
HAL Id: hal-00758792
https://hal.science/hal-00758792v1

Submitted on 29 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Architectural Patterns to Define Architectural
Decisions

Tu Minh Ton That, Salah Sadou, Flavio Oquendo

To cite this version:
Tu Minh Ton That, Salah Sadou, Flavio Oquendo. Using Architectural Patterns to Define Architec-
tural Decisions. Working IEEE/IFIP Conference on Software Architecture & European Conference
on Software Architecture, Aug 2012, Helsinki, Finland. pp.196-200. �hal-00758792�

https://hal.science/hal-00758792v1
https://hal.archives-ouvertes.fr


Using Architectural Patterns to Define Architectural Decisions

Minh Tu Ton That
IRISA

Université de Bretagne Sud
Vannes, France

minh-tu.ton-that@univ-ubs.fr

Salah Sadou
IRISA

Université de Bretagne Sud
Vannes, France

Salah.Sadou@univ-ubs.fr

Flavio Oquendo
IRISA

Université de Bretagne Sud
Vannes, France

Flavio.Oquendo@univ-ubs.fr

Abstract—During the architecture development process, ar-
chitectural design decisions play an important role in main-
taining non-functional properties of the system. Instead of sup-
posing that architectural decisions are implicitly recognizable,
existing works propose to give them first-class status. However,
little focus is paid on the automation of architectural decision
checking. This paper proposes to leverage pattern formalization
techniques to document architectural decisions. The approach
consists of a way to describe architectural patterns that hold
the architectural decision definition, show how to integrate
architectural decisions (patterns) into an architectural model
and finally automate the architectural decision conformance
checking.

Keywords-architectural decision; pattern; SOA

I. INTRODUCTION

One of the major problems of software development lies
in the ”maintenance and evolution” stage. Indeed, given the
high costs associated with this stage (about 80% of the total
cost), it becomes important to find a solution to reduce them.
The main factors of this problem are the non-compliance
with established practices and the lack of explicitness of the
choices made throughout the development process.

If we are in the first case and we need to apply an evolu-
tion, we must first rebuild what has already been improperly
built. Applying an evolution on a poorly constructed system
can only make it more complex and ultimately not able to
evolve further (Lehman second law [1]). In the second case,
the system is well developed, except that the intentions be-
hind each choice are not explicit. There are always different
solutions to achieve a change, but some of them may be
in contradiction with certain implicit intentions. Moreover,
it can take several steps between the creation of the con-
tradiction and its detection. This requires undoing what has
already been built, resulting in an important additional costs.

The first factor of the problem cited above may be avoided
by human or automatic controls [2] to check compliance
with good practices. To avoid the second factor, we need
to make explicit and exploitable intentions that lie behind
each choice. The explicitness must begin at the software
architecture definition stage. In this paper we will focus on
this last point.

The intention associated with an architectural choice is

designated in the literature by the term ”Architectural De-
cision” (AD) [3]. Thus, the objective is to define the links
that bind the components of AD: the property identification,
the involved architectural elements and the rules defining the
property. A formalization of this link serves to automatically
check that an evolution does not conflict with the choices
already made. Several studies have already been made to
define such links [4], [5], [6], [7]. Proposed solutions usually
consist of elements added to the architecture (constraints,
specification, etc.) to establish the link. Although these ele-
ments indicate the presence of ADs, they do not encourage
the architect to use the best solutions and/or good practices.
Moreover, the added elements are often described using
a language that is different from the ADL used for the
architecture description. So, understanding the architecture
requires a review of different elements from different lan-
guages, which complicates the task. As understanding the
architecture is a step prior to its evolution, its complication
undoubtedly induces a significant cost.

With this paper we propose to make the architectural
decision a first class entity in the architecture description
languages. We chose to use the architectural patterns as
a support for describing the architectural decisions. In our
approach, an architecture consists of architectural elements,
their relationships and a set of definitions of architectural
views. From a given architecture several architectural views
can be obtained, but only a few among these views really
have meaning. The views that we associate with the archi-
tecture are those that highlight the architectural decisions.
Thus, when a view conforms with a pattern, it implies the
presence of an architectural decision.

The remaining of the paper is organized as follows:
Sect. 2 introduces the general approach, Sect. 3 goes into
detail the reusable AD creation step, Sect. 4 describes AD
manipulation stage, Sect. 5 introduces the implemented tool
and the experimentation, Sect. 6 discusses related work, and
Sect. 7 concludes the paper.

