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In this paper, we focus on the restoration of images acquired with a new active imaging concept. This new instrument generates a mosaic of active imaging acquisitions. We rst describe a simplied forward model of this so-called mosaic active imaging. We also assume a prior on the distribution of images, using the Total Variation (TV), and deduce a restoration algorithm. This algorithm is a two-stage iterative process which alternates between: i) the estimation of the restored image; ii) the estimation of the acquisition parameters. We then provide the details useful to the implementation of these two steps. In particular, we show that the image estimation can be performed with graph cuts. This allows a fast resolution of this image estimation step. Finally, we detail numerical experiments showing that acquisitions made with a mosaic active imaging device can be restored even under severe noise levels, with few acquisitions.

1. Introduction. Flash laser imaging (also called ash active imaging, gated active viewing, or more commonly active imaging), illuminates the object to be observed with a very short laser ash (of typically 5-20 ns). It captures the image with a high-speed camera, sharply synchronized with the emission. The photons coming back to the sensor are selected according to their round-trip travel time. This allows us to reject the photons back-scattered by the foreground (e.g. by fog, dust or vegetation) and those back-scattered by the background. The controlled addition of photons and their temporal selection allow a better signal-to-noise ratio and a better contrast of the object over the background. It is of interest for surveillance

and for target identication under bad weather conditions or at long ranges (several kilometers).

A discrimination in sub-meter distance can be obtained in some cases. The observed objects typically have metric dimensions (e.g. buildings, vehicles, personnel, animals, fences). Depending on the application, they are located at distances from the imaging system ranging from 10m to 20km. In the most demanding applications, including those requiring distances in kilometers, several physical limitations degrade the images [START_REF] Hespel | Comparison of a physics-based BIL simulator with experiments[END_REF][START_REF] Rivière | odeling of an active burst illumination imaging system: comparison between experimental and modelled 3d scene[END_REF].

First, atmospheric turbulence produces two types of degradation. On the one hand, the laser illumination is not uniform over the object and is not stationary due to the forward propagation of the laser beam through the turbulent atmosphere.

We talk of turbulence-induced illumination speckle (also speckle). On the other hand, the image of the object is distorted by the backward propagation.

Second, the interaction of the laser spot with the object is accompanied by artifacts, in particular if the light may be scattered o several directions (e.g. when the laser hits the inner side of a dihedral).

Third, the maximum distance of observation is limited by the size, weight and power compatible with integration on a land or air vehicle, in particular that of the laser and that of the reception optical system. A rst way to overcome this diculty is to restore the information despite a low signal-to-noise ratio (currently of a few units). A second way is to improve the light sensor, for instance by switching to Avalanche Photodiodes (APD). A third approach is to restore the image from a mosaic of typically 100 to 1000 elementary thumbnails [START_REF] Hamoir | Procédé et système d'imagerie active à champ large : Method and system for active imaging with a large eld[END_REF]. In the latter case, that we will call mosaic laser imaging or mosaic active imaging, each thumbnail has strong gradients of illumination, and geometric readjustments may have to be considered. This is the option studied in this paper.

As such, the problem we are addressing is an inverse problem in the eld of imaging and the literature on the subject is huge. The main element which is common to all the existing methods is the trade-o between the delity of the result to the data; and the enforcement of an expected regularity (or prior) to the result. We refer to [START_REF] Demoment | Image reconstruction and restoration: Overview of common estimation structures and problems[END_REF] for an historical perspective. Most of the current work is on the prior and usually, authors distinguish synthesis priors (see [START_REF] Elad | Sparse and redundant representations: From theory to applications in signal and image processing[END_REF], for an overview) and analysis priors. We have chosen a well established analysis prior, for which rapid minimization algorithms are available: the Total Variation (TV).

The TV prior has rst been proposed for image denoising and deblurring (see [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]) and has, since then, been applied in many other contexts of image restoration such as inpainting (see [START_REF] Chan | Variational image inpainting[END_REF]), image zooming (see [START_REF] Malgouyres | Edge direction preserving image zooming: a mathematical and numerical analysis[END_REF]), restoration of compression artifacts (see [START_REF] Coifman | Combining the calculus of variations and wavelets for image enhancement[END_REF]), etc. Its success lies in its ability to properly restore sharp edges. Moreover, its minimization has been intensively studied, and fast and simple iterative algorithms have been developed (see, for instance [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF][START_REF] Bect | A L1-unied variational framework for image restoration[END_REF][START_REF] Chambolle | A rst-order primal-dual algorithm for convex problems with applications to imaging[END_REF]). Recently, algorithms using graph cuts have been developed and provide, for some models involving this prior, fast and exact (modulo a quantization) minimization methods (see [START_REF] Chambolle | Total variation minimization and a class of binary MRF models[END_REF][START_REF] Darbon | Image restoration with discrete constrained total variation part I: Fast and exact optimization[END_REF][START_REF] Chambolle | On total variation minimization and surface evolution using parametric maximum ows[END_REF]). This is the numerical strategy we have chosen. Of course, the TV prior has known drawbacks. For instance, we are aware that images regularized with this prior tend to contain staircasing (see [START_REF] Nikolova | Local strong homogeneity of a regularized estimator[END_REF]). It is also known that this prior removes textures and lowers the contrast (see [START_REF] Meyer | Oscillating patterns in image processing and in some nonlinear evolution equation[END_REF]).

In this paper, we investigate algorithmic ways to restore mosaic active images.

The rest of this paper is organized as follows. In Section 2, we describe a simplied physical and mathematical model of the imaging process and describe the sketch of the restoration algorithm. In particular, this section exhibits that the image acquisition depends on imperfectly known acquisition parameters. The algorithm consists in alternating the estimation of these acquisition parameters and the estimation of the image. Next, we show in Section 3 how the estimation of the image can be formulated using level-sets and solved with graph cuts. Then, in Section 4, we give the details concerning the implementation of the algorithm used to estimate the acquisition parameters. Afterwards, we provide in Section 5 numerical experiments assessing the quality of the image estimate, the inuence of the acquisition parameters, the convergence of the algorithm, an estimate of the expected image resolution and the results of the algorithm. Finally, we remind in Section 6 the contributions of this paper, propose some ideas to improve this work and discuss directions for future work.

2. Modeling of ash laser imaging.

2.1. Overview. In ash laser imaging, a light ball is repeatedly sent towards the object to be observed. A time-gated camera synchronized with the laser is used to detect and select the light that is received within a brief time-interval or time-gate. This time-gate is typically of a few nano to micro seconds and starts after a chosen time delay of typically 10 -7 to 10 -4 second has elapsed. This allows the camera to record the photons coming back from the object (in the time-gate) and to reject those coming back from the foreground or from the background (before or after the time-gate). The wavelength of operation can be chosen according to the application but is usually in the so-called eye-safe region, between 1.5 and 1.6 micrometers.

Generally, the eld of view of the camera is fully illuminated by the laser and is acquired at standard video rates, say 10 Hz. In mosaic laser imaging, we replace the low-repetition-rate 10Hz laser with optical parametric oscillator by a high-repetition-rate 10kHz ber laser. The latter is expected to oer higher average power and plug-eciencies within a few years. This concept presents additional advantages. As the repetition rate is larger by three orders of magnitude, the energy per pulse is lowered by the same ratio. In order to maintain the signal-to-noise ratio, only a reduced part of the eld of view is illuminated at each laser ash.

