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The wrapping equilibria of one and two adsorbing cylinders are studied along a semi-flexible fila-
ment (polymer) due to the interplay between elastic rigidity and short-range adhesive energy between
the cylinder and the filament. We show that statistical mechanics of the system can be solved exactly
using a path integral formalism which gives access to the full effect of thermal fluctuations, going
thus beyond the usual Gaussian approximations which take into account only the contributions from
the minimal energy configuration and small fluctuations about this minimal energy solution. We ob-
tain the free energy of the wrapping-unwrapping transition of the filament around the cylinders as
well as the effective interaction between two wrapped cylinders due to thermal fluctuations of the
elastic filament. A change of entropy due to wrapping of the filament around the adsorbing cylin-
ders as they move closer together is identified as an additional source of interactions between
them. Such entropic wrapping effects should be distinguished from the usual entropic configu-
ration effects in semi-flexible polymers. Our results may be relevant to the problem of adsorp-
tion of oriented nano-rods on semi-flexible polymers. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4757392]

I. INTRODUCTION

Interaction, binding, and complexation to membranes
and polymers, as typified by protein adsorption to DNA
chains, play a vital role in biology and biochemistry. In bi-
ology, for example, a variety of proteins interact with DNA
in cellular processes involving the reading and packaging of
the genome.1 Transcription factors are proteins which bind to
specific DNA sequences controlling the flow of genetic infor-
mation to messenger RNA (mRNA) which in turn carries this
information to ribosomes for protein synthesis. DNA poly-
merase is another type of protein (enzyme) that plays a key
role in the DNA replication process: it synthesizes a new DNA
strand by reading genetic information from an intact DNA
strand that serves as a template. RNA polymerase is a dif-
ferent kind of DNA-binding protein that binds to DNA and
uses it as a template to synthesize the RNA. In all these ex-
amples, protein binding induces local deformation of DNA.
When multiple proteins bind to DNA they may exhibit a sig-
nificant degree of cooperativity,2 which may result from the
formation of loops,3 specific protein-protein interactions (at
short separations),4 or a variable-range cooperative binding
of proteins regulated by the tension along the DNA strand.5

Perhaps the most remarkable form of protein-induced de-
formation of DNA is found in the chromatin fibre. In eukary-
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otic cells, a long strand of DNA is efficiently packed within
a micron-size cell nucleus. This occurs through a hierarchi-
cal folding process1 where at the lowest length scale, short
segments (about 50 nm) of DNA are wrapped around small
histone proteins forming nucleosomes: cylindrical wedge-
shaped histone octamers of diameter of around 7 nm and
mean height 5.5 nm. DNA-histone binding may be mediated
through specific binding sites6 as well as non-specific elec-
trostatic interactions7–9 since both DNA and histones carry
relatively large opposite (net) charges (on the average, around
188, 130, and 129 histone charges interact with the wrapped
DNA for native chromatin, nucleosome core particle, and H1-
depleted chromatin, respectively,10 while DNA itself carries
six elementary charges per nm). In nucleosomes, DNA is
strongly bent and wrapped around the core histones in nearly
a 1-and-3/4 left-handed helical turn, which thus costs a large
bending energy given that DNA has an effective persistence
length of around 50 nm in physiological conditions.14

These DNA-histone complexes are linked together and,
on the next level of the hierarchy, fold into a rather dense
structure known as the 30 nm chromatin fibre, which under-
goes a series of higher-order foldings resulting in highly con-
densed chromosomes. Under physiological conditions (salt
concentration of around 100 mM NaCl), this fibre exhibits
a diameter of about 30 nm, while at low salt concentrations
the fibre is swollen and displays a beads-on-a-string pattern
with a diameter of around 10 nm in which core particles are
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widely separated.6, 15, 16 In these cases, the wrapped structure
of DNA around histone proteins remains intact. However, at
salt concentrations below 1 mM, the DNA begins to partially
unwrap from the histone cores.17 The electrostatic mechanism
for the salt-induced wrapping-unwrapping behavior of the
DNA around nucleosome core particles has been discussed in
the literature for general classes of charged polymer-macroion
complexes8, 9, 18–20 and for long complex fibres of multiple
macroions21 and will not be considered in this paper. In gen-
eral, the interplay between the DNA’s bending energy cost,
the electrostatic attraction energy as well as other specific
binding energies would be the key to understand the global
structural features of the chromatin fiber. The precise arrange-
ment of nucleosome core particles in the 30 nm fibre is still
intensely debated in the literature (see, e.g., Refs. 6, 15, 16,
and 22–34 and references therein).

Genome-wide experimental mappings of nucleosome oc-
cupancy in yeast point to a patchy landscape composed of at
least partly ordered crystal-like configurations with a nucleo-
some repeat length of about 165 base-pairs.11 It appears that
what is encoded in the sequence of DNA is not the sequential
ordering of nucleosomes but rather the nucleosome excluded
regions. In between these regions nucleosomes position them-
selves via a thermodynamic equilibrium mechanism.12 The
ordered configurations of nucleosomes between the excluded
regions have been modeled as a nonuniform fluid of one-
dimensional (1D) hard rods confined by two excluding energy
barriers at the extremities12, 13 (see Ref. 21 for a ground-state
treatment in three dimensions). The interaction between the
nucleosomes was thus assumed to be of purely hard-core type,
i.e., only steric exclusion is taken into account. Understanding
the details of these interactions and the adsorption-wrapping
equilibria for protein-DNA complexes is thus of paramount
importance.

Motivated by these findings, we focus here on elastic
properties and adsorption-desorption equilibria of a model
system composed of adsorbing cylindrical particles and an
elastic filament modeling a semi-flexible polymer chain with
short-range adsorption interaction, assumed to be propor-
tional to the arc-length of the filament touching the particle.
We neglect any electrostatic interactions (which may be jus-
tified for charged species at high enough salt concentration in
the solution) and focus on elasticity and short-range (adhe-
sive) wrapping. Furthermore, we restrict ourselves to a two-
dimensional (2D) Eulerian plane model of a single elastic fil-
ament wrapped around one, two or many cylinders. This for-
mulation of the model system allows us to introduce an ex-
act formalism based on the Schrödinger representation for the
partition function of the system and to carry out the calcula-
tions explicitly for the wrapping-unwrapping behavior of the
elastic filament with one or two wrapping cylinders as well as
for the effective interaction between two cylinders wrapped
on a single filament. Our study may thus be relevant to the
problem of adsorption of oriented nano-rods to semi-flexible
polymers where off-plane deformations are negligible.

In the same context, the tension-mediated interaction be-
tween proteins bound to a DNA chain was initially considered
by Rudnick and Bruinsma5 within the very same model used
in the present paper. The thermal fluctuations of the chain

were however dealt with only on a harmonic level, corre-
sponding to small Gaussian fluctuations around the configura-
tion of lowest energy. Our analysis, based on the Schrödinger
representation, goes beyond this approximation and takes into
account the whole spectrum of chain conformational fluctu-
ations within a rigorous mathematical framework. In agree-
ment with Ref. 5, we find that the interaction between two
wrapped cylinders may either be attractive or repulsive, de-
pending on their relative orientation along the elastic filament.
The details of the interaction are however different from those
found on the simple Gaussian level.

In another recent related work, Koslover and Spakowitz35

studied the role of local DNA twist in the coupling between
bound proteins. It was shown that twist resistance results in a
more complex interaction between the bound proteins exhibit-
ing, e.g., damped oscillations superimposed over and counter-
acting the attractive protein-protein interaction. In a different
context, Sudhanshu et al.36 considered the spatial orientation
of the nucleosome spool with wrapped DNA chains and
showed that this orientational degree of freedom for the spool
modifies the tension-extension curve in a pulling experiment
due to the unwrapping transitions of the DNA chain from
the nucleosome. In this paper, confining ourselves to the 2D
Eulerian plane, we therefore neglect the contribution of the
polymer twist as well as bound spool spatial orientation and
focus primarily on exact solutions for the case where the
polymer is described as a twist-free worm-like chain and the
axis of the wrapped spools is forced to stay perpendicular to
the Eulerian plane.

The organization of the paper is as follows: In Sec. II, we
define our model and discuss the general formalism which we
shall employ in our study. In Sec. III, we apply our formal-
ism to the problem of the unwrapping transition for a single
wrapped cylinder and in Sec. IV, we study the unwrapping
transition of the filament from two cylinders. In Sec. V, we
consider the problem of effective interaction mediated by the
elastic filament’s fluctuations between two wrapped cylinders.
We summarize our results and conclude in Sec. VI.

II. FILAMENT WRAPPING AROUND CYLINDERS:
MODEL AND FORMALISM

A. Filament elastic energy

Consider an inextensible semi-flexible filament of to-
tal arc-length L confined to a 2D Eulerian plane with co-
ordinates (x, y). The tangent vector of the filament is nor-
malized to one and can thus be parametrized as t(s) = ẋ(s)
= (cos(ψ(s)), sin(ψ(s)). In this parametrization the inexten-
sibility constraint is taken into account exactly. The bending
energy of the filament is given by∫ L

0
ds

κ

2

(
d2x
ds2

)2

=
∫ L

0
ds

κ

2

(
dψ

ds

)2

, (1)

where κ is the filament stiffness parameter and has di-
mensions of energy times length (the so-called “persistence
length” is defined as Lp = κ/(kBT) for the ambient temper-
ature T). We assume that one end of the filament is fixed at
x(s = 0) = 0 and the other end is pulled with an external

Downloaded 29 Nov 2012 to 147.210.24.83. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



144904-3 Dean et al. J. Chem. Phys. 137, 144904 (2012)

FIG. 1. A schematic drawing of the geometry as well as various quantities
defined in the text for one and two cylinders wrapped on the Eulerian filament
(shown in a symmetric mode). Specifically, for one cylinder (top) the angle at
which the filament first touches the cylinder (advancing along the arc-length
to the cylinder) is ψ1 and the angle at which it leaves is ψ2. For two cylinders
(bottom), separated by a distance l, the contact angles α1 and α2 are as shown
in the figure.

tension F in the direction x, see Fig. 1. The potential energy
of the filament is thus given by

− Fx(L) = −F

∫ L

0
ds cos(ψ(s)). (2)

The total energy of the filament without any interactions with
objects in the plane is then given as an elastic energy func-
tional E[ψ] as

E(L) = E[ψ] =
∫ L

0
ds

[
κ

2

(
dψ

ds

)2

− F cos(ψ(s))

]
,

(3)
which is the standard Euler elastic energy expression for the
elastic filament under external force.

