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Abstract

In this paper, we focus on the restoration of images acquired with a new active imaging con-
cept. This new instrument generates a mosaic of active imaging acquisitions. We first describe
a simplified Bayesian model of this so-called “mosaic active imaging”. We also assume a prior
on the distribution of images, using the total variation, and deduce a restoration algorithm.
This algorithm iterates one step for the estimation of the restored image and one step for the
estimation of the acquisition parameters. We then provide the details useful to the implemen-
tation of these two steps. In particular, we show that the image estimation can be performed
with graph-cuts. This allows a fast resolution of this image estimation step. We give detailed
numerical experiments. They show that acquisitions made with a mosaic active imaging device
can be restored even under severe noise levels.

Keywords: graph-cut, active imaging, laser imaging, image reconstruction, image estimation.

1 Introduction

Flash laser imaging, also called flash active imaging, gated active viewing, or more commonly active
imaging, illuminates the object to be observed with a very short laser flash (of typically 5-20 ns). It
captures the image with a high-speed camera, sharply synchronized with the emission. The photons
coming back to the sensor are selected according to their round-trip travel time. This permits to
eliminate the photons back-scattered by the foreground (e.g. by fog, dust or vegetation) and those
back-scattered by the background. The controlled addition of photons and their temporal selection
allow a better signal to noise ratio and a better contrast of the object over the background. It is of
interest for surveillance and for target identification under bad weather conditions or at long ranges
(several kilometers).
∗LAGA, CNRS UMR 7539, Université Paris 13, France, nicolas.lerme@free.fr
†IMT-UMR5219, Université de Toulouse, CNRS, Toulouse, France, Francois.Malgouyres@math.univ-toulouse.fr
‡ONERA - The French Aerospace Lab, F-31055 Toulouse, Dominique.Hamoir@onera.fr
§ONERA - The French Aerospace Lab, F-31055 Toulouse, Emmanuelle.Thouin@onera.fr
¶Université de Toulouse, Institut Supérieur de l’Aéronautique et de l’Espace (ISAE), F-31055 Toulouse
‖IMT-UMR5219, Université de Toulouse, CNRS, Toulouse, France.

1



A discrimination in sub-meter distance can be obtained in some cases. The observed objects
typically have metric dimensions (e.g. buildings, vehicles, personnel, animals, fences). Depending on
the application, they are located at distances from the imaging system ranging from 10m to 20km. In
the most demanding applications, including those requiring distances in kilometers, several physical
limitations degrade the images [HVB+09, RHV+09].

First, atmospheric turbulence produces two types of degradation. On the one hand, the laser
illumination is not uniform over the object and is not stationary due to the forward propagation
of the laser beam through the turbulent atmosphere. We talk of turbulence-induced illumination
speckle (also speckle). On the other hand, the image of the object is distorted by the backward
propagation.

Second, the interaction of the laser spot with the object is accompanied by artifacts, in particular
if the light may be multiply scattered off several surfaces (e.g. the inner side of a dihedral).

Third, the maximum distance of observation is limited by the size, weight and power compatible
with integration on a land or air vehicle, in particular that of the laser and that of the reception
optical system. A first way to overcome this difficulty is to restore the information despite a low
signal to noise ratio (currently of a few units). A second way is to improve the light sensor, for
instance in switching to avalanche photodiodes (APD). A third approach is to restore the image
from a mosaic of typically 100 to 1, 000 elementary thumbnails [Ham10]. In the latter case, that
we will call mosaic laser imaging or mosaic active imaging, each thumbnail has strong gradients of
illumination, and geometric readjustments may have to be considered. This is the option studied in
this paper.

In order to restore the observed scene from the mosaic of images, we adapt well known strategies
of image processing. In particular, we use the prior that images have a small total variation (TV).
This prior has first been proposed for image denoising (see [ROF92]) and has, since then, been applied
in many contexts of image restoration such as deblurring, inpainting, image zooming, restoration of
compression artifacts, etc. Beside its ability to properly restore images, its minimization has been
studied intensively, and fast and simple iterative algorithms have been developed (see, for instance,
[Cha04, BBFAC04]). More recently algorithms using graph-cuts have been developed and provide
fast minimization methods for some models involving this prior (see [Cha05, DS04, DS06, CD09]).

In this paper, we investigate algorithmic ways to restore mosaic active images (the third approach
above). The rest of this paper is as follows. In Section 2, we describe a simplified physical and
mathematical model of the imaging process and describe the sketch of the restoration algorithm. In
particular, this section exhibits that the image acquisition depends on imperfectly known acquisition
parameters. The algorithm consists in alternating the estimation of these acquisition parameters
and the estimation of the image. Next, we show in Section 3 how the estimation of the image
can be formulated using level-sets and solved with graph cuts. Then, in Section 4, we give the
details concerning the implementation of the algorithm used to estimate the acquisition parameters.
Finally, we provide in Section 5 numerical experiments assessing the quality of the image estimate,
the influence of the acquisition parameters, the convergence of the algorithm used to estimate the
acquisition parameters and the results of the algorithm.
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2 Modeling of flash laser imaging

2.1 Overview

In flash laser imaging, a “light ball” is repeatedly sent towards the object to be observed. A time-
gated camera synchronized with the laser is used to detect and select the light that is received
within a brief time-interval or time-gate dt of typically a few nano to micro seconds, after a chosen
time delay of typically 10−7 to 10−4 s has elapsed. This allows to record the photons coming back
from the object (in the time-gate) and to reject those coming back from the foreground or from the
background (before or after the time-gate). The wavelength of operation can be chosen according to
the application but is usually in the so-called eye-safe region, between 1.5 and 1.6 micrometers.

