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ABSTRACT: A non-linear finite element model of inclined cables, i.e. cables with non-leveled 

supports, in the large displacement and deformation fields is proposed for computing the dynamic 

response to wind loads which blow in arbitrary direction. The initial equilibrium, assumed as the 

static configuration under self weight and mean wind component, is defined by a continuous 

approach, following an iterative procedure which starts from the configuration under self weight 

only. The proposed formulation, which accounts for longitudinal inertia forces, allows to spot the 

circumstances when the simplified small-sag approach, adopting longitudinal mode condensation, 

becomes too crude. Numerical simulations have been performed empoying the Proper Orthogonal 

Decomposition to lower the computational effort. 
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1. Introduction 
 
Vibration of cables under wind constitutes an open problem with great implication in practical 

engineering. Cables are in fact widely used as fundamental structural elements in many applications 

as bridges, transmission lines, marine risers, cable roof structures. Different sag-to-span ratios are 

encountered in the various realizations; besides supports can be at the same or at different level. 

Traditionally, cable dynamics is intended as the time dependent response around the initial static 

configuration given by the equilibrium under self weight and described by the catenary equation, 



including or not cable extensibility or, for shallow cables, by the parabolic approximation [1][2]. 

The former needs the solution of a nonlinear equation in order to find cable tension whereas the 

static deformed shape is written by means of an expression involving hyperbolic functions. 

Parabolic assumption does not apply to cables with sag-to-span ratio greater than 1:8, and may lead 

to crude approximation for inclined cables [1]. 

 The time dependent response is usually determined with reference to the initial static 

equilibrium following the work of Irvine and Caughey [3] in which continuous linear modes of the 

elastic cable are derived for the in-plane and out-of-plane vibration. While cable elasticity has been 

shown to be essential in the dynamic of low-sagged cables, the along cable inertia forces are usually 

neglected by statically condensing the longitudinal equation of motion [4]-[6]. However, the non-

condensed approach is more appropriate for describing motion of inclined cables, which exhibit 

peculiar dynamic behaviour as testified by the veering in frequency curves and the associated 

hybrid mode shapes [7]. 

Although a lot of works pay attention to linear and nonlinear cable dynamics, less effort has 

been devoted to study wind exposed cables. Most of the works about wind-excited cables are 

related to stay cables or transmission lines and are focused to instability phenomena, such as rain-

wind or dry-state galloping induced vibration, vortex shedding, galloping of ice-covered cables [8]-

[11]. Different papers deal with vibration mitigation by means of external devices such as viscous 

dampers [12][13]. Besides, several experimental works in wind tunnels are devoted to all these 

problems [14]-[16]. 

Recently some papers addressed nonlinear cable analysis under turbulent wind. Di Paola et 

al. [17] use a continuous model for shallow cables assuming a static initial shape based on the 

parabolic approximation under self weight. The wind is considered to blow perpendicular with 

respect to the vertical plane containing the cable and Montecarlo simulation is adopted to evaluate 

cable stochastic response. The case of a cable network under wind loading is considered in [18]. 



Gattulli et al. [19] attack the problem by a continuous and a FE approach simulating wind 

time histories through Shinozuka method [20]; a linear elastic cable behaviour was assumed in the 

large displacement and small deformation field, applying an updated Lagrangian approach. When 

the continuous approach is pursued, the expansion of the turbulence components as a superposition 

of structural modes leads to a reduced wind model which may be viewed as a deterministic version 

of the well known Proper Orthogonal Decomposition (POD), used in order to determine a reduced 

stochastic wind field [21]-[23]. The initial shape of the cable is defined by considering self weight 

and mean wind; thus, the cable lays in a rotated plane with respect to the vertical one, and the layout 

is defined by means of the parabolic or nonlinear catenary equation according to displacement 

amplitude. However, the wind is supposed to blow horizontally in the orthogonal direction with 

respect to cable plane and longitudinal inertia is not accounted for.  

A recent paper by Carassale and Piccardo [24], proposes a continuous model to evaluate the 

response of shallow cables to turbulent wind around the initial configuration due to self weight. The 

model adopts a refined wind forces characterization; drag forces act in the plane of the cross 

sections of the cable and the cable-wind relative velocity is expanded in series up to the third order, 

introducing nonlinear wind forces contributions. The authors show that the probability distribution 

of cable response under wind, calculated by means of Montecarlo simulation, can be significantly 

non-Gaussian.  

 

2. Purpose of the paper 

The formulation proposed herein accounts for longitudinal inertia forces and considers the exact 

initial equilibrium according to the elastic catenary equation. In this way, the cable model is 

sufficiently refined to include different scenarios.  

The wind is supposed to act horizontally in any given direction, its tangential component is 

neglected and only the wind component laying in the plane of the cross section is considered as 

drag force. The initial equilibrium of the cable under self weight and constant wind is reproduced 



by means of an iterative procedure, starting from the configuration due to self weight only. A finite 

element model is implemented to evaluate cable dynamics under turbulent wind adopting a modal 

transformation which retains only a chosen number of modes so to lower the computational effort. 