The energy function Eq. (3) also arises in the study of
parallel cylinders adhering to elastic membranes.37–40 In this
case, when the cylinders are parallel, and if only membrane
height fluctuations in the direction normal to the cylinders
are taken into account, the problem becomes effectively one-
dimensional and if one uses the Helfrich Hamiltonian for the
energy of the membrane due to its height fluctuations one can
write (up to a constant term)39

Ememb = L
∫ L

0
ds

[
κ

2

(
dψ

ds

)2

− σ cos(ψ(s))

]
, (4)

where ψ(s) is the tangent angle of the membrane in the direc-
tion perpendicular to the cylinders (s being the coordinate in
this direction), L is the length of membrane in this direction,
and L the length parallel to the cylinders. The term κ is the
membrane bending rigidity and σ the surface tension. The
Hamiltonian Eq. (4) is thus formally the same as that studied
by Rudnick and Bruinsma5 as given by Eq. (3); however
there are a number of notable and crucial differences between
the two models. First, Eq. (4) is multiplied by a macroscopic
quantity L, this means that the statistical mechanics can be
determined by purely energetic (or mean field) considerations
by minimizing Eq. (4). In this limit one can also assume
that fluctuations are small and thus fluctuations can be taken
into account via an expansion about the minimal energy
configuration and treated harmonically as was done by

Rudnick and Bruinsma5 for the polymer model. Another
technical difference is that when one considers the interaction
between the cylinders in the membrane model, the force is
calculated as a function of the spatial distance between the
cylinders, whereas in the polymer problem it is more natural
to consider the arc-length along the polymer separating the
cylinders as the relevant physical parameter. However within
the formalism introduced here both ensembles (fixed spatial
distance and fixed arc-length) can be handled on an equal
footing. This choice of ensemble is especially important
when analyzing the effect of fluctuations. The above points
thus conclude the technical motivation for our study: as the
problem is effectively one-dimensional, one can be in a limit
where the effects of fluctuations are not merely perturbative
and a full treatment of fluctuations is thus necessary. The limit
where the energetic minimization is valid in the treatment
of Eq. (3) is when κ and F are large (as compared with kBT)
while their ratio is kept fixed.

We also emphasize that our model is one where the size
of the objects that are wrapped, the cylinders, is large with
respect to the microscopic details of the polymer. The effect
of absorbed objects on a more discrete model has been studied
in Ref. 41, where in particular the effect of absorbed objects
on the effective persistence length was taken into account.

B. Wrapping adhesive energy

Consider now a cylinder embedded in the plane which is
free to move and which can become attached to the elastic
filament. It is important that the cylinder can move since the
position at which the filament is attached to the cylinder is
not constrained in space. We assume that there is a favorable
energy of interaction between the cylinder and the filament
which is local and proportional to the arc-length of the fil-
ament touching the cylinder. We further assume that in the
interaction region between the filament and the cylinder the
former follows the surface of the cylinder exactly and that
the energy of interaction is consequently given by

Ei = −γ sc, (5)

where γ is a line tension parametrizing the affinity of the fil-
ament for the cylinder and sc is the arc-length of the filament
which is attached to the cylinder. If the angle at which the
filament first touches the cylinder (advancing along the arc-
length to the cylinder) is ψ1 and the angle at which it leaves is
ψ2 (see Fig. 1, top), then the length of the filament touching
the cylinder is sc = R|ψ2 − ψ1| and thus

Ei = −γR|ψ2 − ψ1|. (6)

Note that if ψ2 > ψ1 the filament wraps anti-clockwise and if
ψ2 < ψ i then it wraps clockwise around the filament. As well
as having a surface interaction term, there is also a mechani-
cal bending (potential) energy associated with the arc-length
following the contour of the cylinder. This mechanical energy
is given by Em = E(sc), where the energy functional is defined
in Eq. (3). The path that follows the cylinder arriving at an-
gle ψ1 and leaving at angle ψ2 is parametrized over [0, sc] as
ψ s = (ψ2 − ψ1)s/sc + ψ1. Substituting this trajectory into
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Eq. (3) yields

Em = κ

2R
|ψ2 −ψ1| −FR sgn(ψ2 −ψ1)[sin(ψ2) − sin(ψ1)].

(7)
The total energy of the system is then composed of a bulk
elastic term, Eq. (3), for the free segments of the filament and
a boundary or contact interaction energy Ec with the cylinder
which is a sum of the terms in Eqs. (6) and (7), i.e., Ec = Ei

+ Em.
One notes that the above energy functional is analogous

to a 1D Coulomb fluid with a charged boundary, but with an
imaginary surface charge.42, 43

C. Partition function of a filament-cylinder complex

To determine the conformational equilibrium of a system
consisting of an elastic filament with any number of wrapped
cylinders we must evaluate the corresponding partition func-
tion. To do this we first define the evolution kernel K(ψ , ψ ′, s)
which evolves the state of the filament for a distance s
measured along its arc-length with the boundary condition
that ψ(0) = ψ and ψ(s) = ψ ′. This kernel is defined by

K(ψ,ψ ′, s) =
∫ ψ(s)=ψ ′

ψ(0)=ψ

d[ψ] exp (−βE[ψ]) , (8)

where β = 1/kBT and E[ψ] is the elastic energy functional in
Eq. (3). It determines the evolution in arc-length s of a wave
function f(ψ) by∫

dψ ′K(ψ,ψ ′, s)f (ψ ′) = exp(−sH )f (ψ), (9)

where H is the corresponding Hamiltonian operator

H = − 1

2βκ

d2

dψ2
− βF cos(ψ). (10)

The partition function for a single cylinder, which first be-
comes attached to the filament at arc-length s = l1 measured
from the fixed end x(s = 0) = 0 (see Fig. 1), is then given by

Z =
∫

dψ0dψ1dψ2dψ3K(ψ0, ψ1, l1)S[ψ1, ψ2]

×K(ψ2, ψ3, L − l1 − R|ψ2 − ψ1|), (11)

where ψ(0) = ψ0 and ψ(L) = ψ3 and the definition of S fol-
lows from the contact energy (or the interaction energy be-
tween the cylinder and the filament as defined in Sec. II B)
and is given by

S[ψ1, ψ2] = exp
(
β|ψ2 − ψ1|

(
γR − κ

2R

)
+βFR sgn(ψ2 − ψ1)[sin(ψ2)−sin(ψ1)]

)
.

(12)

The generalization to a system in which the elastic filament
interacts with several wrapped cylinders is obvious from the
above.

In the limit of a long elastic filament where the cylinders
are close to its midpoint, we make use of the fact that the prop-
agator at large arc-lengths is given in terms of the ground-state

wave function of the corresponding Schrödinger equation

K(ψ,ψ ′, L) = exp(−E0L)�0(ψ)�0(ψ ′), (13)

where E0 is the ground-state energy of the Hamiltonian H,
Eq. (10), and �0 the corresponding wave function, i.e.,
H�0(ψ) = E0�0(ψ). The ground-state energy in the ground-
state-dominance limit then gives also the partition function in
the limit of large arc-lengths.

D. Constrained and free wrapping of cylinders

Because of specific interactions between the filament and
the cylinders the wrapping angles ψ1 and ψ2 may not be com-
pletely free and constraints may exist that reduce their overall
degrees of freedom. For instance, in the limit where the ad-
hesion energy γ is very large, the elastic filament could wrap
around the cylinder a number of times, via an escape into the
third dimension that does not cost any extra energy, or so we
assume in this study.

The simplest constraint is to take the wrapping angle
(see Fig. 1, top) ψ2 − ψ1 = α1 fixed. The constrained par-
tition function at a fixed wrapping angle can be computed and
then the ensemble where it varies can be obtained by carrying
out the remaining integrations with the appropriate statistical
weights. This holds for a single wrapped cylinder but can be
extended to the case of several cylinders as well.

For a single cylinder we then define the constrained par-
tition function for the ensemble where ψ2 − ψ1 = α1 is kept
fixed as

Z(α1) =
∫

dψ0dψ1dψ3K(ψ0, ψ1, l1)

× exp(βFR sgn(α1)[sin(ψ1 + α1) − sin(ψ1)])

×K(ψ1 + α1, ψ3, L − l1 − R|α1|). (14)

The partition function for the ensemble where the contact an-
gle can vary freely is consequently given by

Z =
∫ L−l1/R

−L−l1/R

dα1Z(α1) exp
(
β|α1|

(
γR − κ

2R

))
. (15)

Note that given that the point of first contact between the
cylinder and filament is at s = l1, the maximum amount of
filament that can be wrapped about the cylinder is L − l1, cor-
responding to wrapping angles of ±(L − l1)/R (clockwise and
anti-clockwise). When α1 is fixed, the surface terms are peri-
odic in ψ1 and one can use standard Mathieu function analysis
to carry out the computations. The procedure is described in
detail in Appendix A.

For two cylinders separated by a distance l, where the
first one is located an arc-length l1 away from the fixed end
and with contact angles α1 and α2 (see Fig. 1, bottom), we
have in complete analogy with above

Z(α1, α2) =
∫

dψ0dψ1dψ3dψ5 K(ψ0, ψ1, l1)SR1 (ψ1, α1)

×K(ψ1 + α1, ψ3, l)

×SR2 (ψ3, α2)K(ψ3 + α2, ψ5, L12), (16)

where

L12 = L − l − l1 − R1|α1| − R2|α2| (17)
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is the arc-length between the right, free, end of the chain, and
the rightmost cylinder (see Fig. 1, bottom), and

SR(ψ, α) = exp(βFR sgn(α)[sin(ψ + α) − sin(ψ)]), (18)

where R1 is the radius of cylinder 1 and R2 is that of
cylinder 2.

