Vincent Couturier

Marc-Philippe Huget

David Telisson

Patterns for Agent-based Information Systems: A Case Study in Transport

Introduction

Designing information systems is a complex task especially when these systems use agents to allow adaptability, cooperation and negotiation, and automatic behaviours. Difficulties arise due to the absence of understandable documentation associated with agent-based methodologies. These methodologies consider concepts defined implicitly and not explicitly requiring from engineers a good understanding of agent theory. This has as consequence an important learning curve for engineers trying to use agents for their information systems. This chapter proposes a collection of agent patterns to reduce time required to develop agent-based information systems.

We propose, in this chapter, to develop software patterns and to reuse them to design complex information systems such as the ones based on agents. According to Alexander (Alexander et al., 1977;Alexander, 1979), a pattern describes a problem, which occurs frequently in an environment as well as a solution that can be adapted for the specific situation. A software pattern (Beck & Cunningham, 1987) follows the same principle and offers a solution to developers when building software in a specific context. Different categories of software patterns exist as mentioned in Section 2 and here, we present in this chapter, examples of agent patterns for analysis, design and implementation. They are illustrated on our case study in transport: enriched traveller information. Thesepatterns are completed with reuse support patterns that help designing and building such agent-based information systems by guiding them among our collection of patterns.

The chapter is structured as follows. Section 2 presents the concept of pattern. Section 3 describes the categories of patterns dedicated to engineering Agent-based Information Systems (AIS) and the reuse process. Section 4 describes examples of such patterns. Section 5 illustrates these patterns on a transport information system example. Section 6 compares with previous works in literature. Finally, Section 7 concludes the chapter and draws perspectives.

The concept of pattern

Alexander introduced the concept of pattern in 1977 for the design and construction of homes and offices (Alexander et al., 1977;Alexander, 1979). This concept was adapted to software engineering and mainly to object-oriented programming by Beck andCunningham in 1987 (Beck &Cunningham, 1987). These patterns are called software patterns.

In Alexander's proposition, a pattern describes a problem, which occurs over and over again in an environment as well as a solution that can be used differently several times. A software pattern follows the same principle and can be seen as abstractions used by design or code experts that provide solutions in different phases of software engineering. A pattern can also be considered as a mean to capitalize, preserve and reuse knowledge and know-how.

Patterns can be divided into five categories: analysis patterns [START_REF] Coad | Object Models: Strategies, Patterns and Applications[END_REF][START_REF] Fowler | Analysis Patterns: Reusable Object Models[END_REF], architectural patterns (Buschmannet al., 1996), design patterns (Gamma etal., 1995), idioms--also known as implementation patterns-- [START_REF] Coplien | Advanced C++ Programming Styles and Idioms[END_REF], and process patterns (Ambler, 1998).

Analysis patterns are used to describe solutions related to problems that arise during both the requirement analysis and the conceptual data modeling phases. Among them, we can distinguish generic analysis patterns [START_REF] Coad | Object-Oriented Patterns[END_REF], which represent generic elements that can be reused whatever the application domain is. There exist as well analysis patterns for specific domains [START_REF] Hay | Data Model Patterns: Conventions of Thought,Dorset House[END_REF][START_REF] Fowler | Analysis Patterns: Reusable Object Models[END_REF] called domain-specific patterns or domain patterns. These patterns [START_REF] Fowler | Analysis Patterns: Reusable Object Models[END_REF] represent conceptual domain structures denoting the model of a business system domain rather than the design of computer programs. Fowler associates to domain patterns support patterns that show how domain patterns fit into information system architecture and how conceptual models turn into software. These patterns describe how to use domain patterns and to apply them to a concrete problem.

Architectural and design patterns are both related to the design process. Though, they differ in the level of abstraction where each one is applied. Architectural patterns express a fundamental structural organization schema for software systems and can be considered as templates for concrete software architectures [START_REF] Buschmann | Patternoriented software architecture: A system of patterns[END_REF]. Design patterns [START_REF] Gamma | Design patterns: Elements of reusable object-oriented software[END_REF] provide scheme to refine the subsystems or components of a software system and thus are more abstract (and of smaller granularity) than architectural patterns.

Idioms are used at code level and deal with the implementation of particular design issues.

Finally, some patterns, called process patterns (Ambler, 1998) describe a collection of general techniques, actions, and/or tasks for developing object-oriented software. Actions or tasks can themselves be software patterns.

We present in next section categories of patterns dedicated to develop Agent-based Information Systems and their reuse process.