The corresponding region of interest of the sensor is read. The laser beam is then deected in order to illuminate another region of interest. By repeating the process, we scan the eld of view of the camera. This results in the successive acquisition of elementary images taken at a repetition-rate of 10 kHz that will tile as a mosaic in order to build the full-frame image at 10 Hz. The formation of each elementary image can be modeled as follows.

The object is illuminated with a Gaussian laser spot with position c k and beam radius w k , in the image (these quantities are expressed in terms of inter-pixel distance). This laser spot is aected by three perturbations due to pointing discrepancies and to the forward propagation of the laser beam through the inhomogeneous turbulent atmosphere: beam spreading, beam wandering, and turbulence-induced speckle. This illumination pattern is multiplied by the reectance of the object to form a luminance distribution. This travels through the atmosphere and is captured by the optical system of the camera to form an image near its focal plane. Shot noise and thermal noise are then added to the image. This is repeated for each elementary image (the images are indexed by k).

More precisely, we denote, for an integer N > 0, the set of all pixels by P = {1, . . . , N } 2 . We denote by K ≥ 1, the number of elementary images. For every In this image, each pixel is assigned with its maximal intensity over all laser shots. Notice that the information is concentrated on illumination domes and is missing between them. index k ∈ {1, . . . , K}, we denote by θ k = (c k , w k ) ∈ (R 2 ×R * + ) the parameters of the Gaussian prole (here R * + denotes the positive reals). We also consider the beam intensity prole G θ k dened, for every p ∈ P, by

G θ k (p) = exp - p -c k 2 2w k 2 , (1) 
where, here and all along the paper, . denotes the Euclidean norm, whatever the dimension of the considered Euclidean space.

Notice that, when necessary, we denote the coordinates of the elements of R 2 with subscript i and j (e.g. c k = (c k,i , c k,j ) and p = (p i , p j )).

For every k, the image (v k p ) p∈P ∈ R P is obtained from the ideal image (u p ) p∈P ∈ R P (i.e. the one that would have been obtained with an ideal captor and an ideal illumination), using

v k p = u p G θ k (p) S k p + n k p , ∀p ∈ P,
where (S k p ) p∈P ∈ R P models the speckle pattern and (n k p ) p∈P ∈ R P represents the noise. In the remaining of the paper, we will refer to the image containing the beam intensity proles as the illumination domes and the image v as the laser shots.

Examples of laser shots are provided in Figure 1.

The mathematical developments will be conducted on elementary images synthesized with this simplied model. We are aware that this model does take into account neither the size of the reception pupil of the instrument nor the transverse sampling by the focal plane array. Leaving these degradations aside allows us indeed to use faster and more ecient restoration algorithms. More precisely, improving the image creation model would force us to use more complex algorithms, requiring more computational resources. We therefore leave the study of more accurate degradation models, the development of adapted restoration algorithms, as well as the comparison of degradation models/algorithms couples for a future work. 

v = M (θ k ) 1≤k≤K u + n, where n = (n k ) 1≤k≤K with n k ∈ R P and v = (v k ) 1≤k≤K with v k ∈ R P and M (θ k ) 1≤k≤K : R P -→ R KP , u -→ (G θ k (p)u p ) p∈P 1≤k≤K .
This is a linear model, once the acquisition parameters are xed. We will see, however, that these parameters need to be estimated.

2.2. Beam spreading. The Gaussian beam does naturally spread along the propagation. We denote the distance between the laser source and the object by d > 0.

The standard instrument-to-target range is d = 1000 meters. The minimum beam radius, at the laser source in our case, is called the beam waist radius and is denoted w 0 . In the absence of atmospheric turbulence, the spreading is only due to the diraction of the beam:

w 2 = λ lw d πw 0 + w 2 0 ,
where λ lw > 0 is the laser wavelength. For every k ∈ {1, . . . , K}, we propose to model the variation, induced by the atmospheric turbulence, of the true beam spreading w k around its expected value using the Gaussian law

P(w k ) ∝ exp - |w k -w| 2 2σ 2 w , for 1 ≤ k ≤ K,
where σ w > 0 is a known parameter. In our experimental setup the expected beam radius is w = 16.2 pixels, as seen by our 256 × 256-pixels camera. The calculated standard deviations of the beam radius are given in Table 1 for standard turbulence levels, dened by their refractive-indexstructure constant C 2 n [20]. Under these conditions, they are very small compared to the mean beam radius and to the pixel size.

2.3. Beam wandering. Beam wandering results from an angular deviation of the beam propagation axis, due to possible pointing discrepancies of the instrument and to the propagation through the turbulent atmosphere. When considering a perfect pointing, the statistics of this angular deviation follows a Gaussian law with zero mean. Its variance is given by (see [START_REF] Fante | Electromagnetic beam propagation in turbulent media[END_REF][START_REF] Chassat | Optical propagation through atmospheric turbulence: moral study and application of anisoplanatism in adaptive optics[END_REF]) where 2w 0 is the beam waist diameter and r 0 is the Fried's coherence length of the turbulent atmosphere [START_REF] Fried | Optical resolution through a randomly inhomogeneous medium for very long and very short exposures[END_REF], which is related to the refractive-index-structure constant C 2 n [START_REF] Roddier | The eects of atmospheric turbulence in optical astronomy[END_REF]. We remind that λ lw is the laser wavelength and that d is the distance between the laser source and the object. Using simple geometry, and since the laser is almost orthogonal to the acquisition device, we approximate the probability density function of c k with

σ 2 c = 0.16(λ lw d) 2 (2w 0 ) -1 3 r -5 3 0 , C 2 n σ c 10 -15 m -
P(c k ) ∝ exp - c k -c k 2 2σ 2 c , for 1 ≤ k ≤ K,
where c k ∈ R 2 and σ 2 c are known parameters. We assume moreover that the random variable c k is independent of w k . In our examples, the calculated standard deviations of the beam position c k are given in Table 2 for standard turbulence levels. In the applicative context we are interested in, the laser intensity needs to be lowered and hence we have a low signal level. In this challenging case, the thermal noise dominates the photon noise. Hence, in the following, we consider additive thermal noise only of normalized standard deviation σ.

More precisely, we assume that the data v ∈ R KP is obtained by corrupting the observation of an ideal image u through the operator M (θ k ) 1≤k≤K with an additive white Gaussian noise. We have

P(v|u, (θ k ) 1≤k≤K ) ∝ exp - M (θ k ) 1≤k≤K u -v 2 2σ 2 ,
where σ > 0 is the known standard deviation of the noise. In the experimental section and for the purpose of comparison, we express σ with respect to the maximum intensity of the noise-free image.

2.5. Image prior and restoration principle. First, we denote by N ⊂ (P ×P) a neighborhood system connecting pixels. The Figure 2 shows typical neighborhoods used on the lattice P. We assume that the observed data u ∈ N P is a random variable following a law P(u) ∝ exp (-βT V (u)), where β > 0 is an unknown parameter (which will later on be tuned by the user) and the TV is dened by

T V (u) = (p,q)∈N d p q (u p -u q ) + , (2) 
(pi, pj)

(pi, pj -1) (pi + 1, pj -2) (pi + 1, pj -1) (pi + 2, pj -1) 
(pi + 1, pj) where (y) + = max {y, 0} and, for all (p, q) ∈ N , d p q ≥ 0 is a known coecient. Notice that the above denition allows to have d p q = d q p .

