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November 29th, 2012

UNLOCKING THE STANDARD MODEL

III . 2 GENERATIONS OF QUARKS : CALCULATING THE CABIBBO ANGLE

B. Machet 1 2

Abstract: Maximally extending the Higgs sector of the Glashow-Salam-Weinberg model by including all scalar

and pseudoscalar J = 0 states expected for 2 generations of quarks, I demonstrate that the Cabibbo angle is

given by tan2 θc =

1
m2

K

− 1
m2

D

1
m2

π
− 1

m2
Ds

≈ m2
π

m2
K

(
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K
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π

m2
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)

.

PACS: 02.20.Qs 11.15.Ex 11.30.Hv 11.30.Rd 11.40.Ha 12.15.Ff 12.60.Fr 12.60.Rc

1 Introduction

In [1] and [2], I proposed to minimally extend the Glashow-Salam-Weinberg (GSW) model [3] by maximally

enlarging its Higgs sector, including in there all J = 0 scalar (and pseudoscalar) states that can be expected for a

given number of generation of quarks. The 8N2 such states, transforming like q̄iqj or q̄iγ
5qj composite operators

and suitably normalized can be divided into 2N2 quadruplets which are all in one-to-one correspondence with

the complex Higgs doublet of the GSW model [4] 1. The works [1] and [2] were dedicated to the restrictive case

of 1 generation. Here I focus on the 2-generations case, but only present the calculation of the Cabibbo angle,

leaving a more detailed exposition to a longer work [5].

2 Laws of transformation and isomorphism

2.1 The complex Higgs doublet of the Glashow-Salam-Weinberg model

If, instead of the customary form H =





χ1 + iχ2

χ0 − ik3



 involving the 4 reals fields χ0, χ1, χ2, k3 = −iχ3, the

complex scalar doublet H of the GSW model is written

H =





h1 − ih2

−(h0 + h3)



 , (1)

1LPTHE tour 13-14, 4ème étage, UPMC Univ Paris 06, BP 126, 4 place Jussieu, F-75252 Paris Cedex 05 (France),

Unité Mixte de Recherche UMR 7589 (CNRS / UPMC Univ Paris 06)
2machet@lpthe.jussieu.fr
1Some normalization factors are erroneous in [4] but have been corrected here.
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the laws of transformation of its h0, hj , j = 1, 2, 3 components by the group SU(2)L with generators T i
L, i =

1, 2, 3 write

T i
L . h

j = − 1
2

(

i ǫijkh
k + δij h

0
)

T i
L . h

0 = − 1
2 h

i
(2)

Acting in the space of quark flavors with dimension 2N = 4, the three SU(2) generators can be represented by

T 3 =
1

2





I

−I



 , T+ = T 1 + iT 2 =





I



 , T− = T 1 − iT 2 =





I



 , (3)

where I is the N ×N = 2 × 2 identity matrix. So doing, we realize an embedding of SU(2)L and/or SU(2)R

into the chiral group U(2N)L × U(2N)R.

2.2 Composite Higgs doublets

We now act with this chiral group on composite operators of the form ψ̄Mψ and ψ̄γ5Mψ, where ψ is the 2N -

vector of flavor quarks ψ = (u, c, d, s)T and M is any 2N × 2N(= 4× 4) matrix.

(UL × UR) . ψ̄
1 + γ5

2
Mψ = ψ̄ U−1

L M UR

1 + γ5
2

ψ,

(UL × UR) . ψ̄
1− γ5

2
Mψ = ψ̄ U−1

R M UL

1− γ5
2

ψ. (4)

Writing left and right transformations of the group as

UL,R = e−iαiT
i
L,R , i = 1, 2, 3 (5)

eq. (4) entails

T j
L . ψ̄Mψ = −1

2

(

ψ̄ [T j,M]ψ + ψ̄ {T j,M} γ5ψ
)

,

T j
L . ψ̄Mγ5ψ = −1

2

(

ψ̄ [T j,M] γ5ψ + ψ̄ {T j,M}ψ
)

