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A CONTINUOUS MODEL OF TRANSPORTATION REVISITED

LORENZO BRASCO AND MIRCEA PETRACHE

Abstract. We review two models of optimal transport, where congestion effects during
the transport can be possibly taken into account. The first model is Beckmann’s one,
where the transport activities are modeled by vector fields with given divergence. The
second one is the model by Carlier et al. (SIAM J Control Optim 47: 1330–1350, 2008),
which in turn is the continuous reformulation of Wardrop’s model on graphs. We discuss
the extensions of these models to their natural functional analytic setting and show that
they are indeed equivalent, using an ad hoc generalization of Smirnov decomposition
theorem for flat 1−currents, which may fail to be normal.
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1. Introduction

1.1. Theoretical background. The present work is motivated by the study of transport
problems for distributions, started in [6] and [12], which we want to try and connect to
related works in the theory of currents present in [1, 27, 36]. A motivation for such an
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2 LORENZO BRASCO AND MIRCEA PETRACHE

extension is the study of distributions of the form
∞∑
i=1

(δPi − δQi), with
∞∑
i=1

|Pi −Qi| <∞,

as in [33]. Such distributions arise as topological singularities in several geometric varia-
tional problems as described for example in [11, 23, 32, 34, 35].

To start with, we formally define three variational problems which can be settled (for
simplicity) on the closure of an open convex subset Ω ⊂ RN , having smooth boundary.
For the moment, we will be a little bit imprecise about the datum f , but we will properly
settle our hypotheses later. The first problem is the minimization of the total variation of
a Radon vector measure, under a divergence constraint:

(B) min
V

{∫
Ω
d|V | : −div V = f, V · νΩ = 0

}
.

The above problem can be connected by duality with the following one, called the Kan-
torovich problem:

(K) max
φ

{
〈f, φ〉 : ‖∇φ‖L∞(Ω) ≤ 1

}
,

where now the variable φ is a Lipschitz function and 〈·, ·〉 represents a suitable duality
pairing. Finally, the third problem is the minimization of the total length

(M) min
Q

{∫
P
`(γ) dQ(γ) : (e0 − e1)#Q = f

}
,

where P is the space of Lipschitz continuous paths γ : [0, 1]→ Ω, the length functional ` is
defined by

`(γ) =

∫ 1

0
|γ′(t)| dt,

e0, e1 are the evaluation functions giving the starting and ending points of a path, and the
variable Q is a measure concentrated on P.

The classical setting for the above problems is when f is of the form f = f+−f−, where
f+ and f− are positive measures on Ω having the same mass (for example, conventionally
one can consider them to be probability measures). We point out that in this case, a more
familiar formulation of (M) is certainly the so-called Monge-Kantorovich problem

(M′) min
η

{∫
Ω×Ω
|x− y| dη(x, y) : (πx)#η = f+ and (πy)#η = f−

}
,

where πx, πy : Ω × Ω → Ω stand for the projections on the first and second variable,
respectively. It is useful to recall that the link between (M) and (M′) is given by the fact
that if η0 is optimal for Monge-Kantorovich problem then the measure which concentrates
on transport rays, i.e.

Q0 =

∫
δx y dη0(x, y), where x y stands for the segment connecting x and y,
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is optimal in (M) and ∫
P
`(γ) dQ0(γ) =

∫
Ω×Ω
|x− y| dη0(x, y).

When f has the above mentioned form f+−f−, the equivalence of the three problems above
is well understood: the equivalence of (M′)=(M) and (K) is the classical Kantorovich
duality (see [24]), while that between (B) and (K) seems to have been first identified in
[37].

Recently the equivalence of the above three problems has been shown in [6] for f belong-
ing to a wider class, i.e. when f is in the completion of the space of zero-average measures
with respect to the norm dual to the C1 (or flat) norm. This wider space was studied in
[22] and characterized recently in [6, 7]. A different point of view is also available in [25],
where the space of such f is called W−1,1.

1.2. Goals of the paper. Our starting observation is that problem (B) pertains to a wide
class of optimal transport problem, introduced by Martin J. Beckmann in [2], which are of
the form

(BH) min
V

{∫
Ω
H(V ) dx : div V = f, V · νΩ = 0

}
, where c1 |z|p ≤ H(z) ≤ c2 |z|p,

for a suitable density-cost convex function H : RN → R+ and p ≥ 1. For a problem of
this type, the question of finding equivalent formulations of the form (K) and (M) has
already been addressed in [10] (see also [8]), under some restrictive assumptions on f , like
for example

f = f+ − f− with f+, f− ∈ Lp(Ω) and

∫
Ω
f+ =

∫
Ω
f− = 0.

The goal of this paper is to complement and refine this analysis, first of all by studying
problem (BH) in its natural functional analytic setting, i.e. when f belongs to some dual
Sobolev space W−1,p (whose elements are not measures, in general). Also, by expanding
the analysis in [8, 10], we will see that alternative formulations of the type (K) and (M)
are still possible for (BH) in this extended setting. These formulations are still well-posed
on the dual space W−1,p and equivalence can be proved in this larger space. The problem
corresponding to (K) will now have the form (see Section 3 for more details)

(KH) max
φ

[
〈f, φ〉 −

∫
Ω
H∗(∇φ) dx

]
,

and the equivalence with (BH) will just follow by standard convex duality arguments (that
we repeat in this paper, for reader’s convenience). On the contrary, in the proof of the
equivalence between (BH) and its Lagrangian formulation

(MH) min
Q

{∫
Ω
H(iQ) dx : (e0 − e1)#Q = f

}
,
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some care is needed, due to the fact that f now is not a measure. Here the measure iQ will
be some sort of transport density1 generated by Q, which takes into account the amount
of work generated in each region by our distribution of curves Q (see Section 4 for the
precise definition). In particular, the proof of this equivalence will point out another not
emphasized connection to Geometric Measure Theory.

