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Abstract

In this article, we consider houses belonging to an eco-neighborhood which inhabitants
have the capacity to optimize dynamically the energy demand and the energy storage level so
as to maximize their utility. The inhabitants’ preferences are characterized by their sensitivity
toward comfort versus price, the optimal expected temperature in the house, thermal loss and
heating efficiency of their house. At his level, the eco-neighborhood manager shares the
resource produced by the eco-neighborhood according to two schemes: an equal allocation
between the houses and a priority based one. The problem is modeled as a stochastic game
and solved using stochastic dynamic programming. We simulate the energy consumption
of the eco-neighborhood under various pricing mechanisms: flat rate, peak and off-peak
hour, blue/white/red day, peak day clearing and a dynamic update of the price based on the
consumption of the eco-neighborhood. We observe that economic incentives for houses to
store energy depends deeply on the implemented pricing mechanism and on the homogeneity
in the houses’ characteristics. Furthermore, when prices are based on the consumption of the
eco-neighborhood, storage appears as a compensation for the errors made by the service
provider in the prediction of the consumption of the eco-neighborhood.

Keywords: Eco-Neighborhood; Planning; Stochastic game theory; Energy storage; Pricing

1 Introduction

In the literature, the use of energy storage systems in homes has been presented as one
of the main ways of saving energy in the smart grid [[18]. Research in this area focused
on designing new efficient low cost storage systems. The main economic argument
that is raised to promote the use of storage in the smart grid is the following: if storage
can be used to supply the home own production at peak electricity consumption times
then, it should be possible to lower peak demand such that fewer carbon intensive and
expensive plant generators are required. As a result, from an ecological point of view,



it would contribute to reducing both energy costs and carbon emissions. Furthermore,
storage can be used to compensate for the variability of renewable energy generation.
In practice, such energy storage may take the form of electric vehicles or plug-in hybrid
electric Vehiclesﬂ according to Voice et al. [18]. Other systems of storage based on
hydrogen or methanation exist. But, they do not seem to be majority.

For such storage systems to be viable, consumers should have clear incentives to
store energy because they are at the heart of the system. The design of such incentives
requires the understanding of the consumer preferences in terms of sensitivity to-
ward price, comfort, of the impact of the heterogeneity in the house characteristics in
terms of thermal loss and heating efficiency, of priority schemes and pricing mecha-
nisms.

The aim of this article is to evaluate, using a game theoretic approach, the economic
incentives for houses in an eco-neighborhood to store energy under two resource allo-
cation schemes and various pricing mechanisms such as flat rate, peak and off-peak
hour pricing, blue/white/red pricing, peak day clearing pricing and consumption based
pricing. The term eco-neighborhood refers to the grouping within a territory of entities
that will be generically called houses. The latter consume and produce mostly solar
based energy [20]. When integrated into the smart grid, it will be called microgrids [6].
At the lower level the houses optimize independently their energy policy by adapting
their consumption (demand and storage levels) whereas at the upper level a manager
dynamically allocates the eco-neighborhood energy production between the houses to
guarantee the viability of the ecosystem [20]].

In many articles, game theory and multi-agent simulation are presented as the most
appropriate approaches to tackle the multiple challenges associated to the smart grid
operations. Saad et al. provided a complete review of the literature dealing with the
use of game theoretic methods for the smart grid [[14]. The authors highlighted the
fact that robust and smart demand side management is an essential characteristic of the
smart grid systems. Indeed, to avoid service outages and blackouts which are unac-
ceptable for the consumers, demand smoothing is traditionally performed through the
implementation of demand side management techniques which are quite classical in the
US [22]. Demand side management techniques include demand response approaches
and energy efficiency. Demand response can be implemented in two ways: a first ap-
proach is to use dynamic pricing strategies; a second way is to use incentive based
demand response where contracts are established between the transmission operator
who manages the network, the consumers and other agents. In this article, we focus
exclusively on price based demand response. In the literature, Maity and Rao proposed
a game theoretic framework that enables the microgrids to decide on whether to store
or use energy so as to meet the predicted demand of their consumers [8], [14]. The
essence of the framework is based on two types of games: a non-cooperative solution
for the Potluck problem which aims at reaching without communication an equilib-
rium where supply equals demand, and an auction game for determining the pricing in

I'This perspective is sometimes referred to as vehicle to grid.
2Consumers can represent indifferently car drivers and/or house inhabitants.



the micro-grid network [8]]. Mohsenian-Rad et al. devised a demand side management
scheme that enables to schedule the shiftable home devices, while minimizing the over-
all energy consumption and thus, the charges on the consumers [9]]. They proposed an
algorithm that uses best response dynamics to find the Nash equilibrium while ensur-
ing that no user has an incentive to cheat and announce an incorrect energy schedule.
Voice et al. developed a framework to analyze agent-based micro-storage management
for the smart grid [[17]], [18]. They designed a storage strategy with an adaptive mecha-
nism based on predicted market prices for the consumers and empirically demonstrated
that the average storage profile converges towards a Nash equilibrium. At that point,
peak demands are reduced. Moreover, analyzing the social welfare at this equilibrium,
they showed that it results in reduced costs. However, their model is restrictive in the
sense that the consumers’ preferences are based exclusively on the characteristics of
their storage systems i.e., its maximum capacity, its efficiency and its running cost.
Additionally, the consumers’ utility coincides with budget minimization exclusively.

The main limitations of these articles are that few of them take into account the mi-
crogrid intrinsic characteristics and that of all of them seem to ignore the consumers’
preferences in terms of comfort versus budget, optimal temperature in the house, etc.
Additionally, the uncertainty resulting from the generation of energy issued from re-
newable sources is modeled using density functions which shapes and parameters are
adjusted a priory [[13]]. This last assumption seems rather unrealistic since it does not
take into account the erratic nature of the renewable sources which relie on uncontro-
lable exogenous events. In [6], [7], we studied the double Stackelberg game which
occurs between producers using either renewable or non renewable energies, the ser-
vice providers and the aggregated consumers. The renewable energy production and
the microgrid demand were represented by individual sequences, which involved no
stochastic assumptions on the underlying processes.