Generally, the field of view of the camera is fully illuminated by the laser and is acquired at
standard video rates, say 10 Hz. In mosaic laser imaging, we replace the low-repetition-rate, 10Hz
Nd:YAG laser with OPO (Optical Parametric Oscillator) by a high-repetition-rate, 10kHz fiber laser
that is expected to offer higher average powers and plug-efficiencies within a few years. This concept
presents additional advantages. As the repetition rate is larger by three orders of magnitude, the
energy per pulse is lowered by the same ratio. In order to maintain the signal-to-noise ratio, only
a reduced part of the field of view is illuminated at each laser flash. The corresponding region of
interest of the sensor is read. The laser beam is then deflected in order to illuminate another region
of interest. By repeating the process we scan the field of view of the camera. This results in the
successive acquisition of elementary images taken at a repetition-rate of 10 kHz that will tile as a
mosaic in order to build the full-frame image at 10 Hz. The formation of each elementary image can
be modeled as follows.

The object is illuminated with a Gaussian laser spot with nominal position ck in the image and
beam radius wk (radius for which the amplitude of the electromagnetic field is reduced by 1/e, i.e.
its intensity is reduced by 1/e2 as compared to their maximum values, e referring to the exponential).
This laser spot is affected by three perturbations due to pointing discrepancies and to the forward
propagation of the laser beam through the inhomogeneous turbulent atmosphere: beam spreading,
beam wandering, and turbulence-induced speckle. This illumination pattern is multiplied by the
reflectance of the object to form a luminance distribution. This travels through the atmosphere and
is captured by the optical system of the camera to form an image next to its focal plane. Shot noise
and thermal noise are then added to the image. This is repeated for each elementary image (the
images are indexed by k).

We denote, for an integer N > 0, the set of all pixels by P = {1, . . . , N}2. We denote K ≥ 1, the
number of elementary images. For every index k ∈ {1, . . . , K}, the image (vkp)p∈P ∈ RP is obtained
from the object (up)p∈P ∈ RP , using

vkp = up Gθk(p) S
k
p + nkp, ∀p ∈ P ,

where θk = (ck, wk) ∈ R2 ×R∗ contains the parameters of the Gaussian profile, and where the beam
intensity profile Gθk is defined for every p ∈ P by

Gθk(p) = exp
(
− ‖p− ck‖

2

2wk2

)
, (1)
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C2
n σw

10−15m−
2
3 6× 10−4 pixels

10−14m−
2
3 8× 10−3 pixels

10−13m−
2
3 7× 10−2 pixels

Table 1: Standard deviations of the beam radius wk, in pixels.

the speckle pattern (Skp )p∈P ∈ RP and the noise (nkp)p∈P ∈ RP .

The mathematical developments will be conducted on elementary images synthesized with this
simplified model. We are aware that this model does take into account neither the size of the
reception pupil of the instrument nor the transverse sampling by the focal plane array. Leaving
these degradations aside permits indeed to use faster and more efficient restoration algorithms. More
precisely, improving the image creation model would force us to use less efficient algorithms whose
convergence will be imperfect while requiring more computational resources. We therefore leave the
study of this more accurate degradation model, the development of adapted restoration algorithms,
as well as the comparison of the two degradation model/algorithm couples for a future work.

The illumination speckle factor (Skp ) is a colored noise that can be viewed as a textured illumi-
nation. It is a strong limitation in terrestrial applications but is negligible in airborne applications.
We neglect this possible contribution in this first study and leave it for the near future.

2.2 Beam spreading

The Gaussian beam does naturally spread along the propagation. We denote the distance between
the laser source and the object by d > 0. The minimum beam radius, at the laser source in our case,
is called the beam waist radius and is denoted w0. In the absence of atmospheric turbulence, the
spreading is only due to the diffraction of the beam:

w2
diff =

( λd

πw0

)
+ w2

0,

where λ > 0 is the laser wavelength. We propose to model the further beam spreading induced by
the atmospheric turbulence by introducing a deviation term dwk that follows a Gaussian distribution
with zero mean and standard deviation σw. The radius of the Gaussian beam then writes

w2
k =

( λd

πw0

)
+ w2

0 + dw2
k.

In our experimental setup the divergence of the laser beam is 1.08mrad, corresponding to an expected
beam radius of wk = 16.2 pixels, as seen by our 256×256-pixels, 8.5-mrad-field-of-view camera. The
standard instrument-to-target range is 1, 000 m. The calculated standard deviations of the beam
radius are given in Table 1 for standard turbulence levels, defined by their refractive-index-structure
constant C2

n [Kol49]. Under these conditions, they are very small compared to the mean beam radius
and to the pixel size.
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C2
n σc

10−15m−
2
3 0.09 pixels

10−14m−
2
3 0.26 pixels

10−13m−
2
3 0.81 pixels

Table 2: Standard deviations of the beam position ck, in pixels.

2.3 Beam wandering

Beam wandering results from an angular deviation of the beam propagation axis, due to possible
pointing discrepancies of the instrument and to the propagation through the turbulent atmosphere.
When considering a perfect pointing, the statistics of this angular deviation respects a Gaussian law
with zero mean. Its variance σ2

c writes [Fan75, Cha92]

σ2
c = 0.16(λd)2(2w0)

− 1
3 r
− 5

3
0 ,

where 2w0 is the beam waist diameter and r0 is the Fried’s coherence length of the turbulent atmo-
sphere [Fri66], which is related to C2

n [Rod81]. In our example, the calculated standard deviations of
the beam position ck are given in Table 2 for standard turbulence levels.