II. GENERAL APPROACH

The main idea behind our work is the leverage of architec-
tural patterns as forms of AD representation. Similar to [8],
AD documentation in our approach falls into three steps:



AD creation, AD integration and AD verification. Decision
creation consists in the specification of an AD made to an
architectural model. A decision could be specific to a project
or reusable within different projects. Architectural decisions
could be well-known architectural patterns which are lessons
learned from many previous works or decisions that have
high potential to be reused in an enterprise. AD integration
is a step in which architects link ADs with affected elements
in the architectural model. During the AD verification step,
the architectural model is checked whether it complies with
the integrated ADs.

On the purpose of automating the process of AD docu-
mentation, we use the Model Driven Architecture (MDA)
approach [9]. Each artifact is considered as a model con-
forming to its meta-model in order to create a systematic
process thanks to model transformations and leverage exist-
ing MDA techniques (e.g. conformity verification).

In the remainder of this section, we will go further
into each step in the AD documentation process, clarify
its objectives and explain how we achieve them with our
approach. To be more concrete, in the remainder we will
use the case of service-oriented architectures.

A. Decision creation

The first objective of decision creation is to facilitate
communication between individuals and teams by creating
a visual, compact AD model. In a collaborative working
environment, ADs are often shared among members and
teams in the project. Therefore, compact, visual AD models
are welcomed instead of immense and complex ones. Our
second objective is to increase reusability by language-
independent ADs. During the process of reusing ADs, it
becomes apparent that architects are likely to deal with
architectural models described in different languages. As
a consequence, a language-independent AD documentation
model supporting adaptation to whatever language is needed.

Our approach relies on the fact that an architectural deci-
sion can be represented generically by a pattern. As shown
in Figure 1 (Pattern definition part), we propose the use of
a general pattern meta-model which contains only architec-
tural elements involved in the AD definition. These elements
are determined through a survey of well-known architectural
patterns [10] according to the used ADL and some properties
related to the way to define patterns. Thus, this meta-model
is dependent on the family of the used ADL. In this paper,
we propose a general pattern meta-model for the Service-
Oriented ADL family that allows description of patterns such
those defined in [11]. Based on this general pattern meta-
model, one can define a meaningful architectural pattern in
form of a pattern model using only necessary elements and
hence, the first objective is satisfied. Furthermore, pattern
models are also language-independent. With the separation
between AD documentation and architectural design, no
modification to the architectural model is needed to define an

AD, which makes it easy to adapt to different architectural
languages of the same family.

B. Decision integration

Links between AD elements and their correspondent
architectural elements play an important role in keeping
track of AD made to an architectural model. An explicit
linking will facilitate the AD documentation as well as
the AD modification (if there is one) in the future. In
our approach, links between AD elements and architectural
elements are represented by mapping models (illustrated in
the Pattern verification part of Figure 1). We can observe
here that an architectural model is now a combination of
architectural elements and mapping models associated with
them. A mapping model indicates that an AD is made on an
architectural model.

In the literature, architecture is considered as a set of
views which are representations of system elements and
relations associated with them [12]. Each view serves a
specific purpose depending on the concerns of one or more
stakeholders. Having taken this viewpoint into account, we
propose to consider an architectural model as a multi-
view representation where each view contains only elements
related to a specific AD. In this scenario, architectural
views are filtered from the architectural model through a
transformation mechanism in which mapping models play
the role of integrating AD’s information into the architectural
model.

C. Decision verification

To make sure that an architectural model is consistent
with ADs, not only do the existence of AD-related elements
in an architectural model need to be verified but also the
constraints imposed on them need to be handled. To achieve
the first goal, the presence of ADs in the architectural
model is checked through the completeness of mapping
models. Indeed, mapping models are intermediary bridges
between the architectural model and ADs and thus, the
incompleteness of mapping models shows the lack of ADs
in the architectural model. To achieve the second goal, the
constraints imposed by ADs on the architectural model are
checked through the conformity of AD architectural views
with their corresponding AD view models. To check the
conformity of views to patterns it is possible to define
similarity functions between models, as it was done in [13]
or leverage the meta-model representation form of patterns
as in [14]. We chose to first transform the architectural
patterns into meta-models (AD view meta-models in fig-
ure 1) in order to make use of consistency checking tools
from MDA. Indeed, we believe that defining a function that
checks the conformity of a view (model) with a pattern
(generic model) would lead largely to redefine a function
which checks conformity of a model with a meta-model.
And contrary to [14], we do not modify the initial language



Figure 1. MDA approach for AD documentation

while we generate the necessary meta-models (one by used
architectural pattern) just for checking ADs.