,

T j
R . ψ̄Mψ = −1

2

(

ψ̄ [T j,M]ψ − ψ̄ {T j,M} γ5ψ
)

,

T j
R . ψ̄Mγ5ψ = −1

2

(

ψ̄ [T j,M] γ5ψ − ψ̄ {T j,M}ψ
)

. (6)

Let us consider the following set of 2N2 = 8 quadruplets (M± = M
1±i2)

ψ̄
(

M
0, γ5M3, γ5M+, γ5M−

)

ψ (7)

and

ψ̄
(

γ5M0,M3,M+,M−
)

ψ, (8)

in which

M
0 =





M 0

0 M



 ,M3 =





M 0

0 −M



 ,M+ = 2





0 M

0 0



 ,M− = 2





0 0

M 0



 , (9)
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M being any N ×N = 2 × 2 real matrix. Denoting generically these quadruplets ∆ and their the components

(∆0,∆3,∆+,∆−), their laws of transformations by SU(2)L are given by (2), in which h0, hi has been replaced

by ∆0,∆i, while they transform by SU(2)R according to

T i
R .∆

j = − 1
2

(

i ǫijk∆
k − δij ∆

0
)

,

T i
R .∆

0 = + 1
2 ∆

i.
(10)

We have therefore found 2N2 “composite” quadruplets isomorphic to the complex doublet of the GSW model.

They split into N2 of the type (s0,~p) and N2 of the type (p0,~s), in which s stands for “scalar” and p for

“pseudoscalar. These two subsets are transformed into each other by parity (the corresponding generator being

IL or IR). Their 8N2 components span the whole set of scalar and pseudoscalar J = 0 composite states that can

be “built” with 2N quarks. In this sense, this extension represents the maximal possible extension of the Higgs

sector of the GSW model.

2.3 Normalization

All composite operators that have been defined above having dimension [mass]3, the quadruplets need to be

suitably normalized. To this purpose we introduce 2×2N2 parameters corresponding to the vacuum expectations

values (VEV’s) of, respectively:

* the scalar neutral composite operator of dimension [mass]3 occurring in each quadruplet, which can only be

s0 or s3; this VEV we call µ3 in the first case and µ̂3 in the second case, with an index that labels the quadruplet

under concern;

* the corresponding scalar “Higgs” field with dimension [mass]; we call it v√
2

for an s0 and v̂√
2

for an s3, with

an index X,H,Ω or Ξ labeling the quadruplet under concern.

We thus consider hereafter the following N2 = 4 (s0,~p) quadruplets

X =
vX√
2µ3

X

1√
2
ψ̄

































1

0

1

0

















, γ5

















1

0

−1

0

















, 2γ5

















1

0

















, 2γ5

















1

0

































ψ

= (X0, X3, X+, X−), with µ3
X =

< ūu+ d̄d >√
2

,

(11)

H =
vH√
2µ3

H

1√
2
ψ̄

































0

1

0

1

















, γ5

















0

1

0

−1

















, 2γ5

















0

1

















, 2γ5

















0

1

































ψ

= (H0, H3, H+, H−), with µ3
H =

< c̄c+ s̄s >√
2

,

(12)
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Ω =
vΩ√
2µ3

Ω

1

2
ψ̄

































1

1

1

1

















, γ5

















1

1

−1

−1

















, 2γ5

















1

1

















, 2γ5

















1

1

































ψ

= (Ω0,Ω3,Ω+,Ω−), with µ3
Ω =

< ūc+ c̄u+ d̄s+ s̄d >

2
,

(13)

Ξ =
vΞ√
2µ3

Ξ

1

2
ψ̄

































1

−1

1

−1

















, γ5

















1

−1

−1

1

















, 2γ5

















1

−1

















, 2γ5

















1

−1

































ψ

= (Ξ0,Ξ3,Ξ+,Ξ−), with µ3
Ω =

< ūc− c̄u+ d̄s− s̄d >

2
,

(14)

and their N2 parity transformed (p0,~s) quadruplets that we call X̂, Ĥ, Ω̂, Ξ̂. The latter are associated with the