2.4 Noise

The shot noise or photon noise is due to the statistics of emission of photons by the source. The
number of photons, Np, received by the pixel respects a Poisson’s law of expectancy Np and standard
deviation σp.

The thermal noise or detection noise Nt is a white Gaussian noise with zero mean and standard
deviation σt. The number of photoelectrons generated in the pixel writes

Ne = ηNp +Nt,

where 0 < η < 1 is the detection efficiency of the sensor.

For low signal levels, the thermal noise dominates over the photon noise. Hence, in the following,
we consider additive thermal noise only of normalized standard deviation σ with respect to the
maximum intensity of the noise-free image.

2.5 Mathematical modeling and summary of the acquisition process

First, we denote by N ⊂ P2 a neighborhood system connecting pixels. Throughout the paper, we
always denote the Euclidean norm ‖.‖, whatever the dimension of the considered Hilbert space.

We assume that the observed data u ∈ NP is a random variable following a law

P(u) ∝ exp (−βTV (u)),

where β > 0 is an unknown parameter (which will later on be tuned by the user) and the total
variation TV is defined by

TV (u) =
∑

(p,q)∈N

dpq|up − uq|, (2)
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where the weights dpq are chosen according to [BK05] in order to make the edge capacities crossing
any s-t cut in the graph G a good approximate to the length of an ideal curve.

We also consider K ≥ 1 and, for every k ∈ {1, . . . , K}, parameters θk = (ck, wk) ∈ R2×R∗ of the
Gaussian function Gθk defined in (1).

When necessary, we denote the coordinates of the elements of R2 with subscript i and j (i.e.
ck = (ck,i, ck,j) and p = (pi, pj) ).

The random variable ck is independent of wk. Their distribution laws are according to

P(ck) ∝ exp
(
− ‖ck − ck‖

2

2σ2
c

)
, for 1 ≤ k ≤ K,

where ck ∈ R2 and σc ∈ R are known parameters and

P(wk) ∝ exp
(
− |wk − wk|

2

2σ2
w

)
, for 1 ≤ k ≤ K, (3)

where wk ∈ R+ and σw ∈ R are known parameters.

The parameters θk are independent random variables. Therefore, their joint distribution satisfies

P((θk)1≤k≤K) ∝
K∏
k=1

P(ck)P(wk).

We consider the operator

M(θk)1≤k≤K : RP −→ RKP ,

u 7−→
(
(Gθk(p)up)p∈P

)
1≤k≤K .

(4)

As already said, we assume that the data v ∈ RKP is obtained by corrupting with an additive white
Gaussian noise the observation of an ideal image u through the operator M(θk)1≤k≤K . In formula, we
have

P(v|u, (θk)1≤k≤K) ∝ exp

(
−
‖M(θk)1≤k≤Ku− v‖2

2σ2

)
,

where σ ∈ R is the known standard deviation of the noise. Throughout the paper, we denote the
components of v with a super script k and have v = (vk)1≤k≤K with vk ∈ RP .

2.6 Restoration algorithm

Applying Bayes’ law, for any v ∈ RKP , we obtain the posterior

P(u, (θk)1≤k≤K |v) =
P(v|u, (θk)1≤k≤K)P(u, (θk)1≤k≤K)

P(v)
,

∝ exp

(
−
‖M(θk)1≤k≤Ku− v‖2

2σ2

)
exp (−βTV (u))

×
K∏
k=1

exp
(
− ‖ck − ck‖

2

2σ2
c

)
exp

(
− |wk − wk|

2

2σ2
w

)
.
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We consider in the following a Maximum A Posteriori estimator (MAP) of u and (θk)1≤k≤K . As is
usual, we approximate the MAP estimate by approximately minimizing in u and (θk)1≤k≤K

− log (P(u, (θk)1≤k≤K |v)) = C +
‖M(θk)1≤k≤Ku− v‖2

2σ2
+ βTV (u)

+
K∑
k=1

‖ck − ck‖2

2σ2
c

+
K∑
k=1

|wk − wk|2

2σ2
w

,

where C ∈ R does not have any influence on the minimizer.

Given a fixed v ∈ RKP , we denote

f(u, (θk)1≤k≤K) =
‖M(θk)1≤k≤Ku− v‖2

2σ2
+ βTV (u) +

K∑
k=1

‖ck − ck‖2

2σ2
c

+
K∑
k=1

|wk − wk|2

2σ2
w

, (5)

for u ∈ RP and (θk)1≤k≤K ∈ R3K .

It is not difficult to see that, for any (θk)1≤k≤K ∈ R3K , the function u 7→ f(u, (θk)1≤k≤K) is
convex and coercive. It therefore achieves its minimum and one of its minimizers can be computed by
standard optimization techniques. When u ∈ RP is fixed, the function (θk)1≤k≤K 7→ f(u, (θk)1≤k≤K)

is continuous and coercive. It therefore reaches its minimum. This function is however non-convex
and usual optimization algorithms might get stuck in a local minimum. However, when σc and σw
are small enough, we expect this minimum to be close to (ck, wk)1≤k≤K .

Notice that considering these properties of f , we cannot a priori provide guarantees that we
compute a true minimizer of f . We propose an alternate minimization scheme which is guaranteed
to converge to a local minimum. Doing so, we obtain the algorithm described in Table 3. The details
of the construction of the two steps of this algorithm are described in Section 3 and Section 4. We will
see experimentally that this algorithm has sufficiently good convergence properties in the practical
situations we are interested in.