Compared with [6], [[7], we focus on a finer scale in this article, since we consider an
individual microgrid and model the inter-relations between the houses composing the
microgrid and the eco-neighborhood manager. There are two ways to fix the service
provider’s price per energy unit: either it is determined exogenously as the result of
a predefinite pattern based on day/hour characteristics, or it is obtained as output of
the double Stackeberg game studied in [6], [7]] once the consumers’ demand has been
aggregated in the microgrid.

The originality of this article lies in:

e The fact that we concentrate no more on load but on the comfort, which depends
in turn, on the heat and on the internal temperature in the house. The simultane-
ous production of two different energies such as electricity and heat in the same
process is called cogeneration. Heat storage measured through the comfort in
the house, allows the monitoring of electric charge which produces electricity at
specific needs. This choice of modeling can be justified by the fact that it is more
easily measurable, taking a consumer’s point of view, and that it is considered as
the first criterion for the inhabitants to evaluate the environmental quality.

e The incorporation of the consumers’ preferences through their profiles which



contain the optimal temperature in their house, the house characteristics such as
thermal loss and heating efficiency and the multi-criteria utility which takes into
account the balance between the budget dedicated to heating and the comfort
perceived by the inhabitants of the house.

e The introduction of a stochastic process to model the uncertainty associated to
the renewable energy integration in the grid.

e The comparison of the economic incentives for the houses, to store energy, under
two resource allocation schemes when various pricing mechanisms are used.

The article is organized as follows. In Section 2] we describe the model and the
interplay between the agents. In Section [3] the two-level game is solved analytically
without storage capacity. In Section 4] we consider that the houses have the capacity
to store energy and we introduce uncertainty on the resource production from the eco-
neighborhood through a Markov chain. The problem is then modeled as a stochastic
game and algorithms are proposed under two resource allocation schemes. Finally,
simulations are performed in Section[5]to determine the impact of pricing mechanisms
on the consumers’ incentives to store energy in the eco-neighborhood.

2 The model

We consider H € N* houses belonging to the same eco-neighborhood managed by an
eco-neighborhood manager E. E produces energy by himself using solar pannels, wind
turbines, etc. The houses inside the eco-neighborhood need to gather enough energy
to maximize their comfort while minimizing the budget dedicated to this provision.
The involved players share hierarchical relations. We describe the economic relations
between them:

e The eco-neighborhood manager E allocates the energy resource that he has col-
lected between the eco-neighborhood houses. In case of energy shortage, he will
also sell the missing quantities of energy to each house at a price p(t) fixed by
the service provider.

e In case of energy shortage, the eco-neighborhood provider E reattributes the
revenue perceived for the missing quantities of energy to the service provider.
To determine his unit price p(t), the energy provider can choose between various
pricing schemes that will be detailed in Section [5} flat rate, peak and off-peak
hour, blue/white/red day, peak day clearing and consumption based pricing.

e Each of the H individual houses receives energy and has the possibility to buy
additional quantities from E. They can also store energy in batteries.

A house h will be characterized by its profile: (92, Kn, Kn ) where 69 is the op-

timal temperature, xp is the thermal loss and %, the heating efficiency in house h,
for any h = 1,..., H. The aim of this article, schematized in Figure I} is to design



a planning algorithm to allocate the resource produced by the eco-neighborhood be-
tween the houses depending on their profiles and on weather exogenous parameters
so as to maximize the long-term expected discounted weighted social welfare of the
eco-neighborhood that will be introduced in Subsection [2.1]

I resource
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Figure 1: Planning the eco-neighborhood energy consumption.

2.1 The agents

In this subsection, we describe each agent’s role, their interplay and give the formal
expression of their utility.

House 7 We denote as Q,(t) the stock level of house h at time period ¢ and as
Agp(t) the variation of this stock between time periods ¢ — 1 and ¢. The maximum
capacity of the battery is fixed at Quax € [0;1]. Therefore, @y (¢) belongs to the
interval [0; Qmax]- It is straightforward to define the stock level at time period ¢ as a
function of the stock level at time period ¢ — 1 and of its variation: Qp(t) = Qp(t —
1) + Agp(t) with the initialization 5, (0) = 0. Constraints on the stock variation are:

—Qn(t—1) <Agu(t) < Qmax — Qn(t —1) )]
—_———
maximum destocking maximum stocking capacity

For any x € R, we use the notation: (z); = max{x;0}

At each time period ¢, house h determines its energy demand z,(¢) € [0;1]. The
energy demand of house % can be satisfied:



(1) By drawing in the available stock Qp(t — 1)

(it) By using the resource allocated by the eco-neighborhood manager Ry, (t)

(7i7) By buying the missing quantity (mh(t) — Rp(t)+ Aqh(t)) from the eco-
+

neighborhood manager F2 who reattributes it to the service provider.

The utility of house h is:
(1) = MO (Gh(t)) — () (mh(t) ~ Ru(t) + Aqh(t))+

where 6),(t) is the temperature in house h and A, € R is a parameter modeling the
importance of the price with respect to the comfort level. A high value A, (resp. a small
value )\;,) means that house h is more (resp. less) sensitive to comfort than to price.
Cn(.) € C%(R) is a continuous, twice differentiable function over R which admits
continuous differentiates. It is supposed to be of gaussian type centered in the optimal
temperature 69 € R which can be customized for each house h and normalized with
a standard deviation of 1P}

Ch (Qh(f)) = \/12? exp ( — w)

For each house h, parameters \p,, 69 characterize the house perception of comfort
and are not known a priori by the other houses. Identically, the home characteristics
measured by its thermal loss and heating efficiency, are not known a priori by the other
houses. Therefore, this is a game with incomplete information [[10]].

In Figure[2](a), we have pictured the comfort function as a gaussian density function
centered around the optimal temperature of §) = 21°C and of standard deviation 1.
The standard deviation being normalized, it will be necessary to change the temperature
scale by dividing all the possible values by 10°C'. As already mentioned in footnote,
this change of scale will enable us to widden the range of values where the comfort
function reaches high values around the optimal temperature.