E. Constrained arc-length separation between
wrapped cylinders

Now consider the limit of a long filament where the cylin-
ders are close to the midpoint, i.e., we take l1 and L − l1 large
while keeping the arc-length between the final point of the fil-
ament touching cylinder 1 and the first touching cylinder 2, l,
constant (see Fig. 1, bottom). These are all lengths along the
chain (arc-length) which are fixed, if we wish to keep the
physical distance fixed in a given direction we must consider
another ensemble; we shall discuss this later. In this limit (cor-
responding to the limit of ground state dominance, Eq. (13)),
we find, up to an overall factor,

Z(α1, α2) = exp (−E0L12)
∫

dψ1dψ3�0(ψ1)SR1 (ψ1, α1)

×K(ψ1 + α1, ψ3, l)SR2 (ψ3, α2)�0(ψ3 + α2).

(19)

An interesting case emerges when the two wrapping an-
gles are equal and correspond to complete single wrapping,
α1 = α2 = 2π . The l dependent part of the partition function
is then given by

Z(l) = exp(E0l)
∫

dψ1dψ3�0(ψ1)

×K(ψ1 + 2π,ψ3, l)�0(ψ3 + 2π ) (20)

and using the periodicity this gives

Z(l) = exp(E0l)
∫

dψ1dψ3�0(ψ1)K(ψ1, ψ3, l)�0(ψ3).

(21)
The same result is found if one assumes that the wrapping is
antisymmetrical, α2 = −α1 = −2π . The symmetry of wrap-
ping between the two cylinders will be addressed further be-
low. The difference between symmetric and antisymmetric
wrapping is obvious from Figs. 1 and 2.

F. Wrapping-unwrapping transition of cylinders
on an elastic filament

We first consider the case of a single adsorbing cylinder.
The elastic filament is of length L and a wrapped cylinder is
positioned at l1. We restrict ourselves to the case where both L
and l1 → ∞, assuming that l1 is not fixed so that the cylinder
can attach anywhere and consider the case where the elastic
filament can wrap on the cylinder any number of times.

In this case, the expression in Eq. (14) becomes, up to a
constant prefactor, independent of α:

Z(α) = exp (−E0(L − R|α|)) f (α), with

f (α) =
∫ 2π

0
dψ �2

0 (ψ)SR(ψ, α), (22)

FIG. 2. Top: Schematic view of the wrapping of two cylinders in an anti-
symmetric mode where the wrapping angles for the two cylinders differ in
sign. Bottom: The symmetric looped configuration (full line) of two wrapped
cylinders corresponds to a negative value of the horizontal projected sepa-
ration d⊥ (i.e., cylinder 2 lies to the left of cylinder 1) and the symmetric
extended configuration (dotted line) with positive d⊥ (i.e., cylinder 2 lies to
the right of cylinder 1).

and the function f(α) is clearly bounded. From Eq. (15) the
partition function for the ensemble with variable α is obtained
by integrating Eq. (22) over α from −L/R to +L/R, i.e.,

Z = exp(−LE0)
∫ L/R

−L/R

dα

× exp

(
β|α|

(
γR − κ

2R
+ RE0

β

))
f (α). (23)

Defining


E = γR − κ

2R
+ RE0

β
, (24)

we see that the elastic filament will then wrap around the
cylinder a macroscopic number of times (in the sense that the
total length wrapped around the filament will be of the order
of the filament length) if 
E > 0. However, for 
E < 0 the
filament will have only a microscopic length wrapped around
the cylinder. The equation 
E = 0 therefore defines a wrap-
ping transition in the phase diagram of variables β and F as a
consequence of competition between the wrapping energy of
the cylinder and the configurational entropy of the chain.

In the zero-temperature limit where β → ∞ the ground
state of the filament configuration is a straight line in the di-
rection of the applied force and so without a cylinder

Z(L) ≈ exp(−LE0) = exp(βFL), (25)

or E0(T = 0) = −βF. Therefore, if γ R − κ/2R − FR > 0,
the system is in the wrapped state, otherwise the filament un-
wraps from the cylinder. This conclusion is easy to deduce
from purely energetic arguments for large values of the wrap-
ping angle α.

We next consider several cylinders in the plane and as-
sume that the filament can wrap around all of them without
impediment. The wrapping will induce effective interactions
between the cylinders that can either be repulsive, attractive,
or non-monotonic. Wrapping transitions with effective in-
teractions between cylinders can be viewed as a model for
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nucleosomal wrapping.12, 13, 21 However, the details of the
most general case remain to be elaborated.

For clarity we briefly describe the system with three
cylinders: cylinder 1 at position l01 from the left end of the

chain, cylinder 2 separated from 1 by a distance l12, cylin-
der 3 separated from 2 by a distance l23 and with con-
tact angles α1, α2, and α3. The partition function can be
written as

Z(α1, α2, α3) =
∫

dψ0dψ1dψ3dψ5dψ7K(ψ0, ψ1, l01)S(ψ1, α1)K(ψ1 + α1, ψ3, l12)S(ψ3, α2)

×K(ψ3 + α2, ψ5, l23)S(ψ5, α3)K(ψ5 + α3, ψ7, L − (l01 + l12 + l23 + R1|α1| + R2|α2| + R3|α3|)), (26)

with the general definition

S(ψ2i+1, αi) = exp(βFRi sgn(αi)[sin(ψ2i+1 + αi) − sin(ψ2i+1)]), (27)

where i (for i = 0, 1, 2) is the index of the wrapped cylinder.

The general system for N particles bears some overall
similarity to the 1D Tonks gas, although the effective inter-
actions between the cylinders are more complicated. In order
to make this system applicable to the problem of nucleosome
wrapping around DNA, it may be necessary to insert a chem-
ical potential term for the cylinders similar to the case of a
grand-canonical Tonks gas.12, 13 The main difference between
the two models is, however, in the fact that the interaction
between the wrapped cylinders along the elastic filament can
be much more complicated than in the Tonks case and could
in principle lead to “phase separation” without imposing any
excluding energy barriers along the chain.21

III. UNWRAPPING TRANSITION: ONE CYLINDER

We now apply the general theory derived in Secs. II A–
II F to the problem of the unwrapping transition for a single
wrapped cylinder.

To accommodate the wide range of values that the vari-
ables take in the physical systems to which our theory would
be applicable, it is convenient to recast the calculation in terms
of equivalent dimensionless variables. We consider an elastic
filament of persistence length Lp, fixed at one end and pulled
from the other end with a force F. The wrapped cylinders are
all of radius R. We define the following dimensionless vari-
ables

μ = 2Lp

R
, f = βRF, σ = βγR, ε = ER, (28)

where Lp = βκ and γ , the wrapping energy of a cylinder per
unit of arc-length, and other parameters have been defined be-
fore, Eqs. (1)–(5). In terms of these variables the Hamiltonian
can be written as H = H′/(μR) and thus H′ has eigenvalues
which can be written in the form of the Schrödinger equation

H ′ψm = μεmψm, (29)

where εm = EmR.
As an illuminating example let us consider a specific case

with the dimensionless quantities μ = 1 and σ = 0.5. Assum-
ing cylinder radius of R = 2 nm, this gives actual parameter

values as Lp = 1 nm (persistence length), κ = kBT × Lp � 4
× 10−30J m (bending stiffness) at T = 300 K, and γ = 1 pN
(line tension for cylinder-filament adhesion).

For the single cylinder wrapping transition, a rough esti-
mate for its occurrence can be obtained in the following way.
In Sec. II F, it was argued that for large β (low temperature)
E0 ∼ βF and that the wrapped phases occurs for forces which
obey 
E > 0, Eq. (24). For scaled quantities as introduced
above this inequality becomes

f < σ − μ

4
and thus σ ′ ≡ σ − μ

4
> 0. (30)

Alternatively, we can then consider the Schrödinger equation,
Eq. (29) (see also Eq. (10)), as an approximate oscillator equa-
tion and get an improved estimate E0 = −βF + √

F/(4κ).
Using Eq. (30) above, the condition for the wrapping transi-
tion then becomes

f −
√

f/2μ − σ ′ < 0. (31)

This can be recast as a quadratic equation in
√

f and the con-
dition can be satisfied if the discriminant is positive, i.e.,

σ ′ > − 1

8μ
and thus σ >

μ

4
− 1

8μ
. (32)

In the limit where μ is large, the above expression reduces to
the condition in Eq. (30). There will of course be corrections
to this form due to the non-harmonic terms in the effective
potential in Eq. (29). Nevertheless, from both arguments it
follows that a sufficient condition for the transition to occur
is σ > μ/4. If we return to original variables we see that the
second condition of Eq. (32) gives

γ > γ ′, where γ ′ = 1

2

κ

R2
− (kBT )2

16κ
. (33)

In the limit of zero temperature this result agrees with that of
Weikl37 for a cylinder and membrane. The interpretation of
the zero-temperature result is simply that the adhesive energy
must overcome the bending energy to make the bound state
stable. We see that the effect of temperature is to diminish
the minimum adhesion energy necessary to obtain a bound
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FIG. 3. The wrapping transition of a single cylinder on an elastic filament.
Exact solution for the average wrapping angle ratio 〈α〉/αmax is shown as a
function of the dimensionless external tension f = βRF for fixed μ = 1 and
σ = 0.75.

phase. At first sight this appears counter-intuitive and so we
investigate the effect of temperature below in more detail.

We first present an exact calculation of the wrapping tran-
sition in a particular case. The mean value of α, i.e., 〈α〉, is
calculated for fixed (μ, σ ) as a function of the reduced force
f. Whilst taking the filament to be of infinite extent we re-
strict the range of α to be −αmax < α < αmax and take αmax =
100. For small f we expect 〈α〉 to be large, which corresponds
to the elastic filament maximally wrapped onto the cylinder:
|α| = αmax. As f is increased the system will go through a
transition from the wrapped to the unwrapped configuration.

To solve the corresponding Schrödinger equation, the
range of x is chosen to be an integer multiple N of 2π , where N
would then be the number of lattice sites in the Bravais lattice
for the discretized Hamiltonian. The Schrödinger equation
(Eq. (29)) is then recast as a matrix equation with imposed
periodic boundary conditions. This will lead to a band struc-
ture with the Brillouin zone and the number of Bloch states
per band determined by N. Since the solution of this prob-
lem requires only strictly periodic eigenfunctions we choose
N = 1 and the range of x as 2π . The eigenvalues are then equal
to μεm.