The main result of this paper can be formulated as follows (see Theorems 3.1 and 4.5
for more precise statements):

Main Theorem. Let 1 < p < ∞. Suppose Ω ⊂ RN is the closure of a smooth bounded
open set, let f ∈ W−1,p(Ω) and let H be a strictly convex function having p−growth, with
p > 1. Then the minima in (BH), (MH) and the maximum in (KH) are achieved and
coincide. Moreover we have the following relationship among the optimizers of the three
problems:

(i) the unique minimizer of (BH) corresponds to a minimizer of (MH), in the sense
of Proposition 4.3;

(ii) each minimizer of (MH) corresponds to the unique minimizer of (BH), in the sense
of Proposition 4.3;

(iii) the unique minimizer V of (BH) and the unique maximizer v of (BH) are linked by
the relation V (x) ∈ ∂H∗(x,∇v(x)) a.e. in Ω, as specified in Theorem 3.1.

The connection of the first two points in the above theorem to Geometric Measure
Theory lies in the basic theory of flat 1-currents, of which we recall the first steps in the
(long) appendix at the end of the paper. Indeed, in order to show equivalence of (BH) and
(MH) in full generality, i.e. in the space of distributions W−1,p, the cornerstone will be
Smirnov decomposition theorem for 1−currents. We also notice that to this aim we need
to slightly extend Smirnov’s result to cover the case of flat currents with finite mass, i.e.
we drop the assumption on the finiteness of the mass of their boundaries (see Theorem
A.20). Translating this in the language of vector fields V , this extension is needed since
the divergence of V now will be just an element of W−1,p, rather than a measure.

For the sake of completeness and in order to neatly motivate the studies performed in
this paper, it is worth recalling that the proof of this equivalence in [10] was based on
the Dacorogna-Moser construction to produce transport maps (see [13]), which has been
revealed a powerful tool for optimal transport problems2. In a nutshell, this method consists
in associating to the “static” vector field V admissible in (BH), the following dynamical
system

∂µt = div

(
V

(1− t) f+ + t f−
µt

)
, µ0 = f+,

1When H(t) = |t|, problem (MH) is again the Monge-Kantorovich one and iQ for an optimal Q is
nothing but the usual concept of transport density, see [5, 15, 20].

2It is worth remarking that the first proof of the existence of an optimal transport map for problem
(M′), more than 200 years after Monge stated it, was based on a clever use of this construction (see [18]).
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i.e. a continuity equation with driving velocity field Ṽt given by V rescaled by the linear
interpolation between f+ and f−. Supposing that one can give a sense (either deterministic

or probabilistic) to the flow of Ṽt, then the construction of the measure QV concentrated

on the flow lines of Ṽt paves the way to the equivalence between the Lagrangian model
(MH) and (BH) (see [8, 10] for more details). However, this strategy seems to need some
restriction on the datum f , in particular f should be a Radon measure on Ω.

1.3. Plan of the paper. In Section 2 we describe the function spaces W−1,p(Ω) and prove
the existence of a minimizer for (BH). In Section 3 we prove the equivalence of (BH) with
(KH), by appealing to classical convex analysis formulas. The aim Section 4 is to introduce
the Lagrangian counterpart of Beckmann model and to show how the two models turn out
to be equivalent. A self-contained Appendix complements the paper. There we introduce
relevant concepts from Geometric Measure Theory and prove the extension of Smirnov’s
decomposition theorem to general flat 1−currents with finite mass (Theorem A.20), which
is the main ingredient for the proofs of Section 4.

2. Well-posedness of Beckmann problem

Let Ω ⊂ RN be the closure of an open bounded connected set, having smooth boundary.
In particular, in what follows Ω will always be compact. Given 1 < q < ∞, we indicate
with W 1,q(Ω) the usual Sobolev space of Lq(Ω) functions, whose distributional gradient is
in Lq(Ω) as well. We then define the quotient space

Ẇ 1,q(Ω) =
W 1,q(Ω)

∼
,

where ∼ is the equivalence relation defined by

u ∼ v ⇐⇒ there exists c ∈ R such that u(x)− v(x) = c ∈ R for a.e. x ∈ Ω.

When needed, the elements of Ẇ 1,q(Ω) will be identified with functions in W 1,q(Ω) having

zero mean. We endow the space Ẇ 1,q(Ω) with the norm

‖u‖Ẇ 1,q(Ω) :=

(∫
Ω
|∇u(x)|q dx

) 1
q

, u̇ ∈W 1,q(Ω),

then we denote by Ẇ−1,p(Ω) its dual space, equipped with the dual norm, defined as usual
by

‖T‖Ẇ−1,p(Ω) := sup
{
〈T, ϕ〉 : ϕ ∈ Ẇ 1,q(Ω), ‖ϕ‖Ẇ 1,q = 1

}
,

where p = q/(q − 1). We start recalling the following basic fact.

Lemma 2.1. Let T ∈ Ẇ−1,p(Ω), then

‖T‖Ẇ−1,p(Ω) = p
1
p

[
max

ϕ∈Ẇ 1,q(Ω)
|〈T, ϕ〉| − 1

q

∫
Ω
|∇ϕ|q dx

] 1
p

.
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Proof. For every ϕ ∈ Ẇ 1,q(Ω), we clearly have

|〈T, ϕ〉| − 1

q

∫
Ω
|∇ϕ|q dx ≤ sup

λ≥0

[
λ |〈T, ϕ〉| − λq

q

∫
Ω
|∇ϕ|q dx

]
.

On the other hand, the supremum on the right is readily computed: this corresponds to
the choice

λ = |〈T, ϕ〉|
1
q−1

(∫
Ω
|∇ϕ|q dx

)− 1
q−1

,

which gives

sup
λ≥0

[
λ |〈T, ϕ〉| − λq

q

∫
Ω
|∇u|q dx

]
=

1

p

(
|〈T, ϕ〉|
‖ϕ‖Ẇ 1,q

)p
.