Categories of patterns dedicated to agent-based information system engineering

Pattern categories

The first patterns applied for engineering Agent-based Information Systems are Agent Analysis Patterns. They define agent structure and design multiagent systems at a high level of abstraction. They can be applied to design agents with or without decision behaviours. Thus, the designer will be able to reuse these patterns to design agents for his/her IS at a high level of abstraction.

Patterns dedicated to architectural representation and design of AIS are AgentArchitectural Patterns and Agent Design Patterns.

The former has to be applied at the beginning of the design process and help defining the IS structural organization. They represent the different architectural styles for agent-based information systems which are means of capturing families of architectures and can be seen as a set of design rules that guide and constrain the development of IS architecture (levels, internal elements, collaborations between elements, etc.). Architectural styles depend on which architecture we choose: Market-based one, Subcontract-based one or Peer-to-Peer-based one.

Agent Design Patterns describe technical elements required to develop agent-based Information Systems. Analysis and conceptual models obtained by applying Agent Analysis Patterns are refined with behaviour, collaboration and software entities. Thus, the IS design model is obtained by adapting software elements specified in the design patterns solutions. Model Transformation Patterns help developers to build applications from design patterns and can be applied at the end of the design phase. They specify transformation rules to map design models to models specific to agent development frameworks such as JADE (Bellifemine et al., 2007) orMadkit [START_REF] Gutknecht | The MADKIT agent platform architecture[END_REF].

Reuse Support Patterns (RSP) are process patterns, which help developers navigating into a collection of patterns and reusing them. They describe, by using activity diagrams, a sequence of patterns to apply to resolve a problem. There exists RSPfor every category of patterns (analysis, architectural, design and model transformation).

The different patterns described here regarding the development cycle of an agentbased information system are shown on Figure 1.  The Relationship part is composed of the following fields: Uses (describes the relationship: "the pattern X is using the pattern Y in its solution"), Requires("the pattern X requires the pattern Y to be applied before"), Refines ("the pattern X refines the pattern Y if and only if the pattern Y solves the same issues than the pattern X") and Looks like ("the pattern X is a variant of the pattern Y").

Note: The different patterns presented here are reduced versions. We only describe the most important parts and fields required to understand what a pattern means. As a consequence, we remove the Example part, which is presented in Section 5.

Pattern reuse

The reuse of patterns dedicated to develop Agent-based IS consists in applying them during analysis, design and implementation phases.

First, developers analyze context and problem and should have to answer questions to decide which patterns have to be appliedand in which order. This activity can be favoured by using Reuse Support Patternswhich represent sequences of patterns that can be applied to develop Agent-based IS (See Table 1 for an example of RSP suited for navigating in our Analysis Pattern collection). They help to navigate into the pattern collection and to reuse them. Thus, developers adapt analysis, architectural or design pattern solution elements (instantiation) to represent the system they want to develop. Finally, the third activity aims at using Model Transformation Patterns to generate skeleton application from pattern instances.

It is worth mentioning that, here, reuse is realised by adaptation. Designers do not directly reuse the patterns but adapt the different solutions (instantiation) to their specific applications by modifying the level of abstraction given by the patterns. Moreover, as briefly depicted in the "Service Integration" RSP below, designers should have to answer questions to decide which patterns have to be applied. Another example is given in Table 1 where the "Restrict access to resources" pattern is used if and only if some policies are in use on resources.

Interface

Name Base Agent Design

Classification Reuse Support Pattern Rationale This pattern presents Agent Analysis Patterns that can be applied to develop a base agent. Here, a base agent is an agent that plays roles within organisations, lives in an environment and reacts to events in the environment, and optionally acts on resources (perception and action) if it has the associated permission.

Applicability Agent Analysis Pattern Collection ^ Base Agent

Solution Process

Designers first have to apply the pattern "Define system architecture", then the patterns "Define environment", "Define event", "Add behaviour" and "Create plan". After applying the "Create plan" pattern, it is possible either to terminate the process or to continue with the "Restrict access to resources" pattern depending on the necessity to have policies on resource access (a resource is for instance digital documents such as contracts, proposals, enterprise database, etc.). This decision is fuelled by considering the place of agents in the environment: do all agents access resources? Do some resources need to be kept private? Based on the answers, designers may decide to apply the "Restrict access to resources" pattern.

Note : only the "Define System Architecture" Analysis Pattern in this RSP is presented in Section 4. Relationships Uses "Define System Architecture", "Define Environment", "Define Event", "Add Behaviour", "Create Plan", "Restrict Access to Resources"Agent Analysis Patterns.