(pi + 2, pj + 1) (pi + 1, pj + 1) (pi + 1, pj + 2) (pi, pj + 1) (pi -1, pj + 2) (pi -1, pj + 1) (pi -2, pj + 1) (pi -1, pj) (pi -2, pj -1) (pi -1, pj -1) (pi -1, pj -2)
We also consider that the parameters c k and w k are all independent random variables. Therefore, their joint distribution satises

P((θ k ) 1≤k≤K ) ∝ K k=1 P(c k )P(w k ).
Applying Bayes' law and assuming that u is independent of the parameters (θ k ) 1≤k≤K , we obtain, for any v ∈ R KP , the posterior

P(u, (θ k ) 1≤k≤K |v) = P(v|u, (θ k ) 1≤k≤K )P(u, (θ k ) 1≤k≤K ) P(v) , ∝ exp - M (θ k ) 1≤k≤K u -v 2 2σ 2 exp (-βT V (u)) × K k=1 exp - c k -c k 2 2σ 2 c exp - |w k -w| 2 2σ 2 w .
We consider in the following a Maximum A Posteriori estimator (MAP) of u and (θ k ) 1≤k≤K . As is usual, we compute the MAP estimate by minimizing in u and

(θ k ) 1≤k≤K -log (P(u, (θ k ) 1≤k≤K |v)) = C + M (θ k ) 1≤k≤K u -v 2 2σ 2 + βT V (u) + K k=1 c k -c k 2 2σ 2 c + K k=1 |w k -w| 2 2σ 2 w ,
where C is real and does not have any inuence on the minimizer. For simplicity, given a xed v ∈ R KP and for any u ∈ R P and (θ k ) 1≤k≤K ∈ (R 2 × R * + ) K , we denote the minimized function by

F (u, (θ k ) 1≤k≤K ) = M (θ k ) 1≤k≤K u -v 2 2σ 2 +βT V (u)+ K k=1 c k -c k 2 2σ 2 c + K k=1 |w k -w| 2 2σ 2 w . (3) 
The denition of F involves four parameters: σ, β, σ c , σ w . Among these parameters, we remind that three are directly related to physical quantities that can be estimated by other means. The only parameter that needs to be tuned is β.

It is not dicult to see that, the function F is continuously dierentiable over R P × (R 2 × R * + ) K and that both F and its partial derivatives 1 can be continuously extended over R P × (R 2 × R + ) K . Throughout the paper, we abuse notations and assimilate F with its continuous and continuously dierentiable extension over the closed domain R P × (R 2 × R + ) K . The minimization is also performed over this closed domain.

Finally, F is non-negative and coercive. Therefore, F reaches a global minimum over R P × (R 2 × R + ) K . However, F is non-convex and standard descent algorithms might get stuck in local minimas.

2.6. An alternate minimization algorithm. Notice that, considering the above properties of F , we cannot a priori provide guarantees that we compute a true minimizer of F . We propose an alternate minimization algorithm whose sketch is described in Table 3.

• Initialize (c 0 k , w 0 k ) 1≤k≤K = (c k , w) 1≤k≤K • Repeat while u n -u n-1 ≤ ε a 1. Use a graph cuts algorithm to compute u n ∈ argmin u∈R P F (u, (c n k , w n k ) 1≤k≤K ).
2. Use a gradient-based algorithm to compute 

(c n+1 k , w n+1 k ) 1≤k≤K ∈ argmin (c k ,w k ) 1≤k≤K ∈(R 2 ×R+) K F (u n , (c k , w k ) 1≤k≤K ).
(c k , w k ) 1≤k≤K = (θ k ) 1≤k≤K ∈ (R 2 × R + ) K , the function u → F (u, (θ k ) 1≤k≤K
) is convex and coercive. It therefore achieves its minimum and one of its minimizers can be computed by a well thought optimization technique.

In this paper, we propose a graph cuts-based minimization. Its main interest is to be fast and to provide an exact solution to the step 1 of the algorithm of Table 3, modulo a quantization step chosen by the user. All the details concerning this graph cuts algorithm are described in Section 3.

Similarly, when u ∈ R P is xed, the function (θ k ) 1≤k≤K → F (u, (θ k ) 1≤k≤K )
is continuous and coercive. It therefore reaches a global minimum. This function might however be non-convex. Therefore a gradient-based algorithm (such as the one we are using) is only guaranteed to converge to a stationary point (see [START_REF] Bertsekas | Nonlinear Programming[END_REF], p. 52). However, when σ c and σ w are small enough, we expect the second argument of the global minimizer of F to be close to (c k , w) 1≤k≤K and expect good convergence properties when using this initialization. In contrast to the step 1 of the algorithm, it is important to notice that the algorithm used for solving the step 2 relies on a stopping criterion. All the details concerning this gradient-based algorithm are given in Section 4.

1 The partial derivatives of F are provided in Section 4.

It is not dicult to see that the sequence (F (u n , (c n k , w n k ) 1≤k≤K )) n∈N generated by the algorithm of Table 3 decays.

Moreover, since F is non-negative, this sequence converges to a minimum value F . Moreover, since F is coercive, (u n , (c n k , w n k ) 1≤k≤K ) has limit points. Moreover, it is not dicult to see that any such limit point (u , (c k , w k ) 1≤k≤K ) is a stationary point of F . We will see experimentally in Section 5 that the proposed algorithm has good convergence properties in the practical situations we are interested in.

Finally, the stopping criterion u n -u n-1 ≤ ε a controls that the variation of u, between two successive iterations, is smaller than a parameter ε a .

3. Image estimation using graph cuts. In this section, we describe how the restored image u can be eciently estimated when the acquisition parameters (θ k ) 1≤k≤K are known (see the rst step of Table 3). Using the approach of [START_REF] Chambolle | On total variation minimization and surface evolution using parametric maximum ows[END_REF], we rst show that minimizing the energy function F is equivalent to minimizing a sequence of problems which only involve binary variables. Then, we present some reminders about graph cuts optimization and show that each of these problems can be eciently solved using this algorithmic strategy.

3.1. Leveled-energies decomposition. Since the acquisition parameters (θ k ) 1≤k≤K are supposed to be known, the third and fourth term in (3) are constant, since they do not depend on u. We are therefore interested in minimizing among u ∈ {0, . . . , L -1} P and for L > 0 2

E(u) = p∈P 1 2σ 2 K k=1 (G θ k (p)u p -v k p ) 2 Ep(up) + βT V (u). (4) 
Recently, the authors of [START_REF] Chambolle | On total variation minimization and surface evolution using parametric maximum ows[END_REF] proposed to decompose an energy similar to E, in (4), as a sum of energies on the level sets of u (see [START_REF] Chambolle | On total variation minimization and surface evolution using parametric maximum ows[END_REF]). First, it is not dicult to see that for any pixel p ∈ P, if we denote u λ = 1 {u≥λ} the λ-level set of u, the term E p in (4) can be decomposed as

E p (u p ) = L-1 λ=1 u λ p (E p (λ) -E p (λ -1)) + E p (0). (5) 
Notice that the latter equation is consistent whatever u p ∈ {0, . . . , L-1}. Similarly, the TV term in (4) can be decomposed as

T V (u) = L-1 λ=1 (p,q)∈N d p q (u λ p -u λ q ) + T V (u λ ) . ( 6 
)
Notice that the last summation in the above term starts at λ = 1, since u 0 p = u 0 q = 1, ∀(p, q) ∈ N .