In Fig. 3 we show the results for the mean wrapping angle
〈α〉, scaled by αmax, as a function of the external dimension-
less force f for fixed μ = 1 and σ = 0.75. The wrapping transi-
tion, corresponding to the maximum in the derivative ∂〈α〉/∂f,
then occurs for the critical reduced force fc � 1.2 which, for
the parameters stated above (i.e., using Lp = 1nm, R = 2nm)
gives Fc � 2.4 pN. Compare this with the corresponding esti-
mates from

(i) Eq. (30). We find

fc = σ − μ/4 = 0.5 −→ Fc = 1 pN.

(ii) Eq. (31). We solve the quadratic equation (for μ = 1 and
σ = 0.75) to get

fc = 1.31 −→ Fc = 2.67 pN.

Obviously, in order to get an accurate prediction for the crit-
ical force it is necessary to solve the full Schrödinger equa-

tion as we did above. Nevertheless, the harmonic approxima-
tion in Eq. (31) is in acceptable agreement with this exact
result.

In order to highlight the effect of temperature it is impor-
tant to consider the dependence of 〈α〉 on the force F rather
than on the dimensionless reduced force f because the latter
contains a hidden dependence on T which would obscure the
effect we are studying. In the harmonic approximation, we
have that the critical force Fc is predicted to be

√
Fc = kBT

4
√

κ
+ (γ − γ ′). (34)

We investigate two cases and take typical values for the pa-
rameters similar to those stated at the beginning of this sec-
tion, i.e., R = 2 nm, Lp = 1 nm, κ = kBT × Lp and the temper-
ature is taken as T = 300 K, so that μ = 1. We study two cases
corresponding to σ /μ = 0.15 and 0.35, respectively. We also
note that these choices, respectively, give σ ′ > 0 and σ ′ < 0,
which allows us to test the significance of the inequality in
Eq. (32). We study a wide range of temperatures above
and below T = 300 K which is necessary to reveal the
T-dependence of the wrapping transition. Of course, such a
wide temperature range does not occur in vivo but our aim is
to test the prediction inferred from Eq. (34), namely that the
critical force for the wrapping transition increases, rather than
decreases, with increasing T. The values for T considered are
between T = 210 and 390 K in intervals of 30 K, and the
results are shown in Fig. 4 for the above two cases:

(i) σ /μ = 0.15, σ ′ < 0: This corresponds to relatively weak
adhesion coefficient γ = 0.30 pN and whilst we expect a
wrapping transition to occur, we expect it to be relatively
smooth and, according to Eqs. (33) and (34), to turn on
more strongly as T increases and for the critical force to
increase as T increases. We see these features in Fig. 4,
left panel. We conclude also that even though σ ′ < 0 the
wrapping transition does occur. For T = 300 K the har-
monic approximation in Eq. (34) predicts Fc = 0.52 pN.
The transition is not sharp and so it is not feasible to read
a specific value for Fc from the graph but it is clear that
this prediction is very much on the low side.

(ii) σ /μ = 0.35, σ ′ > 0: The adhesion coefficient
γ = 0.70 pN is larger and, in this case, we expect the
transition to be stronger and sharper than in case (i).
This is seen in Fig. 4, right panel. As T increases the
transition moves to larger critical force as predicted. For
T = 300 K the harmonic approximation in Eq. (34)
predicts Fc = 1.37 pN. From the graph the value of Fc

follows as Fc ∼ 3 pN, twice as big as the harmonic
prediction.

We have thus verified that the effect of increasing tempera-
ture T is to increase the critical force at which the wrapping
transition occurs and this feature is clearly seen in Fig. 4(b).
In other words we can conclude that increasing the temper-
ature causes the wrapping transition to occur at larger force
and the corollary is that for fixed force increasing the temper-
ature can actually cause the transition: a somewhat surprising
result!
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FIG. 4. The wrapping transition as a function of the actual force F and for temperatures T = 210 K up to 390 K in steps of 30 K. The physical values for
the parameters are given in the text. In both cases the curves move right as T increases. Left panel: we have σ /μ = 0.15, σ ′ < 0. The wrapping transition is
relatively smooth and as T increases it becomes stronger and moves to larger values of F. Right panel: σ /μ = 0.35, σ ′ > 0. The wrapping transition is much
stronger and sharper as compared with the former case and, as predicted, the transition moves to larger values of F as T increases. It is this behavior in both
cases which might be considered counter-intuitive.

These effects can be understood by noting that it is
the ground-state energy E0 for the full Schrödinger equation
which contributes in Eq. (22) and this is clearly T-dependent
and different from E0 for the harmonic approximation. As T
increases the potential becomes narrower leading to E0 in-
creasing with T. This leads to a smaller threshold, γ ′, as de-
fined in Eq. (33).

We finally note that the wrapping transition is controlled
by the Mathieu ground state wavefunction which encodes the
effect of fluctuations and is not Gaussian. However, from
Eq. (10) we can estimate the relevance of the anharmonic
terms in the potential and find that for βFcLp 
 1 the har-
monic oscillator approximation and hence the Gaussian ap-
proximation for the fluctuation contribution is good. This
leads to the prediction for Fc as given in Eq. (34). For our
choice of parameters here, for which βFcLp ∼ 2 it is evident
from (ii) above that the harmonic approximation is not good.
If we increase the value of Lp, say from 1 nm to 50 nm char-
acteristic of dsDNA, and keeping other parameters fixed, then
the relevant fluctuations are Gaussian. However, the quantity
that matters is FcLp and the key equation is Eq. (34) which
can be rewritten as

√
βFcLp = 1

4
+ √

βLp(γ − γ ′). (35)

So the Gaussian approximation is not good if the second term
on the r.h.s. is O(1) which is the case for

γ ∼ kBT

2

(
Lp

R2
− 1

16Lp

)
. (36)

Thus, the validity of the Gaussian approximation depends on
the values Lp, R, and γ and cannot be deduced from the value
of any one of these parameters alone.

IV. UNWRAPPING TRANSITION: TWO CYLINDERS

We now study the unwrapping transition in a system of
two cylinders of radius R, labelled by i = 1, 2, wrapped by a
length of filament. There are two cases which we consider.

The first case (case I) consists of the two cylinders
wrapped by a fixed length of filament. The relevant variables,
shown in Fig. 1, are as follows:

� The total angle, αi, wrapped by filament for the
ith cylinder. These are both fixed (quenched) for
i = 1, 2.

� The length, l, of filament directly between the two
cylinders, i.e., from the exit of the first cylinder to the
entrance of the second, which is also fixed.

We encode the configuration of the cylinders by measur-
ing the expectation value of d⊥, the projected horizon-
tal displacement between the centers of the two cylinders.
The maximum projected horizontal displacement is given by
dmax = l + 2R. We shall deal with this case in Sec. IV A below.

The second case (case II) consists of the two cylinders
pinned a distance l′ apart along a filament, which are wrapped
by a dynamical (or annealed) length of filament. The relevant
variables are:

� The length l′ of filament between the sites of pinning
of the two cylinders. This is fixed (quenched).

� The total angle, αi, wrapped by filament for the ith
cylinder. These are dynamical (annealed) and free to
change.

� The angle, α′
i , wrapped by the internal length of fil-

ament (initially of length l′) between cylinders for
the ith cylinder. These are also dynamical; they take
into account the ways in which the filament can
wind.

� The length, l, of filament directly between the two
cylinders, i.e., from the exit of the first cylinder to the
entrance of the second. It is now dynamical being de-
termined by l = l′ − R(α′

1 + α′
2).

Again we encode the configuration of the cylinders by mea-
suring the expectation value of d⊥, the projected horizontal
displacement between the centers of the two cylinders. The
maximum projected horizontal displacement is given now by
dmax = l′ + 2R. We shall deal with this case in Sec. IV B
below.
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A. Two cylinders: Constrained wrapping

In the first case (case I) where the wrapping angles are
fixed, we write the constrained partition function of this sys-
tem as

Z(α1, α2, l) =
∫

dψ1dψ2 〈0|Ô(ψ1, ψ1 + α1)

× exp (−Hl/Rμ) Ô(ψ2, ψ2 + α2)|0〉,
(37)

where we assume that the ground state dominates the ex-
ternal regions of the elastic filament, i.e., regions out-
side the part bounded by the two wrapped cylinders.
The operator insertion Ô corresponds to the wrapping
of the elastic filament around a cylinder and is given
by

Ô(ψ,ψ + α) = Cα(ψ)|ψ〉〈ψ + α|, (38)

where

Cα(ψ) = exp (|α| [σ + ε0] + f sgn(α) [sin (ψ + α) sin ψ]) .

(39)

This gives for the constrained partition function Eq. (37)

Z(α1, α2, l) =
∫

dψ1dψ2�0(ψ2)Cα1 (ψ1)
∑
m

e−εml/R

×Pm(ψ1 + α1, ψ2)Cα2 (ψ2)�0(ψ2 + α2), (40)

where

Pm(ψ1, ψ2) = �m(ψ1)�m(ψ2). (41)

The functions Pm and the exponential in front of the Pm can be
pre-computed outside any nested integration loops for fixed
αi, leading to a quick and straightforward evaluation of the
above expression. We are interested in the average horizontal
distance between the centers of the two cylinders which is
given by

〈d⊥〉 = 1

Z(α1, α2, l)

∫
ds

∫
d(sin ψs)

∫
dψ1dψ2

(
〈0|Ô(ψ1, ψ1 + α1)e−Hs/Rμ|ψs〉

× 〈ψs |e−H (l−s)/RμÔ(ψ2, ψ2 + α2)|0〉 + R sgn(α1)〈sin(ψ2)〉 − R sgn(α2)〈sin(ψ3)〉
)

. (42)

A form suitable for numerical computations is reworked in
Appendix B.

We remark at this point that in our model nothing stops
the cylinders from passing through each other. Therefore the
inter-cylinder force for small horizontal separations has to be
interpreted only up to the limit of cylinders actually touching.
The definition of this point depends on the symmetry of the
wrapping, i.e., it differs when α1 = α2 and when α1 = −α2.
These are the two cases that we have designated symmetric
and antisymmetric, respectively.

The wrapping mediated interactions derived in this way
should then be added to the hard core 1D Tonks gas model,44

which is what was only taken into account in the studies of the
positional distribution of nucleosomes along the genome.12, 13

We do not delve into this problem specifically here, but plan
to address it elsewhere.