The calibration of the comfort sensitivity parameter is not easy because it is used
to adjust the comfort value and the budget dedicated to heating on a common scale
so as to evaluate their respective influence in the house’s utility. In Figure [2] (b), we
have represented house h’s utility 7 (.) as a function of comfort sensitivity parameter
Ap, and price p(.) while the temperature in the house is fixed at its optimal value i.e.,
05 (.) = 69 and there is one unit of energy i.e., x5 (.) — Rp(.) + Agn(.) = 1. This
setting coincides with a worst case because house h needs to heat at its maximum to
guarantee the reaching of the optimal temperature with no storage to compensate for
its effort. In simulation experiments that will be described in Section [5] the price per

3The normalization of the standard deviation is introduced to simplify the choice of the parameters. To
obtain realistic values for the comfort function and for the game outputs that will be defined in the next
sections, it will be necessary to rescale the temperature range of values.



energy unit will be supposed smaller than 60. As a result, according to Figure 2] (b), it
will be necessary to fix \;, greater than 150 to obtain a non-negative utility for house
h.

100
0.25

50

price

-50

o 5 10 15 20 0 =% 30 T T T T -100
50 100 150 200 250

(a) comfort sensitivity

(b)

Figure 2: Calibration of the model parameters 69, \.. In (a), the house h’s comfort function
is pictured as a gaussian density function centered around the optimal temperature for the house
05 = 21°C. In (b), house h’s utility is represented as a function of comfort sensitivity parameter
and price.

The eco-neighborhood manager E The eco-neighborhood manager E produces
an energy resource R(t) € [0; 1] at time period ¢. He allocates it between the houses

in such a way that: R(t) = Z Ry (t) and 0 < Rp(t) < R(t),Yh = 1,...,H.

h=1,...H
As a non-lucrative agent, his utility is defined as the weigthed social welfare criterion:
mg(t) = Z a7 (t). The coefficients a, Vh = 1,..., H characterize the pri-

h=1,...H
ority level between the houses. They are defined a priori and satisfy the following
normalization constraints: Z ap = 1land oy, > 0,Vh = 1, ..., H. In the rest of
h=1,...,.H
the article, we will consider the two following schemes:

e Scheme 1: All the houses have the same priority coefficient
to a fair allocation of the resource between the houses.

. This corresponds

e Scheme 2: Each house has a different priority level. Without loss of generality,
we assume that the priority coefficients satisfy: h < b/ = «ap, > ap, Vh,h' =
1,..., H. A house with a larger priority coefficient will be served before a house
with a smaller priority coefficient. In case of a tie, the house with the smaller
index has priority. As a result the following priority allocation scheme holds:
(priority of house 1) > (priority of house 2) > ... > (priority of house H).



2.2 Dynamic evolution of house / temperature

We denote as 6. (t) and 0}, (t) respectively the exterior temperature and the temperature
of house h, at time period ¢. We assume that they both belong to the interval [0; O]
where © < +o00 is a finite upper bound for the temperature fixed a priori. It can be
associated with the maximum temperature of the heating system. For the sake of sim-
plicity we let: A8, (t) = 0,,(t) — 0.(t) be the gradient of temperature between house h
temperature and the exterior temperature at time period t. We suppose that it remains
non-negative at any time period ¢ in [0; 7']. Since we do not consider separately each
room in the house, the temperature corresponds to the averaged temperature over each
room of the house and its evolution takes into account thermal losses. These thermal
losses depend on two facts: the house isolation of its walls and roof, and the efficiency
of the heating system which distributes heat throughout the house [5]. Therefore, we
introduce coefficients k5, €]0; 1] and &}, €]0; 1] which represent respectively, the ther-
mal loss and the heating efficiency of house h. House h energy demand z,(t) can
then be interpreted as the proportion of rooms that the owner decides to heat. House h
temperature dynamic evolution is determined by the recursive equation detailed below:

on(t) = Ont—1)+ (8t = 1) = Ot = 1)) (1= 2n(®) ) + (O
- Hh(t—l)):ch(t)/?ah 2)

We set: 0,(0) = 6, 6 € [0; ©]. The consideration of the extreme cases in Equation
enables us to associate physical interpretations with the values of parameters xp,, Kp,:

e If house h is not heated then x,(¢) = 0. This implies that 6, (t) = 0,(t — 1) +
(Qe(t —1) = 0p(t — 1))/@1. In this case, we notice that 0 (t) = 0,(t — 1) if,

and only if, Kk, = 0. 0,,(t) = 0.(t — 1) if, and only if, k5, = 1. As a result, the
more rkp, approaches 1 (resp. 0), the poorer (resp. the better) is its wall and roof
isolation.

e If house h is heated at its maximum then zp,(t) = 1. This implies that 6, (t) =
Op(t—1)+ (@ —Op(t— 1))Rh. In this case, we notice that 6, () = 0, (t — 1)

if, and only if, &, = 0. 6;,(t) = O if, and only if, K5, = 1. As a result, the more
Kn, approaches 1 (resp. 0), the smaller (resp. the higher) are the losses from the
heating system.

We rewrite Equation (2)), factorizing it by xy,(t):

On(t) = (Qh(t 1) — Ab(t — 1),%) +(A0h(t ~ )k + (O — Op(t — 1))Rh)xh(t)

>0

3

Lemma 1. If % > 1, the temperature in house h increases linearly in the energy
demand, xp,(t).



Proof of Lemmal[l] According to Equation (3), the temperature in house h increases
linearly according to the energy demand xp(¢) if, and only if, the leading coefficient

is positive. Formally, we should have: A8y (t — 1)kp, + (G) — Op(t — 1))Rh >0

—% < Z’h Two cases should be considered to determine under which as-
sumption the above inequality holds. First, if Afp, (¢t — 1) > 0 then since Z—: > 0, the
inequality is always true. Second, if A (¢ — 1) < 0 then it is sufficient to assume that

E—’; > 1 to guarantee that the inequality holds. U

To guarantee that Lemma |1 holds, we will suppose that % > 1 throughout the
article.

Judging by the results derived from Equation (Z) physical interpretations and by
Lemmam we have pictured in colors the area of definition for parameters xj, kp, of
house h, in Figure[3] Area 1 corresponds to a bad heating efficiency and a good iso-
lation of the house. In Area 2, the house’s isolation is bad but its heating efficiency is
high. Finally, in Area 3, both the isolation and the heating efficiency are good.

kh
1

! k h

Figure 3: Areas of definition for house h parameters xp,, <.