Passing to the supremum over ϕ ∈ Ẇ 1,q(Ω) and using the definition of the dual norm, we
get the thesis. �

We also denote by E ′1(Ω) the space of distributions of order 1, with (compact) support
in Ω. In what follows, we will tacitly identify this space with the dual space of the Banach
space C1(Ω), endowed with the norm

‖ϕ‖C1(Ω) = ‖ϕ‖L∞(Ω) + ‖∇ϕ‖L∞(Ω).

By denoting νΩ the outer normal versor to ∂Ω, we have the following characterization for
the dual space Ẇ−1,p(Ω).

Lemma 2.2. Let p = q′ = q/(q − 1). Given a vector field V ∈ Lp(Ω;RN ) and T ∈ E ′1(Ω),
we say that V satisfies

(2.1) −div V = T in Ω, V · νΩ = 0 on ∂Ω,

if ∫
Ω
∇ϕ(x) · V (x) dx = 〈T, ϕ〉, for every ϕ ∈ C1(Ω).

If we set

E ′1,p(Ω) = {T ∈ E ′1(Ω) : there exists V ∈ Lp(Ω;RN ) satisfying (2.1)},

we then have the identification

Ẇ−1,p(Ω) = E ′1,p(Ω).

Proof. Let T ∈ Ẇ−1,p(Ω), first of all we observe that then T ∈ E ′1(Ω) as well. Now, consider
the following maximization problem

sup
v∈Ẇ 1,q(Ω)

〈T, v〉 − 1

q

∫
Ω
|∇v(x)|q dx.
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By means of the Direct Methods, it is not difficult to see that there exists a (unique)

maximizer u ∈ Ẇ 1,q(Ω) for this problem. Moreover, such a maximizer satisfies the relevant
Euler-Lagrange equation, given by∫

Ω
|∇u(x)|q−2∇u(x) · ∇ϕ(x) dx = 〈T, ϕ〉, for every ϕ ∈ Ẇ 1,q(Ω).

By defining V = |∇u|q−2∇u ∈ Lp(Ω;RN ), the previous identity implies T ∈ E ′1,p(Ω).

Conversely, let us take T ∈ E ′1,p(Ω), then for every ϕ ∈ C1(Ω) equation (2.1) implies

|〈T, ϕ〉| =
∣∣∣∣∫

Ω
∇ϕ(x) · V (x) dx

∣∣∣∣ ≤ ‖ϕ‖Ẇ 1,q ‖V ‖Lp(Ω).

Using the density of C1(Ω) in Ẇ 1,q(Ω), we then get that T can be extended in a unique

way as an element (that we still denote T , for simplicity) of Ẇ−1,q(Ω). Observe that this
extension satisfies

‖T‖Ẇ−1,p(Ω) ≤ ‖V ‖Lp(Ω),

by taking the supremum in the previous inequality. �

Remark 2.3. We remark that the elements of E ′1,p(Ω) have “zero average”, i.e.

〈T, 1〉 = 0,

as follows by testing the weak formulation of (2.1) with ϕ ≡ 1. This is coherent with the

previous identification Ẇ−1,p(Ω) = E ′1,p(Ω), since by construction the space Ẇ 1,q(Ω) does
not contain any non trivial constant function.

Example 2.4. Consider the measure T = δa − δb for two points a 6= b ∈ RN . We claim
that

T = δa − δb ∈ Ẇ−1,p(Ω) if and only if 1 ≤ p < N/(N − 1),

where Ω is a sufficiently large ball containing a, b in its interior. We will prove this by using
the characterization of Lemma 2.2.

Suppose indeed that there exists some V ∈ Lp(Ω), such that −div V = T . We pick a ball
Br(a) centered at a and having radius r such that 2 r < |a− b|. Then given ε < r, we take
a C1

0 (Br(a)) function ηε such that

ηε ≡ 1 in Br−ε(a) and ‖∇ηε‖L∞ ≤ C ε−1.

Thanks to our assumption, we will have

1 = 〈T, ηε〉 =

∫
Br(a)

V · ∇ηε dx,

so that ∫
Br(a)\Br−ε(a)

|V | dx ≥ ε

C
.
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By Hölder inequality, this easily implies a lower bound on the Lp norm of V , namely∫
Br(a)

|V |p dx ≥ εp |Br(a) \Br−ε(a)|1−p = CN,p ε
p rN (1−p)

[
1−

(
1− ε

r

)N]1−p
.

We now make the choice ε = r/2, so that from the previous we can infer∫
Br(a)

|V |p dx ≥ C̃N,p rp+N (1−p) = C̃N,p r
N−p (N−1).

The previous estimate clearly contradicts the assumption V ∈ Lp(Ω), if the exponent
N − p (N − 1) is not strictly positive. Therefore we see by Lemma 2.2 that p < N/(N − 1)

is a necessary condition for T ∈ Ẇ−1,p(Ω).

This condition on p is also sufficient for T to belong to Ẇ−1,p(Ω), as we will now show. Let
us set 2 τ = |a−b|, for simplicity let us suppose that a = (−τ, 0, . . . , 0) and b = (τ, 0, . . . , 0).
Then, using the notation x = (x1, x

′) for a generic point in RN , where x′ ∈ RN−1, we
consider the following vector field

Va,b(x) =



(x1 + τ, x′)

(x1 + τ)N
, if |x′| ≤ τ and |x′| − τ ≤ x1 ≤ 0,

(x1 − τ, x′)
(x1 − τ)N

, if |x′| ≤ τ and τ − |x′| ≥ x1 ≥ 0,

(0, . . . , 0), otherwise.