VEV’s v̂X , v̂H , v̂Ω, v̂Ξ and

µ̂3
X =

< ūu− d̄d >√
2

, µ̂3
H =

< c̄c− s̄s >√
2

, µ̂3
Ω =

< ūc+ c̄u− d̄s− s̄d >

2
, µ̂3

Ξ =
< ūc− c̄u− d̄s+ s̄d >

2
.

(15)

We suppose that the VEV’s of pseudoscalar neutral composite operators vanish, which is certainly true at the

classical level (they may receive non-vanishing quantum corrections in a parity violating theory like this one, but

this is beyond the scope of this work).

This makes accordingly 2 × 2N2 parameters to determine, the 2N2 VEV’s v, v̂ of the s0, s3’s and the 2N2

VEV’s µ3, µ̂3 of the neutral scalar composite operators < q̄iqj >.

3 The Yukawa and kinetic Lagrangians

3.1 Overview

Yukawa couplings, originally devised to trigger fermion mass terms, are built so as to be invariant by the (electro-

)weak group. They are not invariant by the chiral groupU(2N)L×U(2N)R, which also makes them suitable to

trigger, through low energy theorems, the masses of J = 0 scalar and pseudoscalar mesons. The scalar potential

is chosen to be U(2N)L × U(2N)R chirally invariant such that all these states would be true Goldstones in

the absence of Yukawa couplings and only get “soft” masses in their presence, by the effect of chiral symmetry

breaking (since the weak group is a subgroup of the chiral group, weak and chiral breaking are of course en-

tangled). The only exceptions are the 3 Goldstones of the spontaneously broken SU(2)L, which should remain

exactly massless and become the longitudinal components of the 3 massive W ’s. The scalar spectrum of the

theory is therefore composed of 8N2 − 3 pseudo-Goldstones bosons. Some are scalars, including the “Higgs”

boson and its avatars, the other are pseudoscalar mesons, which should fit those observed experimentally. The

latter should in particular reproduce well known symmetry patterns which, up to a good precision, fits them into

representations of a “rotated” flavor group (we call it rotated because these bound states are made with mass
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eigenstates and not flavor eigenstates). As far as scalar mesons are concerned, no particular symmetry structure

should be found, as observed in their somewhat chaotic mass spectrum.

It may be opportune here to mention that “low energy” considerations, like the PCAC (Partially Conserved Axial

Current hypothesis) and Gell-Mann-Oakes-Renner (GMOR) relations should be roughly trustable at mass scales

below a few GeV’s, which is much smaller that the weak scale. This is the case for 2 generations of quarks.

However, when the top quark comes into the game, they should be taken with great care. This is one of the

reasons why the realistic case of 3 generations is expected to be much more cumbersome that the one dealt with

in this note.

3.2 The Yukawa Lagrangian

3.2.1 Its exact expression

Writing the most general such terms would mean coupling the two SU(2)L quark doublets





uL

dL



 and





cL

sL





(and the 4 corresponding right-handed singlets) to the 2N2 = 8 available ∆ quadruplets (to generate masses for

d-type quarks) and to their corresponding 2N2 conjugate alter-ego’s iT
2

2 ∆∗ (to generate masses for the u-type

quarks). This amounts to 64 couplings for 2 generations.