III. REUSABLE AD CREATION

After having generally introduced the reusable AD cre-
ation stage in the previous section, in this section we aim at
going further into detail. As we choose architectural pattern
as the form of AD representation, the process of creating
an AD consists in specifying a pattern model. We first
introduce the General pattern meta-model from which ADs
are created. Next, we clarify the AD creation process through
a concrete example.

A. General pattern meta-model
The general pattern meta-model provides the language

to define an architectural pattern. It contains all necessary
architectural features from an ADL to create a pattern. Since
we validate our approach in the SOA domain, our general
pattern meta-model is purposely proposed for SOA. As
shown in Figure 2, the meta-model is composed of 2 parts:
pattern structure and architectural structure.

Inspired by the SCA model1 [15], we construct the
structural aspect of our General Pattern Meta-Model for the
SOA description language family as follows:

• Composite serves as the container to assemble and
connect service-oriented building blocks together.

• Components are basic units of the architecture that
represent business functions from which composite
applications are built.

• A component is composed of component services and
component references. The former provide functional-
ities supported by the component and the latter play

1SCA is a model created by a group of industrial partners to support
building applications and systems using SOA solution.

Figure 2. SOA General Pattern Meta-model

the role of consuming services of other components.
A component reference can be wired to a component
service through its target attribute.

• Thinking of composites as black-box components, they
have also services and references. To be consumed by
the world outside of a composite, a component service
of the containing component can be promoted as a
service of the composite. Similarly, to be served by
an outside service, a component reference should be
promoted as a composites reference.



The pattern aspect part of our meta-model aims at provid-
ing functionalities to characterize a meaningful architectural
pattern. To be more specific, the meta-model allows us to
describe a pattern at two level: generic and concrete. Via the
isGeneric attribute, we can specify an element as generic or
concrete. A concrete element provides guidance on a specific
pattern-related feature. Being generic, an element represents
a set of concrete elements playing the same role in the archi-
tecture. Each element in the meta-model can be associated
with a role. A role specifies properties that a model element
must have if it is to be part of a pattern solution model [14].
To characterize a role, we provide two supports: constraint
and multiplicity. A constraint made to a role on an element
helps make sure that the element participating in a pattern
has the aimed characteristics. Constraints are represented
in our approach in form of OCL [16] rules. A multiplicity
indicates how many times a pattern-related element should
be repeated and how it is repeated.

Figure 3. Orientation organization of generic elements

For instance, we can specify that an element in a pattern
should be repeated in a maximum of three times and the
repeating instances of this element should be organized
horizontally. Figure 3 shows two types of orientation orga-
nization: vertical and horizontal. Being organized vertically,
participating elements are parallel which means that they
are all connected to the same elements. On the other
hand, being organized horizontally, participating elements
are inter-connected as in the case of the pipeline architectural
pattern.

B. Architectural Pattern Specification
As described in the previous section, in our approach

a reusable AD is represented as a fully understandable
architectural pattern with cohesive elements and constraints
imposed on them. For the purpose of illustration, we will
examine the SOA Legacy Wrapper pattern [11].

As shown in Figure 4, the SOA Legacy Wrapper pattern
stipulates that in order to eliminate legacy technical details

Figure 4. SOA legacy wrapper pattern [11]

from a legacy component, one should use a wrapper service
equipped with a standardized service contract. In other
words, every service in the architecture must communicate
with the legacy component (if needed) through the legacy
wrapper bridge to avoid the potential technical incompati-
bility. This architectural pattern aims at assuring the system
interoperability.

Figure 5. SOA Legacy Wrapper pattern model

Based on the general pattern meta-model, we can spec-
ify the pattern model for the SOA Legacy Wrapper with
the emphasis on the following elements (as illustrated in
Figure 5): the component LegacyComponent specified with
the role LegacyComponent representing the component with
legacy implementations, the component WrapperComponent
specified with the role WrapperComponent representing the
wrapper services in the pattern. The component Legacy-
Component has the isGeneric attribute assigned to false since
it represents a concrete legacy component. Otherwise, the
component WrapperComponent has the isGeneric attribute
assigned to true since it represents many possible wrapper
components. The role LegacyComponent is characterized
by the LegacyWrapper constraint. To be more specific, it
stipulates that if a component has the LegacyComponent



role then there must exist a component with the Wrap-
perComponent role in such a way that all services coming
from the Legacy Component are referenced by the Wrapper
Component. The role WrapperComponent is characterized
by a multiplicity class specifying that there maybe many
instances of WrapperComponent and moreover, they must
be vertically connected. Even though the other participating
elements such as the component service and the component
reference do not have specific roles, they still contribute to
the model to make a meaningful pattern.

