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Abstract

This work describes the transverse shear sti�ness properties of a novel honey-
comb with zero Poisson's ratio. The cellular con�guration is simulated using
a series of �nite element models representing full-scale and representative unit
cells of the honeycomb topology. The models are benchmarked against exper-
imental results from pure shear and 3-point bending ASTM tests. The bench-
marked models are used to perform a parametric study of the shear moduli
(G13 and G23) against the geometry of the unit cell and the gauge thickness of
the honeycomb panels. The shear sti�ness maps obtained allow comparison of
the SILICOMB con�guration against classical centresymmetric and rectangular
honeycomb topologies.

Keywords: A. sandwich; B mechanical properties; C. sandwich structures; C.
elasticity;

1. Introduction

Cellular structures are known for their large variation of Poisson's ratio
value, due to the geometry and sti�ness distributions of their cell walls [1].
The classical hexagonal regular honeycomb has an in-plane Poisson's ratio of
1, when its unit cell ribs deform under pure bending [1]. Other centresymmet-
ric hexagonal con�gurations can exhibit either positive or negative (auxetic)
Poisson's ratio values [2, 3, 4, 5]. Negative Poisson's ratio (NPR) has been
also observed in chiral (non-centresymmetric) con�gurations [6, 7, 8], although
some speci�c tessellations exhibit the NPR e�ect only under nonlinear defor-
mations [9]. A particular subset of cellular structures is the one possessing a
zero Poisson's ratio. Zero ν implies that the material does not deform laterally
when subjected to mechanical loading (tensile or compressive). The so-called
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�ox-core� honeycombs (highly elongated hexagonal cores) have been
traditionally used as honeycomb structures with quasi-zero ν proper-
ties [10]. Cellular materials with zero Poisson's ratio have also been proposed
for one-dimensional spanwise morphing of wings and blades [11, 12], as well as
sca�olds for biomedical applications [13]. The zero ν characteristics also o�ers
the possibility to manufacture tubular structures with absence of sinclastic or
anticlastic behaviour [14]. The presence of a zero ν has been observed in cork
[1], liquid crystalline polymers [15], but also in cellular structures such as the
accordion honeycombs [12]. Square honeycombs have an in-plane Poisson's ratio
proportional to the product between the relative density and the Poisson's ratio
of the core material, leading to a virtually zero ν for small relative densities
(∼ 2 ÷ 3 %) [16]. Grima and co-workers have recently proposed cellular con-
�gurations based on semi-re-entrant layouts providing alternate conventional
- auxetic layers with zero ν e�ect [14, 17]. Another contribution to the �eld
of zero-ν cellular materials is the SILICOMB con�guration considered in this
work, which has been developed by some of the Authors [18]. The SILICOMB
layout features a topology inspired by the tessellation of β- crystobalite lattice
[19, 20], leading to a cellular in-plane orthotropic con�guration, with a Poisson's
ratio ν21 equal to zero, a behaviour which has been con�rmed also by
experimental tests [18].

With the exception of rectangular honeycombs [16, 21], the zero Poisson's
ratio cellular layouts have been evaluated only under in-plane mechanical load-
ing, and no data exist about the transverse shear sti�ness of zero-ν honeycombs.
However, for classical sandwich structures constructions, the transverse shear
modulus is a primary factor determining the out-of-plane bending de�ection of
a plate [22]. In this work, the transverse shear moduli related to various SILI-
COMB cellular con�gurations are investigated for the �rst time using numerical
and experimental techniques. Full-scale and Representative Volume Elements
(RVE) of SILICOMB topologies are developed using Finite Elements (FE), with
boundary conditions representing pure shear and homogenization of periodic mi-
crostructures [23]. The FE models are fully parametrised, and allow identifying
the dependence of the shear moduli versus the geometric con�gurations of the
honeycomb unit cells. Honeycomb samples have been produced using Rapid
Prototyping techniques according to dimensions compatible with cellular panels
for transverse shear tests, and as cores for sandwich beams to be tested under
3-point bending loading. The experimental results have been instrumental in
benchmarking the FE models developed, which have been then used to perform
a parametric analysis of the SILICOMB con�gurations, and compare them with
existing honeycomb topologies.