An expansion of drag forces is adopted following [24] and [25] and the aerodynamic damping 

matrix is added to structural damping. Wind velocity and cable cross-section are such as to operate 

in the sub-critical range. The numerical time domain solution is performed in the reduced modal 

space by simulating coupled modal forces, making use of the POD. So operating  the multivariate-

multicorrelated process can be transformed into a superposition of multivariate-monocorrelated 

processes. 

The proposed procedure for the nonlinear wind response evaluation of an arbitrarily sagged 

cable, eventually inclined with supports at different height, can be summarized by the following 

steps: 

• Define mean wind component and direction; 

• Determine the initial equilibrium configuration of the cable under mean wind by an iterative 

procedure; 

• Define the finite element model for dynamic analysis under turbulent wind; 

• Assign the turbulent wind Power Spectral Density, and determine the cable modal forces with 

reference to initial equilibrium configuration; 

• Evaluate the nonlinear response by using a reduced modal model. 

 

Such operations will be discussed in the following sections and applied to different example 

problems regarding low-sagged, sagged and inclined cables. The Appendix summarizes the order in 

which the Equations given in sections 3-6 should be applied. 

 

 

 



3. Wind forces on the cable 
 
The cable configurations which will be considered are the followings: the static equilibrium under 

self weight, IC ; the static equilibrium under self weight and mean wind, IIC ; the dynamic 

vibrations produced by wind fluctuations, ( )IIIC t ; as depicted in Figure 1. Configuration IIC  will be 

evaluated by an iterative procedure as described in Section 4 and plays the role of initial equilibrium 

configuration around which dynamic vibrations are evaluated. The Lagrangian coordinate 0s  

represents the length of the unstrained cable between the generic point and the cable origin. 

Denoting with 0L  the unstrained cable length, it will be 0 00 s L≤ ≤ . Starting from the unstrained 

configuration, the cable undertakes the different equilibrium configurations changing its length. A 

segment on the unstrained cable of length 0ds , will measure ids  in the strained configurations iC  (

, ,i I II III= ). According to a Lagrangian approach, the position of cable points in an orthogonal 

reference system is still referred to 0s . The generic cable point position in the different 

configurations is located by an orthogonal reference systems through the vectors 0( )I sx , 0( )II sx  and 

0( , )III s tx .  

The distributed drag force on the cable can be defined through a three dimensional vector 

function as follows: 

[ ]0 0 0 0 0
1( , ) ( , ) ( , ) ( , ) ( , )
2D Ds t c b s t s t s t s tρ= − −f w z w z  (1) 

where ⋅  is the norm operator; ρ  is air density; Dc  is the drag coefficient; b  is the diameter of the 

cross section of the cable; 0( , )s tw  is the effective wind velocity vector, that is the projection of the 

wind velocity vector on the cable cross section at abscissa 0s ; 0( , )s tz  is the projection of the cable 

velocity vector 0( , )s tu  on the same plane. It will be assumed that the drag coefficient Dc  does not 

depend from Reynold’s number (Re), because the flow is considered to be in the sub-critical range (

5Re 3.5 10< ) so that dry-state galloping or rain-induced instability phenomena are ruled out. 



Making the hypothesis of turbulence in the direction of mean wind only and considering the 

undisturbed wind velocity vector 0 0 0( ( ), ) ( , ) ( , )I s t s t v s t= =v x v k , with constant direction defined 

by the versor k , the effective wind velocity is written, with reference to configuration IIC  (see Fig. 

2), as follows: 

0 0 0( , ) ( , ) ( )s t w s t s=w j   (2) 

where 0( , )w s t  and 0 0( ) ( ( ))IIs s=j j x  are, respectively, the modulus and the versor of the effective 

wind velocity. By introducing the projection matrix: 

0 0 0( ) ( ) ( )Ts s s= −Γ I t t   (3) 

where I  is the identity matrix of order three and 0( ) /II IIs d ds=t x  is the tangent versor to the cable 

with reference to configuration IIC  (see Fig. 2), the quantities in Eq. (2) become: 

0 0
0

1( ) ( )
( )

s s
sγ

=j Γ k   (4) 

0 0 0( , ) ( , ) ( )w s t v s t sγ=   (5) 

In the previous equations, 0( )sγ  is defined as follows: 

0 0( ) ( )s sγ = Γ k   (6) 

If the wind velocity is split into mean and turbulent components: 

0 0 0( , ) ( ) ( , )v s t v s v s t= +   (7) 

Eq. (2) can be rewritten as: 

0 0 0( , ) ( ) ( , )s t s s t= +w w w   (8) 

where: 

0 0 0 0 0 0 0 0 0 0 0 0( ) ( ) ( ) ( ) ( ) ( ) ( , ) ( , ) ( ) ( , ) ( ) ( )s w s s v s s s s t w s t s v s t s sγ γ= = = =w j j w j j   (9) 

According to the quasi-static approach, we assume the hypothesis w z , and expand the drag 

force in Taylor series with respect to z , following [24]-[25]. By retaining terms up to the first order 

one gets: 



0 ( ) ( )
( , ) ...