IV. AD MANIPULATION

In our approach, the ADs are on one hand integrated into
the architecture description to complete its documentation
and on the other hand, they are used as a means to verify
that the architecture is consistent with the taken decisions.
The integration of an AD to an architectural model is
made thanks to a mapping model, and the checking of the
conformance of the architecture with an AD is made thanks
to a particular view on the architectural.

A. Associating an AD to an Architectural Model

The association of an AD with an architectural model
consists of defining a mapping model between the latter and
an architectural pattern representing the AD. The mapping
model is part of the architectural model as a means to
associate an AD to the architecture. Concretely, it links
elements in the architecture that directly relates to elements
from the pattern model.

The mapping meta-model consists of one meta-class per
type of mapping. So, each meta-class defines a mapping
between an element’s type from the ADL meta-model that
may participate in architectural patterns and an element’s
type in the general pattern meta-model.

Figure 7. Mapping model for SOA Legacy Wrapper pattern in CSS

For the purpose of illustration, we built an architecture
for the Client Support System (CSS) (as shown in Figure 6)
which aims at supporting a company to receive, manage and

answer client’s requests systematically. Figure 7 sketches
the mapping model which associates the Legacy Wrapper
pattern to a part of the CSS architecture. As we can see
in this figure, two components LegacyPersonnelManage-
mentService and PersonnelManagementService in the CSS
architecture are mapped respectively to two components
playing the roles of legacy component and wrapper com-
ponent in the Legacy Wrapper pattern model.

B. Extracting AD views

The architectural views are very useful for understanding
the overall architecture of a complex system. In our case,
a view is constructed by applying a transformation on
the architectural model which targets a given AD. The
transformation serves as a filter to realize two purposes: first,
extract from the architectural model elements relating to
ADs and second, eliminate language-specific features to cre-
ate a language-independent architectural model. Therefore,
this can be compared to the transformation step from PSM
(platform specific model) to PIM (platform independent
model) in the MDA approach. To realize this, we leverage
the MDA transformation techniques. More precisely, we
use ATL [17] transformation rules to transform architectural
models into AD view models.

Thus, the transformation consists of:

• From the architectural model, transform one by one
only elements whose equivalent type is specified in the
pattern model.

• Based on the mapping model, copy role information of
mapped elements from the architectural model to their
equivalent elements in the AD view.

The following is an excerpt of one of the rules associated
with the SOA Legacy Wrapper pattern used in the mapping
of figure 7:

rule Composite2Composite {
from
scai : SCAMM!Composite(GeneralSOAMM!Composite.

allInstances()->notEmpty())
to
spo : SOAPatternMM!Composite(
name <- scai.name,
role <- if (not scai.getMappingFromComposite().

oclIsUndefined())
then scai.getMappingFromComposite().target.role
else OclUndefined endif,

component <- if (GeneralSOAMM!Component.
allInstances()->notEmpty())

then scai.component
else OclUndefined endif,
service <- if (GeneralSOAMM!Service.

allInstances()->notEmpty())
then scai.service
else OclUndefined endif,
reference <- if (GeneralSOAMM!Reference.

allInstances()->notEmpty())
then scai.reference
else OclUndefined endif

)
}



Figure 6. Client Support System architecture

As illustrated, the rule above transforms a SCA composite
to a composite according to the AD view. First, the rule
searches through the mapping model if there is a mapping
in which the SCA composite is a source. If there is, the rule
transforms the role the composite plays in the pattern to a
composite in the AD view. Second, based on the existence
of the component, the service and the reference in the
pattern model, the rule transforms their values respectively
to their corresponding in the AD view. The result of this
transformation is an AD view which contains only AD-
related elements with roles embedded on some of them.

C. AD Checking

The conformity of an architectural model with one of its
associated ADs is verified through the conformity of the
extracted AD view with the concerned architectural pattern.
We chose to leverage the MDA verification technique to
realize this step. Therefore, in our approach, AD view meta-
models are generated from pattern models for the purpose
of checking. The consistency of an AD view is thus verified
against its corresponding AD view meta-model.