Using (4), ( 5) and ( 6), the energy E becomes

E(u) = L-1 λ=1 E λ (u λ ) + C, (7) 
2 L denotes the number of grayscale levels of u. where C is a constant that does not depend on u and the energy E λ is dened, for any λ ∈ {1, . . . , L -1} and any w ∈ {0, 1} P , by

E λ (w) = p∈P w p (E p (λ) -E p (λ -1)) + βT V (w). (8) 
For any level λ ∈ {1, . . . , L -1}, let us denote ûλ ∈ {0, 1} P a minimizer of E λ .

Notice that, if these minimizers satisfy

ûλ p ≥ ûλ p , ∀ 0 ≤ λ ≤ λ ≤ L -1, ∀p ∈ P, (9) 
then, provided [START_REF] Chambolle | A rst-order primal-dual algorithm for convex problems with applications to imaging[END_REF], it is not dicult to check that the elements û ∈ {0, . . . , L -1} P dened for all p ∈ P, by ûp = max{λ ∈ {0, . . . , L -1} | ûλ p = 1} minimizes E. In words, if (9) holds, we can deduce a minimizer of E from all the minimizers, for all λ ∈ {1, . . . , L -1}, of E λ . Let us prove that the monotone condition (9) holds. To do so, we adapt the proof given in the Appendix C of [START_REF] Chambolle | On total variation minimization and surface evolution using parametric maximum ows[END_REF] by replacing the L 2 norm by the terms E p given in (4). First, since ûλ is a minimizer of E λ , we have, for any level λ ∈ {1, . . . , L -2},

E λ+1 (û λ+1 ) ≤ E λ+1 (û λ+1 ∧ ûλ ), E λ (û λ ) ≤ E λ (û λ+1 ∨ ûλ ),
where for any x, x ∈ {0, 1} P we dene (x ∨ x ) p = max {x p , x p } and (x ∧ x ) p = min {x p , x p }, ∀p ∈ P. Summing the two above inequalities guarantees that, for any level λ ∈ {1, . . . , L -2},

E λ+1 (û λ+1 ) + E λ (û λ ) ≤ E λ+1 (û λ+1 ∧ ûλ ) + E λ (û λ+1 ∨ ûλ ). (10) 
Additionally, the authors of [START_REF] Chambolle | On total variation minimization and surface evolution using parametric maximum ows[END_REF] proved that the TV is submodular, i.e. for any x, x ∈ {0,

1} P T V (x ∨ x ) + T V (x ∧ x ) ≤ T V (x) + T V (x ). (11) 
Using the denition of E λ given by (8) in the inequality [START_REF] Coifman | Combining the calculus of variations and wavelets for image enhancement[END_REF]; and using (11) with x = ûλ and x = ûλ+1 , we nd that for any λ ∈ {1, . . . , L -2}

p∈P ûλ+1 p (E p (λ + 1) -E p (λ)) + ûλ p (E p (λ) -E p (λ -1)) ≤ p∈P (û λ+1 ∧ ûλ ) p (E p (λ + 1) -E p (λ)) + (û λ+1 ∨ ûλ ) p (E p (λ) -E p (λ -1)).
As a consequence, for any λ ∈ {1, . . . , L -2},

p∈P (E p (λ + 1) -E p (λ)) ûλ+1 p -(û λ+1 ∧ ûλ ) p ≤ p∈P (E p (λ) -E p (λ -1)) (û λ+1 ∨ ûλ ) p -ûλ p . ( 12 
)
Then, evaluating the four possible couples of values for (û λ p , ûλ+1 p

), it is not dicult to check that ûλ+1 p -(û λ+1 ∧ ûλ ) p = (û λ+1 ∨ ûλ ) p -ûλ p = (û λ+1 p -ûλ p ) + .
Combining the latter equalities with [START_REF] Demoment | Image reconstruction and restoration: Overview of common estimation structures and problems[END_REF], we obtain, for any λ ∈ {1, . . . , L -2},

p∈P (E p (λ + 1) -2E p (λ) + E p (λ -1)) (û λ+1 p -ûλ p ) + ≤ 0.
Beside, one can easily check, using the denition of E p in (4), that for any pixel p ∈ P, E p is strictly convex and therefore whatever λ

E p (λ + 1) -2E p (λ) + E p (λ -1) > 0.
This implies that, for any level λ ∈ {1, . . . , L -2} and any pixel p ∈ P, (û λ+1 p ûλ p ) + = 0 and so ûλ p ≥ ûλ+1 p . This permits to conclude that (9) holds.

As a conclusion, we can compute a minimizer of E from the minimizers of E λ . In the next section, we describe how each energy function E λ can be (eciently) minimized using graph cuts.

3.2. Leveled-energies minimization. To our best knowledge, it was rst noticed by [START_REF] Picard | Minimum cuts and related problems[END_REF] that binary energies of the form T V (x) -p∈P α p x p , with x ∈ {0, 1} P , can be represented by a graph and minimized using maximumow (or by duality, minimum-cut) algorithms. Until the nineties, because of limited resources and limited algorithmic development, the application of this minimization procedure in image processing only focused on binary image denoising [START_REF] Greig | Exact maximum a posteriori estimation for binary images[END_REF]. A few years later, it has been shown that the submodularity of the pairwise terms 3 of an energy is necessary for exactly minimizing this energy. The same condition is also sucient to allow the minimization of the energy using a minimum-cut in an appropriate graph [START_REF] Kolmogorov | What energy functions can be minimized via graph cuts?[END_REF]. Together with the arrival of a fast maximum-ow algorithm [START_REF] Boykov | An experimental comparison of min-cut/max-ow algorithms for energy minimization in vision[END_REF] designed for the typical graph problems encountered in image processing, this enabled to eciently solve a wide range of problems such as image segmentation, denoising, reconstruction, optical ow or texture synthesis.

In what follows, we describe how this strategy can be applied for solving the energy E λ (see [START_REF] Chan | Variational image inpainting[END_REF]) for a xed level λ ∈ {1, . . . , L -1}. The construction of the graph presented below is detailed in [START_REF] Kolmogorov | What energy functions can be minimized via graph cuts?[END_REF].

In order to build the oriented and capacited graph G = (V, E, c), we rst consider the set of nodes

V = P ∪ {s, t},
where s and t are terminal nodes, respectively named the source and the sink. We also consider a set of directed edges

E = ({s} × P) ∪ (P × {t}) ∪ N ⊂ (V × V).
As usual, the edges in ({s} × P) ∪ (P × {t}) are called the t-links and the edges in N are called the n-links. Moreover, we associate a non-negative capacity to any couple (p, q) ∈ E, according to

   c(s, p) = (E p (λ) -E p (λ -1)) -, ∀p ∈ P, c(p, t) = (E p (λ) -E p (λ -1)) + , ∀p ∈ P, c(p, q) = βd p q , ∀(p, q) ∈ N , (13) 
3 Here, this condition clearly holds for E λ (see ( 8)) since TV is submodular (see [START_REF] Darbon | Image restoration with discrete constrained total variation part I: Fast and exact optimization[END_REF]).

where (y) -= max {-y, 0} and

E p (λ) -E p (λ -1) = 1 2σ 2 K k=1 (G θ k (p)λ -v k p ) 2 -(G θ k (p)(λ -1) -v k p ) 2 = 1 2σ 2 (2λ -1) K k=1 G 2 θ k (p) -2 K k=1 G θ k (p)v k p .
Notice that, for all (p, q) ∈ E, c(p, q) ≥ 0.

and, for all p ∈ P, c(s, p) = 0 ⇒ c(p, t) = 0.