In order to define a stopping criterion, we denote cni , cnj and wn the vectors respectively containing
at the iteration n the coordinates of the center and the standard deviation of all Gaussians, i.e.
∀k ∈ 1 ≤ k ≤ K. The stopping criterion for the loop in n in the algorithm of Table 3 is defined by

‖cn+1
i − cni ‖+ ‖cn+1

j − cnj ‖+ ‖wn+1 − wn‖ ≤ εa,

where we take εa = 10−2.

3 Image estimation using graph cuts

In this section, we first give some reminders about graph cut optimization. Afterward, we recall
the model of [ROF92] for image denoising. Then, we briefly explain how the functional f can
be formulated into leveled-energies when the parameters (θk)1≤k≤K are known (see the first step of
Table 3). Then, we show that this functional has the form of [Cha05] and can therefore be minimized
using the same approach.
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• Initialize (c0k, w
0
k)1≤k≤K = (ck, wk)1≤k≤K

• Repeat until convergence (loop in n)

1. Use a graph cut based algorithm for computing

un ∈ argmin
u∈RP

f(u, (cnk , w
n
k )1≤k≤K).

2. Use a gradient based algorithm to compute

(cn+1
k , wn+1

k )1≤k≤K ∈ argmin
(ck,wk)1≤k≤K∈R3K

f(un, (ck, wk)1≤k≤K).

Table 3: Structure of the algorithm used for approximating a minimizer of f .

3.1 Graph cuts framework

Graph cuts are a discrete optimization method able to minimize energies of common computer
vision tasks by computing a maximum-flow / minimum-cut in a graph. During about one decade,
this method remained bounded to binary image denoising [GPS89] because of limited resources
and algorithmic developments. After ten years of silence, graph cuts have progressively emerged
as a powerful tool for efficiently solving a wide range of problems: image segmentation, denoising,
reconstruction, optical flow, texture synthesis, etc. thanks to a fast maximum-flow algorithm [BK04].
In this framework, we consider the minimization of

E(x) =
∑
p∈P

Ep(xp) + β
∑

(p,q)∈N

Ep,q(xp, xq), (6)

among x ∈ {0, 1}P . As is usual, the unary term Ep(·) in the latter equation is the cost for assigning
the label xp to p independently of its neighbors. The pairwise term Ep,q(·) penalizes the pixel pair
(p, q) having different labels. The equilibrium between both terms is controlled by the parameter β.

Let us now consider an oriented and capacitated network G = (V , E , c) with a set of nodes
V = P ∪ {s, t}, a set of edges E ⊂ (V × V) (corresponding to relations between nodes) and edge
capacities c : (V ×V)→ R+. The extra nodes s and t are called the source and the sink, respectively.
We denote by C = (S, T ) an s-t cut which is a partition of the set of nodes V where we impose that
s ∈ S and t ∈ T . For any s-t cut C, we define its value in the graph G by

valG(C) =
∑

(p,q)∈(S×T )

c(p, q).

Given an s-t cut C, we also define a binary solution xC ∈ {0, 1}P with

xCp =

{
0 if p ∈ T
1 if p ∈ S , ∀p ∈ P . (7)

One can easily see that the application C → xC makes a one-to-one correspondence between s-t cuts
and segmentation of the pixels. The core of graph cuts is then to set the edge capacities in the graph
G such that

valG(C) = E(xC) + C,
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where the constant C is irrelevant in the context of minimization. This is possible as soon as pairwise
terms Ep,q(·) are submodular, i.e. when they satisfy for all pixel pairs

Ep,q(0, 0) + Ep,q(1, 1) ≤ Ep,q(0, 1) + Ep,q(1, 0). (8)

In this case, the graph G can be constructed as described in [KZ04] to obtain an optimal labeling of
u. As a consequence, the s-t cut of minimum weight (i.e. the s-t minimum-cut) in the graph G is
guaranteed to correspond to a global minimizer of (6) [KZ04]. The s-t minimum-cut of a graph can
be found in polynomial time of the number of nodes ]V and edges ]E using an efficient maximum-
flow algorithm such as [BK04]. In practice, most of these algorithms give near-linear complexity
(with respect to the image size) on typical computer vision problems (see [BK04]), including image
denoising.

3.2 Level-sets reformulation

Since two decades, Total Variation (TV) regularization has been extensively studied and used in
digital image processing due to its ability to accurately preserve sharp edges in images. TV-based
models are very popular in the image processing community (see [ROF92] and the papers referencing
it). The model proposed by Rudin-Osher-Fatemi (see [ROF92]) is adapted for denoising images
corrupted by an additive white Gaussian noise. It consists in minimizing among u ∈ NP

βTV (u) + ‖u− v‖2, (9)

where the TV (·) operator is defined in (2). Observe that the functional (5) is the same than (9)
when K = 1 and w1 tends to infinity. This situation corresponds to a single Gaussian function of an
infinite size. Let us now consider the following shape optimization problem for a fixed level µ ∈ R:
We minimize among û ∈ {0, 1}P

βTV (û) + 2
∑
p∈P

(
û

(
µ− 1

2

)
+ vp(1− ûp)

)
. (10)

In the next paragraph, we will denote by u∗ the minimizer of (9) and û∗µ the minimizer of (10), for
any level µ ∈ R.