An interesting case with two cylinders was discussed
in detail by Rudnick and Bruinsma:5 they dealt with a sys-
tem composed of two cylinders at a fixed arc-length separa-
tion l and with fixed wrapping angles, solved in the Gaus-
sian approximation level. We analyze here the exact solution
for the two phases described in Ref. 5 which are (see also
Fig. 2):

(i) the looped phase where the mean projected separation
〈d⊥〉 is negative meaning that the cylinder at larger dis-
tance along the filament lies to the left of the other cylin-
der, thus causing the elastic filament to loop and

(ii) the extended phase where 〈d⊥〉 is positive and there is no
loop.

We fix α1 and α2, and choose a range of elastic filament arc-
lengths, l, between the cylinders. We calculate the average
horizontal separation 〈d⊥〉 for a given external tension f (in
dimensionless units) and plot f versus 〈d⊥〉/(l + 2R) for vari-
ous choices of parameters. The average horizontal separation
is calculated from Eq. (42).

For symmetric wrapping described by α1 = α2 = π and
μ = 10 (high rigidity) the results are shown in Fig. 5, left
panel. From left to right the lines are for l = nR for inte-
ger n = 3. . . 8. For small forces the filament is in the looped
phase. Increasing the force actually makes the loops larger
as shown by 〈d⊥〉 becoming more negative. Eventually the
extended phase becomes preferable and we have a limit of
full extension as the force increases. Small l also makes the
loops more energetically favorable. For α1 = α2 = π but
smaller (rescaled) rigidity, μ = 5 (Fig. 5, right panel), we
see that only the extended phase is allowed for the largest
values of l. This implies that for a given rigidity there is a
minimum distance (and obviously maximum force) for loop
formation.

The largest extension in both these cases is noticeably
less than the hypothetical maximum dmax = l + 2R. This can
be understood for the chosen fixed wrapping angle of π since
high rigidity constrains the filament to be close to tangential
at both the entry and exit points.

In Fig. 6 we then plot f versus 〈d⊥〉/dmax where dmax = l
+ 2R for μ = 10 (left) and μ = 5 (right) with fixed α1 = α2

= 3π /8 < π /2. The curves for the two rigidities are qualita-
tively similar with only the extended phase allowed. There is
a small l dependence, with curves corresponding to shorter l
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FIG. 5. Dependence of the average horizontal separation 〈d⊥〉 (normalized to dmax = l + 2R) on the external dimensionless tension f = βRF for different sets
of parameters in the case of constrained symmetric wrapping with α1 = α2 = π . Left panel: μ = 10 (high rigidity). Right panel: μ = 5 (low rigidity). Negative
values of the average horizontal separation indicate the presence of a looped phase, i.e., the cylinder at larger distance along the elastic filament lies to the left
of the other cylinder. Curves from left to right correspond to l = nR for integer n = 3, . . . , 8.

lying to the right of those for longer l. Unlike in Fig. 5, the
largest extension for both values of μ is now closer to dmax

since the fixed wrapping angle is smaller than π and the con-
straint that the filament is tangential to the cylinders has a
weaker effect. We observe that as the rigidity decreases the
dimensionless displacement for a given (small) external ten-
sion also decreases; a lower rigidity allows the elastic filament
to fluctuate more and increase the entropic contribution to the
free energy without incurring a large energy penalty. From
our exact analysis, we thus qualitatively confirm the results
for this system by Rudnick and Bruinsma.5

We will not discuss in detail the antisymmetric config-
uration α2 = −α1 as here a looped phase does not emerge
(though such configurations do occur with finite probability
in the sum over the configurations but not on the average) and
the plots are similar to those shown in Fig. 6.

Before we proceed with the case of unconstrained wrap-
ping, it is important to consider the role of non-Gaussian
fluctuations in the above analysis. For a given separation l
between the cylinders, the condition that qualitatively deter-
mines the relevance of the contribution of the mth excited

Mathieu state of energy Em to the evolution along the filament
between the cylinders is (Em − E0)l < 1. In the harmonic ap-
proximation this becomes mωl < 1 where ω = √

βF/(4Lp)
is the oscillator “frequency” in the harmonic approximation,
which directly follows by expanding the nonlinear term in
Eq. (10) to the second order. Using Eq. (10) and the vari-
ables defined in Eq. (28), we find that this translates to the
condition

2m
f

μ

(
l

R

)2

< 1 −→ 2
mf n2

μ
< 1, (43)

where we have used l = nR as shown in Fig. 5 where
n = 3. . . 8. In the left panel of Fig. 5, for which μ = 10,
we deduce that for small f the excited Mathieu states con-
tribute significantly for f < 5/n2; this corresponds to the onset
of the looped phase and the behavior cannot be approximated
only by the ground state contribution.

Another question is whether the harmonic approximation
is nevertheless good when the excited states are included.
From Sec. III, we note that the condition for the harmonic
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FIG. 6. Dependence of the average horizontal separation 〈d⊥〉 (normalized to dmax = l + 2R) on the external dimensionless force f = βRF for different sets
of parameters in the case of constrained symmetric wrapping α1 = α2 = 3π /8. Left panel: μ = 10 (high rigidity). Right panel: μ = 5 (low rigidity). Clearly,
for this set of parameters only the extended phase is allowed for large values of force regardless of rigidity. Curves from left to right correspond to l = nR for
integer n = 3, . . . , 8.
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FIG. 7. Mean projected separation, 〈d⊥〉 (blue curves), and mean wrapping angle, 〈α〉 (red curves), for unconstrained wrapping of elastic filament around two
cylinders. Left panel: σ = 1. Right panel: σ = 10. Solid curves correspond to μ = 10 and dashed curves correspond to μ = 1. Note that the results have been
normalized to maximum displacement, dmax = l′ + 2R, or to maximum angle.

approximation to be good is βFLp 
 1 or, equivalently, fμ/2

 1. For our parameters in the left panel of Fig. 5 (with
μ = 10), we have f 
 0.2. Thus, for instance, in the middle of
the looped phase f � 0.5, hence fμ/2 � 2.5; from Sec. III, we
note that βFLp = 2 is not sufficiently large for the Gaussian
approximation to hold and so we deduce that for the looped
phase shown in Fig. 5 the unapproximated Mathieu states are
necessary for a quantitative calculation.

B. Two cylinders: Unconstrained wrapping

We now allow the αi to be a dynamical or annealed vari-
able as opposed to the quenched case of Sec. IV A. As noted
in the beginning of Sec. IV (case II), the corresponding re-
alization would be an elastic filament wrapped around two
cylinders with a fixed arc-length separation l′ between the two
points of pinning and no other constraints. The length of elas-
tic filament adhering to the cylinders is now variable and so
its length outside the region between the two cylinders and the
effective length between them must both be allowed to vary
dynamically.

In Sec. IV A we gave an expression for the partition func-
tion, Z(α1, α2, l), for fixed angles of wrapping and fixed effec-
tive length of elastic filament between the cylinders. There-
fore the total partition function for dynamical wrapping is
clearly given by

Z =
∫

dα1dα2

∫ min(l/R,α1)

0
dα′

1

×
∫ min(l/R−α′

1,α2)

0
dα′

2 Z(α1, α2, l = l′ − Rα′
1 − Rα′

2),

(44)

where the integration is over the four wrapping angles which
take into account the various ways for the wrapping to occur;
for the ith cylinder αi (or α′

i) is the total (or internal) wrapping
angle of the elastic filament, where internal refers to the length
between the two cylinders. The computations were done with
αi, α

′
i > 0; although the choice of sign for the first cylinder

wrapping is arbitrary, we force symmetric wrapping on the
second cylinder. We find that the antisymmetric configuration

gives similar results and so do not report on it in detail. 〈d⊥〉
can now be calculated by averaging the expression in Eq. (42)
over the four wrapping angles.

Because of the ability to pre-compute the various contri-
butions to the partition function before any integration and/or
summations are done, computation time is kept to a minimum.
However, there is an increase of several orders of magni-
tude in the computing cost compared with the fixed wrapping
case.

In the following computations, we chose l′ = 2πR and αi

< 12π . This puts a reasonable limit on the maximum wrap-
ping angles but it already has a significant outcome and the
amount of computing resources required is kept reasonable.

In Fig. 7 we plot the average projected length 〈d⊥〉 versus
f for σ = 1, 10 and μ = 1, 10. As f is increased an unwrap-
ping transition is indicated by a rapid decrease in 〈α〉 and a
corresponding increase in 〈d⊥〉. The results for σ = 1 show a
clear unwrapping transition (Fig. 7, left). When the unwrap-
ping occurs, the distance between the cylinders increases as
one would expect, whilst in the wrapped phase there appears
to be a small but potentially interesting effect causing a de-
crease in the separation as the force increases. This can be
seen by the bump in the μ = 10 line at small f. As the rigidity
μ is decreased the unwrapping is less pronounced; it is now
easier for the filament between the cylinders to fluctuate more
strongly on average.

For the case of σ = 10 (Fig. 7, right), there is no un-
wrapping transition for both values of μ over the range of
forces indicated. One would expect this kind of outcome when
one changes the binding energy σ . Higher binding energy
prevents unwrapping, holding the cylinders tightly onto the
filament. The distance between the cylinders does however
slowly increase with increasing rigidity owing to the straight-
ening of the elastic filament.

We also note, in this case, that, although α does not
change (it stays maximally wound), the average projected
length between the two cylinders decreases for large enough
external force. This counters the fact the filament will tend
to straighten with increased external tension. It does, how-
ever, lead to the conclusion that for large external tension
there is an effective attraction between the cylinders that pulls
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them together. This conclusion is corroborated also by direct
evaluation of the interaction free energy between the cylinders
as discussed below.