In Figure F_ll, we have represented the quantity of energy x(.), necessary to reach
the optimal temperature in the house when the exterior temperature is at its maximum
ie, Oy(.) = 09 = 21°C and 0.(.) = 0°C, as a function of thermal loss and heating
efficiency parameters. As expected, a house with small thermal losses and high heat
efficiency will require little heat to reach the optimal temperature. But this quantity
increases as thermal loss increases and to lesser extent, as heating efficiency decreases.
Furthermore, the impact of thermal loss is higher than the impact of heating efficiency
on the definition of the quantity of energy necessary to reach the optimal temperature.
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Figure 4: Quantity of energy necessary to reach the house’s optimal temperature expressed as a
function of thermal loss and heating efficiency when the exterior temperature is at its minimum.

3 No storage

In this section, we assume that: Agy(t) = 0,Vh = 1,..., H,Vt € [0; T]. We describe
the game steps at time period ¢. It takes the form of a Stackelberg game where the
eco-neighborhood manager F is the leader and the H houses are the followers.

(1) Eco-neighborhood manager E allocates his resource R(t) between the H
houses so as to maximize his utility 7g(t).

(2) Each house h determines independently and simultaneously its energy de-
mand z,(t) so as to maximize its utility 7, (t),Vh =1, ..., H.

The game is then repeated over a finite horizon [0; T'] such that 7" < +o00. The game
can be solved analytically proceeding by backward induction. This approach is quite
classical in Stackelberg settings [[10]].

Proposition 2. Ar any time period t and for any house h = 1,..., H, there exists
a unique equilibrium in (x7,(t), R} (t)) for the Stackelberg game. Furthermore, the
equilibrium is efficient under priority allocation scheme.

Proof of Proposition 2] We start by Step (2) of the Stackelberg game described
above i.e., the optimization of the energy demand of house h. We consider that the
resource allocation rule is fixed. Two cases should be distinguished depending on the
sign of zp, (t) — Ry (t).

10



Case (i): zp,(t) < Rp(¢)

Under this assumption, the total energy demand of house A is entirely satisfied
by drawing in the resource allocated by the eco-neighborhood manager E. In this

case (mh(t) - Rh(t))+ = 0 since zp(t) — Rp(t) < 0. House h utility reduces

to: mh(t) = AnCh (Oh(t)). Differentiating 7, (t) with respect to xp(t), we obtain:

omu(t) _ Ah (On(t) — 03)? 00, (1)
o) — Jam P ( - 5 ) ("2 - 9h(t)) FEOR
>0 ,
Considering the right part of the equation, we have: gz’h((g =(On(t—1)—0.(t —

1))kn + (© — O, (t — 1))R), > 0. Then, according to Lemmall}

On(t—1) —B.(t—1) > @@h(t 1) @)
Kh

P, (eh,(t 1) .t — 1)) > Fn (9,1,@ 1) - @)

This implies that: 520 = f, (eh(t 1) Ot — 1)) + (@ Ot — 1))@ >

R (Hh(t 1) - @) + ((—) Ot — 1));;,1.

=0

Therefore:

aﬂh (t)
Oxp (1)

=0 & Hh(t) :92

92 — Qh(t - 1) + Aeh(t - ].)Iﬁ:h

VR CRAGE

Case (ii): z1(t) > Rp(t)

Under this assumption, the eco-neighborhood manager E' cannot satisfy the en-
tire demand of house h. This latter will need to buy the lacking energy to the ser-
vice provider who provides energy to the microgrid to where the eco-neighborhood is.
House h utility then takes the form: 7, (t) = A\pCp, (Hh(t)) —p(t) (xh(t) — Ry, (t))
Differentiating 7, (t) with respect to x5, (t), we obtain the following equation:

(92 B eh,(t)) 90n(t) _ p(t)V2m exp ((9h(t) - 92)2> @

8$h(t) o )\h 2
——
>0

According to Case (i) studied above, gz’; 8 > (. The left part of Equation is

linearly decreasing in 05, (t) and vanishes in 6 () = 69. Computing the differentiate
of the right part of Equation (4)) with respect to 0} (t), we obtain that it is decreasing

11



until 0,(t) = 69 and increasing for 0, (t) > 69. Furthermore, the right part is positive

in 09 where it equals %. Judging by both function shapes, we infer that the game

admits a unique equilibrium in z7 (¢) if, and only if:

0L (t) _ p(t)V2r 692
0 h > h
hoxn(t) = eXp( 2 )

Now, we will assume that there exists reals r, 7’ €]0; 1] such that §) = r© and that
the maximum exterior temperature can be written as: r'©. Additionally, we make the
assumption that the unit energy price p(t), varies in interval [0; pps] where pys is the
price upper bound. Then, choosing the game parameters so that:

PMV 2T 1,
rr<1-— N0, exp (57“ 6) 6)

guarantees that Inequality (5) holds and a fortiori, that the game admits a unique equi-
librium in z7 (¢).

0 &)

The energy demand being optimized, we skip to Step (1) of the Stackelberg game
i.e., the optimization of the resource allocation. As explained at the end of Section
we consider two schemes defining the allocation rule: either the allocation is fair or a
priority allocation scheme holds.

Under a fair scheme, the resource available in the eco-neighborhood is allocated so
that: R () = 20 wh =1, H.

Under a priority allocation scheme, the rule becomes:

e For house 1

[ @il itai(o) < RO)
it ={ ")

otherwise.
e Forhouse h =2,.... H
h—1
i (t) it @ (t) < R(t) = Y _R; (1),
Ri(t) = - E

R(t) — ZRf(t) otherwise.
1=1

By definition, the Pareto frontier of the game is the set of points such that once one
of them is reached, no agent’s utility can be increased without decreasing at least one
agent’s utility [10]. In the game without storage, the Pareto frontier containing the set
of efficient equilibria is defined by the following equations: Ry (t) < x(t), Vh =
1,...,H and Z Ry (t) = R(t). As a result, the equilibrium obtained under a

h=1,..H
priority allocation scheme is efficient whereas it is not in general under a fair allocation
scheme. Of course the priority allocation scheme is not the unique resource allocation
scheme that guarantees the reaching of a Pareto optimum.
O

12



4 Virtual storage under stochastic environment

Most of the energy produced autonomously by the eco-neighborhood comes from solar
pannels deployed on the roofs and on the fronts of the eco-neigborhood houses. Em-
pirical observations on real data and physical relations which describe the dependence
on temperature of photovoltaic module performance [15] lead us to assume that there
exists a bijective relation between the energy produced by the eco-neighborhood and
the exterior temperature i.e., there exists a bijective function ¢(.) from [0; O] to [0; 1]

such that:
R(t) = p(6.())

4.1 Resource uncertainty model

In the literature, many articles model the weather evolution as a stationary Markov
chain [3]] or use Hidden Markov Models in case where states cannot be directly ob-
served but information about the underlying hidden state sequence is available [4].
The direct relationship between weather and energy production justifies the introduc-
tion of a finite discrete (in time and space) Markov chain to model the uncertainty
associated with the production of energy in the eco-neighborhood. Depending on out-
side factors such as weather conditions, we allow to have K € N* realizations of the
produced energy. We define p;; as the probability that the energy produced by the
eco-neighborhood will be in state j in the next time period if currently it is in state <.