The connection between the problems (9) and (10) is discussed in [Cha05] 1. Chambolle states
that, for any level µ ∈ R, the µ level-set of the minimizer u∗ of (9) (i.e. 1{u∗≥µ}, where 1{.} is
the indicator function which returns one if its argument is true and zero otherwise) is a minimizer
of (10). Conversely, the minimizer û∗µ of (10) is a µ level-set of the minimizer of (9). These statements
notably mean that (9) can be minimized by independently solving an appropriate family of binary
problems (10). For any levels µ1, µ2 ∈ N such that µ1 < µ2, one can easily see that û∗µ2 ≤ û∗µ1 [Cha05,
DS04]. Using this monotone property, the minimizer u∗ of (9) can therefore be constructed from the
whole family of minimizers û∗µ of (10) by setting for each pixel p ∈ P

u∗p = sup {µ ∈ N : û∗µ(p) = 1}.
1The same results were independently obtained by Darbon and Sigelle in a probabilistic setting [DS04].
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Given the form of TV (ûµ) (see (2)), it is straightforward to see that the inequality (8) in Section 3.2
holds for any binary problem (10). The functional (9) can therefore be minimized in polynomial time
using graph cuts for each binary problem (10). This is a particular case of [DS06] which presents a
generalization of this idea to any convex data fidelity term.

These observations lead to an algorithmic scheme with a worst-case complexity ofO(T (]V , ]E)lmax)
where T (]V , ]E) is the complexity of the max-flow algorithm used and lmax = maxp{up} ≤ 2ρ − 1 is
the maximum intensity 2 of the image u.

Nevertheless, such an approach is particularly time consuming when ρ is large. As observed
in [DS04, Cha05], a pixel only needs to be involved in O(log2(lmax)) computations since it is useless
to take into account pixels which are greater than µ for optimizations which only deal with pixels lesser
or equal than µ, and conversely. A dyadic scheme leveraging this observation is proposed in [DS04,
Cha05]. Compared to [Cha05], this complexity is improved in [DS04] by separating and processing
independently the connected components of each binary solution. A slightly faster algorithm is
obtained in [CD09] by reusing the flow found for a given level for the next level by dynamically
updating the edge weights in the same graph. This is made possible in our situation since the set of
nodes connected to the source s is growing as the level µ increases (see [CD09]).

Let us now describe how to solve the first step of Table 3 using the technique described in [Cha05,
DS04]. We assume that the parameters (θk)1≤k≤K of the Gaussians shots are known. Notice that
the third and fourth terms in (5) are irrelevant since they do not depend on u. We are therefore
interested in minimizing, among u ∈ NP

βTV (u) +
1

2σ2
‖M(θk)1≤k≤Ku− v‖

2. (11)

Let us start by expanding (11) using (4)

βTV (u) +
1

2σ2
‖M(θk)1≤k≤Ku− v‖

2

= βTV (u) +
1

2σ2

∑
p∈P

K∑
k=1

(Gθk(p)up − vkp)2

= βTV (u) +
1

2σ2

∑
p∈P

K∑
k=1

(up − akp)2G2
θk
(p) with akp =

vkp
Gθk(p)

, (12)

Notice that no division by zero occurs in akp since P is finite and we trivially have Gθk(p) > 0 for any
Gaussian k ∈ {1, . . . , K} and any pixel p ∈ P . In what follows, we first remind how to formulate
TV (·) and the data fidelity term in (12) through level-sets. Let us start with the first one. For any
pixel pair (p, q) ∈ N , we can easily express |up − uq| in terms of level-sets over all possible grayscale
intensities with

|up − uq| =
lmax∑
µ=0

|1{up≥µ} − 1{uq≥µ}|.

2The value of ρ is typically 8 or 16 in this setting.
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Together with (2), we obtain

TV (u) =
lmax∑
µ=0

∑
(p,q)∈N

dpq|1{up≥µ} − 1{uq≥µ}|

=
lmax∑
µ=0

TV (1{u≥µ}). (13)

Let us now express the data fidelity term of (12) through level-sets for a fixed Gaussian k ∈ {1, . . . , K}
and a pixel p ∈ P . By using the facts that for any b ∈ N, we have

(a− b)2 = (a+ 1)2 +
b∑

µ=0

[(a− µ)2 − (a− (µ− 1))2]

= (a+ 1)2 + 2
b∑

µ=0

[
µ− 1

2
− a
]

= (a+ 1)2 + 2
lmax∑
µ=0

[
µ− 1

2
− a
]
1{b≥µ}, (14)

and by using (14) in (12), we obtain (always for a fixed Gaussian k ∈ {1, . . . , K} and a pixel p ∈ P)

(up − akp)2G2
θk
(p) = G2

θk
(p)
[
(akp + 1)2 + 2

lmax∑
µ=0

(
µ− 1

2
− akp

)
1{up≥µ}

]
.

Together with the data fidelity term as written in (12), this leads to

K∑
k=1

∑
p∈P

G2
θk
(p)
[
(akp + 1)2 + 2

lmax∑
µ=0

(
µ− 1

2
− akp

)
1{up≥µ}

]
= C ′ +

K∑
k=1

∑
p∈P

2G2
θk
(p)

lmax∑
µ=0

[(
µ− 1

2

)
1{up≥µ} + akp1{up<µ}

]
= C ′ +

lmax∑
µ=0

2

( K∑
k=1

∑
p∈P

G2
θk
(p)
[(
µ− 1

2

)
1{up≥µ} + akp1{up<µ}

])
, (15)

where C ′ does not depend on u. Using both 1{up≥µ} and 1{up<p} in the above formula is due to the
graph construction illustrated in Figure 1. Finally, combining (13) with (15) and using (12) gives
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Figure 1: Networks representations for solving a binary problem (16) at a fixed level µ ∈ N. From
left to right: the network representing the unary term E ′p of (16) for any pixel p ∈ P , the network
representing the pairwise term E ′p,q for any pixel pair (p, q) ∈ N and the complete network combining
the two previous ones. Under the relationship 1{u≥µ} ⇔ p ∈ S and 1{u<µ} ⇔ p ∈ T (see (7) in
Section 3.1), it is easy to see that for each configuration of 1{u≥µ} and 1{u<µ}, (16) is equal to the
corresponding s-t cut for a particular value of µ.