C. Free energy of the unwrapping transition

To understand the phase transition between a free and
wrapped cylinder, i.e., the phenomenon of unwrapping and
desorption, we calculate the free energy of wrapped and un-
wrapped systems. We restrict ourselves to the case of fixed
wrapping angle (case I). This can be trivially calculated
from our theory as we already have calculated the partition
function:

β�(α1, α2, l) = − ln Z(α1, α2, l). (45)

Since we normalize all energies by subtracting the ground-
state energy and do not put in wavefunctions for the end
points, we normalize the system to have Z = 1, � = 0 for
a filament with no wrapped cylinders. We consider the free
energy of a system for the cases of a single wrapped cylin-
der with wrapping angle fixed to α = π , and of the system
of two wrapped cylinders in the symmetric and antisymmet-
ric configurations with α1 = π and α2 = ±π , respectively. In
Fig. 8 we show the free energy for these three cases. The left
hand and right hand plots compare the single cylinder with the
double cylinder for the inter-cylinder separation l = 2πR and
the limit of large l for the symmetric and antisymmetric con-
figurations, respectively. We use μ = 10.0 and σ = 4.5. For
f = 0, the free energy of the two cylinder system is essentially
double that of a single cylinder, as would be expected. As the
force increases so does the free energy.

In the antisymmetric case, at low external force the wrap-
ping of both cylinders is energetically favorable. As the ex-
ternal tension increases the two cylinders stay wrapped until
both desorb simultaneously (the line crosses the x axis). As
we would expect in the limit of large separation, the critical
force for unwrapping is the same as that of a single cylinder,
however as the separation decreases a larger force is required
as they are bound together.

In the symmetric case we also see that at low external ten-
sion the double cylinder wrapping is energetically favorable.
However, as the tension increases there comes a point where
the single cylinder wrapping becomes energetically preferred
and one of the cylinders then unwraps and leaves the chain.
The details of this process cannot be captured appropriately
in our model since we do not include the chemical potential
for the unwrapped cylinders.

Increasing the external tension further unwraps the last
cylinder. If the two cylinders are far apart we see the same
behavior as for the antisymmetric case, as would indeed be
expected. This agrees with previous studies showing that
antisymmetric (symmetric) wrapping gives an attractive
(repulsive) force.5

V. EFFECTIVE INTERACTION BETWEEN
TWO CYLINDERS

We now consider the problem of effective interaction
mediated by the elastic filament’s fluctuations between two
wrapped cylinders. The elastic and adhesive energy expres-
sions are given as before.

A. Constrained wrapping angles

We first consider the case where the two cylinders are
separated by fixed arc-length, l, and the wrapping angles are
constrained at fixed values α1 and α2 (see the remarks identi-
fying case I in Secs. IV and IV A). In numerical simulations
we will assume furthermore that they are equal up to the sign,
α1 = ±α2; the sign differentiates between the symmetric and
the antisymmetric wrapping case. We can evaluate an effec-
tive interaction between the cylinders by fixing the (projected)
horizontal separation d⊥ between them and then calculating
the corresponding free energy. The projected separation in the
embedding space is defined as

d⊥ = R sgn(α1) sin(ψ1 + α1)

+
∫ s3

s2

ds cos(ψ(s)) − R sgn(α2) sin(ψ2). (46)
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FIG. 8. Free energy as a function of the dimensionless external tension f for μ = 10 and σ = 4.5. Left: Red solid curve corresponds to a single cylinder
α = π , dashed curves correspond to antisymmetric double cylinder, α1 = −α2 = π . The lower (blue) curve corresponds to l = 2πR and the upper (black)
curve is limit of increased separation. Right: Red solid curve corresponds to a single cylinder α = π , dashed curves correspond to symmetric double cylinder,
α1 = α2 = π . The upper (blue) curve corresponds to l = 2πR and the lower (black) curve is limit of increased separation. Note the double cylinder (black)
curve that coincides with the single cylinder (red) curve at free energy equal to zero gives the limit of infinite separation.

Downloaded 29 Nov 2012 to 147.210.24.83. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



144904-13 Dean et al. J. Chem. Phys. 137, 144904 (2012)

This constraint can be handled most conveniently by intro-
ducing an additional term into the total energy of the system
via a Lagrange multiplier of the form λd⊥, where λ can be
interpreted as the force used to impose the constraint of fixed
projected distance between the two cylinders in the horizontal
direction.

The wrapping constraints can be implemented as before
and one finds the appropriate partition function to be

Zλ(α1, α2, l) =
∫

dψ1dψ2 〈0|Ôλ(ψ1, ψ1 + α1)

×e−Hλl/RμÔλ(ψ2, ψ2 + α2)|0〉, (47)

where

Hλ�λm(ψ) =
(

− d2

dψ2
− μ(f − λ) cos (ψ)

)
�λm(ψ)

= μελm�λm(ψ), (48)

with

Ôλ(ψ1, ψ1 + α1)

= Ô(ψ1, ψ1 + α1) exp (−βλR sgn(α1) sin(ψ1 + α1))

(49)

and

Ôλ(ψ2, ψ2 + α2)

= Ô(ψ2, ψ2 + α2) exp (βλR sgn(α2) sin(ψ2)) . (50)

With this constraint the partition function Z(d⊥) becomes

Z(d⊥, α1, α2, l) =
∫ C+i∞

C−i∞

dλ

2πi
eβλd⊥ Zλ(α1, α2, l). (51)

The appropriate constrained free energy then follows as:

β�(d⊥, α1, α2, l) = − ln Z(d⊥, α1, α2, l). (52)

The generalization to many wrapped cylinders is for-
mally straightforward but computationally very tedious. One
interesting future endeavour would be to assess the effects of
non-pairwise additivity in the case of constrained and uncon-
strained wrapping around the interacting cylinders, i.e., the

dependence of effective two-cylinder interaction on the pres-
ence of other wrapped cylinders along the elastic filament.

We can define related free energies appropriate for the
sake of numerical calculation using

β�(α1, α2, l, λ) = − ln Zλ(α1, α2, l) (53)

and its Legendre transformation

�(l, 〈d⊥〉, α1, α2) = min
λ

(�(α1, α2, l, λ) − λ〈d⊥〉) , (54)

which correspond to a system where either the polymer
length, l, or the average horizontal displacement, 〈d⊥〉, are
fixed, respectively.

In Fig. 9 we plot � for λ = 0, α1 = 5π /8, and
α2 = ±α1 corresponding to symmetric and antisymmetric
configurations, respectively. The length of elastic filament
connecting the cylinders, l, is not a dynamical variable in our
current model. However, by repeating the simulation for a suf-
ficiently large range of l we are able to produce the curves
for fixed external force f = 0.4, 1.0, 2.0, 3.0 (from bottom
to top). We assume that because there are pinning sites dis-
tributed along the filament, the cylinders can move through
a tunnelling or hopping mechanism between sites and so l
and hence 〈d⊥〉(l) will vary to minimize the free energy �.
Thus we can infer from � the effective interaction between
two cylinders in a system where l is a dynamical variable. We
choose to plot � versus the value of 〈d⊥〉(l), the projected
horizontal separation between the two cylinders, since this is
the more relevant observable. One can see the looped phase
and the extended phase, corresponding to negative and posi-
tive 〈d⊥〉, respectively. In the extended phase � increases with
the magnitude of the external force for both kinds of wrap-
ping symmetry, as one would expect. The effective interac-
tion between the cylinders does, however, depend crucially
on the symmetry of wrapping. In the asymmetric case (Fig. 9,
left panel) the effective interaction is attractive in the extended
phase. In the symmetric case, however, (Fig. 9, right panel),
we see that the effective interaction is repulsive in the ex-
tended phase but then changes sign in the looped phase. In
the extended phase, therefore, the cylinders with symmetric
(antisymmetric) wrapping will move towards smaller (larger)
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FIG. 9. Free energy as a function of the horizontal displacement projection 〈d⊥〉 is shown for the case of constrained wrapping with α1 = ±α2 = 5π /8,
f = 0.4, 1, 2, 3 (from lower to upper curve), μ = 50 and σ = 13.0. In the antisymmetric case (left) the effective interaction is attractive and in the symmetric
case (right) it is repulsive.
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FIG. 10. Left: The free energy as a function of the horizontal displacement projection 〈d⊥〉 (normalized to dmax = l + 2R). Right: the required externally
applied force, λ, as a function of the horizontal displacement projection 〈d⊥〉. Here we consider the case of constant wrapping with α = 5π /8 > π /2 and
α = 3π /8 < π /2 for f = 0.4, μ = 50, σ = 13.0, and l = 4πR.

〈d⊥〉; there is an effective attractive (repulsive) force between
the cylinders. The higher the external force the bigger this ef-
fective force is between the wrapped cylinders.

In Fig. 10 we plot the free energy �(l, 〈d⊥〉, α1, α2)
defined in Eq. (54); � is a function of 〈d⊥〉 at fixed l (i.e.,
l = 4πR in the figure). In the lefthand plot we show � for
both symmetric and antisymmetric wrappings for f = 0.4, μ

= 50, σ = 13.0, and α = 5π /8, 3π /8. The significance of the
values chosen for α is that they are, respectively, ≷π /2. For
symmetric wrapping the equilibrium (minimum of �) is in the
looped phase for α < π /2 but it is in the extended phase for
α > π /2. In contrast for antisymmetric wrapping, equilibrium
is in the extended phase for both wrapping angles although
at a smaller value of 〈d⊥〉(l) for α < π /2 than for α > π /2.
In the right hand plot we show the projected separation 〈d⊥〉
versus its conjugate variable λ. From Eq. (54) we note that λ

is determined as a function of 〈d⊥〉 via

λ = − ∂�

∂〈d⊥〉 . (55)

In an extended phase, 〈d⊥〉 > 0, we have that λ > 0 (or λ

< 0) corresponds to an external force applied between the
cylinders with magnitude |λ| which pushes them together (or
pulls them apart). In a looped phase, 〈d⊥〉 < 0, we have that
λ > 0 (or λ < 0) corresponds to an external force applied
between the cylinders with magnitude |λ| which pulls them
apart (or pushes them together). We conclude that λ〈d⊥〉 >

0 (or λ〈d⊥〉 < 0) corresponds to an attractive (or repulsive)
force between the cylinders.

These four choices for the variables 〈d⊥〉 and λ are shown
separated by the dotted lines in the plot. The equilibria of the
lefthand plot in Fig. 10 correspond to λ = 0 in the righthand
plot. Clearly, for symmetric wrapping and a wrapping angle
α ∼ π /2 the equilibrium value of the projected length is 〈d⊥〉
∼ 0 giving a high probability for the cylinders to interact.