TT
D D Ds t = =

⎡ ⎤= + ∇ +⎣ ⎦z 0 z z 0
f f f z   (10) 

where: 

1 3

T

z z
⎡ ⎤∂ ∂

∇ = ⎢ ⎥∂ ∂⎣ ⎦
z …   (11) 

The first term in the expansion: 

2
( ) 0 0

1 ( , ) ( )
2D Dc bw s t sρ= =z 0f j   (12) 

by substituting the mean and turbulent parts, can be rewritten as follows: 

2 2
( ) 0 0 0 0 0 0

1( , ) [ ( ) 2 ( ) ( , ) ( , )] ( )
2D Ds t c b w s w s w s t w s t sρ= = + +z 0f j   (13) 

Furthermore, as the along-wind turbulence only is considered and 0 0( ) ( , )w s w s t t> ∀ , neglecting 

the quadratic component of turbulence, Eq. (13) becomes: 

( ) 0 ( ) 0 ( ) 0( , ) ( ) ( , )D D Ds t s s t= = == +z 0 z 0 z 0f f f   (14) 

where: 

2 2 2
( ) 0 0 0 0 0 0

1 1( ) ( ) ( ) ( ) ( ) ( )
2 2D D Ds c bw s s c bv s s sρ ρ γ= = =z 0f j j  (15) 

2
( ) 0 0 0 0 0 0 0 0( , ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )D D Ds t c bw s w s t s c bv s v s t s sρ ρ γ= = =z 0f j j  (16) 

The second term in Eq.(10) can be written as follows: 

0 0 0 0 0 0( )

1 1( ) ( ) ( ) ( , ) ( ) ( )
2 2

TT T T
D D Dc bw s s s c bw s t s sρ ρ

=
⎡ ⎤ ⎡ ⎤ ⎡ ⎤∇ = − + − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦z z 0

f z I j j z I j j z   (17) 

The aerodynamic damping force is due to the first term in Eq.(17), whereas the second term leads to 

an aeroelastic forcing quantity which is neglected herein. The vector 0( , )s tz  is obtained from the 

cable velocity 0( , )s tu  by the relationship: 

0 0 0( , ) ( ) ( , )s t s s t=z Γ u   (18) 

Therefore, the aerodynamic damping force can be written as follows: 



0 0 0 0 0 0 0
1( , ) ( ) ( ) ( ) ( ) ( ) ( , )
2

T
Ds t c bv s s s s s s tρ γ ⎡ ⎤= − +⎣ ⎦adf I j j Γ u  (19) 

 

4. Equilibrium under self weight and mean wind 
 
The mean wind force given by Eq. (15) is related to the tangent versor to the cable with reference to 

configuration IIC , according to Eqs. (3), (4) and (6). Such a configuration, i.e. the equilibrium 

under self weight and mean wind, may be detected by an iterative procedure here conducted for the 

case of discretized wind forces. Thus, the mean wind force is applied as equally spaced point loads 

at abscissas 0,is , each of which is the resultant on a defined interval 0sΔ ; the i-th point load with 

1, 2,..., pi n=  can be written as follows: 

2
( ) 0, 0 0, 0 0,

1( ) ( ) ( )
2i D i D i is s c bw s s sρ== Δ = Δz 0P f j   (20) 

The classic catenary approach which finds initial static shape of the cable under self weight [1] is 

extended to allow point loads, generally oriented in space [2]. The equilibrium equation becomes: 

0 0 0 0,( ) ( )II
i i

iII

dT s s U s s
ds

= − − −∑x R p P    (21) 

where 0( )T s  is the cable tension; 
1 2 3

[ , , ]x x xR R R=R  is the vector collecting the three components 

of the cable tension at the first cable end; [ ]00 0 Tm g=p  represents the distributed forces acting 

on the cable; 0( )U s  is the unitary step function. By using the chain rule of differentiation, 

0 0( ) ( )( )II II II IId ds d ds ds ds=x x , and according to the Hooke’s law, 0 0( ) ( ) / 1IId ds T s EA= +x , 

Eq. (21) gives: 

0

0 0,
00

1 1( ) ( )
( )

s

II i i
i

s s U s s ds
EA T s

⎛ ⎞⎛ ⎞= − − − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑∫x R p P  (22) 

The vector R  can be derived solving numerically the nonlinear integral equation 0( )II LL =x x , i.e. 

by imposing the end coordinates of the cable. The first iteration considers distributed forces 



corresponding to self weight only ( i =P 0 ) and leads to the vertical configuration IC . The mean 

effective wind velocity is evaluated as: 

0, 0, 0, 0,( ) ( ) ( ) ( )i i i is v s s sγ=w j   (23) 

being 0,( )iv s  the undisturbed mean wind related to configuration IC . The mean wind point forces 

are derived by Eq. (20); Eq. (22) leads to a new iteration for which the udated versor 0( )sj  is 

evaluated. After few iterations, the procedure converges to configuration IIC , which can be written 

as function of cable abscissa IIs , section area IIA  and mass IIm  by making use of the mass 

conservation principle. The abscissa IIs  can be derived as follows: 

( )0

0 00
( ) ( ) / 1

s

IIs s T s EA ds= +∫   (24) 

where 0,( ) ( )i i
i

T s s U s s= − − −∑R p P . 