the following discretizations (up to a constant C ′)

βTV (u) +
1

2σ2
‖M(θk)1≤k≤Ku− v‖

2

=
lmax∑
µ=0

(
βTV (1{u≥µ}) +

1

σ2

K∑
k=1

∑
p∈P

G2
θk
(p)
[(
µ− 1

2

)
1{up≥µ} + akp1{up<µ}

])

=
lmax∑
µ=0

(
βTV (1{u≥µ}) +

1

σ2

∑
p∈P

K∑
k=1

G2
θk
(p)
[(
µ− 1

2

)
1{up≥µ} +

vkp
Gθk(p)

1{up<µ}

])

=
lmax∑
µ=0

(
β
∑

(p,q)∈N

dpq|1{up≥µ} − 1{uq≥µ}|︸ ︷︷ ︸
E′p,q(1{up≥µ},1{uq≥µ})

+
∑
p∈P

1

σ2

[(
µ− 1

2

)
1{up≥µ}

K∑
k=1

G2
θk
(p) + 1{up<µ}

K∑
k=1

vkpGθk(p)

]
︸ ︷︷ ︸

E′p(1{u≥µ})

)
. (16)

It is now straightforward to see that the latter equation has the same form as (10) and can therefore
be minimized using the same approach as in [Cha05, DS04].

The remaining of this section is to construct a capacitated network for any level µ ∈ N such that
there is a one-to-one correspondence between s-t cuts and 1{u≥µ} and thus between the capacity of the
s-t cut and f(u, (θk)1≤k≤K). In that case, such a network is called graph-representable (see [KZ04]).
Following the methodology of [KZ04], one can easily construct for any pixel p ∈ P , a network for
the terms E ′p(·) and E ′p,q(·, ·) appearing in (16). These networks are depicted in Figure 1. Using the
additivity theorem of [KZ04], one can now combine these two networks into a single one by adding
their common edge capacities.
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4 The estimate of the Gaussian parameters

In this section, we provide the details useful for the implementation of a gradient descent algorithm
with an Armijo step size rule (see [Ber03]) solving the step 2 of the algorithm described in Table 3.

Before giving the formula of the gradient of f , let us remind the notation ck = (ck,i, ck,j) ∈ R2

and p = (pi, pj) ∈ P .

For v ∈ RKP , u ∈ RP and (ck, wk)1≤k≤K ∈ R3K , we obtain after some calculation

∂f

∂ck,i
=
ck,i − ck,i

σ2
c

+
1

σ2wk2

∑
p∈P

(pi − ck,i)e
− ‖p−ck‖

2

2wk
2 up

[
e
− ‖p−ck‖

2

2wk
2 up − vkp

]
,

∂f

∂ck,j
=
ck,j − ck,j

σ2
c

+
1

σ2wk2

∑
p∈P

(pj − ck,j)e
− ‖p−ck‖

2

2wk
2 up

[
e
− ‖p−ck‖

2

2wk
2 up − vkp

]
,

and
∂f

∂wk
=
wk − wk
σ2
w

+
1

2σ2wk3

∑
p∈P

‖p− ck‖2e
− ‖p−ck‖

2

2wk
2 up

[
e
− ‖p−ck‖

2

2wk
2 up − vkp

]
.

The stopping criterion of the gradient descent algorithm controls that the variation of (θk)1≤k≤K ,
between two successive iterations is smaller than a parameter εe. To avoid losing too much time
during the first estimations of the algorithm described in Table 3, we choose to express εe in terms
of the iteration number n with

εe = (εmaxe − εmine ) · exp
(
− n

σεe

)
+ εmine ,

where the parameters were empirically set as εmine = 0.005, εmaxe = 0.5 and σεe = 2.0 for the exper-
imental data described in Section 5. In words, the accuracy of the estimation is larger when the
iteration number increases.

5 Numerical experiments

5.1 Applicative framework

The camera is made of an optical system and a typical 256 × 256 pixels focal plane array (i.e.
N = 256). As already mentioned, for low signal levels, we consider that the additive Gaussian
thermal noise dominates. We consider several noise levels reflecting different possible illumination
levels: σ = 0.05, 0.1, 0.2 and 0.4. Notice that the pixel intensity in the ideal observed image ranges
between 0 and 1.

The field of view of the camera is FoV = 8.5 mrad. The laser source is a typical fiber laser, with
beam quality factor close to 1, combined with a collimator and a deflection device. The laser beam
illuminates a solid angle corresponding to a Gaussian beam of 1.08 mrad in divergence. Its expected
radius is wk = 16.2 pixels in the image. The standard deviation around this radius is typically of
σw = 0.07 pixels (see Table 1). From laser shot to laser shot, the nominal beam axis is deviated over

13



a regular grid of dimension K = 9× 9. After atmospheric perturbations, the expected location ck of
the beam axis belongs to (in pixels)

ck ∈
{
N

18
,
N

18
+
N

9
, . . . ,

N

18
+ 8

N

9

}2

.

The standard deviation around this expected value is typically of σc = 0.81 pixels (see Table 2).