Table 1. Reuse Support Pattern "Base Agent Design" Several other reuse support patterns (RSP) are proposed in our approach to address specific needs. Amongst them, we can quote the "Service Integration" RSP. The "Service Integration" RSP helps designers integrating the notion of services and service-oriented architectures within the information system. In this particular RSP, the process is not limited to a set of patterns to apply in a given order but obliges designers to think about the overall enterprise Information Systems:  Do we need to agentify the services from the Information System?  Do we consider agents as a wrapper of services?  Do we need to present agent behaviours as services to Information Systems?  Do we need to provide access to external Information Systems and partners then requiring interoperability and the definition of ontologies?

Based on designer's answers, a specific process will appear from the complete activity diagram in the "Service Integration" RSP.

Moreover, we have developed a toolkit, which is based on our software patterns. It takes as input a Reuse Support Pattern, guides the developer--by asking questions-through the different patterns to be used, and finally generates code skeleton. The process is then not fully automated due to interactions with developer. Thus, s/he can complete and refine the generated code and run his/her agents on a targetplatform.

We present, in next section, Agent Patterns we designed to develop Agent-based IS.

Patterns for engineering Agent-based Information Systems

Patterns for the analysis phase

In following sections, we present patterns for the analysis phase of information systemsengineering, which are Agent Analysis Patterns.

Agent Analysis Patterns

The analysis patterns described below are generic ones used for building agentbased information systems at a high level of abstraction. Due to space restriction, we only present twoamong twelveanalysispatterns for building agents used in Information Systems.

Agent Analysis Pattern "Define System Architecture"

Interface Name Define System Architecture Classification Agent Analysis Pattern Rationale The aim of this pattern is to define the organisation and sub-organisations, their relations, and the roles played by agents in these organisations.

Applicability Designing agents ^ Information systems

Solution Model Participants This pattern describes the overall structure of the multiagent systemunderlying the IS. A multiagent system is here an Organisation possibly composed of suborganisations. Each (sub-) organisation is related to other (sub-) organisations by some OrganisationRelation. Agents play Role in these organisations. The Agent concept corresponds to the notion of agent defined in the agent theory [START_REF] Wooldridge | An introduction to Multi-Agent Systems[END_REF]. An agent is an autonomousand active entity, which asynchronously interacts with other agents and cooperates with others so as to solve a global problem. An agent is seen as an aggregation of Role. An agent is uniquely identified within the system. The Role concept describes a role that the agent will play. It defines a catalogue of behaviours played within the system. An association entitled plays links the Agent concept to the Role concept. This association has the following cardinalities: an Agent may have 1 or more roles, and a Role may be played by an agent. The Organisation concept defines the organisational structure used in the system. There could be a flat organisation or an organisation composed of sub-organisations. These InteractionOperand correspond to sequence of messages. Some InteractionConstraint may alter how InteractionOperand can be used. Finally, InteractionOperand are gathered within CombinedFragment and the semantics of these fragments is given by InteractionOperatorKind. These InteractionOperatorKind are alt (one InteractionOperand is selected based on InteractionConstraint), opt (an InteractionOperand is applied if the corresponding InteractionConstraint are satisfied else nothing is done) and loop (a CombinedFragment is applied over and over again as long as the InteractionConstraint are satisfied). Some ProtocolAttribute may be defined for the Protocol, they correspond to parameters for the protocol.

Relationship Requires Agent Analysis Pattern "Define Communication between Roles". Table 3. Agent analysis pattern "Define Protocol"

Patterns for the design phase

In this section, we present Agent Architectural and Design Patterns for the architectural and detailed design of AIS. These patterns have to be applied after analysis patterns described above.

Agent Architectural Patterns

We develop three architectural patterns related to the different architectures an AIS could have:  Pattern "Market-based AIS": a marketplace is defined with this pattern. A marketplace is composed of several proposersand several task managers. Task managerstry to find the best proposal for a service. Two approaches are possible to retrieve this best proposal: (1) A descending price auction or (2) A call for proposals.

 Pattern "Subcontract-based AIS": An AIS with subcontracts is a restricted version of the previous pattern "Market-based AIS". In this particular case, there is only one task managerand several proposers. The best proposal is found after a call for proposals.

 Pattern "Peer-to-Peer-based AIS": previous patterns impose to use a central server so as to store the address of the different task managersand proposers. This approach does not resist to the scalability problem and the bottleneck is located on querying the central server to retrieve the different task managersand proposers. In this pattern here, there is no central server and the different task managersand proposersknow each other via social networks. This kind of architecture copes with the scalability problem.