The undisturbed mean wind is defined according to the logarithmic law [26]: 

0,* 2
0,

( )
( ) log I i

i
r

H x suv s
lκ

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
   (25) 

in which  H  is the height above ground level of the origin, *u  is the shear velocity, κ  the von 

Karman coefficient, rl  is the roughness length. Assuming that the wind blows horizontally, 

intersecting the 1x  axis with an angle ϕ , then [cos 0 sin ]Tϕ ϕ=k . 

 

5. FEM approach 
 
In order to simplify the finite element formulation, the response variable will be referred to the 

updated lagrangian coordinate IIs  which is related to 0s  through Eq. (24). This choice allows a 

more straightforward element definition and the use of constant length elements. The equation of 

motion of the cable can be written in the following vector form [27]: 



2
1 ( , )
2

T
II II

II II
II II II II II II II

d dT EA s t m
s s s ds s ds s

⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂⎢ ⎥⎜ ⎟+ + + + =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

x xu u u u f u   (26) 

where ( , )IIs tu  is a continuous vector function which gives cable displacements with reference to 

configuration IIC  (see Figure 1); ( , )IIs tf  represents the distributed  dynamic forces on the cable, 

sum of turbulent wind, ( , )IIs tf , and aerodynamic damping, ( , )IIs tadf : 

( , ) ( , ) ( , )II II IIs t s t s t= + adf f f   (27) 

The approximations , ,II III II III II IIIs s m m A A≡ ≡ ≡  will be adopted and the subscript II will be 

omitted for the sake of simplicity. In order to derive a finite element solution, the displacement 

vector is expanded over the element e  as follows:  

( , ) ( ) ( )e es t s t=u N U   (28) 

where ( )sN  is the shape functions matrix defined as follows: 

[ ]1 2( ) ( ) ( )s s sψ ψ=N I I   (29) 

with: 

( )1( ) 1 /A es s s sψ = − − Δ ;     2 ( ) ( ) /A es s s sψ = − Δ  (30a,b) 

The identity matrix I  has order 3 and e B As s sΔ = −  is the length of the element. Pre-multiplying the 

dynamic equilibrium equation for the shape function matrix and by means of integration by parts 

over the element, between abscissas As  and Bs , the weak form is obtained: 

2

2

1( )
2

1 ( ) ( , ) ( )
2

B

A

B B B

A A A

s
T

T

s

s s sT
T T T

s s s

d ds T EA
s s ds s ds s

d dT EA ds s s t ds m s ds
s s ds s ds s

⎧ ⎫⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂⎪ ⎪⎛ ⎞− + + +⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞+ + + + − + =⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
∫ ∫ ∫

u u x u x uN

u u x u x uB N f N u 0

 (31) 

where ( ) /d s ds=B N  is a constant matrix. By introducing Eq. (28), the non linear finite element 

equation is obtained: 



( )e e e e e e e+ + = +M U K U G U F Q   (32) 

The element mass matrix is given by: 

( ) ( )
B

A

s
e T

s

m s s ds= ∫M N N   (33) 

The element stiffness matrix eK  and the vector ( )e eG U , respectively describing linear and 

nonlinear contributions, are given as: 

( )
B

A

s T
e T T

s

d dT s EA ds
ds ds

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∫

x xK B B B B   (34) 

2

2

1( ) ( ) ( ) ( )
2

1 ( ) ( )
2

B

A

s
e e e T T e e T T

s

T e e

d dEA t EA t t
ds ds

EA t t ds

⎡= + +⎢⎣

⎤+ ⎥⎦

∫
x xG U BU B B BU U B

B BU BU

 (35) 

The integral in Eq. (35) is solved as:  

( ) ( )

( ) ( )

1( ) ( ) ( ) ( ) ( ) ( )
2

1 ( ) ( ) ( )
2

Te e e e T T e e T T
e e

TT e e e
e

EA t t s EA t t

EA t t t s

= Δ + Δ +

+ Δ

G U BU BU B x B BU U B x

B BU BU BU
 (36) 

with ( ) ( )e B As sΔ = −x x x . This expression contains polynomial quantities of a maximum order equal 

to three.  