For every pattern model defined, an AD view meta-model
is generated containing a subset of meta-classes, from the
general pattern meta-model, that participate in the definition
of the pattern model. Applying this principle to the Legacy
Wrapper pattern model described in the previous section,
we obtain an AD view meta-model with the participation of
only three meta-classes: Component, ComponentService and
ComponentReference as shown in Figure 8. This meta-model
is embedded with invariants imposed on the Component
meta-class as follows:
invariant legacyWrapper:
if role = ’LegacyComponent’

then Component.allInstances()->
exists(role = ’WrapperComponent’

Figure 8. AD view meta-model for the Legacy Wrapper pattern

and reference->includesAll
(self.getReferences()))

else true
endif;

invariant orientation:
if role = ’WrapperComponent’

then Component.allInstances()->
forAll(role = ’WrapperComponent’ implies
isParallelWith(self))

else true
endif;

invariant multiplicity:
let s: Integer = Component.allInstances()->

select(role = ’WrapperComponent’).size()
in s >= 0;

Invariants on meta-classes correspond to constraints speci-
fied on their instances that have a specified role in the pattern
model. Furthermore, information about orientation and mul-
tiplicity are also reflected in the meta-model via invariants



on meta-classes. We can observe through the example that
the constraint imposed on the LegacyComponent role in
the pattern model is transformed into a legacyWrapper
invariant on the Component meta-class with a condition on
the LegacyComponent role. The multiplicity of the Wrapper-
Component role in the pattern model is transformed into two
other invariants in the Component meta-class: multiplicity
and orientation. We will not present the transformation rule
here because of the lack of space but basically it consists
in:

• Transform one by one all elements with their role
information.

• Add relations between elements based on their exis-
tence in the target meta-model.

• Constraints specified on role are reflected in the meta-
class.

• Multiplicity information specified on roles are reflected
in the meta-class.

After being generated, the AD view meta-model is used
to check the the consistency of AD view. Whenever there
is a violation of constraints imposed by the AD view meta-
models on AD views, warnings are notified to the architect
about which AD is violated and which elements in the
architectural model are involved.

V. IMPLEMENTATION AND EXPERIMENTATION

To verify the feasibility of our approach, we developed a
tool called ADManager, then we applied it to the case of
SOA.

A. ADManager tool

With ADManager we aim to make concrete the aforemen-
tioned concepts. The tool provides the following functional-
ities:

1) Create architectural patterns (support of ADs defini-
tion)

2) Integrate ADs to architectural models
3) Verify the consistency of architectural models accord-

ing to the held ADs.
ADManager is developed based on EMF (Eclipse Mod-

elling Framework). We choose EMF to realize our tool since
we leverage MDA, where models are basic building units,
to develop our approach. As shown in Figure 9, the tool
consists of five Eclipse plug-ins built on existing Eclipse
technologies. They are:

• Pattern creation plug-in uses EMF modeling support
in order to allow architects to define Pattern models.
This editor depends on the General Pattern Meta-Model
(see figure 1, which is given as a parameter. Thus,
according to the targeted ADL family we need to give
the corresponding General Pattern Meta-Model.

• AD integration plug-in is an editor supporting the
creation of Mapping models between pattern elements

Pattern category Nb of patterns Nb of
architectural
patterns

Nb of formal-
ized patterns

Service inventory
design pattern

20 10 0

Service design
pattern

31 13 11

Service composi-
tion design pat-
tern

23 6 2

Table I
CATEGORIES OF SOA PATTERNS FROM [11]

and architectural model elements. It depends on the
Mapping Meta-Model, which is also depending on the
targeted ADL family.

• AD verification plug-in uses OCL tool to support writ-
ing rules in pattern models, during pattern creation,
as well as conformance verification between AD view
models and AD view meta-models during AD check-
ing. It relies on General Pattern Meta-Model to check
the consistency of OCL rules.

• AD view meta-model generator plug-in uses ATL to
implement rules generating AD view meta-models from
pattern models. It relies mainly on General Pattern
Meta-Model.

• AD view generator plug-in uses ATL to implement
rules generating AD views from architectural models.
It relies mainly on the mapping models attached with
the latter.

Thus, for ADManager to work, it needs to have the
General Pattern Meta-Model and the Mapping Meta-Model
that are already defined. We did it for the SOA description
language family (see the previous section). Thus, to switch
to another language family (such as object-oriented), we
must provide the appropriate meta-models. The Mapping
Meta-Model can be produced very easily when we have
General Pattern Meta-Model. To produce the latter we need
a good knowledge on the ADL family. Note that in Figure 2
the example of General Pattern Meta-Model for SOA is
separated into two parts: one specific to the SOA description
language family and the other for the notion of pattern. Thus,
this example can be reused for producing a new General
Pattern Meta-Model only by redefining the part related to
the targeted ADL family.

B. Experimentation with SOA Patterns

As can be guessed from reading our paper, we experi-
mented with our approach on Service-Oriented ADLs. Thus,
we wanted to verify that our tool allows the definition of
well known SOA patterns. So, we have examined the SOA
patterns from [11] (Synthetized in table I).