2. Models and experimental results

2.1. Geometry

Figure 1 shows a representative unit cell of the SILICOMB con�guration.
The RVE is composed by two walls (l and h) with thickness t, and inclined with
two angles (φ and θ). An auxetic con�guration will be obtained with a negative
φ (as illustrated in Figure 1), while the accordion layout is obtained from φ = 0o.
The thickness of the honeycomb along the 3-direction (Figure 2) is indicated as b.
Consistently with other notations used in the Cellular Materials Theory [1], the
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mechanical properties of the honeycomb can be expressed using nondimensional
parameters (cell wall aspect ratio α = h/l, thickness ratio β = t/l, gauge
thickness ratio γ = b/l), and the material properties of the cell walls (shear
modulus Gc and density ρc in our case).

2.2. Finite Element models

All numerical models are developed using the commercial code ANSYS 11.0
[24]. The transverse shear properties have been simulated using a full-scale
representation of the honeycomb panels under transverse shear [25, 26] and,
as further benchmark, RVEs with periodic boundary conditions to be used
within a FE homogenisation procedure [23, 25]. Three sets of full-scale FE
models were prepared, each having a di�erent type of element. The
plate-like elements used were SHELL63 and SHELL93 elements (four and
eight nodes with 6 DOFs respectively), and SHELL28 panels with shear loading
capability [24]. Consistently with the work carried out in [25], the use of three
di�erent elements for the full-scale shear simulations has been performed to
cross-benchmark the models under di�erent geometry and loading conditions.
In particular, a full-scale model made with SHELL28 panel quadrilaterals is
able to represent the Voigt (upper bound) of the transverse shear modulus in
cellular cores [25]. After a mesh convergence analysis, an average mesh size
equal to l/4 was adopted for the SHELL63 elements, and l/2 for the SHELL93
models. The SHELL28 panel elements lose validity when used in shapes other
than rectangular. Due to this constraint, the mesh used in the model is limited
to one element only along the whole panel depth. For all the full-scale models
the boundary conditions have been applied to the bottom and top surfaces
along the through-the-thickness (3) direction. At the top surface, each node
was subjected to a constant shearing force (linear elastic analysis) along the
directions 1 or 2, depending on the type of shear modulus to simulate (G13

and G23 respectively). At the bottom, all degrees of freedom were clamped.
As a close approximation to the e�ective boundary conditions existing in the
experimental test, the degrees of freedom along the loading direction of the nodes
belonging to the surface subjected to the shearing force were coupled to translate
together as a rigid body (CP command [24]), while the other two translational
DOFs were clamped. All the rotational degrees of freedom belonging to the
top and bottom surfaces have been blocked to ensure a local sti�ening e�ect
existing in the real samples. The total shear stress has been calculated from
the surface average of the shear force at the top side of the honeycomb, while
the equivalent shear strain has been derived from the relative displacement of
the nodes between the top and lower surfaces.

The RVEs shown in Figures 3 (a and b) have been used to calculate the
equivalent compliance matrix Sij of the homogenised cellular medium, and
developed with brick elements consistently with homogenisation pro-
cedures from open literature [23, 25]. The meshes have been created using
3D 8-nodes hexahedral SOLID45 elements, with two elements along the wall
thickness t, and maintaining a constant square aspect ratio. The values of the
transverse shear moduli have been calculated from the inversion of the terms S44

and S55 of the compliance homogenised Sij matrix, obtained through the impo-
sition of periodic boundary conditions and calculation of the second derivative
of the strain energy versus the imposed uniform strains [25].



  

2.3 Manufacturing and experimental tests 4

2.3. Manufacturing and experimental tests

The SILICOMB samples were fabricated using a Rapid Prototyping (RP)
Fusion Deposition Molding technique (FDM) from Stratasys (Dimension© Elite).
The dimensions of the samples used for the transverse shear test are listed in
Table 1. Between the nominal input contained in the CAD �le and the manufac-
tured parts using the FDM technique, it was possible to observe discrepancies up
to 30 %, especially for components below 0.7 mm thickness. The unit cells of the
samples had all cell walls with l = 12 mm, and average thickness t = 0.684 mm.
The overall dimensions (L1 and L2, along the 1 and 2 directions respectively)
have been imposed to satisfy the ASTM C273-07a standard [27].

The SILICOMB samples for the three-point bending test [28] had dimensions
180 mm X 72 mm X 30 mm (Figure 4(a)). The face skins were made using
4 layers of unidirectional prepreg IM7/8552 (Hexcel Corporation), for a total
thickness of 0.6 mm. The skins were applied to the FDM cellular cores using a
REDUX 810 epoxy adhesive (Hexcel Corporation) and cold-cured for 72 hours.