Notice also that E p (λ) -E p (λ -1) is computed at a limited cost once

K k=1 G 2 θ k (p)
and K k=1 G θ k (p)v k p have been computed and stored. Moreover, for any p, the contribution to these sums of most of the indexes k can be neglected.

Next, we denote by C = (S, T ) an s-t cut in the graph G; i.e. a partition of the nodes V such that s ∈ S and t ∈ T . For any s-t cut C, we remind that its value is given by val G (C) = (p,q)∈(S×T ) c(p, q). The s-t cut of minimum weight is called minimum s-t cut. For an s-t cut C, we also dene x C ∈ {0, 1} P by

x C p = 0 if p ∈ T 1 if p ∈ S , ∀p ∈ P.
From the latter equation, it is not dicult to see that the application C → x C establishes a one-to-one correspondence between the s-t cuts and the elements of {0, 1} P . Given the graph G and the capacities (13), since s ∈ S and t ∈ T , the contribution to val G (C) of the t-links involving any p ∈ P is as follows:

if p ∈ S its contribution is c(p, t) = (E p (λ) -E p (λ -1)) + , if p ∈ T its contribution is c(s, p) = (E p (λ) -E p (λ -1)) -.
Altogether, the contribution of the t-links involving p ∈ P to val G (C) is

x C p (E p (λ) -E p (λ -1)) + + (1 -x C p ) (E p (λ) -E p (λ -1)) -.
Also, for any n-link (p, q) ∈ N , we have

(p, q) ∈ (S × T ) if and only if (x C p -x C q ) + = 1.
It is then straightforward to check that, for any s-t cut C,

val G (C) = p∈P x C p (E p (λ) -E p (λ -1)) + + (1 -x C p )(E p (λ) -E p (λ -1)) - + (p,q)∈N βd p q (x C p -x C q ) + .
This can be rearranged under the form

val G (C) = p∈P x C p [(E p (λ) -E p (λ -1)) + -(E p (λ) -E p (λ -1)) -] + (E p (λ) -E p (λ -1)) -+ β (p,q)∈N d p q (x C p -x C q ) + .
Finally, using the denition of T V , in [START_REF] Bertsekas | Nonlinear Programming[END_REF], and the denition of E λ , in [START_REF] Chan | Variational image inpainting[END_REF], we obtain

val G (C) = p∈P x C p (E p (λ) -E p (λ -1)) + βT V (x C ) + p∈P (E p (λ) -E p (λ -1)) -, = E λ (x C ) + C ,
where the constant C = p∈P (E p (λ)-E p (λ-1)) -has no impact on the minimizer. We immediately obtain that if C * is a minimum s-t cut in G then x C * minimizes the energy E λ dened by [START_REF] Chan | Variational image inpainting[END_REF].

The interest of such an approach is that the minimum s-t cut of a graph G can be computed in a nite time using a maximum-ow algorithm such as [START_REF] Boykov | An experimental comparison of min-cut/max-ow algorithms for energy minimization in vision[END_REF]. This time is moreover bounded from above by a polynomial function of the number of nodes

V and edges E . Empirically, this algorithm behaves like having a near-linear complexity on typical image processing problems (see [START_REF] Boykov | An experimental comparison of min-cut/max-ow algorithms for energy minimization in vision[END_REF]).

To minimize (4) using this graph cut strategy, we need to compute (L -1) minimum-cuts. Notice however that the nodes and the edges of the graph G are independent of the level λ. This leads to an algorithmic scheme of worst-case complexity O(T ( V, E) × L) where T ( V, E) is the complexity of the maximumow algorithm. Such a scheme is particularly time consuming when L is large. As observed in [START_REF] Darbon | Image restoration with discrete constrained total variation part I: Fast and exact optimization[END_REF], since (9) holds and given the knowledge of the minimum-cut for some levels, some pixels have a straightforward assignment at other levels. A dyadic scheme exploiting this observation is proposed by the same authors. Its complexity is O(T ( V, E)×log 2 (L-1)). Finally, a slightly faster algorithm is obtained in [START_REF] Chambolle | On total variation minimization and surface evolution using parametric maximum ows[END_REF] by reusing the maximum-ow at a level λ, to initialize the next level. It dynamically updates the edge weights in the same graph. This is possible since the set of nodes connected to the sink t in the graph G grows when the level λ increases (see [START_REF] Chambolle | On total variation minimization and surface evolution using parametric maximum ows[END_REF] for details). The implementation of the graph cuts used in the experiments (see Section 5) uses these algorithmic optimizations.

4. The estimate of the Gaussian parameters. In this section, we provide the details useful for the implementation of a gradient-based algorithm with an Armijo step size rule (see [START_REF] Bertsekas | Nonlinear Programming[END_REF]) solving the step 2 of the algorithm of Table 3.

Before giving the formula of the gradient of F , let us remind the notation c k = (c k,i , c k,j ) ∈ R 2 and p = (p i , p j ) ∈ P.

For

v ∈ R KP , u ∈ R P and (c k , w k ) 1≤k≤K ∈ (R 2 × R + ) K , we obtain after some calculation ∂F ∂c k,i = c k,i -c k,i σ 2 c + 1 σ 2 w k 2 p∈P (p i -c k,i )e - p-c k 2 2w k 2 u p e - p-c k 2 2w k 2 u p -v k p , ∂F ∂c k,j = c k,j -c k,j σ 2 c + 1 σ 2 w k 2 p∈P (p j -c k,j )e - p-c k 2 2w k 2 u p e - p-c k 2 2w k 2 u p -v k p ,
and

∂F ∂w k = w k -w σ 2 w + 1 σ 2 w k 3 p∈P p -c k 2 e - p-c k 2 2w k 2 u p e - p-c k 2 2w k 2 u p -v k p .
The stopping criterion of the gradient-based algorithm controls that the variation of (θ k ) 1≤k≤K between two successive iterations is smaller than a parameter ε e . To avoid losing too much time during the rst iterations of the algorithm of Table 3, we choose to express the level of accuracy ε e as a decreasing function of the iteration number n and set:

ε e = (ε max e -ε min e ) exp - n σ εe + ε min e ∈ [ε min e , ε max e ],
where the parameters ε min e , ε max e and σ εe are empirically set (see Section 5). In this way, the estimation of the acquisition parameters is progressively more accurate as n increases. The strength of the decrease is controlled by the parameter σ εe > 0.

Empirically, we found that the form of ε e has a limited inuence on the convergence of the algorithm of Table 3.

5. Numerical experiments. 5.1. Applicative framework. The camera is made of an optical system and a typical 256 × 256 pixels focal plane array (i.e. N = 256). As already mentioned, for low signal levels, we consider that the additive Gaussian thermal noise dominates.