Below, we only present the pattern "Subcontract-based Agent-based Information System".

Note:

The different design and model transformation patterns described below are those required for building a Subcontract-basedAIS. Collaborations and communications within the architecture:

Interface

1. Proposers register their services within the yellow pages with the performative subscribe. 2. A task manager looks for proposers providing a specific service (here the service A) within the yellow pages with the performative search. It then retrieves their address within the white pages so as to contact them. 3. A Contract Net protocol [START_REF] Davis | Negotiation as a Metaphor for Distributed Problem Solving[END_REF]) is then used between proposers and task manager so as to find the best proposal for a specific requested service (here the service A).

Table 4. Agent Architectural Pattern "Subcontract-based Agent-based Information System".

Agent Design Patterns

The following patterns describe the different concepts needed for designing an Agent-based IS.We only present here twoexamples of such patterns. The Agent concept corresponds to the notion of agent defined in the agent theory [START_REF] Wooldridge | An introduction to Multi-Agent Systems[END_REF]. An agent is an autonomous and active entity, which asynchronously interacts with other agents and cooperates with others so as to solve a global problem. An agent is seen as an aggregation of Role. An Agent is defined as an abstract class from object theory since three operations mentioned below are abstract. An agent is uniquely identified in the system via the attribute id. Getter and setter operations are defined for the attribute id. Three other operations are defined abstract and have to be instantiated in the instance of this Agent. Activate() contains behaviours for initialising the agent. Run() is executed every time it is the turn of the agent to be executed. Finally, terminate() describes behaviours executed when ending the agent execution.

Agent Design

The Role concept describes a role that the agent will play. It defines a catalogue of behaviours played within the system. The Role concept defines an attribute name and its corresponding getter and setter operations. An association entitled plays links the Agent concept to the Role concept. This association has the following cardinalities: an Agent may have 1 or more roles, and a Role may be played by an agent.

The Organisationconcept defines the organizational structure used in the system.

There could be a flat organization or an organization composed of suborganisations. An attribute name and its corresponding getter and setter operations are associated to the Organisation concept.

An association belongsTo links the Organisation concept to the Agent concept. It expresses the fact that an agent may belong to several organizations and an organization has zero or more agents whatever their roles are.

The OrganisationRelation concept describes the relation between two organizations. Finally, the Platform concept defines the platform and the different services provided by this one. These services are present by the operations available on the Platform concept: connection to the platform, disconnection from the platform, send a message, receive a message saved on the platform, perceive for sensing traces in the environment, and leave for adding traces in the environment. Relationships Requires Agent Analysis Pattern "Define System Architecture". Interactions between roles are either based on pheromones left in the environment (we speak about reactive interactions) or based on communicative acts as humans do (we speak then about cognitive interactions). In this design pattern, we consider cognitive interactions through protocols. Protocols help directing the conversations between roles since only messages from the protocol are granted when agents interact with this protocol. This design pattern is FIPA-compliant (FIPA, 2002) and is based on the UML 2.x sequence diagram specifications. We just remove some classes that are nonsense for agents.

The following concepts are present in this design pattern:

The Role concept describes a role that the agent will play. It defines a catalogue of behaviours played within the system. The Role concept defines an attribute name and its corresponding getter and setter operations.

The Protocol concept defines a protocol. It contains all the sequences of messages allowed for this protocol. The Protocol concept defines an attribute name and its corresponding getter and setter operations.

A protocol may contain some ProtocolAttribute. These attributes correspond to local attributes required during the execution of the protocol. It could be for instance the set of recipients of a specific message. The ProtocolAttribute concept defines an attribute as a name and a value.) and a content on which this performative is applied. The other attributes are for administrative duties: replywith and inreplyto correspond to identifier respectively for the sender and the recipient. Language denotes the language in which the content parameter is expressed. Ontology defines which ontology is used for this message. Finally, encoding denotes the specific encoding of the content language expression.

Relationships Requires

Agent Analysis Pattern "Define Protocol" Table 6. Agent Design Pattern "FIPA-based Interaction with Protocol".

Patterns for the implementationphase: Model Transformation Patterns

We define several Model Transformation Patterns for developing AIS for different architectures (subcontract-based architectures, market-based ones and peer-to-peerbased ones) and for different execution platforms (JADE and Madkit). We only present here in Table 7, a short version---without method transformations---of a Model Transformation Pattern for Madkitimplementation of a subcontract-based AIS.