4.2 Problem formulation

In this subsection, we detail the stochastic optimization problems that the houses have
to face with, under a fair allocation of the resource in and with a priority mecha-

nism in[4.2.2]

4.2.1 Allocation scheme 1: The H houses have equal priority

We define a generic state of the system as: sy = (R,01,Q1,02,Q2,...,0u, Q) €
{1,2,..., K} x ([0; 0] X [0; Quax)) . We let S = {1,2,..., K} x ([0; O] X [0; Qumax])?
be the set of all possible states sg. At any time period ¢ the system being in state sy,
we want to choose an action for each house h = 1, ..., H from the set of allowable
actions in state sg, As,. Actions are the energy demand and the variation of the
storage for each of the H houses in each stage with different realizations of the resource

produced by the eco-neighborhood. We denote as: ay (t) = (mh (t), Agp, (t)) the action
chosen by house h at time period {. When in state s, the set of admissible actions

obtained after reordering Equation (2)) and considering the storage constraints defined
in Equation (TJ) is denoted: A, .

In our optimization problem, each house h wants simultaneously and independently
to maximize the expected discounted sum of its utilities over time interval [0; T]. We
introduce § €]0; 1] as the discount factor of our stochastic optimization problem [12].
The more § approaches 1, the more house h is sensitive to the future or has a long-term
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vision. Reciprocally, the more § approaches 0, the shorter is the vision of house h. For
any house h = 1, ..., H, the optimization problem can be written as:

max [E [ifstﬂh (t) |5H>ah:|

thGASH P
under an equal allocation of the resource i.e.: R} (t) = %, vt=0,1,...,T.

4.2.2 Allocation scheme 2: (priority of house 1)>(priority of house 2)>...>(priority
of house H)

This is a sequential optimization problem. The steps are the following.

Step 1: In this step, we assume that there is only a single house in the eco-
neighborhood and that is house 1, which has the highest priority level. The state of
the optimization problem is defined as s; = (R,61,Q1) € S1 = {1,2,..., K} x
[0;©] X [0; Qmax), Where R contains the energy produced by the eco-neighborhood,
0, is the temperature and (), the storage level in house 1. If we decide to choose an
action a; = (z1,Aq1) € A, at time period ¢, house 1 receives 71 ()]s, ,q, as utility.
We optimize the following problem:

T
E[> 6" w1 (oo
Jmex ; T1()]s1.00
The allocation rule at time period ¢ is:
Rry = { T+ A0 i)+ Agi(0) < RO)
! R(t) otherwise.

Step 2: In this step, we consider house 2 and house 1. House 2 has the second high-
est priority level. The state of the optimization problem is so = (R, 61, Q1,02,Q2) €
Sy = {1,2,..., K} x ([0;0] x [0; Qmax])?, where 05 is the temperature and Qo the
storage level in house 2. At any stage ¢, we choose an action as = (22, Ags) € As, sO
as to optimize the following problem:

T

max [E [Z5t772(t) |82,a2}

a2€As, =0

We describe the allocation rule at time period ¢ under priority scheme 2, for both
houses. For house 1, we have:

con [ E) 4 AGE) () + Agi(r) < R(),
Bi(t) = { qR(t) otherwise. !

And, for house 2, we have:

Ri(t) = { x5(t) + Ags(t) if23(t) + Ags(t) < R(t) — Ri(2),
2 R(t) — Rj(t) otherwise.
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Steps 3 to H: We keep following the same procedure until we have solved for the
H houses. The state of the optimization problem is sy = (R, 01,Q1,...,0m,Qu) €
S = {1,2,.... K} x ([0;0] x [0; Qmax]), where 6}, is the temperature and @}, the
storage level in any house i = 1,..., H. At any stage ¢, the H-th house which has
the lowest priority, chooses an action ay = (zg, Aqy) € As,, so as to optimize the
following problem:

max E [ET:(VWH (t) |sH,aH}
t=0

aH€EAs

We describe the allocation rule at time period ¢ under priority scheme 2, for the H
houses. For house 1, we have:

= {10 g0 <00

And, for any house h = 2, ..., H, we have:

h—1
i, (1) + Agi () if 2;(8) + Agy(t) < R(t) = Y Rf(¢),
Ry(t) = h—1 =t
R(t) — ZR;“(t) otherwise.
=1

4.3 Markov decision processes

There exist multiple ways to find or at least, to approximate, the optimal strategy i.e.,
the optimal sequence of actions, which maximize the agents’ utilities. A first pos-
sibility is to learn it, by making the agents interact in their environment and adapt
dynamically their actions while learning the strategy of the other agents. Many algo-
rithms have been developed in this direction using adaptative dynamic programming
[L1], Q-learning, and more generally reinforcement learning [16], [19] and artifical
intelligence techniques. A second class of methods consists in planning off-line the
optimal sequence of actions to play for each possible initial state [2], [12]. The (learnt
or planned) optimal strategies will coincide with the equilibria of the stochastic game.