We consider several noise levels reecting four possible illumination levels: σ = 0.05, 0.1, 0.2 and 0.4; while the intensities of the ideal images always range in [0, 1].

As already said, for the imaging system considered in our application, the "radius" of the laser dome is w = 16.2 pixels of the image. The standard deviation around this radius is typically of σ w = 0.07 pixels (see Table 1). From laser shot to laser shot, the nominal beam axis is deviated over a regular grid of dimension K = 9 × 9. After atmospheric perturbations, the expected location c k of the beam axis belongs to (in pixels) for any k ∈ {1, . . . , K} is

c k ∈ N 18 , N 18 + N 9 , . . . , N 18 + 8 N 9 2 .
The standard deviation around this expected value is typically of σ c = 0.81 pixels (see Table 2). 3 where the penalty parameter β varies, the parameter β is always set to a value that minimizes the Mean Square Error (MSE) 4 between the image estimate and the ideal image. This minimization with respect to the parameter β is achieved by a golden section search algorithm [START_REF] Kiefer | Sequential minimax search for a maximum[END_REF].

Implementation details. Except in Figure

The estimation of the restored image is implemented with the maximum-ow algorithm v3.0 of [START_REF] Boykov | An experimental comparison of min-cut/max-ow algorithms for energy minimization in vision[END_REF]. Additionally, a neighborhood involving 16 neighbors is considered for each pixel p on the lattice P (see Figure 2). The minimization is implemented with a dyadic parametric scheme and typically represents 10 percents of the overall computational times.

Nevertheless, we want to emphasize that our implementation is not optimized.

We therefore do not provide detailed computing times since we believe they are not representative of the computing time for an optimized version of the algorithm of Table 3. In particular, a simple improvement with this regard would consist in extracting from each image v k a small window containing the laser shot. Also, many computations could be parallelized. With the current implementation, the restoration of an image of size 256 × 256 from 81 laser shots requires between 1 and 6 minutes on a computer whose processor is clocked at 3.47GHz.

Concerning the stopping criterion for the estimation of the acquisition parameters, we empirically set ε min e = 5 × 10 -3 , ε max e = 0.5 and σ εe = 2.0. We set the stopping criterion of the algorithm of Table 3 to ε a = 1. This provides a good trade-o between time consumption and accuracy. In particular, such a value of ε a corresponds to an error of one grayscale level for all pixels between two successive image estimates. 5.3. Measuring the inuence of the parameters. This section focuses on the inuence of the parameters β and w on the quality of the image estimated by the algorithm of Table 3. We consider an intermediate noise level of σ = 0.1. An example of reconstruction is illustrated in Figure 3 with a varying β = 1, 5, 10, 20. To ease the visualization of available data, laser shots and illumination domes are each gathered into a single image where a pixel is assigned with its maximum intensity over all k ∈ {1, . . . , K}. In order to illustrate the inuence of the parameter β, we also set the other parameters in such a way that the center and the width of all illumination domes do essentially not vary. We therefore set σ c = 10 -4 , σ w = 10 -4 and w = 30. Due to the particular values of these parameters and the level of accuracy ε a , we have w k w and c k c k , ∀k ∈ {1, . . . , K}.

The strength of the regularization grows with the parameter β. This is consistent with the Equation ( 4) since this parameter is attached to the regularization term.

The parameter β therefore needs to be adequately tuned to remove noise without losing too much details. Also, as expected when the parameter β increases, the image estimate progressively becomes a cartoon-like image with sharp boundaries separating large and at regions. In particular, textures and thin details tend to disappear. The considered minimization strategy is indeed a TV+L 2 model, we therefore observe that it suers from its known drawbacks: staircasing and loss of contrast. While the staircasing eect can be reduced by using larger neighborhoods N (at the expense of a larger computational cost), we believe that a Bregman iteration strategy could be adopted to improve the contrast of the image estimate.

Notice that, whatever the value of β, we do not see on the restored image the dark stripes at poorly illuminated pixels.

Finally, the operator M (θ k ) 1≤k≤K is linear and goes from R P to R KP . It could be represented by a KN 2 × N 2 matrix. Its conditioning and therefore the diculty of the considered inverse problem is characterized by the singular values of this matrix.

Typically, singular values that decay rapidly correspond to dicult inverse problems. Notice that when w is small the singular values of the matrix corresponding to M (θ k ) 1≤k≤K are approximately equal to K repetitions of the largest values of the Gaussian (1) when p varies. Therefore, they decay more rapidly when w is small. As a consequence, the conditioning of the operator M (θ k ) 1≤k≤K is less favorable to the restoration of the image. The Figure 4 Each pixel of the top left and middle top images is assigned with its maximum intensity over all k ∈ {1, . . . , K}. Then we present the results for dierent β.

we also provide

min p∈P max 1≤k≤K G θ k (p), (14) 
for each value of w, within parenthesis. The parameters σ c , σ w , and σ are set with the same values as in the Figure 3. As expected, when w is small, the reconstruction is of poor quality and details of the image cannot be accurately recovered between illumination domes. Indeed, for such pixels, the data is lost and their intensities are assigned by regularization. Nevertheless, the results show that a better quality reconstruction can be obtained when w is larger. At w = 12, the reconstructed image still contains most details.

5.4. Convergence of (θ k ) 1≤k≤K . In Figure 5, we empirically illustrate the behavior of the algorithm of Table 3 for two levels of noise and eight grayscale images. The remaining parameters are set as follows: w = 16.2, σ c = 0.81 and σ w = 0.07. For each noise level, we measure the distance between the image estimate u n obtained at iteration n (see Table 3) and the ideal image u * with

u n -u * . (15) 
To illustrate the diculty of the restoration problem as a function of the noise level, we also provide the PSNR between the noisy and the noise-free laser shots.

As expected, we see that the distance [START_REF] Fried | Optical resolution through a randomly inhomogeneous medium for very long and very short exposures[END_REF] strongly decreases for all images in the very rst iterations and becomes relatively stable in the following ones. This means that the image estimate is mainly improved during the rst iterations of the w = 6 3. As a measure of the diculty of the problem, we also provide, next to w, the quantity ( 14) within parenthesis.

algorithm of Table 3. In particular, we see that the number of iterations of the latter could be reduced by slightly relaxing the parameter ε a . As the noise level σ increases, we also observe that the average number of iterations becomes smaller and the decrease of ( 15) is less important. According to our experiments, when the standard deviation of the noise is larger than 0.1 the noise dominates the error induced by the inaccuracy of the parameters of the Gaussian. As a consequence, the estimation of these parameters is not very useful. Notice nally that the estimation of the acquisition parameters is fairly robust to the observed scene. 5.5. Image resolution. Our instrument includes a reception optical system. We cannot expect to go beyond its resolution. However, depending on the noise level and the regularization induced by the restoration algorithm, we might obtain a nal image of a much lower resolution. This section aims at evaluating empirically the resolution of our instrument. In particular, we would like to evaluate if all the frequencies that can be captured by the reception optical system are properly captured by the mosaic active imaging system. The motivation for considering frequencies comes from the usual sampling theory and Shannon-Nyquist theorem.

In order to do so, we simulate the acquisition of several simple targets made of pure cosine functions. Notice that this choice is also motivated by the fact that the mosaic active imaging system is not translation-invariant. For instance, the spoke target usually used to evaluate a blur level is not relevant for the non-linear, non translation-invariant acquisition system investigated in this paper.