Interface

A Case Study

The objectives of our case study are to provide enriched traveller information. This enriched traveller information is in fact the collaboration of two different tools: (1) A route planner considering usual travel means such as buses and undergrounds but also taxis, personal vehicles, rent bicycles and walking, and (2) An adorned travel with points of interests related to traveller preferences (cultural interests, food preferences, etc.). The process of proposing a route to traveller is as followed. After entering origin and destination, the information system composed of all the different operators (bus, underground, taxi, and rent bicycle) cooperate to find the best route proposals based on the preferences (cost, duration, number of connections, etc.) and requirements (no stairs, disabled access, ease of use, etc.) of the traveller. Then, the system prunes all the proposed routes based on traveller requirements. Finally, points of interest providers adorn the routes with contextual information such as restaurants matching the traveller's food preferences if the route is during meal hours, shops or monuments, etc. This information system exhibits some specific features that are compatible with an agent-based system. First of all, route planning is not realised according a client/server approach. Every operator is responsible of its data and is the only one to know how to deal with scheduled and/or unexpected events (delays, traffic jam, disruptions, etc.). As mentioned above, operators collaborate to find routes from origin to destination.

A second reason is the openness of the system. The list of operators (especially taxis) and points of interest providers is subject to evolve, especially during execution. The system should be able to take account of appearing and disappearing providers.

Finally, a third reason is the necessity for the information system to present some adaptability mechanisms. A route may change due to unexpected events or after traveller requests. The system should be able to modify the proposals during execution.

For all these reasons, an agent-based system is well-adapted since adaptability, openness, and context-aware are part of the intrinsic features of agents. Weinvite the readertoconsult [START_REF] Wooldridge | An introduction to Multi-Agent Systems[END_REF] fordetailsonagent-basedsystemsand theircharacteristics.

Figures 2 and3 give the instantiation for our case study of the two analysis patterns presented in Section 4.1. UserAgenthas attributes corresponding to the travel: there are an origin, a destination, a maximum amount s/he would like to pay and a maximum duration for the travel. Preferences and Requirements contain a description attribute describing the preferences or the requirements the user has.

TravelPlanningAgent has three attributes: queries containing the different user queries the enriched travel planning system has to satisfy, plannedTravels containing the raw travel planning answering user queries and finally enrichedTravels contain the list of enriched travels with points of interest to send to users.

POIAgent has a unique attribute description describing the point of interest (position, description, etc.) for inclusion in travel plans.

TransportOperatorAgent has an attribute TransportOperatorDB corresponding to the database of all the details about the journeys proposed by the operator. When the operator is a rent bicycle one, the database contains the different locations of rent and where bicycles are. TravelPlanningAgent then leaves in the environment a travel from origin to destination but without schedule. This empty travel is perceived by TransportOperatorAgent that tries to complete it. Every TransportOperatorAgent tries to update this travel or to propose an alternative. When this travel was considered by all TransportOperatorAgent, it turns into a planned travel. The TravelPlanningAgent perceives it and turns it into an enriched travel to let POIAgent to perceive it.

POIAgent tries to update it with points of interest and leaves the enriched travel plans in the environment. Finally, Customisation prunes the different proposals based on user's preferences and requirements and informs UserAgent of the best proposals. Patterns for Information Systems engineering (for instance, patterns for cooperative IS [START_REF] Couturier | L'ingénierie des systèmes d'information coopératifs : une approche à base de patterns[END_REF] [START_REF] Saidane | Formalisation de Familles d'Architectures Logicielles Coopératives : Démarches, Modèles et Outils[END_REF], e-bidding applications (Jureta et al., 2005;[START_REF] Couturier | Engineering agent-based information systems: a case study of automatic contract net systems[END_REF], distributed IS [START_REF] Renzel | Client/Server Architectures for Business Information Systems -A Pattern Language[END_REF], enterprise application architecture [START_REF] Fowler | Patterns of enterprise application architecture[END_REF], etc.) are generally domain-dependent and/or do not deal with advanced information systems requiring adaptability, cooperation or negotiation such as agent-based ones.

On the other hand, the concepts of agent technology, which include, among others, autonomy, proactivity, reactivity, social behaviours, adaptability and agents, differ from those of traditional software development paradigms. The various concepts and the relationships among them generate different agent-oriented software engineering problems for which agent-oriented patterns have been written.