One should not forget here that in reality there may be
other interactions between the wrapped cylinders (as in nu-
cleosomes) that are not taken into account in this model:
there would be direct electrostatic repulsions acting in real
3D space, as well as short range steric interactions when the
cylinders are wrapped symmetrically, but not when they are

wrapped antisymmetrically. It is the sum of all these compli-
cated interactions that would need to be taken into account in
a complete theory of cylinder wrapping.

B. Unconstrained wrapping angles

Next we consider the case of two cylinders with no con-
straints on the wrapping angles, corresponding to the second
case (case II) as explained in the beginning of Secs. IV and
IV B. This case is more complicated from the previous one
as it entails an additional integration with respect to the two
wrapping angles. The partition function can then be written in
the same way as before in Eq. (44)

Zλ(l′) =
∫

dα1dα2

∫ min(l/R,α1)

0
dα′

1

×
∫ min(l/R−α′

1,α2)

0
dα′

2 Zλ(α1, α2, l = l′−Rα′
1−Rα′

2)

(56)

and the variables are defined in Sec. IV B following Eq. (44).
We consider the free energy, now for unconstrained wrapping
angles, given by

β�(l′, λ) = − ln Zλ(l′). (57)

and its Legendre transformation

�(l′, 〈d⊥〉) = min
λ

(�(l′, λ) − λ〈d⊥〉), (58)

which again correspond to a system where either the polymer
length, l′, or the average horizontal displacement, 〈d⊥〉, are
fixed, respectively.

In the lefthand panel of Fig. 11 we plot the free energy,
�, of a quenched l′ system (see remarks for case II in the be-
ginning of Sec. IV) as a function of external force f for a sin-
gle cylinder and for two cylinders with symmetric wrapping
and various arc-length separations. For antisymmetric wrap-
ping the results are almost identical and we do not show them
separately. We see that as f → 0 and the arc-length separa-
tion l′ becomes very large (〈d⊥〉 → ∞), the free energy of
two cylinders is twice the free energy of a single cylinder,
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FIG. 11. The free energy for the case of unconstrained wrapping angles. Left: The free energy is shown as a function of external force f for a single cylinder
and for two cylinders with symmetric wrapping. The upper dashed curve is for l′ = πR and the lower dashed curve corresponds to l′ = 20 πR, being effectively
infinite. As one expects, for large separation and low force, the free energy of two cylinders is double that of a single cylinder (red curve). Right: The free
energy as a function of projected horizontal distance d⊥, for f = 0.01, 1, 2, 3 (from bottom to top). The free energy decreases with separation (entropic effect)
and increases with force. In both cases μ = 1 and σ = 1.25.

which is a good consistency check. Note that for large f the
elastic filament can unwrap which allows the energetically fa-
vored small wrapping angle: The cylinders are pinned with
no significant length of filament wrapped on them. This is
in strong contrast to the case of constrained wrapping angle
shown in Fig. 8 which shows a desorption transition due to
the constraint imposed on the wrapping angle. In the right-
hand panel, we show the dependence of the unconstrained
free energy, �, on the projected separation 〈d⊥〉. Although
l′ is a quenched variable, we are again able to produce these
curve by repeating the numerical calculation for a sufficiently
large range of l′. The cylinders can move through a tunnelling
or hopping mechanism between pinning sites and so l′ and
hence 〈d⊥〉(l′) will vary to minimize the free energy �. As the
projected separation between the cylinders becomes smaller,
i.e. they get closer together, we get an increase in the free en-
ergy corresponding to effective repulsive interactions which
are not due to any hard-core repulsion between the cylinders,
but are entropically generated. This entropy stems primarily
from an “entropic wrapping” effect: By limiting the space be-
tween the cylinders they cannot wrap in as many ways as for
large separations. Such entropic wrapping effects should be
distinguished from the usual entropic configuration effects in
semi-flexible polymers. In the latter the number of configu-
rations of the polymer chain changes as we restrict the posi-
tion of its ends and this leads to entropic polymer elasticity;
for entropic wrapping effect the physical picture is altogether
different.

In Fig. 12 we plot the conjugate variable λ against the
horizontal displacement 〈d⊥〉 for a system with l′ = 2πR.
Again λ can be interpreted as an external force needed to
maintain a mean projected separation 〈d⊥〉, as described in
Sec. V A. The response of the system to the external force is
monotonic and attests to the fact that a large repulsive force,
λ > 4, greater than the external applied force, f = 3 in this
case, would be required to sustain a looped phase. The choice
l′ = 2πR is relatively short and we do not include the ex-
clusion of one cylinder by the other which would restrict
the possible configurations especially in a looped phase.

However, we treat the result here as an idealized case which
is indicative of the possible likely configurations; in practice,
the cylinders are not of infinite extent and so can be assumed
to pass by each other more readily than the cylinders of this
model. The absence of a looped phase in this idealized case
is strong evidence that it is not likely to occur except for
large λ in a more realistic model of unconstrained wrapping.
It should also be noted that the amount of computation time
to explore all the parameter space in this case is considerable
and so we are confined to investigating whether or not there
is any significant non-trivial configuration that is likely to be
realized.

We do not plot an analogue of the lefthand panel in
Fig. 10 as it does not provide any extra information, however
the free energy, �, can be easily calculated numerically in our
formalism.

From the numerical solution presented above it thus fol-
lows that the cylinder wrapping and the associated entropy
presents yet another, apparently more important, source of
polymer-mediated interactions between wrapped cylinders.
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FIG. 12. The required externally applied force, λ, as a function of the hori-
zontal displacement projection 〈d⊥〉 (normalized to dmax = l + 2R) is shown
for the case of unconstrained wrapping with f = 3, μ = 1, σ = 1.25, and
l′ = 2πR.
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Its source is the wrapping degrees of freedom that are con-
strained as the cylinders move closer together. To our knowl-
edge, this source of effective interactions along a poly-
mer chain has not before been clearly discussed in the
literature.

VI. SUMMARY AND CONCLUSIONS

We have analyzed wrapping equilibria of one and two
cylinders on a semi-flexible filament driven solely by the elas-
tic energy of the filament and the (adhesive) energy of wrap-
ping around the cylinders. We derived the statistical properties
and the free energy of wrapping in the case of one and two
cylinders as well as the effective interaction free energy be-
tween two wrapped cylinders along the elastic filament. Our
calculation is based on the functional integral representation
of the partition function for the filament and is exact, within
the confines of the worm-like chain model, the assumed form
of the wrapping potential and the limit of a 2D Eulerian plane.
We therefore neglect the effects of the local polymer twist
between the wrapped particles35 as well as the orientational
degrees of freedom of the wrapped particles themselves.36

The frozen orientational degrees of freedom assumed for the
wrapped particles would be realistic in the small tension re-
sponse whereas the model would have to be improved, relax-
ing the Eulerian plane constraint, in the case of sufficiently
large tensions.

In Sec. II we presented the generalized theory for elastic
filament wrapping on one or more cylindrical cylinders in one
dimension. In Sec. III we calculated the wrapping transition
for a single cylinder and showed that it is necessary to solve
the full Schrödinger equation in order to obtain a good nu-
merical value for the critical unwrapping external force. In
Sec. IV we analyzed the exact solution for two cylinders
pinned a fixed length apart on the elastic filament for both
the looped phase, where the mean projected separation 〈d⊥〉
is negative, and for the extended phase, where 〈d⊥〉 is strictly
positive and there are consequently no loops. The two cases
considered are of constrained and unconstrained wrapping,
respectively. In Sec. IV A the wrapping angles α1 and α2

on the respective cylinders are fixed: the case of constrained
symmetric wrapping. This gives the most interesting results
concerning the presence of a looped phase as discussed al-
ready by Rudnick and Bruinsma.5 We considered two values
of wrapping angles: α1 = α2 = π and α1 = α2 = 3π /8. For
the larger value there is a clear looped phase shown in Fig. 5
characterized by the average horizontal separation 〈d⊥〉 < 0.
The loop initially increases in size as the external tension f
is increased and eventually for sufficiently large f the system
switches over to the extended phase. In contrast, for smaller
value of αi shown in Fig. 6 there is no looped phase. In both
cases the largest possible extension is close to its maximum
possible value, dmax as determined by the arc-length of fila-
ment between the two cylinders and their radii, as one would
expect. We conclude that a looped phase is possible for con-
strained symmetric wrapping and sufficiently large wrapping
angles but is absent if the wrapping angle is too small. From
Fig. 5 we see that where it does occur, the maximum loop

size increases as the rigidity μ increases and is sustained for
a range of tensions f; for μ = 10 the most negative values of
〈d⊥〉 are approximately for 0.2 < f < 1.

In Sec. IV B the two cylinders are pinned a distance l′

apart along the contour of the elastic filament and the wrap-
ping angles αi are now dynamical (annealed) variables. In
contrast to the constrained case the wrapping energy encoded
in the dimensionless variable σ plays a direct role in the val-
ues of the observables. The wrapping angle on a given cylin-
der is divided into two parts, which are the wrapping angles
of the elastic filament wrapped to the left and to the right of
the pinning point. In the two-cylinder case there are then four
dynamical angle variables over which to sum, and this greatly
increases the computer time required to carry out the calcu-
lation. We discussed in detail only the symmetric wrapping
configuration as the antisymmetric one gives similar results.
In Fig. 7 we show both 〈d⊥〉 and 〈α〉 (normalized to their max-
imum values) as a function of f for σ = 1, 10 correspond-
ing to small and large wrapping energy. For σ = 1 there is
a clear unwrapping transition for the two values of rigidity
μ = 1, 10 as the external tension f increases, but for larger
value of σ the system remains maximally wound for all val-
ues of f. In particular, there is no looped phase indicated by
〈d⊥〉 < 0; this is a characteristic of the unconstrained model.
We chose separation l′ = 2πR which is relatively short com-
pared with the cylinder radius R and treat the results as an
idealized case which is indicative of the possible more realis-
tic configurations. In practice, the cylinders are not cylindri-
cal or of infinite lateral extent and so can be assumed to pass
by each other more readily than the cylinders in the present
model.