It is easily seen that div Va,b = δa − δb and that Va,b is supported on the set

Da,b =

{
(x1, x

′) ∈ RN :
|a− b|

2
≥ |x′|+ |x1|

}
,

which is just the the union of two cones centered at a and b, having opening 1 and height
τ = |a− b|/2. Also, by construction we have∫

Qa,b

|Va,b(x)|p dx = 2

∫ 0

−τ

∫
{x′ : |x′|=x1+τ}

(√
(x1 + τ)2 + |x′|2

)p
(x1 + τ)Np

dx′ dx1

= 2
p+2
2 N ωN

∫ 0

−τ
(x1 + τ)−Np+p+N−1 dx1

so that finally

‖Va,b‖pLp ≤ CN,p |a− b|
N−p(N−1),

thanks to our assumption p < N/(N − 1). For some related constructions, the reader is
referred to [3, Proposition 3.2] and [32, Lemma 8.3].

As a consequence of Lemma 2.2, we have the following well-posedness result for Beck-
mann problem.
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Proposition 2.5. Let H : Ω × RN be a Carathéodory function, such that z 7→ H(x, z) is
convex on RN , for every x ∈ Ω. We further suppose that H satisfies the growth conditions

(2.2) λ(|z|p − 1) ≤ H(x, z) ≤ 1

λ
(|z|p + 1), (x, z) ∈ Ω× RN ,

for some 0 < λ ≤ 1. Then the following problem

(2.3) min
V ∈Lp(Ω;RN )

{∫
Ω
H(x, V ) dx : −div V = T, V · νΩ = 0

}
,

admits a minimizer with finite energy if and only if T ∈ Ẇ−1,p(Ω).

Proof. Let T ∈ Ẇ−1,p(Ω), then thanks to Lemma 2.2 there exists at least one admissible
vector field V0 with finite energy, so that the infimum (2.3) is finite. If {Vn}n∈N ⊂ Lp(Ω;RN )
is a minimizing sequence, then the hypothesis on H guarantees that this sequence is weakly
convergent to some V ∈ Lp(Ω;RN ). Thanks to the convexity of H, the functional is weakly
lower semicontinuous, i.e.∫

Ω
H(x, V ) dx ≤ lim inf

n→∞

∫
Ω
H(x, Vn) dx

= min
V ∈Lp(Ω;RN )

{∫
Ω
H(x, V (x)) dx :

−div V = T,
V · νΩ = 0

}
.

Moreover, this limit vector field V is still admissible, since∫
Ω
∇ϕ · V dx = lim

n→∞

∫
Ω
∇ϕ · Vn dx = 〈T, ϕ〉, for every ϕ ∈ C1(Ω),

by weak convergence. Therefore V realizes the minimum.

On the other hand, suppose that T 6∈ Ẇ−1,p(Ω). Again thanks to Lemma 2.2 we have that
the set of admissible vector fields is empty, so the problem is not well-posed. �

For the sequel, we need the following definition.

Definition 2.6. We say that a vector field V ∈ L1
loc(Ω;RN ) is acyclic if, whenever we can

write V = V1 +V2, with |V | = |V1|+ |V2| and div V1 = 0 in distributional sense, there must
result V1 ≡ 0.

The following is a mild regularity result for optimizers of (2.3) in the isotropic case, i.e.
when H depends on the variable z only through its modulus. This will be crucial in order
to equivalently reformulate (2.3) as a Lagrangian problem, where the transport is described
by measures on paths.

Proposition 2.7. Let us suppose that H satisfies the hypotheses of Proposition 2.5. In
addition, we suppose that

z 7→ H(x, z) is a strictly convex increasing function of |z|, for every x.

Then there exists a unique minimizer V for (2.3) and V is acyclic.
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Proof. The uniqueness of V just follows by strict convexity, so let us prove that V is acylic.
Let us suppose that we can write V = V1 + V2, for some vector fields V1, V2 ∈ L1(Ω;RN )
such that

|V | = |V1|+ |V2| and div V1 = 0.

As a consequence, we have div V = div V2 and |V | ≥ |V2|. Thus V2 is a competitor for
problem (2.3) with energy not larger than that of V , thanks to the monotonicity of H.
Since V is the unique minimizer, it must have energy equal to that of V2. Thus |V | = |V2|
and |V1| = 0 almost everywhere. Owing to the definition, this shows that V is acylic, thus
concluding the proof. �

3. Duality for Beckmann problem

In what follows, we will need the following general convex duality result (for the proof,
the reader is referred to [17, Proposition 5, page 89]). The statement has been slightly
simplified, in order to be directly adapted to our setting.

Convex duality. Let F : Y → R be a convex lower semicontinuous functional on the
reflexive Banach space Y . Let X be another reflexive Banach space and A : X → Y a
bounded linear operator, with adjoint operator A∗ : Y ∗ → X∗. Then we have

(3.1) sup
x∈X
〈x∗, x〉 − F(Ax) = min

y∗∈Y ∗
{F∗(y∗) : A∗y∗ = x∗}, x∗ ∈ X∗,

where F∗ : Y ∗ → R ∪ {+∞} denotes the Legendre-Fenchel transform of F . Moreover, if
the supremum in (3.1) is attained at some x0 ∈ X, then the minimum in (3.1) is attained
as well, by a y∗0 ∈ Y ∗ such that

y∗0 ∈ ∂F(Ax0).

Thanks to the previous result, we obtain that Beckmann problem admits a dual formu-
lation, which is a classical elliptic problem in Calculus of Variations.

Theorem 3.1 (Duality). Let H be a function satisfying the hypotheses of Proposition 2.5

and T ∈ Ẇ−1,p(Ω). Then

min
V ∈Lp(Ω;RN )

{∫
Ω
H(x, V (x)) dx : −div V = T, V · νΩ = 0

}
= max

v∈Ẇ 1,q(Ω)

{
〈T, v〉 −

∫
Ω
H∗(x,∇v(x)) dx

}
,

(3.2)

where H∗ is the partial Legendre-Fenchel transform of H, i.e.