In this article, we choose to focus on the second category of methods and to solve
the sequential stochastic optimization problem introduced in Subsection We as-
sociate a T-horizon Markov Decision Process (MDP) for each house h. The dynamic
evolution of this process is governed by a control strategy which is optimized simulta-
neously and independently by each house. House h T-horizon control strategy will
be denoted: a; = (dh(O),dh(l),...,dh(T)). At any time period t = 0,1,...,T,
ap(t) = (ah(t, s H)) < is a vector containing the optimal action to choose in state

SHE
sg € S. an(t) belongs to the set of stationary strategies and ay, to the set of Markov
strategies of the T-horizon MDP: F ;.
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T
The T'-stage value of the control strategy ay, is: Eg, [Zétﬂ—h(t)‘sy(O):sH for
t=0
every initial state sy € S, where Eg, [.] is the expectation taken with respect to house
h control strategy: a;. The optimization problem for house h becomes:

max (Eah [ZT:5t7Th(t) ‘sH(O):sH])
t=0

aneFL; sHES

House / transition probabilities Let us consider two states: sy = (7,601, Q1, ...,
0, Qu) € S and sy = (/,01,Q,....,0%.,Q%) € S. Equation (2) enables us to
define two applications: ¢ : (i,0p,a;) + ¢, and ¥ (1,0p,6},) — xp which de-
fine on a formal way the temperature evolution and the restriction on the action to be
chosen depending on the state transition respectively. Additionally, each house h has
beliefs on the actions of the other houses in the eco-neighborhood. These beliefs are
defined a priori in the game. Indeed, the choice of action being simultaneous, house
h does not observe the other houses’ actions. For any house | = 1,..., H, | # hin
the eco-neighborhood, house & belief regarding the action that house [ might chose is
represented by a | A|-dimensional vector: pp; which is a probability distribution de-
fined over the action set A = Uy, c5As, . Using the independence assumption on the
houses’ choices and Bayes formula, we derive house h transition probability from state
sy to state s%; conditionally on action ay,:

H Z priar)

p" (8}1|5H,ah> = 1{
""" Hl#h a e { Alei=4(5,60:,0;)}

Piir
w(iﬁmah):%} =1
Then for any house h = 1, ..., H, the transition probabilities conditionally on action

ap, € A are stored in a matrix: Ph% = (ph(st|SH7 ah)) :
sH,5y €S

The algorithm The generic notation s is used to refer to a state because depending
on the considered allocation scheme, it can be 2, 3, ..., H, or H + 1-dimensional.
The principle of optimality leads us to solve the problem using backward recursion of
dynamic programming [2], [[12]:

Foreach t = 1,2, ..., T, we calculate for each state s € S the optimal action to
choose as solution of the optimization problem:

G (T —t,5) = arg max {m, (o, + > 0" (5'ls an) Vi ()}

ap€
" s'eS

For any house h = 1, ..., H, we let: V,(s), Vs € S be the value of the game for
house h in any state s at time period ¢. It is updated at each time period ¢:

Vi) =m0 Ol + 0" (515,@0(T = £,5) )V (')
s'es
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The algorithm of backward recursion of dynamic programming for house h =1, ...,
H will be called Algorithm BR. We detail below the algorithm that will be used in
Section [5]to simulate the system evolution under the allocation scheme 2, described in

422

(1) Recursion.

e HOUSE 1. For any a1, house 1 computes the conditional probability transition matrix
PY%1 taking into account only house 1. Algorithm BR is run and gives the optimal
action to choose in each state s1 = (R, 61, Q1) at any time period. As output we obtain
the optimal control strategy for house 1: aj.

e HOUSE 2 TO H. For any ap, house h = 2, ..., H computes the conditional probability
transition matrix P™*" taking into account only houses 1, ..., h. Algorithm BR is run
and gives the optimal action to choose in each state s, = (R, 01, Q1, ..., 0r, Q) at any
time period. As output we obtain the optimal control strategy for house h: aj,.

(2) Simulation of the eco-neighborhood energy consumption.

e TIME PERIOD 1 TO 7. Given the system initial state sy (0) € S, from time period 1 to
T — 1, the system is in state sz (¢) € S. The optimal action to choose for each house h =

1,..., H is contained in aj, (t, s H(t)). The energy produced by the eco-neighborhood

evolves according to the Markov chain having transition matrix (p;,;)s,j—1,...,x , generat-
ing R(t + 1). It is allocated between the houses according to the priority rule described
inE22

e The system ends in state sz (1") € S.

On the contrary, under the allocation scheme 1 described in Subsection @ the
resource allocation mechanism is known at the beginning of each time period, by every
house. As a result, under the allocation scheme 1, the algorithm begins with an ini-
titialization step where each house h = 1, ..., H computes its conditional probability
transition matrix taking into account all the other houses. Then, in the recursion step,
each house runs simultaneously and independently Algorithm BR since there is no
priority rule. The simulation of the system evolution remains unchanged except that

. R(t
each house h = 1, ..., H receives an equal share: # of the resource.

S Economic guidelines for the operations of the eco-
neighborhood

The aim of this section is to determine whether houses in the eco-neighborhood, have
economic incentives to store energy under various pricing mechanisms and hetero-
geneity in their characteristics. To perform this study, we start by simulating the eco-
neighborhood consumption over a finite time horizon using the algorithm introduced
in Subsection [4.3]and then, we plot the resulting cumulative discounted utilities of the
houses assuming that they have either storage capacity or no storage capacity. The
derived results will enable us to determine whether storage is a natural issue for the
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eco-neighborhood which means that it should be worth for politics investing in the de-
velopment of even more efficient storage systems or, on the contrary, elaborating more
guarantees to promote it.

5.1 Comparisons of the agents’ incentives to store energy under
various pricing mechanisms

In this subsection, we consider 2 houses in the eco-neighborhood i.e., H = 2 and
K = 11 outcomes for the resource. Both the energy demand and the storage belong
to the interval [0; 1] discretized according to a 0.2 step-size. We choose © = 40°C
and 3°C as discretization step for the temperature interval. The resource generating
transition matrix is defined so that: p;; = Ol'—f + 0.2 and p;;» = %S,Vi’ # 4. The
comfort sensitivity parameters are chosen so that: A\; = 150, Ay = 200 i.e., house 2
is more sensitive to its comfort than house 1. The optimal temperature for each house
are set to the most common values: 69 = 21°C and 63 = 19°C'. The discount factor
is fixed at: = 0.7. Beliefs are uniform for house 2. This assumption is required
when the planning algorithm described in Subsection .3]is run and house 2 needs to
compute its conditional probability transition matrix. In this subsection, the houses’
thermal loss and heating efficiency parameters are supposed homogeneous within the
houses i.e., k;, = 0.3,k = 0.7,Vh = 1, 2. In this subsection, we compare the agents’
cumulative discounted utilities over a finite 7" horizon, under the 4 pricing mechanisms
proposed by the french electricity company [21]], adapted to our study. The horizon of
the game is fixed at: 7' = 100. It is supposed to coincide with the spanning of 50 days,
the houses having the opportunity to adapt their energy demand and stock level twice
adayi.e., at 8 a.m. and at 11 p.m.

