ). Then,

∃n2 ≥ n1 ∈ N such that ∀n ≥ n2,P

(
sup

0≤`≤2T
δ

|Xn
k (t`)−Xk(t`)| ≥

η

3

)
≤ ε

3

So finally,

∃n2 ∈ N such that ∀n ≥ n2,P
(

sup
0≤t≤T

|Xn
k (t)−Xk(t)| ≥ η

)
≤ ε

♦

Now with the Dini Theorem we can proceed to the :
Proof of Theorem 3 : Let us define Snk =

∑
0≤j≤kX

n
j and Sk = S∞k . The Sk are

increasing in k and continuous from [0, T ] in R+. Moreover, ∀t ≥ 0 the Sk(t) → 1
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a.s. when k →∞.Then with the help of the first Dini Theorem, we obtain that the
convergence is locally uniform. In other words,

sup
0≤t≤T

|1− Sk(t)| →k→∞ 0 a.s.

Since Snk involves a finite number of Xn
` , it converges uniformly in probability to

Sk from Proposition 5.2, then ∀ε > 0, η > 0, ∃K > 0, ∃n0 > 0 such as ∀n ≥ n0,

P( sup
0≤t≤T

|1− SK(t)| ≥ η/3) ≤ ε/4.

P( sup
0≤t≤T

∑
0≤`≤K

|Xn
` (t)−X`(t)| ≥ η/3) ≤ ε/4.

.
Hence, noting that |1− Snk | ≤ |1− Sk|+ |Sk − Snk |,

P( sup
0≤t≤T

∑
k≥0

|Xn
k (t)−Xk(t)| ≥ η)

≤ P( sup
0≤t≤T

∑
0≤`≤K

|Xn
` (t)−Xl(t)| ≥ η/3) + P( sup

0≤t≤T
|1− SK | ≥ η/3) + P( sup

0≤t≤T
|1− SnK | ≥ η/3)

≤ 2P( sup
0≤t≤T

∑
0≤`≤K

|Xn
` (t)−Xl(t)| ≥ η/3) + 2P( sup

0≤t≤T
|1− SK | ≥ η/3) ≤ ε.

♦
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