The material properties of the core (ABS plastic) were determined from dog-
bone specimens manufactured with the RP equipment according to the standard
test method for tensile properties of plastics (ASTM D638-08). In a previous
work the Authors have noticed the signi�cant mechanical anisotropy shown by
FDM-made samples, due to the di�erent orientations of the layers arising from
the manufacturing process [26]. The Poisson's ratio coe�cient has been mea-
sured using the strain data recorded along the load direction, and transverse
directions using a video extensometer (Messphysik GmbH) with an edge de-
tection system. Consistent with [26], the ABS plastic showed an anisotropic
mechanical behaviour (Ex = 2016 MPa, νx = 0.43, Ey = 1530 MPa, νy =
0.41). The layerwise-deposition along two transverse directions typi-
cal of FDM techniques should provide a special orthotropic behaviour
(Exνy = Eyνx), although the special orthrotropic relation has not been
observed in the specimens tested. The density (ρc = 1040 kgm−3) has been
assumed from the datasheet of the ABS material.

The shear tests were performed using a two-columns electromechanical In-
stron/Zwick test machine, with BlueHill control and related measuring software.
The load cell range (±50 kN) had a relative uncertainty of ±0.22 %. A head
displacement rate of 0.50 mm/min was used during the test. The shear panel
failure occurred within the core nearby the surface in contact with the test
plates, with no apparent debonding. According to the current and previous
standards (ASTM-C393-00), a linear curve �t was imposed on the recorded
data (shear stress - shear strain) to extract the e�ective shear modulus of
the core [27].

The three-point bending tests were performed using an Instron 8501 with a
50 kN load cell (Figure 4(b)). The head was under displacement-control mode
at a speed of 0.1 mm/s, and the data acquired with a sampling of 1 Hz. A
guide plate was used to prevent the rotation of the actuator during the test.
A 2D digital image data correlation system (Davis 7) was used to measure
the displacements of the beam parts, with the main de�ections obtained from
measuring the displacements of the rollers. The tests were conducted at room
temperature and under controlled humidity conditions. The transverse shear
modulus G13 was calculated �rring the measured displacements ∆ at
di�erent spans to the classical equation for 3-point simply supported
sandwich beams with central loading [29]:
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∆ =
WL3

b

48D
+

WLb

4AG13
(1)

Where W is the central concentrated load, Lb the length of the
sandwich beam, D the �exural rigidity of the sandwich, and A the
cross-section area of the core in the sandwich beam.

2.4. Comparison between experimental and FE results

Table 2 shows the overall comparison between the experimental and numeri-
cal results related to the Samples #1 and #2. It is worth mentioning that in
previous in-plane tests Sample #1 has shown an experimental value of
ν12 equal to 0.05, while the correspondent Poisson's ratio for Sample
#2 was -0.03 [18]. There is a general good agreement between the FE models
and the experimental tests, with a di�erence of 1 % when considering the pure
shear loading, and a higher discrepancy (9.6 %) for the 3-point bending test
against the homogenised RVE results. The RVE models based on 3D elements
have shown a sti�ening e�ect compared to bending, membrane and shear-type
shell models representing honeycomb con�gurations with auxetic behaviour and
multi-re entrant (multi-corner) topology [25]. In that sense, a similar behaviour
is also expected for the simulations of the SILICOMB con�gurations, due to the
presence of multiple corners in the unit cell geometry. A discrepancy between
the shear modulus identi�ed by the pure shear and 3-point bending tests is also
expected, considering the way that the core is deformed under bending in a sand-
wich beam [28, 29]. Regarding the nondimensional shear moduli G13/Gc/β, the
full scale FE shell models based on membrane-bending formulations (SHELL63
and SHELL93) give only a 3.7 % di�erence against the experimental �ndings
(Table 3). The solid RVE models tend to approach the shear-based full-scale
shell representations of the modulus upper bound (SHELL28), both for G13

and G23, although for the latter modulus the agreement with the experimental
results improves. The experimental results also show a 20 % average decrease
of the shear modulus G23 compared to the other transverse value. The com-
bined membrane-bending shell models appear to provide a softer mechanical
response (20 % lower than the experimental results), while the pure shear-based
approach the experimental �ndings within 3 % and 8 % for Samples 1 and 2
respectively. The dominant contribution of the transverse shear as the main
deformation mechanism in the cell walls when loading along the 2-direction can
also be understood looking at the geometry of the unit cell (Figure 1), in par-
ticular for the con�guration with φ = 2o (Sample #1). In that case, the two
walls having length h/2 will be quasi-aligned with the direction of the shear
loading, and therefore undergo a pure shear deformation, similarly to the case
of the horizontal cell walls in hexagonal honeycombs [1]. From a global point of
view, the shell models with combined membrane-bending capabilities provide a
reasonable approximation to the experimental �ndings, although they tend to
be conservative for the G23 modulus.