5.2 Implementation details

In the following experiments, the max-flow implementation v3.0 of [BK04] is used. Finally, a Moore
neighborhood is considered for each pixel p on the lattice P , i.e. involving all pixels whose Euclidean
distance from p is less or equal to

√
2. The minimization is implemented with a dyadic parametric

scheme and typically represents 10 percent of the overall computations.

However, our implementation is not optimized and we do not provide detailed computing times
since we do not believe they are indicative of the computing time for an optimized version of these
algorithms. In particular, a simple improvement with this regard would consist in extracting from
each image vp a small window containing the laser shot. Many computations could also be paral-
lelized. With the current implementation, the restoration of an image of size 256 × 256 from 81

laser shots requires between 20 seconds and 3 minutes on a computer whose processor is clocked at
3.47GHz.

5.3 Measuring the influence of the parameters

This section focuses on how the parameters β and wk affect the quality of the image estimate in
the algorithm with an additive white Gaussian noise of standard deviation σ = 0.1. An example of
reconstruction is illustrated in Figure 2 for the “lena” image with a varying amount of regularization.
To better visualize the available data, laser and Gaussian shots are each gathered into a single image
where a pixel is assigned with its maximum intensity over all 1 ≤ k ≤ K. In order to illustrate
the influence of β, we also set the other parameters in such a way that the center and the spread
of Gaussians do essentially not vary. We therefore set σc = 0.0001, σw = 0.0001 and wk = 30,
∀1 ≤ k ≤ K. Due to the particular values of these parameters and the level of accuracy εa, we have
wk ' wk and ck ' ck, ∀1 ≤ k ≤ K. Thus, the algorithm only consists of a single iteration.

The strength of the regularization grows with β. This is consistent with the equation (11)
since this parameter is attached to the regularization term. The parameter β therefore needs to
be adequately tuned to remove noise without losing too much details. Also, as expected when β

increases, the result progressively becomes a cartoon-like image with sharp boundaries surrounded
by large and flat regions. In particular, textures and thin details tend to disappear. Due to the
proximity to the TV+L2 model, we also observe its usual side-effects: staircasing and loss of contrast.

Finally, the Figure 3 illustrates the effect of varying the parameter wk on the “man” image. Partial
available data through laser shots is represented on the top row, in the same way as in Figure 2. The
obtained results are depicted for wk = 6, wk = 9, wk = 12 and wk = 20. The parameters σc, σw, and
σ are set with the same values as in the Figure 2. As expected, when wk is small (i.e. when Gaussians
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Partial laser shots Partial Gaussians shots β = 1

β = 5 β = 10 β = 20

Figure 2: Influence of the regularization parameter β on the “lena” image. Each pixel of the top
left image is assigned with its maximum intensity over all laser shots. Similarly, each pixel on the
middle top view is assigned with the maximum illumination intensity over all laser shots. In this
experiment, we set σc = 0.0001, σw = 0.0001, σ = 0.1 and wk = 30, ∀1 ≤ k ≤ K.

Noise level σ 0.05 0.1 0.2 0.4

Corresponding β 5 2.3 1.5 0.8

Table 4: Correspondence between the noise level and the parameter β.

correspond to small spots), the reconstruction is of poor quality and details of the image cannot be
accurately recovered between Gaussians. Indeed, for such pixels, the missing data is too important
and their intensities are assigned by the regularization. Nevertheless, a better quality reconstruction
can be reached when wk is larger.

5.4 Convergence of (θk)1≤k≤K

In this section, we empirically demonstrate the convergence of the reconstruction algorithm in Fig-
ure 4 for four levels of noise and eight grayscale images. For each noise level, we measure the distance
between the estimated parameters θn obtained at iteration n of the algorithm in Table 3 and the
true parameters θ∗ with

(‖θn − θ∗‖)n∈N = (‖cni − c∗i ‖+ ‖cnj − c∗j‖+ ‖wn − w∗‖)n∈N. (17)

In this experiment, we set wk = 16.2, σc = 0.81, σw = 0.07. Additionally, the penalty parameter
β is hand-tuned and set according to the noise level (see Table 4), independently of the image. As
expected, we see that the distance (17) strongly decreases for all images in the first iterations and
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wk = 6 wk = 9 wk = 12 wk = 20

Figure 3: Influence of the parameter wk on the “man” image with β = 3.0. On top row, each pixel
of the images is assigned with its maximum intensity over all laser shots. The remaining parameters
σc, σw and σ are set with the same values as in Figure 2. Notice that we target wk = 16.2 for our
application (see Section 5.5).

becomes relatively stable in the following iterations. This means that the image estimate is mainly
improved at the beginning of the algorithm. In particular, we see that the number of iterations of
the latter could be reduced by slightly relaxing the parameter εa. We also observe that the average
number of iterations is smaller and the decrease of (17) is less important when the amount of noise σ
increases. Notice finally that the estimation of the parameters is fairly robust to the observed scene.

5.5 Accuracy

In this section, we study the quality of the image estimate as well as the performance of the re-
construction algorithm with a varying amount of noise σ and on the same images as in Section 5.4.
For each level of noise, we generate noisy data according to this level and run the reconstruction
algorithm. Then, we measure the quality between the noise-free image and the restored image using
two metrics: PSNR (Peak Signal-to-Noise Ratio) and MSE (Mean Square Error) 3. Again, we remind
that the gray levels range between 0 and 1 in all the considered images.

The parameters β, σc, σw and wk are set with the same values as in Section 5.4. The results of
these experiments are summarized in Table 5 and illustrated in the Figures 5, 6, 7 and 8 for σ = 0.05,
σ = 0.1, σ = 0.2 and σ = 0.4, respectively.