H∗(x, ξ) = sup
z∈RN

ξ · z −H(x, z), x ∈ Ω, ξ ∈ RN .

Moreover, if V0 ∈ Lp(Ω) and v0 ∈ Ẇ 1,q(Ω) are two optimizers for the problems in (3.2),
we have the following primal-dual optimality condition

(3.3) V0 ∈ ∂H∗(x,∇v0) in Ω,
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where ∂H∗ denotes the subgradient with respect to the ξ variable, i.e.

∂H∗(x, ξ) = {z ∈ RN : H∗(x, ξ) +H(x, z) = ξ · z, for every x ∈ Ω}.
Proof. To prove (3.2), it is sufficient to apply the previous result with the choices

Y = Lq(Ω;RN ), X = Ẇ 1,q(Ω), F(φ) =

∫
Ω
H∗(x, φ(x)) dx and A (ϕ) = ∇ϕ.

Observe that the operator A is bounded, since

‖A(ϕ)‖Y = ‖∇ϕ‖Lq(Ω) = ‖ϕ‖X , for every ϕ ∈ X,
and that

F∗(ξ) =

∫
Ω
H∗∗(x, ξ(x)) dx =

∫
Ω
H(x, ξ(x)) dx,

since ξ 7→ H(x, ξ) is convex and lower semicontinuous, for every x ∈ Ω. We only need

to compute the adjoint operator A∗ : Lp(Ω;RN ) → Ẇ−1,p(Ω). Let us define the map
D : Lp(Ω;RN )→ E ′1,p(Ω) by

DV ∈ E ′1(Ω) such that 〈DV,ϕ〉 =

∫
Ω
∇ϕ · V dx, for every ϕ ∈ C1(Ω).

Observe that this is a linear operator, whose image is contained in E1,p(Ω) = Ẇ−1,p(Ω)
just by construction and by definition of E1,p(Ω). Moreover, for every ϕ ∈ C1(Ω) and
V ∈ Lp(Ω;RN ) we have

〈Aϕ, V 〉 =

∫
Ω
∇ϕ(x) · V (x) dx = 〈ϕ,D V 〉.

By density of C1(Ω) in W 1,q(Ω), we obtain that D = A∗, then (3.2) follows from (3.1).

The primal-dual optimality condition (3.3) as well is a direct consequence of the second
part of the convex duality result. It is sufficient to observe that the maximum in (3.2)

is attained at some v0 ∈ Ẇ 1,p(Ω), simply using the Direct Methods. This implies that a
minimizer V0 of Beckmann problem has to satisfy

V0 ∈ ∂F(∇v0),

which implies directly (3.3). �

A significant instance of the previous result corresponds to H(x, z) = |z|p. Thanks to
Lemma 2.1, we have the following.

Corollary 3.2. For every T ∈ Ẇ−1,p(Ω), we have

‖T‖Ẇ−1,p(Ω) = min
V ∈Lp(Ω;RN )

{
‖V ‖Lp(Ω) : −div V = T, V · νΩ = 0

}
.

Proof. It is sufficient to use (3.2) and Lemma 2.1, paying attention to the easy fact

max
ϕ∈Ẇ 1,q(Ω)

|〈T, ϕ〉| − 1

q

∫
Ω
|∇ϕ|q dx = max

ϕ∈Ẇ 1,q(Ω)
〈T, ϕ〉 − 1

q

∫
Ω
|∇ϕ|q dx.

This establishes the thesis. �
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Corollary 3.3. Under the hypotheses of Theorem 3.1, we have that the functional

FH : Ẇ−1,p(Ω) → R+

T 7→ minimal value (2.3)

is convex and weakly lower semicontinuous.

Proof. It is sufficient to observe that thanks to Theorem 3.1, the value (2.3) can be written
as a supremum of the linear functionals Lϕ defined by

Lϕ(T ) = 〈T, ϕ〉 −
∫

Ω
H∗(x,∇ϕ) dx, ϕ ∈ Ẇ 1,q(Ω).

Then the thesis follows. �

About the duality result of Theorem 3.1, some comments are in order.

Remark 3.4 (Economic interpretation). By the so-called Legendre reciprocity formula in
Convex Analysis, the primal-dual optimality condition (3.3) can be equivalently written as

(3.4) ∇v0 ∈ ∂H(x, V0), in Ω,

so this result is the rigorous justification of the necessary optimality conditions derived in
[2, Lemma 2]. Such a function v0 will be called a Beckmann potential and its economic
interpretation is that of an efficiency price system. It can be seen as a generalization of
a Kantorovich potential, to a situation where the cost to move some unit of mass from x
to y is not fixed, but it depends on the quantity of traffic generated by the transport V0

itself. Heuristically, observe that in such a situation this minimal cost will be given by the
“congested metric”

dV0(x0, x1) = min
γ : γ(i)=xi

∫ 1

0

∣∣∇H(·, V0) ◦ γ| |γ′(t)
∣∣ dt.

This means that each mass particle is charged for the marginal cost it produces, the latter
being the derivative of the function H (we suppose for simplicity that H has a true gradient
and not just a subgradient). Then v0 acts as a Kantorovich potential for the Optimal
Transport problem

min

{∫
Ω×Ω

dV0(x, y) dη(x, y) : (πx)#η = T+ and (πy)#η = T−

}
,

where we suppose for simplicity that T = T+ − T−, with T+ and T− positive measures
having the same mass. It should be remarked that ∇ϕ0 does not give the direction of
optimal transportation in Beckmann problem, since ∇ϕ0 and V0 are linked through the
relation (3.4), thus they are not parallel in general. Actually, this is the case only when the
cost function H is isotropic, i.e. when it just depends on |V |, for every admissible vector
field V . This is the case studied by Beckmann in his original paper [2].