3. Parametric analysis

The full-scale validated shell-based membrane-bending models (SHELL63)
have then been used to perform a parametric analysis of the transverse shear
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moduli against the geometry characteristics of the unit cell. The shear moduli
have been non-dimensionalised using Gc and the relative density β, in accor-
dance with the criteria used in [25]. Within the interval of the parameters
considered (−20o < θ < 20o, −20o < φ < 20o, β = 0.05), the nondimensional
modulus G13/Gc/β has maximum values for φ = ±20o and θ = 0o, showing a
double symmetric distribution of the shear modulus in the (θ, φ) plane (Figure
5a). A similar symmetry (albeit with a negative convexity) is observed for the
G23/Gc/β modulus (Figure 5b), where in this case the maxima are recorded
for φ = 00, and θ = ±200. The anisotropy of the SILICOMB cellular con�g-
uration is further highlighted by the 73 % increase of the maximum G23 value
compared to G13 at constant relative density β and same core material. For
the distribution of the Poisson's ratios ν12 and ν21 simulated with a
classical lattice �nite element model for a similar set of nodimensional
parameters, the Reader can consult Reference [18].

It is interesting to notice the dependence of the transverse shear moduli ver-
sus the gauge thickness ratio γ. In Figures 6a and 6b the transverse moduli
are normalised against the upper shear modulus GU identi�ed at γ = 1, which
provides a good approximation with the Voigt upper bound in hexagonal cen-
tresymmetric cellular structures [2]. In hexagonal honeycombs, the G13 modu-
lus is independent of the gauge thickness. On the other hand, in-plane bending
deformation of the cell walls does a�ect the shear sti�ness of the hexagonal
honeycomb along the (2, 3) plane, with a linear dependence of the modulus G23

versus γ−1 between the lower (Reuss) and upper bounds [30, 2]. The SILICOMB
con�gurations show a peculiar behaviour, where a gauge thickness dependence
exist for both shear moduli. For the case of G13, one can observe a decrease a
31 % decrease of the normalised modulus from γ = 1.25 to γ = 11 (Figure 6a),
as the G23/GU ratio (Figure 6b). It is worth noticing that the behaviour of the
nondimensional moduli is not dependent on the geometric con�guration of the
unit cells. A possible explanation of why the G13 modulus is dependent on the
gauge thickness can be ascertained by looking at the geometry of the unit cell.
In hexagonal honeycombs, the walls perpendicular to the direction 1 in Figure 1
are comprised horizontal plates [1]. The Voigt and Reuss bounds can be calcu-
lated imposing shear displacements and shear strain respectively (theorems of
minimum potential and minimum complementary energy [1, 25]). When loading
along the 1-direction, classical hexagonal honeycombs have their horizontal cells
deforming under pure bending, with only the oblique cells providing shear re-
sistance. The shear �ow (both in terms of strains and stresses) provides unique
linear elastic response of the cellular material, with a single equivalent shear
modulus (upper and lower bounds do coincide). With the SILICOMB con�gu-
ration, the walls transverse to the 1-direction are not horizontal, but included
by an angle φ. The walls with length h/2 (Figure 1) will be therefore subjected
to a combination of shear and bending deformations, leading to a non-unique
value of shear modulus, and the presence of upper and lower bounds as in the
case of hexagonal honeycombs on the (2, 3) plane [1, 30]. Hexagonal centresym-
metric honeycombs show approximately the following relation between gauge
thickness, and upper and lower (GL) shear bounds:

G23

GU
=
GL

GU
+ f (γ)

(
1 − GL

GU

)
(2)
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In (2), f (γ) = K/γ, whereK varies between 0.787 for positive Poisson's ratio
(PPR) con�gurations, to 1.342 for negative Poisson's ratio (NPR) layouts [2].
Hexagonal centresymmetric honeycombs show a stronger sensitivity to the gauge
thickness of the G23 shear compared to the SILICOMB layout (Figure 6b), both
with con�gurations with in-plane positive Poisson's ratio (PPR - α = 2, θ = 200)
and negative (NPR - α = 2, θ = −200) [31, 2]. The SILICOMB con�guration
appears more sensitive to the thickness along the 3-direction only for γ > 3, and
does not follow the γ−1 evolution of Equation (2), but rather the more complex
relation:

f (γ) = a γ−b + c (3)

Where a = −0.281, b = 0.497 and c = 1.261. The coe�cients in (3) have
been identi�ed using a least square �tting with a R2 = 0.99 and 95 % con�dence
level. The lower bound GU has been approximated from the transverse shear
simulations for γ > 20 [8].