According to [START_REF] Oluyomi | A comprehensive view of agentoriented patterns[END_REF], numerous efforts have been made by agent software practitioners to document agent-oriented software engineering experiences as patterns and they establish a listing of ninety-seven agent-oriented patterns gathered from literature. According to this first point of view, numerous works such as [START_REF] Kendall | Patterns of intelligent and mobile agents[END_REF]) (Aridor & Lange, 1998)feature agent-oriented concepts as object-oriented ones and adapt existing object-oriented patterns to their needs. Thisis not suited for agentbased system engineering due to the differences between agent technology concepts and object ones and their implementation languages.

According to the second point of view, existing agent patterns are not designed to capture all the different phases and processes of agent-oriented software engineering. Indeed, proposals ([START_REF] Hung | Agent Usage Patterns: Bridging the Gap Between Agent-Based Application and Middleware[END_REF], [START_REF] Tahara | Agent system development method based on agent patterns[END_REF], [START_REF] Sauvage | Conception de systèmes multi-agents: un thésaurus de motifs orientés agent[END_REF], [START_REF] Schelfthout | Agent Implementation Patterns[END_REF]to name a few) focus either only on the implementation phase of development or only on some aspects of the design phase but scarcely to analysis. Other works are based on implementation of only a particular application of agent technology, for example, mobile agents (Aridor and Lange, 1998), or reactive or cognitive ones [START_REF] Meira | An Agent Pattern for a More Expressive Approach[END_REF] for instance.It is worth mentioning that it is difficult to reuse these proposals to realise a complete agentbased information system: either the proposals only deal with a specific agent type, or the collection of patterns is partial and not homogeneous enough.

We add a third classification: proposals specifying patterns with or without providing tools or a methodology to help reusing these patterns. Some patterns underlie methodologies such as Tropos [START_REF] Do | A Framework for Design Patterns for Tropos[END_REF] or PASSI [START_REF] Cossentino | Patterns Reuse in the PASSI Methodology[END_REF]. These methodologies aim at guiding developers when using patterns to develop agent-based systems. However, Tropos only proposes patterns for detailed design. These patterns focus on social and intentional aspects frequently present in agent-based systems. Patterns in PASSI methodology deal with detailed design and implementation. One hurdle in PASSI is this is not trivial selecting the appropriate patterns especially for new agent developers. Most of works do not propose a methodology or a guide to reuse patterns. Thus, it becomes difficult for a developer to reuse these proposals to design and implement an agent-based information system:  Proposed patterns are too generic and do not match with information systems issues.  It is very difficult for non-agent software practitionersto easy understand the different aspects of agent based systems development.  Users do not have adequate criteria to search for suitable patterns to solve their problems (lack of methodology).  Allstages of software development are not covered and combination of agentoriented patterns written by different authors, into a well-defined pattern collection is nearly impracticable.

Our proposal,which covers all the phases ofagent-based information systems engineering, is suitable for each kind of agent (agents with or without decision behaviours) and addresses information systems issues such as business rules, legacy systems, services and enterprise resources, for instance. We also propose a methodology based on our Reuse Support Patterns.

Conclusion

This chapter describes our work about specifying and reusing patterns so as to engineer Agent-based Information Systems. The different patterns presented here represent the building blocks which, after adaptation, can be used to develop analysis and design models for a new IS, define the architecture and ease implementation. The patterns cover all the phases of IS engineering and a methodology,based on our Reuse Support Patterns, is provided to favour their reuse.We have also developed a toolkit so as to ease engineering Information System applications and specifically, intelligent transport systems. This toolkit is based on our software patterns. It takes as input a Reuse Support Pattern, guides the developerthrough the different patterns to be used, and finally generates code skeleton.

Our approach and the different patterns are experimentally validated on a specific IS for transportation. Reusing the patterns help eliciting the business entities (analysis model), architecting the system (the architecture is a subcontract-based one since there is a unique task manager and several proposers), defining the design model and generating code skeleton for the Madkit platform.

Future work aims at reusing the different patterns presented here so as to develop other Enterprise Information Systems (schedule management for instance).

Finally

 , we have specified two kinds of support patterns: Model Transformation Patterns and Reuse Support Patterns.

Fig. 1 .