Therefore, we propose to restore a sequence of M = 25 cosine patterns of increasing frequencies. We dene these frequencies using a linear progression and set, for any m ∈ {2, . . . , M },

(k m , l m ) = m(k 1 , l 1 ), (16) 
where(k 1 , l 1 ) = (5, 2).

Moreover, for any m ∈ {1, . . . , M }, the pixels (p i , p j ) ∈ P of the related cosine pattern are assigned with

1 2 1 + cos 2π k m × p i + l m × p j N ∈ [0, 1],
where (k m , l m ) ∈ {-N 2 + 1, . . . , N 2 } 2 is dened in [START_REF] Greig | Exact maximum a posteriori estimation for binary images[END_REF].

Also, the illumination domes are generated according to the applicative context:

We set σ c = 0.81, σ w = 0.07 and w = 16.2. We consider an intermediate noise level: σ = 0.1. All the degraded cosines are restored using the same illumination domes and the same noise realization. For these illumination domes, we have min p∈P max 1≤k≤K G θ k (p) = 0.43. We distinguish the well and poorly illuminated areas with the criterion

p is well illuminated if (max 1≤k≤K G θ k (p)) ≥ γ p is poorly illuminated otherwise,
where the threshold γ = 0.65. Reconstruction results for two distinct frequencies are reported in Figure 6. On all images, we superimpose in green the boundary separating well and poorly illuminated pixels. Despite the important amount of noise, one can see that the cosine patterns are well preserved, even for high frequencies.

In Figure 7, we represent the MSE and PSNR between the ideal and the estimated cosine patterns, as a function of the frequency index m ∈ {1, . . . , M }. We also distinguish the performance of the algorithm of Table 3 in well and poorly illuminated areas. These results show that the quality of the image estimate diminishes as the frequency of the cosine increases but remains almost the same for m ≥ 8. As expected, these results also show that the algorithm described in Table 3 behaves slightly better on well illuminated areas than on poorly ones. However, even for high frequencies, in poorly illuminated areas, the nal error is comparable to the error due to the noise with a perfectly illuminated scene. This suggest that, in the context studied in this paper, the resolution of the mosaic active imaging device is similar to the resolution of the reception optical system. 5.6. Accuracy. In this section, we study the quality of the image estimate as well as the performance of the algorithm of Table 3 with σ = 0.05, 0.1, 0.2, 0.4 and on the same images as in Section 5.4. We remind that the intensities range between 0 and 1 in all the ideal images and that a noise of standard deviation 0.4 is a very strong noise. Let us rst briey describe the experimental setting. First, for each image and level of noise σ, we independently generate 10 laser shots and illumination domes. Next, we restore each of them using the algorithm of Table 3 and measure the error between the restored image and the ideal image using two metrics: PSNR and MSE. We then compute the mean and standard deviation of these quantities.

We remind that the parameter β is automatically tuned by minimizing the MSE between the image estimate and the true image. As already indicated in Section 5.1, the remaining parameters are set according to the applicative context: σ c = 0.81, σ w = 0.07 and w = 16.2. The results of these experiments are reported in Tables 4 and5 and illustrated in Figures 8,9, 10 and 11 for σ = 0.05, 0.1, 0.2, 0.4, respectively.

For the sake of clarity, we have also split the results according to the amount of noise: moderate (σ = 0.05 and σ = 0.1, see Table 4) and severe (σ = 0.2 and σ = 0.4, see Table 5). For each image, we provide the ideal one, the image estimate as well as the partial laser shots to account for the diculty of the problem. Let us now analyze the obtained results. Under a moderate noise level, the algorithm of Table 3 behaves well: large at areas are well denoised; thin structures and textures are well preserved even in poorly illuminated (see e.g. the barbara image and the factory image in Figure 9). The latter point is important and is due to the fact that the illumination domes are not too far from each other in the targeted application. Under severe noise levels, large at areas are still well smoothed (see e.g. the cameraman image in Figure 10 textures disappear in the residues (see e.g. the man image in Figure 11). These observations are also conrmed by the increase of the MSE and the decrease of the PSNR for all images in Tables 4 and5. Notice that restoring images with such large levels of noise is very challenging since almost nothing is visible in the partial available data images. In such situations, the algorithm of Table 3 enables the distinction of the main contours of the images. Finally, the small standard deviations on MSE and PSNR measures depict a good robustness of the proposed approach, whatever the selected noise level σ. problem is to proceed as follows [START_REF] Mäkitalo | Optimal inversion of the generalized Anscombe transformation for Poisson-Gaussian noise[END_REF]: (i) apply a nonlinear transformation to the image to make the noise approximately Gaussian with unitary standard deviation;

(ii) compute the image estimate with an appropriate restoration algorithm under the Gaussian noise assumption; (iii) apply the inverse transform of the step (i).

Clearly, this procedure is independent of the restoration algorithm and could be used without much eorts. Ideas from [START_REF] Luisier | Image denoising in mixed Poisson-Gaussian noise[END_REF] could also be adapted to our situation.

Other interesting ideas could be also investigated. For instance, one might want to improve the proposed model by taking into account the situations where a dierent contrast occur between laser shots. This could be easily managed by embedding multiplicative factors in Gaussian proles and assuming an add-hoc distribution on them. Also, more ecient optimization methods could be used for estimating acquisition parameters. Indeed, it is not dicult to see that the Hessian of F is block diagonal. Also, we have empirically observed that the diagonal of this Hessian is dominant. Thus, second-order methods could potentially oer faster convergence.

Finally, we plan to evaluate the proposed approach on real acquisitions made with a mosaic active imaging device.

Figure 1 .

 1 Figure 1. Acquisition process in mosaic laser imaging on an aerial image. The left image is the ideal image that we want to estimate. The middle image contains the reduced part of the eld of view illuminated and acquired using a single laser ash. We call it laser shot. The right image contains the view composed of all laser shots.
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 2 Standard deviations of the beam position c k , in pixels.
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 4 Noise. The shot noise (or photon noise) is due to the statistics of emission of photons by the source. The number of photons received by the pixel follows a Poisson law. The thermal noise (or detection noise) is a white Gaussian noise with zero mean and standard deviation σ. The number of photoelectrons generated in the pixel writes as a weighted sum of these two noises.

Figure 2 .

 2 Figure 2. Typical neighborhoods of p = (p i , p j ). These examples involve 4 pixels (dotted arrows), 8 pixels (dotted and dashed arrows) or 16 pixels (all arrows).

  contains results when the parameter w varies. The partial available data through laser shots is represented on the middle column, in the same way as in Figure3. The obtained results are depicted for w = 6, 9, 12, 20 on the right column. To account for the diculty of the problem,

Figure 3 .

 3 Figure 3. Reconstruction with a noise level σ = 0.1. The remaining parameters are set with σ c = 10 -4 , σ w = 10 -4 and w = 30.

Figure 4 .

 4 Figure 4. Inuence of the parameter w on the reconstruction with a noise level σ = 0.1. The remaining parameters are set to σ c = 10 -4 and σ w = 10 -4 . On the middle column, each pixel of the images is assigned with its maximum intensity over all laser shots k ∈ {1, . . . , K}. On the right column, we provide the results of the algorithm of Table 3. As a measure of the diculty of the problem,

Figure 5 .