In Sec. IV C we calculate the free energy of the sym-
metric and antisymmetric constrained systems of two cylin-
ders pinned a distance l apart with wrapping angles α1 = ±α2

= π , respectively, and compare with the free energy of a sin-
gle pinned cylinder with α = π . In all cases the free energy
is normalized by subtracting that of the elastic filament with
no pinned cylinders. The results show that for large l and for
both the symmetric and antisymmetric configurations, we ob-
serve that desorption occurs for single as well as double cylin-
der systems simultaneously and for the same external tension.
For small l the situation is however different. For the anti-
symmetric configuration the double cylinder system is more
strongly bound than for a single cylinder and remains bound
after the single cylinder has been desorbed. In contrast, for
the symmetric configuration, as the force increases, first the
double cylinder becomes unstable leading to a single cylinder
desorption, leaving a bound single cylinder which then des-
orbs as the external tension is increased further. The conclu-
sion is that the symmetry of the double cylinder constrained
wrapping has a crucial effect on the desorption transition. For
unconstrained wrapping there is little structure since we do
not associate a significant binding energy with the pinning
site itself and so, as the external tension increases, the cylin-
ders simply unwrap but remain pinned nevertheless. The ef-
fect in the constrained case is due to the competition between
the wrapping and the entropic contributions to the free energy
as a function of external traction and separation between the
cylinders.
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In Sec. V we investigated the induced force between two
pinned cylinders by introducing a force λ conjugate to the
projected distance d⊥. We conclude that in the case of con-
strained wrapping the effective force, given by the slope of
the curves, depends on the symmetry of configuration, being
repulsive in the symmetric case and attractive in the antisym-
metric case. The dependence of the effective force on the arc-
length separation l between the cylinders follows closely the
dependence on the projected separation between the cylinders
in the direction of the external tension. In contrast, for the
case of unconstrained wrapping we observe repulsion both for
the symmetric as well as antisymmetric configurations. We
interpret this repulsion as due to wrapping entropy that de-
pends on the separation between the cylinders. This entropy
differs from the usual polymer conformational entropy and
one should distinguish between the two. The identification of
the wrapping entropy presents a new concept in the analy-
sis of the entropic effects in the context of polymer-particle
complexes.

We finally calculate the force λ required to sustain a
given mean projected separation 〈d⊥〉 and derived the free
energy �(l, 〈d⊥〉). For constrained wrapping we consid-
ered both symmetric and antisymmetric configurations with
α1 = ±α2 = 3π /8, 5π /8, respectively. In Fig. 10 we show �

and λ versus 〈d⊥〉/dmax. It should be noted that λ〈d⊥〉 > 0(< 0)
corresponds to an intrinsic attractive (repulsive) force be-
tween the cylinders caused, e.g., by charges on the cylinders.
The behavior of the λ versus 〈d⊥〉/dmax curves is consistent
with this interpretation. We conclude that for the given choice
of parameters the looped phase only occurs for symmetric
wrapping and α1 = α2 > π /2. The range of λ chosen includes
values where its magnitude exceeds the value of the applied
external tension f = 0.4. The response of 〈d⊥〉 to λ is as ex-
pected and we see a looped phase for a sufficiently repulsive
intrinsic force. Other parameter choices can be investigated
but we do not present the results here. In comparison, the
case of unconstrained wrapping is basically featureless and
the results are shown in Figs. 11 and 12, where only symmet-
ric configuration is considered, the results for antisymmet-
ric configuration being very similar. We note that the force
between cylinders is repulsive in both these cases. We inter-
pret this repulsion again as due to the wrapping entropy that
depends on the separation between the cylinders. Since the
wrapping entropy might also play an important role in the case
of multiple wrapped cylinders and could promote very strong
non-pairwise additive effects, we plan to study its effects very
carefully in the future. Also we intend to introduce a chemical
potential for exchange of the wrapped cylinders with a bulk
phase in order to generalize the calculation of the distribution
of nucleosomal core particles within the genomes.12, 13

A major conclusion of our work is that for constrained
wrapping, where the amount of elastic filament wrapped
around the cylinder subtends a fixed angle at the center, there
are two kinds of transition that can occur as a function of the
dimensionless external tension f, rigidity μ and wrapping en-
ergy σ . For two or more wrapped cylinders there is a transi-
tion from a looped to an extended phase which is addition-
ally affected by the direct inter-cylinder forces, and there are
desorption transitions which are sensitive to the symmetry of

the wrapping (determined by the relationship of the signs of
wrapping angles) and also to the inter-cylinder separation.

A second major conclusion is that for unconstrained
wrapping neither the looped phase nor the desorption tran-
sition are likely to exist. Instead, there is an unwrapping tran-
sition where amount of filament wrapped on each cylinders
rapidly decreases as the external tension f passes through a
critical value. Correspondingly, the inter-cylinder distances
rapidly increase from small to near maximum values within
a very small tension interval.
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APPENDIX A: CONSTRAINED WRAPPING
EXPRESSED IN TERMS OF THE MATHIEU
FUNCTIONS

The path integral K obeys the Schrödinger equation,

∂K(ψ,ψ ′, l)
∂l

= −HK, (A1)

with boundary condition

K(ψ,ψ ′, 0) = δ(ψ − ψ ′). (A2)

This clearly means that K(ψ + 2nπ , ψ ′, l) �= K(ψ , ψ ′, l) as
it is violated at l = 0 in the initial conditions. However, the
propagator KM derived using the Mathieu functions, �n,

KM (ψ,ψ ′, L) =
∑

n

exp(−Enl)�n(ψ)�n(ψ ′) (A3)

has initial conditions

KM (ψ,ψ ′, 0) =
∑

n

δ(ψ − ψ ′ − 2nπ ), (A4)

and is clearly periodic. We can thus write

KM (ψ,ψ ′, l) =
∑

n

K(ψ,ψ ′ + 2nπ, l). (A5)

If we take a single cylinder with fixed α (this is crucial in the
argument that follows) we have

Z(α) =
∫

dψ0dψ1dψ3K(ψ0, ψ1, l1)S(α,ψ1)

×K(ψ1 + α,ψ3, L − l1 − R|α|), (A6)

where S is a general boundary term which is periodic in ψ1.
The initial integral over ψ0 can clearly be taken over the in-
terval [0, 2π ]. If we restrict the integrals over ψ1 and ψ2 to
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[0, 2π ] and add on their integer changes by hand we get

Z(α) =
∫ 2π

0
dψ0dψ1dψ3

×
∑
m,n

K(ψ0, ψ1 + 2nπ, l1)S(α,ψ1 + 2nπ )

×K(ψ1 + 2nπ + α,ψ3 + 2mπ,L − l1 − R|α|),
(A7)

where we explicitly show that we restrict the integrals to
[0, 2π ]. Using the fact that S is periodic for fixed α we finally
obtain

Z(α) =
∫ 2π

0
dψ0dψ1dψ3

∑
m,n

K(ψ0, ψ1 + 2nπ, l1)S(α2, ψ1)

×K(ψ1 + 2nπ + α,ψ3 + 2mπ,L − l1 − R|α|),
(A8)

and the obvious relation that

K(ψ + 2nπ,ψ ′ + 2mπ ) = K(ψ,ψ ′ + 2(m − n)π ).
(A9)

We then change the summation variable over m to m − n to
obtain

Z(α) =
∫ 2π

0
dψ0dψ1dψ3

(∑
n

K(ψ0, ψ1 +2nπ, l1)

)
S(α,ψ1)

×
(∑

m

K(ψ1 + α,ψ3 + 2mπ,L − l1 − R|α|)
)

,

(A10)

which then gives

Z(α) =
∫ 2π

0
dψ0dψ1dψ3 KM (ψ0, ψ1)S(α2, ψ1)

×KM (ψ1 + α,ψ3, L − l1 − R|α|), (A11)

which is the desired result expressed in terms of periodic
Mathieu functions. The proof above for fixed wrapping angles
can easily be extended to several cylinders with fixed wrap-
ping angles.

APPENDIX B: HORIZONTAL DISTANCE BETWEEN
THE CYLINDERS

From Eq. (42) we can write for the horizontal distance
between the cylinders

d⊥ = 〈dl
⊥〉 + R sgn(α1)〈sin(ψ2)〉 − R sgn(α2)〈sin(ψ3)〉,

(B1)
where

〈dl
⊥〉 = 1

Z(α1, α2, l)

∫
ds

∫
dψ1dψ2 �0(ψ1)Cα1 (ψ1)

×
∑
m,n

exp(−εms/R) exp(−εn(l − s)/R)

×
∫

d(sin ψs)�m(ψs)�m(ψ1 + α1)�n(ψs)�n(ψ2)

×Cα2 (ψ2)�0(ψ2 + α2), (B2)

where a state has been inserted, with angle ψ s at the point s of
the first cylinder. We propagate the solution up to this point,
calculate the horizontal projection, and then propagate to the
remaining cylinder. We now find that

〈dl
⊥〉 = 1

Z(α1, α2, l)

∫
dψ1dψ2 �0(ψ1) · Cα1 (ψ1)

×
∑
m,n

∫
ds exp(−εms/R)

× exp(−εn(l − s)/R)Dmn(ψ1 + α1, ψ2)

×Cα2 (ψ2)�0(ψ2 + α2), (B3)

where

Dmn(ψ1 + α1, ψ2) =
∫

d(sin ψs) Pm(ψ1 + α1, ψs)Pn(ψs,ψ2)

(B4)
and Cα is defined in Eq. (39). By noting that after the angular
integration only the exponential dependence on s remains, we
integrate s over the range 0 ≤ s ≤ l to finally get

〈dl
⊥〉 = 1

Z(α1, α2, l)

∫
dψ1dψ2�0(ψ1)Cα1 (ψ1)

×
[∑

n

le−εnl/RDnn(ψ1 + α2, ψ2)

+
∑

n,m�=n

e−εml/R − e−εnl/R

εn − εm

Dnm(ψ1 + α2, ψ2)

⎤
⎦

×Cα2 (ψ2)�0(ψ2 + α2). (B5)

Note that because L 
 l, the effect of the filament lengths
outside the cylinder region is encoded in the ground state fac-
tors �0(ψ1) and �0(ψ2 + α2). The average distance 〈d⊥〉
is easily computed since the various components can be pre-
computed. In a typical computation we pre-compute the low-
est 20-100 Mathieu eigenfunctions and eigenvalues by recast-
ing the Schrödinger equation in Eq. (29) as a matrix eigen-
value problem by discretizing the angle coordinate on the
range [0, 2π ], and using proprietary NAG routines.45 The
computation of the partition function is then straightforward
and can be done with modest computing resources.
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