We drastically reduce their number down to 16 by comparison with what has been done in the case of 1 generation

[1][2]. We write them as an “educated” quadratic sum over the N2 set of pairs of quadruplets made of one ∆i

and its parity-transformed ∆̂i, i = X,H,Ω,Ξ

LY uk =
∑

i=X,H,Ω,Ξ

−δi∆†
i [∆i]− δîi ∆

†
i [∆̂i]− κîi ∆̂

†
i [∆i]− δ̂i ∆̂

†
i [∆̂i]. (16)

In the formula (16), the ∆i’s and ∆̂i’s stand for the complex SU(2)L doublets of the type (1) expressed in terms

of quarks bilinears that are built from the quadruplets displayed in (11), (12), (13) and (14), and with their parity

transformed. The [∆]i’s and [∆̂i]’s are the (same) doublets but expressed in terms of “fundamental” fields with

dimension [mass]

[X ] =





[X1]− i[X2]

−([X0] + [X3])



, [H ] =





[H1]− i[H2]

−([H0] + [H3])



 ,

[Ω] =





[Ω1]− i[Ω2]

−([Ω0] + [Ω3])



, [Ξ] =





[Ξ1]− i[Ξ2]

−([Ξ0] + [Ξ3])



 ,

(17)

and their parity transformed.

So written, LY uk couples the 2N quarks to all (pseudo-)scalar fields in a very specific way, avoiding crossed

couplings among different pairs. Associated with the specific choice (11), (12), (13) and (14) for the quadruplets

(any linear combinations would a priori also be a suitable possibility), it has the property of maximally avoiding

flavor changing neutral currents (FCNC’s) at the classical level. Introducing a coupling likeH†[X ] would indeed

generate at low energy a 4-fermion coupling proportional to (ūγ5d)(s̄γ5c) which carries unwanted u → c and

d→ s transitions. The case of crossed Ω−Ξ couplings is less evident, apart from the fact that it would generate

classical transitions between K0 + K̄0 and K0 − K̄0. One can also argue that, formally, all quadruplets being

equivalent, there is no reason to cross-couple some of them and not the others. We will show in this work and in

the following ones that this choice leads to consistent results.
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3.3 The kinetic Lagrangian for the scalar sector

It is

Lkin =
∑

i=X,H,Ω,Ξ

Dµ[∆i]
†Dµ[∆i] +Dµ[∆̂i]

†Dµ[∆̂i], (18)

where Dµ is the covariant derivative with respect to the (electro-)weak group.

The mass of the W ’s is accordingly given by

m2
W =

g2

4

∑

i=X,H,Ω,Ξ

(v2i + v̂2i ). (19)

3.4 Choosing the quasi-standard Higgs doublet

We have to make a choice concerning which quadruplet contains the 3 true Goldstone bosons of the broken

SU(2)L. If we choose a (s,~p) quadruplets, 2 charged and 1 neutral pseudoscalar mesons will automatically

disappear from the spectrum. This is disfavored since all charged pseudoscalar mesons for 2 generations have

been observed. If we choose Ω̂ or Ξ̂, Ω̂0 or Ξ̂0 is doomed to become the longitudinalW 3
‖ ; this is not good either

since these are interpolating fields for neutral kaons and D mesons. We have accordingly to decide between X̂

and Ĥ . Since it looks better that the heaviest quark, the one that presumably enters into the composition of the

quasi-standard Higgs boson, is called c rather than u, we choose Ĥ as the “quasi-standard” Higgs doublet for 2

generations.

4 Masses and orthogonality of charged pseudoscalar mesons. The Cabibbo

angle

4.1 The rise of mixing

By the nature of the quadruplets Ω, Ω̂,Ξ, Ξ̂, their “self-coupling” occurring in the Yukawa Lagrangian triggers,

through the VEV’s vΩ, v̂Ω, vΞ, v̂Ξ, non-diagonal fermionic mass terms ūc, c̄u, d̄s, s̄d. It is then straightforward

to get an expression for the tan of twice the mixing angles θu and θd in terms of Yukawa parameters.

This is however not our concern here and we shall only introduce the two mixing angles θu and θd and the quark

mass eigenstates um, cm, dm, sm as usual by




u

c



 =





cu su

−su cu









um

cm



 ,





d

s



 =





cd sd

−sd cd









dm

sm



 . (20)

We shall then work at the mesonic level by using low energy theorems.