The element force vector ( ) ( ) ( )e e et t t= + adF F F  is composed of two contributions: 

( ) ( ) ( , )
B

A

s
e T

s

t s s t ds= ∫F N f   (37) 

( ) ( ) ( , )
B

A

s
e T

s

t s s t ds= ∫ad adF N f   (38) 

Finally the nodal forces vector is: 



[ ]

[ ]

2

2

1( ) ( ) ( ) ( ) ( ) ( )
2

1( ) ( ) ( ) ( ) ( )
2

B B

A A

Te e e T T e e
B

s s

T e e T T e e
A

s s

d dt T s t EA t t t
ds ds

d dT s t EA t t t
ds ds

⎡ ⎤⎛ ⎞⎛ ⎞
= + + +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞
− + + +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

x xQ 0 I BU U B BU BU

x xI 0 BU U B BU BU

 (39) 

Through standard assemblage procedures and imposing the boundary conditions of pinned ends at 

0s =  and s L= , the global equation of undamped motion is derived as: 

( ) ( ) ( )= ( )t t t+ +MU KU G U F   (40) 

where ( )tU  is the vector collecting the nodal displacements with reference to configuration IIC . 

A structural damping ratio ζ  is considered for all the linear modes; thus, the structural 

damping matrix is obtained as: 

1T
st

− −=C Φ ΞΦ   (41) 

where Ξ  is a diagonal matrix with elements 2 iζω , iω  are natural circular frequencies and Φ  is the 

modal matrix. The aerodynamic damping given by Eq. (19) leads to a distributed force ( , )s tadf , 

which can be rewritten as follows: 

( , ) ( ) ( , )s t s s t= −adf D u   (42) 

where: 

1( ) ( ) ( ) ( ) ( ) ( )
2

T
Ds c bv s s s s sρ γ ⎡ ⎤= − +⎣ ⎦D I j j Γ   (43) 

Thus, by Eq.(28) and Eq. (38), the elemental aerodynamic damping force is: 

( ) ( ) ( ) ( ) ( ) ( )
B

A

s
e T e e e
ad ad

s

t s s s ds t t
⎛ ⎞

= − = −⎜ ⎟⎜ ⎟
⎝ ⎠
∫F N D N U C U   (44) 

By standard assemblage procedures: 

( ) ( )ad adt t= −F C U   (45) 

where adC  is the assembled aerodynamic damping matrix. The total damping matrix is: 

st ad= +C C C   (46) 



and the damped equation of motion is finally written as: 

( ) ( ) ( ) ( ) ( )t t t t+ + =MU + CU KU G U F   (47) 

The nodal turbulent wind force ( )tF  is assembled starting from the turbulent wind force ( , )s tf  

according to Eq. (37). 

 Introducing the coordinate transformation ( ) ( )t t=U Φq , by means of standard modal 

analysis, the modal equation of motion is derived: 

2( ) ( ) ( ) [ ( )] ( )t t t t t+ + =q +Ξq Ω q H q Z   (48) 

where, imposing T =Φ MΦ I , the following quantities are defined: T=Ξ Φ CΦ , 2 T=Ω Φ KΦ , 

[ ( )] [ ( )]Tt t=H q Φ G Φq ,  T( ) ( )t t=Z Φ F . 

 
 

6. Turbulent wind model 
 
The complete definition of wind action needs the characterization of the turbulent stochastic process 

( , )v s t , which is supposed horizontally directed with arbitrary angle with the 1x  axis. The process 

can be considered a zero mean Gaussian stationary one described in the frequency domain by the 

Cross Power Spectral Density (CPSD) function. The characterization of CPSD function between 

different points in space is performed by the definition of the coherence function. The following 

expression is assumed as coherence function: 

( ) ( )
[ ( ), ( ), ] exp

( ) ( )
s i j

i ji j
i j

v v
C s s

Coh s s
v s v s

ω
ω

π

⎛ ⎞⋅ ⋅ −
⎜ ⎟= −
⎜ ⎟⎡ ⎤+⎣ ⎦⎝ ⎠

x x
x x  (49) 

where sC  is the exponential decay coefficient, ω  is the circular frequency, ( )isx  and ( )jsx  the 

coordinates of nodal points j and k of the finite element mesh. Thus, the continuous PSD function is 

transformed into a discrete matrix ( )ωvvS , with components related to direction 3x  defined as 

follows: 

[ ( ), ( ), ] ( ) ( ) [ ( ), ( ), ]
i j i i j j i ji j i jv v v v v v v vS s s S S Coh s sω ω ω ω=x x x x  (50) 



in which ( , )
i i iv vS s ω  is the one-sided PSD of turbulent component of wind velocity. In this paper the 

following PSD has been employed [28]: 

2
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  (51) 

where 6.868δ = , ( )( ) 300 / 300vL h h ε= , ε  depends on the ground roughness, ( ) 1/ ln( / )rvI h h l= , 

and rl  is the roughness length. Said H  the height above ground level of the origin, 2 ( )j jh H x s= − . 