Remark 3.5 (Regularity of optimal vector fields). We point out that if z 7→ H(x, z) is
strictly convex, then ξ 7→ H∗(x, ξ) is C1. Thus in this case, the optimal V0 is unique and
we have

V0 = ∇H∗(x,∇v0).
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Then the regularity of the optimal vector field V0 can be recovered from the regularity of
a Beckmann potential, which solves the following elliptic boundary value problem

(3.5)

{
−div∇H∗(x,∇u) = T, in Ω
∇H∗(x,∇u) · νΩ = 0, on ∂Ω.

For instance, if H∗ in uniformly convex “at infinity”, i.e if there exists M > 0 such that

(1 + |z|2)
q−2
2 ≤ C min

|ξ|=1
〈D2H∗(x, z) ξ, ξ〉, for every |z| ≥M, x ∈ Ω,

and

|D2H∗(x, z)| . (1 + |z|2)
q−2
2 , (x, z) ∈ Ω× RN ,

then V is bounded, provided that T ∈ LN+ε(Ω), since in this case solutions to (3.5) are
Lipschitz. These assumptions are verified for example by (see [10])

H∗(z) =
1

q
(|z| − δ)q+, z ∈ RN ,

where (·)+ stands for the positive part and δ ≥ 0, but are violated by anisotropic functions
of the type

H∗(z) =

N∑
i=1

1

q
(|zi| − δi)q+, z ∈ RN ,

considered for example in [8, 9].

4. A Lagrangian reformulation

The aim of this section is to introduce a Lagrangian counterpart of Beckmann model and
to show how the two models turn out to be equivalent. The model we are going to present is
a continuous version of the classical discrete model by Wardrop, which we mentioned above.
This continuous model has already been introduced in [12] and the equivalence has been
discussed in [10]. Here, paralleling the case of Beckmann model, we go one step further, by

extending this model to its natural setting, i.e. the dual space Ẇ−1,p(Ω). Moreover, we will
prove equivalence of the models without imposing any additional regularity on the datum
T . This will be achieved by means of Smirnov decomposition theorem for 1−currents (see
Theorem A.20).

Given two Lipschitz curves γ1, γ2 : [0, 1]→ Ω, we say that they are equivalent if there exists
a continuous surjective nondecreasing function t : [0, 1]→ [0, 1] such that

γ2(t) = γ1(t(t)), for every t ∈ [0, 1].

Let us call L(Ω) the set of all equivalence classes of Lipschitz paths in Ω. We can introduce
a topology on this set by defining the following distance

d(γ1, γ2) := max {|γ̂1(t)− γ̂2(t)| : t ∈ [0, 1], γ̂i equivalent to γi} .
Observe that convergence in this metric is nothing but the usual uniform convergence, up
to reparametrizations.
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We denote the class of σ-finite positive Borel (with respect to the above topology) measures
on L(Ω) by M+(L(Ω)). For Q ∈ M+(L(Ω)), we may define the corresponding traffic
intensity by

〈iQ, ϕ〉 :=

∫
L(Ω)

(∫ 1

0
ϕ(γ(t)) |γ′(t)| dt

)
dQ(γ), ϕ ∈ C(Ω),

provided that the outer integrals converges, in which case we say that “the traffic intensity
iQ exists”. If this is the case, then the following integral

〈iQ, ϕ〉 =

∫
L(Ω)

(∫ 1

0
ϕ(γ(t)) · γ′(t) dt

)
dQ(γ), ϕ ∈ C(Ω;RN ).

also converges. These definitions do not depend on the particular representative of the
equivalence class we chosen, since the integrals in brackets are invariant under time repa-
rameterization.

Remark 4.1. Observe that iQ counts in a scalar way the traffic generated by Q, while
iQ computes it in a vectorial way. This means that in principle iQ and |iQ| could be very
different, since in iQ two huge amounts of mass going in opposite direction give rise to a lot
of cancellations, as the orientation of curves is taken into account. As a simple example,
suppose to have two distinct points x0 6= x1, then we consider the measure

Q =
1

2
δγ1 +

1

2
δγ2 ,

with γ1(t) = (1− t)x0 + t x1 and σ2(t) = (1− t)x1 + t x0, that is we simply exchange the
mass in x0 with that in x1 and vice versa. By computing the traffic intensity, we get

iQ = H 1 xx0x1,

which takes into account the intuitive fact that on the segment x0x1 globally there is a non
negligible amount of transiting mass. On the other hand, it is easily seen that

iQ ≡ 0.

Given T ∈ E ′1(Ω), we define also the following space of measures

Qp(T ) :=
{
Q ∈M+(L(Ω)) : iQ ∈ Lp(Ω) and (e0 − e1)#Q = T

}
,

where ei : L(Ω)→ Ω is defined by ei(γ) = γ(i), for i = 0, 1 and the equality (e0−e1)#Q = T
has to be understood in the distributional sense, i.e.∫

L(Ω)
[ϕ(γ(0))− ϕ(γ(1))] dQ(γ) = 〈T, ϕ〉, for every ϕ ∈ C1(Ω).

The convergence of the above integral is again in the sense of distributions.

Remark 4.2. All these definitions are reformulated in Appendix A in terms of currents.
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Let us now consider H : Ω× R+ → R+ a Carathéodory function such that

(4.1) λ (tp − 1) ≤ H(x, t) ≤ 1

λ
(tp + 1), x ∈ Ω, t ∈ R+

for some 0 < λ ≤ 1 and such that

t 7→ H(x, t) is convex, for every x ∈ Ω.

If Qp(T ) 6= ∅, then we may define the following minimization problem:

(MH) inf
Q∈Qp(T )

∫
Ω
H(x, iQ(x)) dx.

We will show that the above minimization is well-posed and equivalent to the one in (2.3).
At this aim, we will use the following result, proved in the appendix (see Theorem A.20)
in a slightly stronger formulation in terms of currents.