Let us now analyze the obtained results. For a moderate level of noise (σ = 0.05 and σ = 0.1),
the algorithm behaves well: large flat areas are well denoised; thin structures and textures are well

3These measures are described at http://megawave.cmla.ens-cachan.fr/stuff/guid3/node256.html#fmse.
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(a) σ = 0.05 (b) σ = 0.1

(c) σ = 0.2 (d) σ = 0.4

Figure 4: Convergence of the reconstruction algorithm for four different noise levels. On each figure,
the distance (‖θn − θ∗‖)n∈N (see equation (17)) between the estimated parameters θn and the true
parameters θ∗ is represented as a function of the iteration n. This experiment is for wk = 16.2,
σc = 0.81, σw = 0.07. The regularization parameter β is tuned by hand.

preserved even between Gaussian laser illumination domes where the knowledge about data is more
uncertain (see e.g. the “barbara” image and the “factory” image in Figure 6). The latter point is
important and is due to the fact that the Gaussian illumination domes are not too far from each
other in our application. For a larger level of noise (σ = 0.2 and σ = 0.4), large flat areas are well
smoothed yet (see e.g. the “cameraman” image in Figure 7) but textures disappear in the residues
(see e.g. the face in the “man” image of Figure 8). These observations are also confirmed by the
increase of the MSE and the decrease of the PSNR for all images in Table 5. Also, an important
point is that we choose to keep undesired and isolated pixels in Figure 8. Such pixels could be easily
removed by increasing β but would oversmooth the image estimate.

References

[BBFAC04] J. Bect, L. Blanc-Féraud, G. Aubert, and A. Chambolle. A L1-unified variational frame-
work for image restoration. Lecture Notes in Computer Science, 3024:1–13, 2004. Pro-
ceedings of European Conference on Computer Vision 2004.

[Ber03] D.P. Bertsekas. Nonlinear Programming. Athena Scientific, second edition, 2003.

17



Noise level Image name MSE PSNR

σ = 0.05

baboon 0.0023 25.7
barbara 0.0015 27.6
peppers 0.0008 30.7

cameraman 0.0008 30.8
lena 0.0008 30.5
man 0.0014 28.5
boat 0.0012 29.3

factory 0.0011 29.6

σ = 0.1

baboon 0.0051 22.3
barbara 0.0034 24.0
peppers 0.0020 26.7

cameraman 0.0020 26.8
lena 0.0020 26.4
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boat 0.0027 25.7

factory 0.0025 25.9

σ = 0.2

baboon 0.0092 19.7
barbara 0.0062 21.4
peppers 0.0039 23.8
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σ = 0.4

baboon 0.0134 18.0
barbara 0.0102 19.3
peppers 0.0079 20.7

cameraman 0.0080 20.8
lena 0.0076 20.7
man 0.0108 19.6
boat 0.0092 20.4

factory 0.0084 20.6

Table 5: Accuracy of the reconstruction algorithm on several grayscale images with a varying amount
of noise σ. In this experiment, we set σc = 0.81, σw = 0.07, wk = 16.2 and tune the regularization
parameter β by hand.
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Figure 5: From top to bottom: reconstruction of the images “baboon” (first and second rows) and
“lena” (third and fourth rows) with σ = 0.05. The leftmost and left images of the first and third
rows correspond resp. to the Gaussian laser illumination domes and to the partial available data,
represented in the same way than in Figure 2. The remaining images on these rows resp. correspond
to the image estimate and the error between the estimated and the ideal image. Detailed views of
partial laser shots (leftmost and left images) and the image estimate (right and rightmost images)
are provided on the second and fourth rows. Here, we set wk = 16.2, σc = 0.81, σw = 0.07 and
β = 5.0.
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Figure 6: From top to bottom: reconstruction of the images “barbara” (first and second rows) and
“factory” (third and fourth rows) with σ = 0.1. The leftmost and left images of the first and third
rows correspond resp. to the Gaussian laser illumination domes and to the partial available data,
represented in the same way as in Figure 2. The remaining images on these rows resp. correspond
to the image estimate and the error between the estimated and the ideal image. Detailed views of
partial laser shots (leftmost and left images) and the image estimate (right and rightmost images)
are provided on the second and fourth rows. Here, we set wk = 16.2, σc = 0.81, σw = 0.07 and
β = 2.3.

20



Figure 7: From top to bottom: reconstruction of the images “cameraman” (first and second rows)
and “boat” (third and fourth rows) with σ = 0.2. The leftmost and left images of the first and third
rows correspond resp. to the Gaussian laser illumination domes and to the partial available data,
represented in the same way than in Figure 2. The remaining images on these rows resp. correspond
to the image estimate and the error between the estimated and the ideal image. Detailed views of
partial laser shots (leftmost and left images) and the image estimate (right and rightmost images)
are provided on the second and fourth rows. Here, we set wk = 16.2, σc = 0.81, σw = 0.07 and
β = 1.5.
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Figure 8: From top to bottom: reconstruction of the images “peppers” (first and second rows) and
“man” (third and fourth rows) with σ = 0.4. The leftmost and left images of the first and third
rows correspond resp. to the Gaussian laser illumination domes and to the partial available data,
represented in the same way than in Figure 2. The remaining images on these rows resp. correspond
to the image estimate and the error between the estimated and the ideal image. Detailed views of
partial laser shots (leftmost and left images) and the image estimate (right and rightmost images)
are provided on the second and fourth rows. Here, we set wk = 16.2, σc = 0.81, σw = 0.07 and
β = 0.8.
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