In the table I we reused the categorization of patterns
given in [11]. Among the 74 identified patterns there are up
to 45 patterns focusing on the aspect of service management



Figure 9. The architecture of ADManager

such as how to centralize or decentralize services physically,
how to determine the boundary of service logic, how to
add additional routines to service processing, etc. Therefore,
these patterns cannot be documented using concepts from
the ADL.

In fact, as we can observe in the table I, Among the
remaining 29 architectural patterns there are ones based
on architectural concepts that are not supported yet by
SOADLs such as service inventory, service layer, service
state data, data schema... That explains why only 13 pat-
terns are documented using our approach. Most of the
formalizable patterns fall into the Service design pattern
category. Indeed, patterns in this category are good prac-
tices in service organization, encapsulation, implementation,
governance and therefore, suitable to be documented archi-
tecturally. However, all those falling into this category are
not related only on architectural aspects. For instance, the
service identification patterns aim to conceptually decide a
suitable level in which solution logic is decomposed and
service encapsulation is identified are not documented. It is
obvious that these patterns serve a purpose in organizing the
logic of the system and thus, they are not purely architectural
patterns.

in the Service composition design pattern category there
are two patterns (namely Neutral Sub-controller and Bro-
kered Authentication) that are possibly documented due to
the fact that they manipulate certain architectural elements
to stipulate their logic such as service, composite service,
etc.

As illustrated in the designed CSS architecture (see fig-
ure 6), we documented the three following patterns: Legacy
Wrapper, Service Façcade and Redundant Implementation.
Except for the Legacy Wrapper pattern which is well ex-
plained as an example in previous sections, we can also ob-
serve the two other patterns in CSS: The Client Management
Façcade component plays the role of a façcade for the two

components Client Policy Service and Client Information
Service; the Request Receiving Service component is backed
up by the Request Receiving Service Backup component.

First, we have successfully checked that the architecture
respects the three ADs. After that, we have made several
modifications to the architecture where we know they lead
to an AD violation. Each time the tool indicates the correct
violated AD and which elements in the architecture are
involved. Therefore, the test succeeded.

C. Discussion

The pattern description language is based on the target
ADL as shown in Figure 2. If we take the meta-model of
the target ADL as basis to define the pattern description
language, we get a language capable of expressing all
what can express the target ADL. Two goals are sought
by allowing the description of patterns related to a project
or a company: making architectural decisions explicit and
reusable at least in their context (project or company). This
last point implies a certain genericity in the description of
patterns. We know that all elements of the target ADL are
not necessary to describe patterns. So, ignoring them in the
meta-model of pattern description allows for a simplified
and more generic language.

Thus, we must find a balance between lightness and
completeness of the pattern description language. For the
case of SOA (see figure 2, which is used as example in
this paper, we do not claim that we found the best balance.
However, our experiment showed us that we can express
the classical patterns related to SOA. We do not need to
validate the coverage of all possible patterns for two reasons:
i) It is not possible to imagine all possible architectural
decisions. ii) the coverage depends on the meta-model of
pattern description that is a data of our approach.

Therefore, the design of the meta-model for pattern de-
scription requires not only a good knowledge of the target
ADL and its meta-model, but also extensive experience of its



use. Thus, it would be interesting to define meta-models of
architectural pattern description for the classical ADLs and
make them available to others. Sharing these meta-models
allows on one hand to help others and on the other hand,
to get feedback to improve them. For companies that use
exotic ADLs, the definition of such a meta-model should be
left to more experienced architects.

The reader may obtain a complete guiding tutorial video
and more information about the ADManager tool using
the CSS application at http://www-valoria.univ-ubs.fr/SE/
ADManager.

VI. RELATED WORK

Our work directly concerns the definition of architectural
decisions, but also concerns the AD conformance checking
aspect. As we have chosen to represent ADs through ar-
chitectural patterns, our work is also related to works on
pattern definition. Thus, in the following we will discuss
work related to these three aspects.

A. AD Documentation

In the literature there are many proposed models and tools
supporting AD documentation. Among these works, we can
mention some representative models such as the architectural
decision template [18], the ontology of design decisions [19]
or recently the MAD 2.0 model [20], and tools such as
Archium [3], ADDSS [21], AREL [22]. We can observe
that most of these works concentrate on capturing and
characterizing ADs but none of them provide the automated
checking of design decision compliance in architectural
models. In our work, we do not attempt to just define another
AD model but propose a way to define ADs which allows
to automatically detect their violation in the architectural
model.