5.1.1 Flat rate
In this pricing scheme, the price is constant: p(t) = 12.49,Vt =0, 1, ..., T.

We have represented the agents’ cumulative discounted utilities under an equal al-
location of the resource in Figure [5] (a) and under the priority allocation scheme in
Figure [5] (b) while the price is fixed according to a flat rate. In all the simulations,
the cumulative discounted utilities are plotted in green when the houses have the op-
portunity to store energy and in red when they lack this opportunity. We observe that
the agents are indifferent between both storage strategy under an equal allocation and
weakly prefer not to store over to store under a priority based allocation. Therefore,
under flat rate pricing, it is reasonable to state that agents are indifferent between both
storage strategies.

5.1.2 Peak and off-peak hour pricing

In this pricing scheme, the price can take two values depending on the hour of the day:
p(t) = 13.53 in peak hours and p(¢) = 9.26 in off-peak hours. The peak hour period
runs from 6 a.m. to 10 p.m. In the remaining hours, the price is fixed at the off-peak
hour tarif. The principle of this pricing scheme is pictured in Figure[6]
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Figure 5: Agents’ cumulative discounted utilities under scheme 1 (a) and under scheme 2 (b)
with flat rate pricing.
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Figure 6: Peak and off-peak hour pricing principle.

We have represented the agents’ cumulative discounted utilities under equal allo-
cation in Figure[/|(a) and under a priority allocation in Figure [/| (b). We observe that
under both allocation schemes, the capacity to store energy enables the agents to in-
crease their discounted cumulative utilities compared to the case without storage.

5.1.3 Blue/White/Red day pricing

In this pricing scheme, the price can take 6 values depending on the color of the day
and of the hour of the day: in blue days, p(t) = 8.69 in peak hours and p(t) = 7.25
in off-peak hours ; in white days, p(t) = 12.34 in peak hours and p(¢) = 10.36 in
off-peak hours ; in red days, p(¢) = 50.81 in peak hours and p(¢) = 19.33 in off-peak
hours.

Under an equal allocation of the resource, we observe in Figure[§](a) that the agents
are indifferent between both storage strategy. When priority is introduced as pictured
in Figure 8] (b), we observe that the capacity to store energy is more profitable for the
agents than in case where they lack it.
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Figure 7: Agents’ cumulative discounted utilities under scheme 1 (a) and under scheme 2 (b)
with peak and off-peak hour pricing.

5.1.4 Peak day clearing pricing

In this pricing scheme, the price can take two values depending whether the day is
considered as normal or as a peak day. In the first case p(¢) = 10.30 and in the second
case, p(t) = 53.29. The peak days are mobile and allocated randomly. The only
information that is available is that there are 22 peak days over the studied period of
time. This means that a day has a probability of % to be a peak day. Practically, we
have generated peak days according to a multinomial density function of parameters

22
50 and 5

In Figure [9] (a), we have represented the agents’ cumulative discounted utilities
under an equal allocation of the resource. We observe that the agents are indifferent
between the storage and the no storage capacity. In Figure [9] (b), we have plotted
the agents’ cumulative discounted utilities under a priority allocation of the resource.
We observe the the capacity to store energy is more profitable for the agents than no
storage.

5.1.5 Summary of the results

In Table [T} we have indicated which storage policy between no storage, storage and
indifference between the two, is more profitable for the agents depending on the cho-
sen pricing mechanism and resource allocation scheme. We conclude that the pricing
mechanism based on peak/off-peak hours is the most adapted mechanism for an eco-
nomic implementation because under both resource allocation mechanism, houses will
have incentives to store energy. Furthermore, this choice will no occasionate any de-
bate about the resource allocation scheme to implement. This is all the more interesting
as there are many debates about the implementability of priority based resource alloca-
tion mechanisms in the smart grid and the peak/off-peak hour pricing is the sole pricing
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Figure 8: Agents’ cumulative discounted utilities under scheme 1 (a) and under scheme 2 (b)
with Blue/White/Red day pricing.

Allocation scheme
. ) equal priority
Pricing mechanism
Flat rate Indifference | Indifference
Peak/Off-peak
Blue/White/Red Indifference
Peak Day Clearing No Storage

Table 1: Best storage policy under different pricing mechanisms and resource allocation
schemes.

mechanism which guarantees that storage is more profitable under both resource allo-
cations. Besides, the above simulation outputs do not depend on the variablility of the
comfort sensitivity parameter.

The above simulations have been realized over houses which are homogeneous in
their characteristics (kp, kp, Vh = 1,2). Is the conclusion still the same for houses
which are heterogeneous in their thermal loss and heating efficiency parameters ?

5.2 Impact of the heterogeneity in the houses’ profiles on the in-
centives to store energy

In this subsection, we consider 3 profiles for the houses depending on parameters
Kn, kp, values while the optimal temperature is supposed identical for all the houses
ie., O = 92, Vh = 1,2. We describe the three profiles that we consider for the
houses:

e Profile A: k, = 0.3,k;, = 0.7 i.e., thermal losses are small and heating effi-
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Figure 9: Agents’ cumulative discounted utilities under scheme 1 (a) and under scheme 2 (b)
with peak day clearing pricing.

ciency is high. It belongs to area 3, as pictured in Figure 3]

e Profile B: k, = 0.3,k = 0.4 i.e., thermal losses are small but heating effi-
ciency is low. It belongs to area 1, as pictured in Figure[3]

e Profile C: kj, = 0.6, Kk, = 0.7 i.e., thermal losses are high and heating efficiency
is high. It belongs to area 2, as pictured in Figure[3]

We run the algorithm described in Section ] with different priority order between
the house profiles, using equal and priority based resource allocation mechanisms. The
pricing mechanism is based on peak and off-peak hour pricing as described in[5.1.2]
Like in Subsection [5.1] we have simulated the agents’ discounted cumulative utilties
as functions of time with storage capacity and without storage capacity. Depending on
the discounted cumulative utility values, we determine which policy between storage,
no storage and indifference between the two, is the best i.e., maximize the discounted
cumulative utilities of the agents. In Table 2| we have listed the best storage policy for
the agents.