Proposition 4.3. Let 1 ≤ p < ∞. Suppose that V ∈ Lp(Ω,RN ) and that V is acyclic.
If we set T = −div V , then it is possible to find a positive σ−finite Borel measure Q ∈
M+(L(Ω)) such that

(e0 − e1)#Q = T in distributional sense.

Moreover, we have
iQ = V and iQ = |V |.

In particular Q ∈ Qp(T ).

Thanks to the previous result, we can at first give a necessary and sufficient condition
for the set Qp(T ) to be not empty.

Proposition 4.4. The set Qp(T ) is not empty if and only if T ∈ Ẇ−1,p(Ω).

Proof. Let us suppose that T 6∈ Ẇ−1,p(Ω) and assume by contradiction that there exists
Q0 ∈ Qp(T ). In particular

(4.2)

∫
Ω
|iQ0(x)|p dx < +∞.

The vector measure iQ0 satisfies (2.1), since∫
Ω
∇ϕ · diQ0 =

∫
L(Ω)

(∫ 1

0
∇ϕ(γ(t)) · γ′(t) dt

)
dQ0(γ)

=

∫
L(Ω)

[
ϕ(γ(1))− ϕ(γ(0))

]
dQ0(γ) = 〈T, ϕ〉,

for every ϕ ∈ C1(Ω). Also, thanks to the fact that |iQ0 | ≤ iQ0 and to (4.2), we have that

iQ0 ∈ Lp(Ω;RN ). This contradicts the fact that T 6∈ Ẇ−1,p(Ω), as wanted.

Let us now take T ∈ Ẇ−1,p(Ω), then there exists a minimizer V of (2.3). Thanks to
Proposition 2.7, we know that V is acyclic, so that by Proposition 4.3 we can infer the
existence of Q ∈ Qp(T ). This gives directly the thesis. �
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We can now prove our equivalence result, which is the main result of this section. Observe
that we prove at the same time existence of a minimizer for (MH).

Theorem 4.5. Let H : Ω × R+ → R+ be a Carathéodory function satisfying (4.1) and
such that

t 7→ H(x, t) is convex and increasing, x ∈ Ω.

For every T ∈ Ẇ−1,p(Ω), we have

(4.3) inf
Q∈Qp(T )

∫
Ω
H(x, iQ(x)) dx = min

V ∈Lp(Ω;RN )

{∫
Ω
H(x, |V |) dx :

−div V = T,
V · νΩ = 0

}
,

and the infimum on the left-hand side is achieved.
Moreover, if Q0 ∈ Qp(T ) is optimal, then iQ0 ∈ Lp(Ω;RN ) is a minimizer of Beckmann

problem. Conversely, if V0 is optimal, then there exists QV0 ∈ Qp(T ) such that iQV0 = |iQV0 |
minimizes the Lagrangian problem.

Proof. Since T ∈ Ẇ−1,p(Ω), we first observe that by the previous result the set Qp(T ) is
not empty. Moreover, for every admissible Q, we have |iQ| ≤ iQ and iQ is admissible for
Beckmann problem. Using the monotonicity of H(x, ·), we then obtain

min
V ∈Lp(Ω;RN )

{∫
Ω
H(x, |V |) dx :

−div V = T,
V · νΩ = 0

}
≤ inf

Q∈Qp(T )

∫
Ω
H(x, iQ(x)) dx < +∞.

Let us now take a minimizer V0 ∈ Lp(Ω;RN ) for Beckmann problem, then by Proposition
2.7 this is acyclic. Thus by Proposition 4.3, there exists Q0 ∈ Qp(T ) such that |V0| = iQ0 ,
i.e.

min
V ∈Lp(Ω;RN )

{∫
Ω
H(x, |V |) dx :

−div V = T,
V · νΩ = 0

}
=

∫
Ω
H(x, iQ0(x)) dx.

This shows that (4.3) holds true and that the infimum in the left-hand side is indeed a
minimum.

The relation between minimizers of the two problems is an easy consequence of the
previous constructions. �

Remark 4.6. Similar Lagrangian formulations have been studied in connection with trans-
port problems involving concave costs, like for example problems where to move a mass m
of a length ` costs mα ` (0 < α < 1). For these the reader is referred to the monograph [4],
as well as to the papers [29, 38].

Appendix A. Decompositions of acyclic flat 1-currents

A.1. Definitions and links to vector fields. The classical references which we use for
currents are [19, 21]. We translate however all results in the language of the previous
sections. In the following, by Ω ⊂ RN we still denote the closure of an open bounded
connected set, having smooth boundary.
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Definition A.1. A 0-current on Ω is a distribution on Ω, in the usual sense. A 1-
current on Ω is a vector valued distribution on Ω. The relevant duality is the one with
1-forms ω(x) =

∑N
i=1 ωi(x) dxi having smooth coefficients, i.e. ωi ∈ C∞(Ω). We denote by

C∞(Ω,∧1RN ) the space of such forms. More generally, a k-current is an element in the
dual of smooth k-forms C∞(Ω,∧kRN ).

The above definition automatically gives the space of currents a natual weak topology,
defined via the duality with smooth forms. For any current there is a natural definition of
boundary.

Definition A.2. If I is a k-current on Ω, then we can define its boundary ∂I to be the
(k − 1)-current on Ω which satisfies

〈∂I, ϕ〉 = −〈I, dϕ〉, for all ϕ ∈ C∞(Ω,∧k−1RN ),

where d is the exterior derivative. For example, if k = 1 we must take ϕ ∈ C∞(Ω) and dϕ
is the 1-form

∑
i ∂xiϕdxi.

Definition A.3. Let I be a k-current, then its mass is

M(I) = sup

{
|〈I, ω〉| : ω ∈ C∞(Ω,∧kRN ), sup

x∈Ω
‖ω(x)‖ ≤ 1

}
,

where the norm ‖ω‖ for an alternating k-tensor is defined as

‖ω‖ = sup{〈ω, e〉 : e unit simple k − vector}.