For each cable nodal point, at abscissa js  ,a three-dimensional matrix ( , )js ωvvS  has been defined 

as follows: 

( , ) ( , )
j j j j

T
j jv vs S sω ω=v vS kk   (52) 

Projecting on the plane of the cross section:  

2( , ) ( , ) ( ) ( ) ( )
j j j j

T
j j j j jv vs S s s s sω ω γ=w wS j j   (53) 

If the cable is divided into N finite elements, the internal nodal points are N-1 and the global matrix 

( )ωwwS  with dimension 3(N-1) can be obtained by assemblage of contributes given by Eq. (53). 

The POD is resorted to reduce computational effort in numerical simulation, choosing the following 

PSD matrix [23]: 

*( ) ( ) ( ) ( )ω ω ω ω=wwS Ψ Λ Ψ   (54) 

where the eigenvectors ( )ωΨ  and eigenvalues ( )ωΛ  of the PSD matrix have been introduced. The 

star denotes the transpose of the complex conjugate matrix; indeed, in a general case ( )ωwwS  is 

hermitian and eigenvectors could be complex; however, in our case the PSD matrix is a symmetric 

and real one. Say X  the diagonal matrix with elements ( )D e ic b s w sρ Δ , the PSD of wind forces can 

be defined through the following matrix equation: 

( ) ( )ω ω=FF wwS XS X   (55) 

By substitution of Eq. (54) in Eq.(55): 



*( ) ( ) ( ) ( )ω ω ω ω=FFS XΨ Λ Ψ X   (56) 

The PSD matrix of modal forces ( )tZ  can be easily derived: 

*( ) ( ) ( ) ( )Tω ω ω ω=ZZS Φ XΨ Λ Ψ XΦ   (57) 

This means that, instead of the classical wind modes [21][22], the ones given by columns of the 

matrix ( )ωXΨ  are considered. The product with structural modes *( ) ( )ω ω=Θ Ψ XΦ  does not 

give a diagonal matrix as in the classical case, because out-of-diagonal terms may not be negligible 

implying that modal forces are not uncoupled in stochastic sense. Finally Eq. (57) can be rewritten 

as follows: 

( ) ( ) ( ) ( )Tω ω ω ω=ZZS Θ Λ Θ   (58) 

The numerical time domain solution is then applied to the cable model. The POD expansion Eq. 

(58) allows to lower the computational effort of numerical simulation. In fact, the multivariate-

multicorrelated process becomes a superposition of multivariate-monocorrelated ones. The PSD of 

modal forces is used to simulate time histories: 

1
( ) ( )

n

j
j

t t
=

=∑Z r    (59) 

in which n is the number of modes considered in the analysis; ( )j tr  is a vector of monovariate 

processes defined as [29]: 

1
( ) 2 ( ) ( ) cos( )

m

j j k j k jk k
k

t tω ω ω η ω
=

= Λ Δ∑r Θ   (60) 

where m represents the number of subdivisions in frequency; ( )j kωΛ  is the j-th element of the 

diagonal matrix ( )ωΛ ; ( )j kωΘ  is the j-th column vector of the matrix ( )ωΘ ; jkη  are normal 

distributed complex random numbers with zero mean and unitary standard deviation. The time 

integration in the modal space, Eq.(48), can be performed by means of Runge-Kutta method. 

 
 



7. Applications 

Four cable layouts, depicted in Figure 3, have been considered in the applications. The first two are 

related to cables with supports at the same level, the others regard cables with different level of the 

supports. The cable section and mass per unit length are the same for all the examples and are 

representative of an ACSR cable for high voltage conductors, which is very sensitive to wind 

turbulence [30]. The geometrical and mechanical properties of the cables are resumed in Table 1. 

All the cables are characterized by Irvine’s parameters 2λ  falling over the first crossover point. 

Cable 1 has the smallest sag, Cable 2 is characterized by a larger value of sag-to-span ratio; both 

cables have leveled supports (horizontal cables). Cable 3 and Cable 4 are inclined with an angle 

30ϑ = °  (see Fig. 3). The first three cables are subjected to a wind load with / 2ϕ π= , whereas for 

Cable 4 it is chosen / 4ϕ π= . In Table 1, Hd  and Vd , respectively are the horizontal and vertical 

distance between supports and b is the cable diameter. 

Mean and turbulent wind are defined by the following parameters: * 0.8 /u m s= , 0.4κ = , 

0.01rl = m, 10sC = , 31.25 /Kg mρ = , 0.13ε = . The height H  above ground of first cable end is 

placed at 40 m for the first two cables, at 120 m for the third and fourth cables. According to Eq. 

(25), for the two values of H  a mean velocity 16.59v m / sec=  and 18.79v m / sec=  are 

obtained. The drag coefficient of the cables is 1.2Dc = . For the sake of the example, it has been 

adopted a structural damping ratio equal to 0.005 for all modes. 

In all the analyses the circular frequency step is 0.003 rad/ secωΔ =  and the time step is 

0.04 sectΔ = , 10 modal shapes and modal forces have been considered and cables have been 

divided into 50 finite elements. 