4.2 At low energy

The tools at our disposal are the statement that the divergences of axial currents of massive quarks are suitable

interpolating fields for the corresponding mesons (PCAC) [6] and the Gell-Mann-Oakes-Renner relation [7]

which evaluates 2-point functions of such divergences at low momentum 2.

They result, for example for the charged pions, into the 2 relations

i(mu +md)ūmγ
5dm =

√
2fπm

2
ππ

+,

(mu +md) < ūmum + d̄mdm >= 2f2
πm

2
π,

(21)

2See also [8] and [9] for general reviews.
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which evidently concern quark mass eigenstates.

With the help of these relations and equivalent, many entries of the composite quadruplets can be expressed

in terms of known “particles”, in particular charged pseudoscalar mesons π±,K±, D±, D±
s . This leads to the

bosonised forms of the kinetic terms and Yukawa Lagrangian, valid at low energy for meson physics.

They are the ones that we use in the following and from which we request the two conditions:

∗ no crossed terms between different charged pseudoscalar mesons should arise in the bosonised Yukawa La-

grangian;

∗ the ratios of the quadratic terms in the Yukawa and kinetic Lagrangian for these states provide their mass2.

We are careful to only use at this stage charged pseudoscalar mesons because they are experimentally observed

not to mix. This is not the case for neutral pseudoscalars, the mixing pattern of which can be quite complex (and

should be predictable in principle in our approach).

4.3 Notations

Because this short note does not aim at determining all parameters and because the solutions of the restricted set

of equations that we shall consider for our purpose are mostly expressed in terms of the following ones, we shall

define, for each pair of VEV’s ( v√
2
, µ3) or ( v̂√

2
, µ̂3), the ratio with dimension [mass]2

ν2i =

√
2µ3

i

vi
, ν̂2i =

√
2 µ̂3

i

v̂i
, i = X,H,Ω,Ξ. (22)

A priori < ūc >=< c̄u > and < d̄s >=< s̄d > such that µ3
Ξ = 0 and µ̂3

Ξ = 0. This does not mean however

that vΞ or v̂Ξ automatically vanishes.

We shall also use the following dimensionless parameters

bi =

(

vi
v̂H

)2

, b̂i =

(

v̂i
v̂H

)2

, i = X,H,Ω,Ξ, (23)

such that, by definition (in relation with our choice for the “quasi-standard” Higgs quadruplet that includes the 3

Goldstones of the spontaneously broken SU(2)L symmetry, see subsection 3.4)

b̂H = 1. (24)

We shall also use the parameters

1

ν̄2i
=

√
1− bi
ν2i

. (25)

4.4 Mesons quadratics : orthogonality

4.4.1 Starting conditions

Charged pseudoscalar mesons only occur in the “non-hatted” bosonised quadruplets X,H,Ω,Ξ. The non-

diagonal couplings between them in the bosonised Yukawa Lagrangian are proportional to the following ex-
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pressions that should accordingly vanish

(π −K) : δX
cucdcusd
ν4X

− δH
susdsucd
ν4H

− δΩ
2

su+dcu+d

ν4Ω
+
δΞ
2

su−dcu−d

ν4Ξ
= 0,

(π −D) : δX
cucdsucd
ν4X

− δH
susdcusd
ν4H

− δΩ
2

su+dcu+d

ν4Ω
− δΞ

2

su−dcu−d

ν4Ξ
= 0,

(π −Ds) : δX
susdcucd
ν4X

+ δH
susdcucd
ν4H

− δΩ
2

s2u+d

ν4Ω
+
δΞ
2

s2u−d

ν4Ξ
= 0,

(K −D) : δX
cusdsucd
ν4X

+ δH
sucdcusd
ν4H

+
δΩ
2

c2u+d

ν4Ω
− δΞ

2

c2u−d

ν4Ξ
= 0,

(K −Ds) : δX
cusdsusd
ν4X

− δH
sucdcucd
ν4H

+
δΩ
2

su+dcu+d

ν4Ω
+
δΞ
2

su−dcu−d

ν4Ξ
= 0,

(D −Ds) : δX
sucdsusd
ν4X

− δH
cusdcucd
ν4H

+
δΩ
2

su+dcu+d

ν4Ω
− δΞ

2

su−dcu−d

ν4Ξ
= 0.