In [8], Zimmermann et al. point out the importance of
reusable ADs in decision identification, decision making
and decision enforcement and propose a model to document
reusable ADs. Furthermore, in [23], they propose to weave
pattern languages into reusable architectural decision mod-
els to benefit their mutual interests. Besides that, in [24],
Harrison et al. compare pattern and AD and think that the
former can be leveraged to document the latter. We found
these ideas interesting, thus we have gone further with our
approach, which formalizes the representation of ADs with
patterns.

B. AD Conformance Checking

Being one of the first works dealing with AD conformance
checking, Tibermacine et al. [4], [6] propose a family of
architectural constraint languages to describe the structural
part of AD. Architectural constraints are used as a means
to formalize ADs. With our approach we raise the level
of abstraction by using architectural patterns to document
ADs. ADs are no longer architectural constraints imposed on

the architectural model but self-contained semantic pattern
models.

In another work, Könemann et al. [5] propose a linking
model to bind architectural decisions and architectural mod-
els. The consistence of the architectural model is checked
through the completeness of the binding model. The struc-
turing part of the AD is specified through model differences.
In our approach, the conformance of the AD against its
architectural model is checked through not only the mapping
model but also the AD model itself. By using pattern to
describe the structuring part of AD, we make sure that an
AD is reflected semantically in the architectural model.

C. Pattern Definition

In [14], France et al. modify UML to incorporate pattern
definition features. As architectural decisions are generally
specific to concrete projects, patterns in our approach must
not be static in a language and thus, the support of defining
new patterns becomes essential. In [25], Elaasar et al.
propose to bring concepts from the pattern specification
language to the meta-meta-model. The modified meta-meta-
model called Epattern is used to specify pattern meta-
models. We can consider this approach as a pass from
meta-meta-model level to meta-model level to define pattern
language. In another work [13] et al. propose to express
patterns as model snippets. The conformity of patterns is
checked through pattern-matching functions between pattern
models. We consider this approach as a pass from model
level to model level to define pattern language. As opposed
to the two above approaches, our approach defines patterns
as models and transform them to meta-models for verifica-
tion and thus, can be considered as a pass from model level
to meta-model level to define pattern language. Thus, we
can reuse the classical features concerning the conformity
of a model to a meta-model.

VII. CONCLUSION

Keeping track of ADs made on a system is very important
to avoid degrading it during its evolution. Although there
existed a lot of works focusing on documenting ADs, the
automation of AD checking during the development of the
architecture is still an open issue.

In this paper, we propose to document ADs in the form
of formalized patterns. This approach helps guarantee the
existence of ADs not only in syntactic aspect but also in
some semantic aspects. With the presented approach, the
purpose of AD checking, which is an error-prone task, was
automated. Besides, the reusability characteristic of AD is
also taken into consideration since we leverage a language-
independent AD creation mechanism. We also implemented
a tool to realize our approach. We utilize the case of SOA to
validate our approach but it is thoroughly relevant to other
types of ADLs.

http://www-valoria.univ-ubs.fr/SE/ADManager
http://www-valoria.univ-ubs.fr/SE/ADManager


Still, we recognize some limitations in our approach. For
example, considering the complexity of possible architec-
tural patterns, we think that our general pattern meta-model
is still not entirely sufficient. For instance, our pattern model
only supports the multiplicity specification at element level,
which makes it difficult to specify complicated patterns. For
instance, when a pattern is composed of other patterns we
may need to specify a multiplicity on some of the latter.

To overcome the above limitation, we are currently work-
ing on the way to incorporate more supports in the general
pattern meta-model. For instance, to increase the generality
of the multiplicity attribute of a role in the pattern, we intend
to make it attachable to a group of elements. Thus, our
pattern becomes a composite pattern composed of internal
sub-patterns.

REFERENCES

[1] M. M. Lehman, “Programs, life cycles, and laws of software
evolution,” Proceedings of the IEEE, pp. 1060–1076, 1980.

[2] V. L. Gloahec, R. Fleurquin, and S. Sadou, “Good architecture
= good (adl + practices),” in QoSA, 2010, pp. 167–182.

[3] A. Jansen and J. Bosch, “Software architecture as a set of
architectural design decisions,” in Proceedings of the 5th
Working IEEE/IFIP Conference on Software Architecture.
IEEE Computer Society, 2005, pp. 109–120.

[4] C. Tibermacine, R. Fleurquin, and S. Sadou, “Preserving ar-
chitectural choices throughout the component-based software
development process,” in WICSA, 2005, pp. 121–130.

[5] P. Knemann and O. Zimmermann, “Linking design decisions
to design models in model-based software development,” in
Proceedings of the 4th European conference on Software
architecture. Springer-Verlag, 2010, p. 246262.