Figures 4 show the components of mean wind velocities along the cables at the equilibrium 

configuration IIC . As expected, for horizontal cables under orthogonal wind, the longitudinal 

component is anti-symmetric, whereas the vertical and the along wind components are symmetric. 



In the case of inclined cables, no symmetry or anti-symmetry is encountered. As the velocities 

determine pressure loads on the cable, this aspect outlines a different loading with respect to classic 

approaches. The latter are based on continuous modal analysis, where modal shapes and frequencies 

are evaluated in closed form with reference to equilibrium configuration IC . The refined mean 

wind load derived by the proposed approach can differ significantly in the case of sagged or 

inclined cables. On the other hand, for very taut horizontal cables the classic approach is 

appropriate. In addition, the components of mean wind forces show that for horizontal cables the 

configuration IIC  is planar, for inclined cables this is not the case. Thus, this situation can be only 

roughly described by the classical models. 

The comparison of modes with those derived by a classical small-sag formulation which 

neglects longitudinal inertia forces and condenses longitudinal modes, highlights the differences 

with the proposed procedure. 

The first five modal shapes are depicted in Figure 5, in the global reference system. As the 

sag increases, the longitudinal component (continuous line) of some modes becomes relevant, 

whereas in inclined cables is is always significant. It is worth noting that the two inclined cables, 

which differ between each others only for the wind direction, possess different modes and 

frequencies; these differences becomes more and more relevant for higher order modes.  

In order to compare the modes with those derived by the classical approach, these are 

depicted in Figure 6, for the horizontal cables, in a rotated reference system, with axes 1ξ  and 2ξ  

laying on the plane assumed by the cable under mean wind. The figure shows that the first five 

modes of Cable 1, the taut one, are very close to those pertinent to a classical analysis on the other 

hand some differences appear for Cable 2, the sagged one. Table 2 lists for Cable 2 frequencies 

obtained by static condensation of the longitudinal degree of freedom and those given by the 

proposed method. The comparison evidences that for large sagged and inclined cables the classic 

analysis may be inappropriate.  



Nonlinear dynamic analysis has been performed by making use of the Runge-Kutta method, 

numerically solving Eq. (48). The modal forces ( )tZ  have been simulated by means of Eq. (59) and 

(60), using the full PSD matrix defined in Eq. (58). The projection on the 2 3( , )x x  plane, reported in 

Figure 7, for Cable 1 resembles an arc of circumference because it behaves similarly to a rigid body 

rotating around axis 1x . In the figure, the origin represents the static configuration due to weight 

and mean wind. 

The standard deviation, skewness and kurtosis of the three components of displacements at 

cable midpoint have been calculated and reported in Table 4, supposing the response as a stationary 

process, by simulating nine time histories of 1000 sec each. The resulting probability density 

function (pdf) are plotted in Figures 8-10 along with their Gaussian approximation. The inadequacy 

of the Gaussian assumption is evident for Cables 2-4. Note that Cables 2-4 have sub-kurtotic pdf, as 

they are more sagged and their dynamic behaviour is close to inextensible cables with bounded 

response so that non linear effects are magnified. 

Finally the 0.05 and 0.95 fractiles of the tension along the cable are plotted in Figure 11 and 

compared with the static value at configuration IIC . The 0.05 fractile is smaller than the static value 

only for Cable 1, whereas in the other cases it results to be larger. It is interesting to emphasize that 

the dynamic effect on cable tension is much more pronounced when sag increases (Cables 2-4). In 

the inclined cables, a predictable asymmetry is evident. 

 

8. Conclusions 
 
The non-linear dynamic response of a cable under turbulent wind has been considered. The 

dynamic equilibrium is evaluated with reference to the actual initial equilibrium configuration; that 

is, the static configuration under self weight and mean wind which is attained by an iterative 

procedure starting from the static equilibrium configuration under self weight only. The proposed 



procedure allows arbitrary wind direction and accounts for longitudinal inertia forces so to model 

general problems such as arbitrarily sagged cables and cables with supports at different height. The 

initial equilibrium configuration is reproduced by a continuous approach based on the catenary 

equation, whereas non linear motion is described by a non-linear finite element approach. The cable 

element is defined allowing large strains and displacements, the analysis is performed in a reduced 

modal space by simulation of wind modal forces adopting a POD expansion. 

Applications to four different cable problems show the versatility of the method and its 

ability to detect specific behaviour. In particular, strong non Gaussianity has been traced for some 

displacement components and a remarkable increase of cable tension due to turbulent wind is 

encountered for sagged cables, emphasizing the risk of fatigue failures in suspended cables.  

Further investigations, aimed at a deeper comprehension of dynamics of wind-excited 

cables, should consider the three dimensionality of turbulent phenomenon and represent a future 

task for the authors. 

 

Appendix 

The following steps are required by the proposed formulation 

1. First of all define the deformed shape of the cable under self weight 0( )I sx , by making use 

of the classic catenary approach, so to describe configuration IC . 