(26)

4.5 Basics for the scalar potential. Connecting the δi’s.

Relations between δX , δH , δΩ, δΞ can be obtained by minimizing the effective potential Veff (∆i) obtained by

adding the bosonised Yukawa Lagrangian to the scalar potential V (∆i) suitably chosen. To this purpose, it

is most efficient to work in “flavor space”, which means here using the components ∆0
i ,∆

3
i ,∆

+
i ,∆

−
i of each

quadruplet ∆i and not the meson fields like π,K . . ..

There again, the choice of V is important. The most general scalar potential for 2N2 − 8 Higgs multiplets has a

large number of parameters. However, as we already mentioned, we choose it to be U(2N)L×U(2N)R chirally

invariant and such that no nonphysical transition between known particles, nor any unrealistic mass splitting

gets induced at the classical level. These requirements lead to an extremely simple form, like for the Yukawa

Lagrangian, which is

V = −m
2
H

2

∑

i

∆†
i∆i +

λH
4

∑

i

(∆†
i∆i)

2, i = X,H,Ω,Ξ, X̂, Ĥ, Ω̂, Ξ̂. (27)

It only involves 2 parameters, m2
H and λH . The effective potential Veff = V − LY uk therefore involves 18

unknown parameters.

Minimizing Veff at the values < X0 >= vX√
2
, < Ĥ3 >= v̂H√

2
. . . provides 2× 4 = 8 equations of the type

m2
H = λH

v2i
2

+ 2δi, . . . m2
H = λH

v̂2i
2

+ 2δ̂i, . . . (28)

One among them is special, the one related to the “quasi-standard” Higgs doublet Ĥ. That the 3 Goldstone

bosons of the broken chiral symmetry that it contains stay as the 3 true Goldstones of the spontaneously broken

SU(2)L requires in particular

δ̂H = 0, (29)

which entails

m2
H = λH

v̂2H
2
, (30)

and thus

λH =
4δi

v̂2H − v2i
=

4δ̂i
v̂2H − v̂2i

. (31)

Let us define δ such that 3

λH =
4δ

v̂2H
⇒ m2

H = 2δ. (32)

3The mass scale set by δ, tightly connected with the mass of the “quasi-standard” Higgs boson, can be evaluated by looking at neutral

kaons and D mesons. We do not need it here and therefore delay its presentation to [5].

8



Then

δi = δ(1− bi), δ̂ = δ(1 − b̂i). (33)

4.6 Solution of the equations (26)

Using the relations (33) between the δi and (25), δ 6= 0 can be factored out and equations (26) rewrite

(a) :
cucdcusd
ν̄4X

− susdsucd
ν̄4H

− 1

2

su+dcu+d

ν̄4Ω
+

1

2

su−dcu−d

ν̄4Ξ
= 0,

(b) :
cucdsucd
ν̄4X

− susdcusd
ν̄4H

− 1

2

su+dcu+d

ν̄4Ω
− 1

2

su−dcu−d

ν̄4Ξ
= 0,

(c) :
susdcucd
ν̄4X

+
susdcucd
ν̄4H

− 1

2

s2u+d

ν̄4Ω
+

1

2

s2u−d

ν̄4Ξ
= 0,

(d) :
cusdsucd
ν̄4X

+
sucdcusd
ν̄4H

+
1

2

c2u+d

ν̄4Ω
− 1

2

c2u−d

ν̄4Ξ
= 0,

(e) :
cusdsusd
ν̄4X

− sucdcucd
ν̄4H

+
1

2

su+dcu+d

ν̄4Ω
+

1

2

su−dcu−d

ν̄4Ξ
= 0,

(f) :
sucdsusd
ν̄4X

− cusdcucd
ν̄4H

+
1

2

su+dcu+d

ν̄4Ω
− 1

2

su−dcu−d

ν̄4Ξ
= 0,

(34)

or, equivalently, by recombining the equation

(a) + (f) : s2d

(

1

ν̄4X
− 1

ν̄4H

)