 1 Fig. 1. The use of the different proposed patterns in the development cycle of an agent-based IS. The description of our software patterns is composed of four parts:  The Interface part contains the following fields: Name and Classification (used to categorize the pattern: Analysis pattern, Design pattern, etc.), Context (defines the conditions under which the pattern could be applied), Rationale (gives which problems this pattern addresses) and Applicability (gives the scope of this pattern:Information Systems in our case).  The Solution part when proposed as a model-based solution is composed of the following fields: Model (an agent pattern presents a solution as a UML class diagram and/or a UML sequence diagram), Participants (explanation of the different elements defined on the diagram) and Consequences (advantages and drawbacks of this pattern to help developers deciding whether this pattern is the correct one). When the Solution part is proposed as a process-based solution (for instance for Reuse Support patterns), the Solution part is composed of a unique field entitled Process defined as a UML activity diagram.  The Example part describes one or more illustrations on how to use this pattern. The Relationship part is composed of the following fields: Uses (describes the relationship: "the pattern X is using the pattern Y in its solution"), Requires("the pattern X requires the pattern Y to be applied before"), Refines ("the pattern X refines the pattern Y if and only if the pattern Y solves the same issues than the pattern X") and Looks like ("the pattern X is a variant of the pattern Y").

 This pattern defines the protocol with the messages between roles. Applicability Designing agents ^ Information systems Solution Model Participants The different roles present in the Protocol are denoted by Lifeline. Lifeline specifies when a Role enters the conversation and when it leaves it. Message are exchanged between Lifeline and are gathered within InteractionOperand.

 Name Subcontract-based Agent-based Information System Classification Agent Architectural Pattern Rationale This pattern gives the structure of a subcontract-based information system with a unique Task Managerand several Proposers. Applicability Designing agents ^ Information systems Solution Model Participants This kind of AIS architecture considers three layers: theTask Manager layer, the Platform layer and theProposer layer. The Task Manager layer contains one unique Task Managerplaying the role of task manager in AIS. It is the one that requests services from Proposer.The Proposer layer contains one or more Proposerplaying the role of proposers who provide services.The Platform layer contains two services proposed to the different task manager and proposers, that is the white pages and the yellow pages. White pages give the address of the different entities within the system and yellow pages return the service proposed by proposers.

 Pattern "Platform-based System Architecture" Interface Name Platform-based System Architecture Classification Agent Design Pattern Rationale This pattern describes the overall structure of the system taking count of the platform. Applicability Designing agents ^ Information systems Solution Model Participants This pattern describes the overall structure of the multiagent system underlying the IS from the design point of view. A multiagent system is here an Organisation possibly composed of sub-organisations. Each (sub-)organization is related to other (sub-) organizations by some OrganisationRelation. Agents play Role in these organizations.

 Name Madkit Implementation of a subcontract-based Agent-based Information System Classification Model Transformation Pattern Rationale This pattern performs the model transformation from a design model of a subcontract-based Agent-based Information System to the Madkit platform. Applicability Implementing agents ^ Subcontract-based Information Systems Solution Model Note: In this pattern and due to space restriction, we do not consider the OrganisationRelation concept since it is not mandatory for a subcontract-based AIS. Participants This pattern ensures the transformation from a designmodel of an AIS to a set of classes for the Madkit platform. Agents on the Madkit platform are defined as a specialization of theAbstractAgent class provided by the Madkit platform. The AbstractAgent class from the Madkit platform provides the different methods required for the Agent lifecycle (creation, invocation, execution and deletion). These methods correspond to the ones proposed in the Agent concept. The set of attributes and methods from the Role concept is added to the Task managerand Proposerclasses. The Task manager and Proposer are the two unique roles in a subcontract-based AIS according to the "Subcontract-based Agent-based Information System" architectural pattern (see

Figure 2

 2 Figure 2 describes the complete system architecture with one organisation Traveller Information Organisation, one sub-organisation Transport Operator Organisation, five roles Traveller Information, Travel Planning, Customisation, POI Integration and Collaborative Travel Proposal, and four agents User Agent, Travel Planning Agent, POI Agent, and Transport Operator Agent.Each agent Transport Operator Agent represents a means to travel inside a city: underground if available, bus, taxi, rent bicycle, personal vehicle or by foot. These agents play the role Collaborative Travel Proposal since they try to collaborate so as to complete the travel from origin to destination. All these agents are part of the Transport Operator Organisation.The Transport Operator Organisation is part of the Traveller Information Organisation, which carries information to travellers.User Agent represents the traveller requesting the system. Travel Planning Agent is responsible to ask for a list of journeys to Transport Operator Agent. Travel Planning Agent has two roles: (1) Travel Planning to request journeys and (2) Customisation to prune the journeys based on user preferences and requirements. This role sends journeys back to the User Agent. POI Agent represents point of interests within the city. These agents intervene when a journey is completed and add some points of interest based on user preferences. Points of interest might be restaurants, monuments, shops to name a few.

Fig. 2 .

 2 Fig.2. Instantiation of the "Define System Architecture" Agent Analysis Pattern Figure 3 presents the protocol (instantiation of the "Define Protocol"analysis

Fig. 3 .