First, we observe that the influence of %, is predominant over the influence of .
Second, houses have incentives to store when (priority of Profile C') > (priority of Pro-
file A) and (priority of Profile B) > (priority of Profile C') and when resource alloca-
tion is equal. To avoid the case where (priority of Profile A) > (priority of Profile C'),
it suffices to impose that the house corresponding to Profile C' is always served before
the house corresponding to profile A. To avoid the case where (priority of Profile A) >
(priority of Profile B), the house having the lowest heating efficiency should invest so
has to increase it.
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Allocation scheme .
Priority order equal priority
(priority of Profile A) > (priority of Profile B) | Indifference | Indifference
(priority of Profile A) > (priority of Profile C') No Storage
(priority of Profile C') > (priority of Profile A) Indifference
(priority of Profile B) > (priority of Profile C') Indifference

Table 2: Best storage strategy with heterogeneity in the house profiles.

To conclude, the houses in the eco-neighborhood have natural incentives to store
energy provided:

e Either their profiles in 69, x, ), are homogeneous.

e Or, in case of a large heterogeneity in the house profiles, equal allocation of the
resource is implemented and all the houses invest in their heating system so as
to reach an efficiency larger than %

5.3 Consumption based pricing

In this subsection, the game parameters are identical to the ones introduced at the begin-
ning of Subsection[5.1] The market game coincides with the one considered in [7]: the
eco-neighborhood studied in this article is assimilated to a microgrid to which energy is
supplied by a unique service provider. This assumption holds well if we consider local
or regional utility companies for example [7]. The energy producer can be associated
with a nuclear plant, a photovoltaic park manager, a wind farm administrator, etc. His
production at time period ¢ is stored in: ¢(¢). At time period ¢, the energy needs of the
microgrid v*(t), should coincide with the sum of the consumptions of all the houses in
the eco-neighborhood. The microgrid has the possibility to find alternative sources of
energies for a(t) energy units at a cost %1‘/)2 Additionally, penalties which are propor-
tional to the difference between the initially booked quantity of energy and the finally

delivered quantity, are imposed from the microgrid to the service provider according to
the rule: v (1/3 (t)—a(t)—v° (t)) where v = 0.9 is the penalty coefficient. As proved
+

analytically in [7], the optimal price for the service provider is: p(t) = % The
planning algorithm described in Subsection [4.3] relies on the service provider’s price
evolution and each house realizes a forecast 2°(t), on the price evolution by estimating
the global consumption of the eco-neighborhood. We make the simplifying assump-
tion that each house believes that the other houses will choose the same demand and
storage level Hence, when house h = 1, ..., H chooses action (zh(t), Aqh(t)), its

4The choice of a quadratic cost function is rather arbitrar and the derived results can be extended to more
general convex functions without loss of generalities, as mentioned in [7].

STt can be justified by the fact that depending on the exterior temperature, the houses’ actions will be rather
homogeneous i.e., maximum heat for low exterior temperature, minimal heat for high exterior temperature,
etc., and by sheep of Panurge effect regarding storage.
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estimate of the microgrid’s energy needs is: ©°(t) = H (mh t)+Aqn (t)) — R(t) which
H(ﬂ:h(t)+Aqh(t)) —R(t)+y

leads to as estimated price for the service provider. But, to
simulate the consumptlon of the eco-neighborhood, the service provider’s price should
depend on the houses’ true consumption. To compensate for the gap between the ser-
vice provider’s price obtained by each house independently in the planning part and in
the simulation part of the algorithm described in Subsection[d.3] we introduce an error
coefficient: 0 < ¢ < 2H such that: v°(t) = Z (xh(t) + Agp(t) — Rh(t)> +e.
+
h=1,..H
The higher ¢ is, the worst are the service provider’s predictions in the microgrid’s en-
ergy needs.

In Figure [T0] (a) (resp. Figure [I0] (b)), we have represented the eco-neighborhood
manager’s cumulative utility at time period 7' = 20 as a function of the error coef-
ficient € under equal allocation (resp. priority based allocation) of the resource. We
observe that in both cases, the increase of the error makes the eco-neighborhood man-
ager’s cumulative utility decrease and that storage is always preferable over no storage.

Furthermore, storage is all the more interesting compared to no storage, as the error in
the prediction increases.
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Figure 10: Eco-neighborhood manager’s cumulative discounted utilities at 7' = 20 under equal
allocation scheme (a) and under priority allocation scheme (b) with demand based pricing as a
function of the error in forecasting e.

6 Conclusion
We have modeled the problem of energy consumption planning in the eco-neighborho-

od, as a stochastic game and proposed algorithms based on stochastic dynamic pro-
gramming to simulate its evolution under two resource allocation schemes: an equal
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allocation of the resource produced by the eco-neighborhood and a priority based one.
The eco-neighborhood’s energy policy has been simulated under various pricing mech-
anisms: flat rate, peak and off-peak hour, blue/white/red day, peak day clearing and a
dynamic update of the price based on the eco-neighborhood’s consumption. We ob-
serve that high incentives for house inhabitants to store energy is not straightforward
since it relies heavily on the implemented pricing mechanism and on the homogeneity
in the houses’ characteristics. A possible solution to promote storage in houses is to use
a consumption based pricing since under such a pricing mechanism, storage appears as
a compensation for the errors made in the demand prediction when planning the eco-
neighborhood’s behavior, which represents a robust criteria for the service provider,
and since storage is always more profitable than no storage for the consumer. Another
alternative is to introduce certificates or contracts with periods of commitment on the
availability rates, between the service providers and the consumers, in order to increase
their economic incentives to release energy when peaks of consumption occur. Such
contracts will allow the clearing of the peaks of consumption and the investments in
new production capabilities such as solar pannels, wind farms, electric vehicle bat-
teries, the technological improvement of which requires heavy R& D efforts. These
approaches will be considered in the economical analysis of capacity markets.
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