= 0,

(a)− (f) : s2dc2u

(

1

ν̄4X
+

1

ν̄4H

)

− s2(u+d)

ν̄4Ω
+
s2(u−d)

ν̄4Ξ
= 0,

(b)− (e) : s2uc2d

(

1

ν̄4X
+

1

ν̄4H

)

− s2(u+d)

ν̄4Ω
− s2(u−d)

ν̄4Ξ
= 0,

(b) + (e) : s2u

(

1

ν̄4X
− 1

ν̄4H

)

= 0,

(c)− (d) :
1

ν̄4Ω
− 1

ν̄4Ξ
= 0,

(c) + (d) : s2us2d

(

1

ν̄4X
+

1

ν̄4H

)

+
c2(u+d)

ν̄4Ω
− c2(u−d)

ν̄4Ξ
= 0.

(35)

The solution of (35) is

1

ν̄4X
=

1

ν̄4H
=

1

ν̄4Ω
=

1

ν̄4Ξ

(25)⇔
√
1− bX
ν2X

=

√
1− bH
ν2H

=

√
1− bΩ
ν2Ω

=

√
1− bΞ
ν2Ξ

. (36)

4.7 Mesons quadratics : masses

From the ratios of the terms quadratic in the meson fields in the effective potential and in the kinetic terms, using

(33) and (23) one gets

m2
π = δ

(1− bX) ( cucd
ν2
X

)2 + (1− bH) ( susd
ν2
H

)2 + (1− bΩ)
1
2 (

su+d

ν2
Ω

)2 + (1− bΞ)
1
2 (

su−d

ν2
Ξ

)2

( cucd
ν2
X

)2 + ( susd
ν2
H

)2 + 1
2 (

su+d

ν2
Ω

)2 + 1
2 (

su−d

ν2
Ξ

)2
,

m2
K = δ

(1− bX) ( cusd
ν2
X

)2 + (1− bH) ( sucd
ν2
H

)2 + (1− bΩ)
1
2 (

cu+d

ν2
Ω

)2 + (1− bΞ)
1
2 (

cu−d

ν2
Ξ

)2

( cusd
ν2
X

)2 + ( sucd
ν2
H

)2 + 1
2 (1−

cu+d

ν2
Ω

)2 + 1
2 (

cu−d

ν2
Ξ

)2
,

m2
D = δ

(1− bX) ( sucd
ν2
X

)2 + (1− bH) ( cusd
ν2
H

)2 + (1− bΩ)
1
2 (

cu+d

ν2
Ω

)2 + (1− bΞ)
1
2 (

cu−d

ν2
Ξ

)2

( sucd
ν2
X

)2 + ( cusd
ν2
H

)2 + 1
2 (

cu+d

ν2
Ω

)2 + 1
2 (

cu−d

ν2
Ξ

)2
,

m2
Ds

= δ
(1− bX) ( susd

ν2
X

)2 + (1− bH) ( cucd
ν2
H

)2 + (1− bΩ)
1
2 (

su+d

ν2
Ω

)2 + (1− bΞ)
1
2 (

su−d

ν2
Ξ

)2

( susd
ν2
X

)2 + ( cucd
ν2
H

)2 + 1
2 (

su+d

ν2
Ω

)2 + 1
2 (

su−d

ν2
Ξ

)2
,

(37)
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which rewrites, using (36)

m2
π =

δ/ν̄4X
(cucd/ν2X)2 + (susd/ν2H)2 + 1

2 (su+d/ν2Ω)
2 + 1

2 (su−d/ν2Ξ)
2
,

m2
K =

δ/ν̄4X
(cusd/ν2X)2 + (sucd/ν2H)2 + 1

2 (cu+d/ν2Ω)
2 + 1

2 (cu−d/ν2Ξ)
2
,

m2
D =

δ/ν̄4X
(sucd/ν2X)2 + (cusd/ν2H)2 + 1

2 (cu+d/ν2Ω)
2 + 1

2 (cu−d/ν2Ξ)
2
,

m2
Ds

=
δ/ν̄4X

(susd/ν2X)2 + (cucd/ν2H)2 + 1
2 (su+d/ν2Ω)