 5 Figure 5. Convergence of the algorithm of Table 3 for two noise levels. On each gure, the distance between the image estimate u n and the true image u * is represented as a function of the iteration n. The PSNR between the noisy and the noise-free laser shots is also indicated as a measure of the diculty of the problem. The remaining parameters are set as follows: w = 16.2, σ c = 0.81 and σ w = 0.07.

Figure 6 .

 6 Figure 6. Reconstruction of pure cosine patterns (see (16)) for m = 1 (upper row) and m = 25 (lower row). The rst column corresponds to the partial laser shots where each pixel is assigned with its maximum intensity over all k ∈ {1, . . . , K}. The second column contains a detail extracted from the images of the rst column. The third and fourth columns respectively contain details extracted from the image estimate and the ideal image. Pixels in green are on the boundary between poorly and well illuminated pixels.

Figure 7 .

 7 Figure 7. MSE and PSNR between the ideal and estimated cosine patterns for increasing frequencies. The MSE and PSNR are for the whole image and its restriction to the poorly and well illuminated pixels. The frequencies (k m , l m ) are given in (16).

6 .

 6 Conclusion. In this paper, we address the problem of image restoration in mosaic active imaging using a simplied forward model. To solve this model, we propose a two-stage iterative process alternating between (i) the estimation of the restored image using a graph cuts-based algorithm and (ii) the estimation of the acquisition parameters using a gradient-based algorithm. The numerical resultsshow that the proposed restoration algorithm quickly converges towards an image estimate of good quality, even under large noise levels. This validates the mosaic active imaging strategy.Several ways are currently under investigation for improving the results. First, we should improve the forward model to better take into account the noise, the sampling and the speckle caused by the turbulence. Ideas from[START_REF] Mao | Non rigid geometric distortions correction -application to atmospheric turbulence stabilization[END_REF], could, for instance, be adapted to our framework. Taking into account the Poisson noise (together with the Gaussian noise) is another possible way to further improve the quality of the reconstructed images in the case of good lightning conditions. The removal of a Poisson-Gaussian noise increases the diculty of the problem since the Poisson noise is signal-dependent. A common and ecient approach to tackle this

Figure 8 .

 8 Figure 8. Reconstruction of the images baboon (rst and second rows) and lena (third and fourth rows) with a noise level σ = 0.05. The remaining parameters are set as follows: w = 16.2, σ c = 0.81 and σ w = 0.07. The left column correspond to partial available data where each pixel is assigned its maximum intensity over all k ∈ {1, . . . , K}. The middle and right columns correspond resp. to the image estimate and the ideal image. Detailed views of all these images are also provided on the second and fourth rows.

Figure 9 .

 9 Figure 9. Reconstruction of the images barbara (rst and second rows) and factory (third and fourth rows) with a noise level σ = 0.1. The remaining parameters are set as follows: w = 16.2, σ c = 0.81 and σ w = 0.07. The left column correspond to partial available data where each pixel is assigned its maximum intensity over all k ∈ {1, . . . , K}. The middle and right columns correspond resp. to the image estimate and the ideal image. Detailed views of all these images are also provided on the second and fourth rows.

Figure 10 .

 10 Figure 10. Reconstruction of the images cameraman (rst and second rows) and boat (third and fourth rows) with a noise level σ = 0.2. The remaining parameters are set as follows: w = 16.2, σ c = 0.81 and σ w = 0.07. The left column correspond to partial available data where each pixel is assigned its maximum intensity over all k ∈ {1, . . . , K}. The middle and right columns correspond resp. to the image estimate and the ideal image. Detailed views of all these images are also provided on the second and fourth rows.

Figure 11 .baboon 9 . 25 × 2 barbara 6 . 2 peppers 3 . 2 cameraman 4 . 2 lena 3 . 2 man 6 . 2 boat 5 . 2 factory 4 . 2 σ = 0. 4 baboon 1 . 26 × 2 barbara 9 . 2 peppers 7 . 2 cameraman 7 . 30 × 2 Table 5 .

 1192526232423262524241262927273025 Figure 11. Reconstruction of the images peppers (rst and second rows) and man (third and fourth rows) with a noise level σ = 0.4. The remaining parameters are set as follows: w = 16.2, σ c = 0.81 and σ w = 0.07. The left column correspond to partial available data where each pixel is assigned its maximum intensity over all k ∈ {1, . . . , K}. The middle and right columns correspond resp. to the image estimate and the ideal image. Detailed views of all these images are also provided on the second and fourth rows.
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 1 pixels Standard deviations of the beam radius w k , in pixels.

	Moreover, the illumination speckle factor (S k p ) is a colored noise that can be
	viewed as a textured illumination. It is a strong limitation in terrestrial applications
	but is negligible in airborne applications. We neglect this possible contribution in
	this rst study and leave it for the near future.
	By neglecting the speckle, we obtain the following simplied forward model:

Table 3 .

 3 Structure

of the algorithm used for approximating a minimizer of F . Notice that, for any

  Typical values for L are 2 8 , 2 16 or 2 32 .

Table 4 .

 4 10 -3 ± 1.00 × 10 -5 26.57 ± 1.69 × 10 -2 barbara 1.44 × 10 -3 ± 1.73 × 10 -5 27.81 ± 4.90 × 10 -2 peppers 8.57 × 10 -4 ± 2.13 × 10 -11 30.37 ± 2.27 × 10 -2 cameraman 8.54 × 10 -4 ± 1.00 × 10 -5 30.53 ± 4.26 × 10 -2 lena 8.76 × 10 -4 ± 1.00 × 10 -5 30.13 ± 3.80 × 10 -2 man 1.39 × 10 -3 ± 1.00 × 10 -5 28.56 ± 2.83 × 10 -2 boat 1.20 × 10 -3 ± 1.00 × 10 -5 29.18 ± 3.40 × 10 -2 factory 1.18 × 10 -3 ± 1.00 × 10 -5 29.16 ± 3.32 × 10 -2 10 -3 ± 2.83 × 10 -5 22.39 ± 2.41 × 10 -2 barbara 3.63 × 10 -3 ± 4.00 × 10 -5 23.80 ± 4.71 × 10 -2 peppers 1.92 × 10 -3 ± 1.41 × 10 -5 26.89 ± 3.37 × 10 -2 cameraman 1.98 × 10 -3 ± 1.73 × 10 -5 26.88 ± 3.52 × 10 -2 lena 1.93 × 10 -3 ± 1.73 × 10 -5 26.65 ± 3.85 × 10 -2 man 3.26 × 10 -3 ± 2.24 × 10 -5 24.85 ± 3.02 × 10 -2 boat 2.28 × 10 -3 ± 2.24 × 10 -5 25.59 ± 3.43 × 10 -2 factory 2.60 × 10 -3 ± 2.83 × 10 -5 25.71 ± 4.59 × 10 -2 Accuracy of the algorithm of Table 3 under a moderate level of noise σ = 0.05 and σ = 0.1. The remaining parameters are set as follows: σ c = 0.81, σ w = 0.07 and w = 16.2.

	) but

The MSE and PSNR measures are calculated over 10 runs and rounded to the nearest value.

The MSE and Peak Signal-to-Ratio Noise (PSNR) measures are both described at http: //megawave.cmla.ens-cachan.fr/stuff/guid3/node256.html.