2. Evaluate the tangent versor along the cable 0( )st , with respect to configuration IC , and 

derive through Eqs. (3) and (4) the versor of wind velocity 0( )sj .  

3. Define the undisturbed mean wind by Eq. (25).  

4. Divide the cable into elements of length 0sΔ  so to evaluate the nodal static wind forces by 

Eq. (20).  

5. Numerically solving Eq. (22) a new static configuration of the cable is obtained and, by Eqs. 

(3) and (4), the related versor 0( )sj .  



6. Repeat the procedure until convergence. Take the final values of ( )sj , ( )T s , ( )sx .  

7. Divide the cable into finite elements and evaluate the mass matrix by Eq. (33), the stiffness 

matrix by Eq. (34), the damping matrix by Eqs. (43)-(46).  

8. Define the turbulent wind by Eqs. (49)-(51) and derive the PSD matrix of wind forces at 

nodal points by Eqs. (53)-(56).  

9. Project the equation of motion in the modal space and evaluate the PSD matrix of modal 

forces by Eq. (57)-(58).  

10. Simulate modal forces through Eq. (60).  

11. Solve numerically the equation of motion (48), updating at each step the nonlinear term 

[ ( )]tH q , dependent upon Eq. (36).   
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Table Captions 
 
Table 1. Properties of the cables. 

Table 2. Circular frequencies of Cable 2 

Table 3. Response statistics at s=L/2 for 52.25 10  sampling points. 

 
 
 
Figure Captions 
 
Figure 1. Cable configurations. 

Figure 2. Effective wind velocity vector w . 

Figure 3. Sketches of the cables analyzed in the applications. 

Figure 4. Mean wind components at static equilibrium IIC . 

Figure 5. First five modes and frequencies of the cables: 1x  component by continuous line, 2x  

component by dashed line, 3x  component by dot-dashed line. 



Figure 6. First five modes of Cables 1 and 2 in a rotated frame, with axes 1ξ  and 2ξ  laying on the 

plane of the cable plane in the static configuration: longitudinal component 1ξ  by continuous line, 

2ξ  component by dashed line, out of plane component 3ξ  by dot-dashed line. 

Figure 7. Projection on the 2 3( , )x x  plane of displacement at / 2s L= . 

Figure 8. Probability density function of displacement along 1x  at / 2s L=  (symbols) and Gaussian 

approximation (continuous line).  

Figure 9. Probability density function of displacement along 2x  at / 2s L=  (symbols) and Gaussian 

approximation (continuous line).  

Figure 10. Probability density function of displacement along 3x  at / 2s L=  (symbols) and 

Gaussian approximation (continuous line). 

Figure 11. Tension along the cable: static value under self weight and mean wind (continuous line);  

0.95 fractile (+) and 0.05 fractile (×) under turbulent wind .  

Research Highlights 
 
A non-linear FE model of inclined cables is proposed for dynamic response under wind.  
 
The procedure allows arbitrary wind direction and accounts for longitudinal inertia forces. 
 
A remarkable increase of cable tension due to turbulent wind is evidenced for sagged cables. 
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Table 1 
 

 

 

 

Cable b  
( )m  

E  
2( / )N m  

A  
2( )m  

m  
( / )Kg m  

Hd  
( )m  

  
( )rad  

Vd  
( )m  

2  
 

0L  
( )m  

  
( )rad  

s  

1 0.0308 8 10
10

 0.000559 1.73 200 0 0.00 69.88 200.2 / 2  0.005 

2 0.0308 8 10
10

 0.000559 1.73 200 0 0.00 10493.4 208.0 / 2  0.005 

3 0.0308 8 10
10

 0.000559 1.73 200 / 6  115.47  2246.91 235.0 / 2  0.005 

4 0.0308 8 10
10

 0.000559 1.73 200 / 6  115.47 3387.22 235.0 / 4  0.005 

 

Table 1



Non condensed Condensed 

0.692 0.692 

1.386 1.386 

1.521 1.386 

2.081 2.021 

2.294 2.081 

2.779 2.778 

3.196 2.778 

3.478 3.441 

3.976 3.478 

4.182 4.182 

 

Table 2



Table 3 
 

 

Cable 

Standard deviation (m) 

     
1x

u              
2xu               

3x
u  

Skewness 

     
1x

u              
2xu               

3x
u  

Kurtosis 

        
1x

u               
2xu                

3x
u  

1 0,0008 0,0848 0,2779 -0,0735 -0,1973 -0,4065 3,0473 2,8802 3,3215 

2 0,0108 0,2217 0,7229 0,0189 -0,0512 0,0443 2,9220 1,9645 1,9488 

3 0,1648 0,2984 0,7901 -0,0172 0,0092 -0,0297 1,9778 1,9635 1,9627 

4 0,1002 0,1822 0,7472 0,1009 -0,0744 0,0501 2,0766 2,0410 2,0244 

 

Table 3