2 + 1
2 (su−d/ν2Ξ)

2
.

(38)

Eqs. (38) entail

δ

(

+
1

m2
π

+
1

m2
K

+
1

m2
D

+
1

m2
Ds

)

=
1

1− bX
+

1

1− bH
+

1

1− bΩ
+

1

1− bΞ
,

δ

(

+
1

m2
π

− 1

m2
K

+
1

m2
D

− 1

m2
Ds

)

= c2d

(

1

1− bX
− 1

1− bH

)

,

δ

(

+
1

m2
π

+
1

m2
K

− 1

m2
D

− 1

m2
Ds

)

= c2u

(

1

1− bX
− 1

1− bH

)

,

δ

(

+
1

m2
π

− 1

m2
K

− 1

m2
D

+
1

m2
Ds

)

= c2uc2d

(

1

1− bX
+

1

1− bH

)

− c2(u+d)

1− bΩ
− c2(u−d)

1− bΞ
.

(39)

4.8 The Cabibbo angle

From the second and third equations of (39) one gets, independently of the scale δ

c2u − c2d
c2u + c2d

≡ tan(θd + θu) tan(θd − θu) =

1
m2

K

− 1
m2

D

1
m2

π
− 1

m2
Ds

, (40)

which vanishes either at the chiral limit mπ → 0 or when mK = mD .

By the freedom to make an arbitrary flavor rotation on (u, c) quarks, one can align flavor and mass eigenstates

in this sector and, therefore, tune θu → 0. θd becomes then the Cabibbo angle θc which is given by

tan2 θc =

1

m2
K

− 1

m2
D

1

m2
π

− 1

m2
Ds

≈ m2
π

m2
K

(

1− m2
K

m2
D

+
m2

π

m2
Ds

)

q.e.d. (41)

Numerically, it corresponds to θc ≈ .27, to be compared with the measured ≈ .23.

5 Conclusion and prospects

With the example of the Cabibbo angle, we have shown that the extension that we propose for the GSW model

allows calculations that have long been sought for. 4. This angle we determined from the sole physical data

concerning the masses and orthogonality of the 4 types of charged pseudoscalar mesons π±,K±, D± and D±
s ,

such that we had only to exploit a small part of the physical information available concerning pseudoscalar

mesons.

While the Higgs sector of the GSW model has been maximally extended by including in it all J = 0 mesons

expected for a given number of generations of quarks, the Yukawa Lagrangian and the scalar potential have been

4This long quest started with ref.[10]. Since then a large literature has been devoted to it, looking mainly for connections between quark

masses and mixing angles. An extensive quotation lies beyond the scope of this note.
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reduced to very simple expressions by requirements of invariance and to avoid classical unwanted phenomena

like FCNC, non-existing crossed couplings between known states and unrealistic mass differences (like, in the

case of 1 generation, π+−π0 mass difference which originates neither frommd 6= mu nor from electromagnetic

corrections). This makes this extension the simplest, minimal and most natural one, showing that these criteria

may be at work once more in nature.

Obtaining a sensible expression for the Cabibbo angle suggests that this direction is worth detailed investigations.

I shall present in a forthcoming work [5], still for 2 generations, the values of all VEV’s, the masses of all Higgs

bosons and their couplings to gauge bosons and to fermions.

Acknowledgments: a special thank is due to P. Slavich whose expert eye immediately detected an erroneous 1/2

in a draft of this work.
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