 3 Fig. 3. Instantiation of the "Define Protocol" Agent Analysis Pattern Figures 4 and 5 give the instantiation for our case study of the two design patterns presented in Section 4.2. The developer of atransport information systemhas to apply the agent analysis and architectural--not presented here--patterns before.

Figure 4

 4 Figure 4 corresponds to Figure 2 after refining analysis model, i.e.inserting some attributes and operations. All the operations (except for the Platform concept) are getter and setter operations. We define below the different attributes for the concepts on this pattern:

Fig. 4 .

 4 Fig. 4. Instantiation of the "Platform-based System Architecture" AgentDesign Pattern Figure 5 presents the sequence diagram corresponding to the situation where a user asks for a travel from an origin to a destination. This figure is the instantiation of the "FIPA-based Interaction with Protocol" Agent Design Pattern. His/her UserAgent leaves the query in the environment. This insertion generates an event, a TravelPlanningAgent can perceive. If this UserAgent is a newcomer in the system, the TravelPlanningAgent asks the UserAgent about its user's preferences and requirements.

Fig. 5 .

 5 Fig. 5. Instantiation of the "FIPA-based Interaction with Protocol" AgentDesign Pattern

 Oluyomi et al. classify agent-oriented patterns based on the definition of the software tasks/concepts of agent technology and the stages of development.

Table 2 .

 2 Agent Analysis Pattern "Define System Architecture"

4.1.1.2. Agent Analysis Pattern "Define Protocol"

	Interface
	Name
	Define Protocol
	Classification
	Agent Analysis Pattern
	Context
	This pattern requires applying the "Define Communication between Roles" pattern
	before.
	Rationale

Table 5 .

 5 Agent Design Pattern "Platform-based System Architecture"

4.2.2.2. Agent Design Pattern "FIPA-based Interaction with Protocol"

	Interface
	Name Participants
	FIPA-based Interaction with Protocol
	Classification
	Agent Design Pattern
	Rationale
	This design pattern describes the notion of cognitive interaction in terms of protocols
	within roles. This interaction is FIPA-compliant.
	Applicability
	Designing agents ^ Information systems
	Solution
	Model

 The corresponding getter and setter operations are defined too. The different roles are denoted by the Lifeline concept in the protocol. Since this protocol definition is based on UML 2.x sequence diagram specification, a protocol is decomposed into CombinedFragment. Each CombinedFragment has an associated InteractionOperatorKind from the following list: alt, opt and loop. Alt denotes an alternative between several InteractionOperand. One and only one alternative will be chosen. Opt denotes an option on an InteractionOperand. This InteractionOperand is executed if and only if the conditions-represented by InteractionConstraint-are satisfied. Finally, loop denotes the execution of a set of messages as long as the conditions are satisfied. The Message concept is the concept following the FIPA definition. It contains a set of attributes and their getter and setter operations. Sender, recipient, performative and content denote from whom the message is sent to whom. A message is composed of two parts: a performative depicting the verb of the communicative act (inform, request, etc.

Table 4

 4 Rule 2 specifies that roles agents have, are taken within the activate() operation of the corresponding agent.

	Relationships
	Uses
	Agent Design Pattern "Platform-based System Architecture".

). Two rules are added for model transformation. Rule 1 expresses that organizations are created within agents in the activate() operation. Agents are responsible to create the organizations.

Table 7 .

 7 Model Transformation Pattern "Madkit Implementation of a Subcontractbased Agent-based Information System"

 Alexander, C.; Shikawa, S.; Silverstein, M.; Jacobson, M.;Fiksdahl-King, I., & Angel, S. (1977). A pattern language: towns, buildings, construction, Oxford University Press, ISBN 0195019199, New York Alexander, C. (1979). The timeless way of building, Oxford University Press, ISBN 0195022483, New York Ambler S.W. (1998).Process patterns: building large scale systems using object technology, ISBN 0521645689, Cambridge University Press Aridor, Y.& Lange, D.B. (1998). Agent Design Patterns: Elements of Agent Application Design, Proceedings of the second international conference on autonomous agents, ISBN 0897919831 Beck, K.& Cunningham, W. (1987). Using pattern languages for object-oriented programs, technical report CR-87-43, Computer Research Laboratory, Tektronix Bellifemine, F.L.; Caire, G.& Greenwood, D. (2007). Developing Multi-Agent Systems with JADE, Wiley, ISBN 0470057475, New York

We focus in this chapter on how designing and building the transport information system responsible to provide enriched traveller information.