A performance map of the SILICOMB con�gurations for γ = 4 against
general hexagonal centresymmetric and rectangular honeycombs is shown in
Figure 7. For rectangular honeycombs, the transverse shear modulus GT is
equal to [21]:

GT

Gc
=

1

2

ρ

ρc
(4)

The centresymmetric hexagonal con�gurations have been represented using
the transverse shear formulas in [1, 2], for internal cell angles between−30o÷50o,
and cell wall aspect ratios 0.5 ÷ 2. The speci�c shear moduli Gi3/Gc/β/ (ρ/ρc)
for the centresymmetric con�gurations vary between 0.34 to 0.68 for a large
range of relative densities ρ/β/ρc (0.84 ÷ 2.4). The SILICOMB layouts tend
to cluster in a much smaller interval (1.42 ÷ 1.6), having however G13 speci�c
moduli lower than the hexagonal con�gurations. The rectangular honeycomb
tends to have an higher speci�c shear sti�ness than the SILICOMB when com-
pared against the G13 modulus, but on average shows a lower G23 than the
silica honeycomb of this work. It is also worth noticing the higher value of
relative density (2) for the rectangular honeycomb when considered against the
SILICOMB geometry.

Conclusions

The zero-ν SILICOMB cellular con�guration features special orthotropic
mechanical properties, and two transverse shear moduli with unusual charac-
teristics compared to classical centresymmetric hexagonal honeycomb topolo-
gies, such as the gauge thickness dependence of G13 and G23. Compared to
other zero-ν honeycombs like the rectangular one, the SILICOMB o�ers similar
transverse speci�c shear characteristics (at least for the G23 modulus), at 20 %
lower density. Moreover, the anisotropy and possible auxetic con�guration in-
duced by the combination of the internal cell angles give the SILICOMB cellular
platform an higher �exibility in terms of implementation in sandwich structures
with complex geometries.
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Figure 1: Geometry of the SILICOMB unit cell
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Figure 2: Full scale Finite Element Shell63 model for Sample #1
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Sample #1: α = 1, β = 0.057, θ = 20o, φ = 2o, γ = 5 #2: α = 1, β = 0.058, θ = 20o, φ = −20o, γ = 5

L1 [mm] 180.5 180.5
L2 [mm] 192.1 203.3
b [mm] 60.1 60.2
ρ/ρc 0.083 0.087

Table 1: Geometry characteristics of the samples for the transverse shear test

Exp. 3-point bending [MPa] Exp. transverse shear [MPa] FE Shell63 [MPa] RVE FE Solid45 [MPa]

31.1 26.8 27.1 34.1

Table 2: Comparison of the shear modulus G13 for Sample #1 against the
experimental results and numerical models.

Sample #1 Sample #2

G13/Gc/β G23/Gc/β G13/Gc/β G23/Gc/β
Experimental 0.84 0.68 0.88 0.69

Shell63 0.85 0.54 0.91 0.51
Shell93 0.85 0.54 0.91 0.51
Shell28 0.94 0.66 1.07 0.63

RVE Solid45 0.95 0.61 1.12 0.59

Table 3: Comparison between transverse shear tests and Finite Element models
for the two sample. The core material properties are assumed as equal to the
geometric mean (Ec = 1.9 GPa and νc = 0.42).

(a) α = 1, θ = 20o, φ = 0o (b) α = 1, θ = 20o, φ = −20o

Figure 3: Representative Unit Volumes (RVEs) for FE homogenisation.
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(a)

(b)

Figure 4: (a) sandwich beam for three-point-bending and (b) test setup.
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Figure 5: Nondimensional transverse shear moduli versus the unit cell geometry
parameters in the (a) 13 and (b) 23 planes. The results have been simulated
with γ = 5, β = 0.057.
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Figure 6: Normalised transverse shear moduli Gi3/GU (i = 1, 2) versus the
gauge ratio γ.
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Figure 7: Map of shear moduli normalised against the relative density for hexag-
onal, SILICOMB and square cell honeycomb con�gurations. The gauge ratio is
constant for all cases (γ = 4).