[6] C. Tibermacine, R. Fleurquin, and S. Sadou, “A family of
languages for architecture constraint specification,” J. Syst.
Softw., pp. 815–831, 2010.

[7] C. Tibermacine, S. Sadou, C. Dony, and L. Fabresse,
“Component-based specification of software architecture con-
straints,” in CBSE, 2011, pp. 31–40.

[8] O. Zimmermann, T. Gschwind, J. Küster, F. Leymann, and
N. Schuster, “Reusable architectural decision models for
enterprise application development,” in Proceedings of the
Quality of software architectures 3rd international conference
on Software architectures, components, and applications,
Medford, MA USA. Springer-Verlag, 2007, pp. 15–32.

[9] O.M.G, “Model-driven architecture,” http://wwww.omg.org/
mda.

[10] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture, Volume 1: A
System of Patterns. Chichester, UK: Wiley, 1996.

[11] E. Thomas, SOA Design Patterns. Prentice Hall, 2009.

[12] P. Clements, D. Garlan, R. Little, R. Nord, and J. Stafford,
“Documenting software architectures: Views and beyond,” in
Proceedings of the 25th International Conference on Software
Engineering (ICSE), May 3-10, 2003, Portland, Oregon, USA,
2003, pp. 740–741.

[13] R. Ramos, O. Barais, and J. marc Jzquel, “Matching model
snippets,” in In: MoDELS07: 10th Int. Conf. on Model Driven
Engineering Languages and Systems, Nashville USA, 2007,
p. 15.

[14] R. B. France, D. kyoo Kim, S. Ghosh, and E. Song, “A uml-
based pattern specification technique,” IEEE Transactions on
Software Engineering, pp. 193–206, 2004.

[15] M. Beisiegel, D. Booz, S. TIBCO, M. BEA, C. Sharp,
and . SAP, “SCA service component architecture,” Assembly
Model Specification, 2007.

[16] OMG, “Object Constraint Language, OCL Version 2.0,
formal/2006-05-01,” http://www.omg.org/spec/OCL/2.0/,
OMG, Tech. Rep., 2006.

[17] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez,
“Atl: a qvt-like transformation language,” in Companion to the
21th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOP-
SLA 2006, October 22-26, 2006, Portland, Oregon, USA.
ACM, 2006, pp. 719–720.

[18] J. Tyree and A. Akerman, “Architecture decisions: Demysti-
fying architecture,” IEEE Software, pp. 19–27, 2005.

[19] P. Kruchten, P. Lago, and H. van Vliet, “Building up and
reasoning about architectural knowledge,” Quality of Software
Architectures, pp. 43–58, 2006.

[20] A. Zalewski, S. Kijas, and D. Sokolowska, “Capturing archi-
tecture evolution with maps of architectural decisions 2.0,”
in Proceedings of the 5th European conference on Software
architecture, ser. ECSA’11. Springer-Verlag, 2011, pp. 83–
96.

[21] R. Capilla, F. Nava, S. Prez, and J. Dueas, “A web-based tool
for managing architectural design decisions,” ACM SIGSOFT
software engineering notes, p. 4, 2006.

[22] A. Tang, Y. Jin, and J. Han, “A rationale-based architecture
model for design traceability and reasoning,” Journal of
Systems and Software, pp. 918–934, 2007.

[23] O. Zimmermann, U. Zdun, T. Gschwind, and F. leymann,
“Combining pattern languages and reusable architectural deci-
sion models into a comprehensive and comprehensible design
method,” in Proceedings of the Seventh Working IEEE/IFIP
Conference on Software Architecture (WICSA 2008), ser.
WICSA ’08. IEEE Computer Society, 2008, pp. 157–166.

[24] N. B. Harrison and P. Avgeriou, “Leveraging architecture
patterns to satisfy quality attributes,” in ECSA, 2007, pp. 263–
270.

[25] M. Elaasar, L. C. Briand, and Y. Labiche, “A metamodeling
approach to pattern specification,” in Proceedings of the
9th international conference on Model Driven Engineering
Languages and Systems. Springer-Verlag, 2006, pp. 484–
498.

http://wwww.omg.org/mda
http://wwww.omg.org/mda

	Introduction
	General Approach
	Decision creation
	Decision integration
	Decision verification

	Reusable AD creation
	General pattern meta-model
	Architectural Pattern Specification

	AD Manipulation
	Associating an AD to an Architectural Model
	Extracting AD views
	AD Checking

	Implementation and Experimentation
	ADManager tool
	Experimentation with SOA Patterns
	Discussion

	Related work
	AD Documentation
	AD Conformance Checking
	Pattern Definition

	Conclusion
	References