For k = 1 this coincides with the usual norm ‖ω‖ =
√
ω2

1 + . . .+ ω2
N .

We will be interested just in 1-currents which are distributions of order 0 (i.e. vector
valued Radon measures) and in their boundaries (which are scalar distributions of order
1). For them, a comment is in order.

Remark A.4. Finite mass 1-currents can be identified with vector-valued Radon measures
as follows. To every smooth 1-form ω we may associate naturally a vector field Xω :=
(ω1, . . . , ωN ). We can then write for a 1-current I∫

Xω dI := 〈I, ω〉.

Since C∞ is dense in C0, the resulting linear functional on smooth vector fields can be
identified via Hahn-Banach theorem to a unique linear functional on C0 vector fields. The
latter is indeed a vector-valued Radon measure by Riesz representation theorem. Since
‖ω(x)‖ = ‖Xω(x)‖ by the above definition, we automatically obtain that

M(I) =

∫
Ω
d|I|,

i.e. the mass equals the total variation of I regarded as a Radon measure. The same
reasoning can be applied to 0-currents of finite mass, by identifying them with scalar
Radon measures3.

3See also “Distributions representable by integration” in [19, 4.1.7]
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Definition A.5 (variation of a current). Let A be a k-current with k ∈ {0, 1}. Then we
may define the variation measure µA of A in the usual sense, by identifying A with a Radon
measure as in Remark A.4. Thus for a Borel set E we define

µA(E) := sup

{
k∑
i=1

∣∣∣∣∫
Ei

dA

∣∣∣∣ : Ei form a Borel partition of E

}
.

An equivalent way of defining µA would be as the infimum of all measures µ such that
〈A,ω〉 ≤

∫
Ω ‖ω‖dµ for all smooth 1-forms ω.

We recall that a k−current T is said to be normal if 4

M(T ) + M(∂T ) < +∞.
We now define flat currents, a class useful for its closure properties.

Definition A.6. We define the flat norm of a k-current A as follows

F(A) = inf {M(A− ∂I) + M(I) : I is a (k + 1)−current with M(I) <∞} .
Then the space of flat k-currents is defined as the completion of normal k−currents in the
flat norm.

Flat currents of finite mass have the following characterization, which will be exploited
in the sequel.

Lemma A.7. Let T be a flat k−current of finite mass. Then T is a flat current if and
only if there exists a sequence of normal k−currents {Tn}n∈N such that

lim
n→∞

M(Tn − T ) = 0.

Proof. This is a standard fact, we provide a proof for the ease of completeness. By definition
of flat convergence, there exists a sequence {In}n∈N of normal k−currents and a sequence
{Yn}n∈N of (k + 1)−currents such that

lim
n→∞

[
M(I − In − ∂Yn) + M(Yn)− 1

n

]
≤ lim

n→∞
F(I − In) = 0.

We then set Tn = In + ∂Yn, which by construction is a k−current and of course

lim
n→∞

M(T − Tn) = 0,

thanks to the previous. Moreover, this is a normal current, since by triangular inequality
we have

M(Tn) ≤M(In) + M(∂Yn) ≤ 2M(In) + M(T − In − ∂Yn) + M(T ) < +∞,
thanks to the fact that T has finite mass, and also

M(∂Tn) = M(∂In) < +∞,
since ∂(∂Yn) = 0. This concludes the proof.

4For k = 0, we define ∂A = 0 and thus the condition on ∂A can be omitted.
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The converse implication is even simpler: by definition of flat norm, we directly have

F(T − Tn) ≤M(T − Tn),

which concludes the proof. �

A significant instance of flat 1−currents with finite mass is given by L1 vector fields. We
provide a small proof of this elementary fact.

Lemma A.8. Given V ∈ L1(Ω;RN ), we naturally associate to it the 1−current IV of finite
mass, defined by

〈IV , ω〉 =

N∑
i=1

∫
Ω
ωi Vi dx :=

∫
Ω
ω(V ), for every ω ∈ C∞(Ω,∧1RN ).

This has compact support contained in Ω and M(IV ) = ‖V ‖L1. Moreover, IV is a flat
current.

Proof. We just prove that IV is a flat current, the first statement being straightforward.
At this aim, we will use the characterization of Lemma A.7 and we will construct the
approximanting currents by convolution. For every ε� 1, we define

Ωε = {x ∈ Ω : dist(x, ∂Ω) > 2 ε},
then we take a standard convolution kernel % ∈ C∞0 , supported on the ball {x : |x| ≤ 1}
and we define

%ε(x) = ε−N %
(x
ε

)
, x ∈ RN .

We also set

Vε := (V · 1Ωε) ∗ %ε,
where 1E stands for the characteristic function of a set E. Consequently, we define Iε := IVε
and observe that Vε (and thus Iε) has compact support contained in Ω. From the mass
estimate and Hölder inequality we obtain that masses are equi-bounded, since

M(Iε) ≤ ‖Vε‖L1 ≤ ‖%‖L∞‖V ‖L1 ≤ C‖V ‖L1 .

The boundedness of ∂Iε follows a similar route: since Vε have compact support (strictly
contained) in Ω, we have

|〈∂Iε, ϕ〉| = |〈Iε, d ϕ〉| =
∣∣∣∣∫

Ω
Vε · ∇ϕdx

∣∣∣∣
=

∣∣∣∣∫
Ω

divVε ϕdx

∣∣∣∣ ≤ ‖div Vε‖L1 ‖ϕ‖L∞ ,

so that setting Cε = ‖div Vε‖L1 and passing to the supremum on ϕ, from the previous we
obtain

M(∂Iε) ≤ Cε < +∞.
This implies that {Iε}ε>0 is a sequence of normal currents. Moreover, the mass convergence
M(Iε − I) easily follows from the convergence of Vε to V in L1(Ω;RN ). �
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Remark A.9. With the previous notation, it is easily seen that the boundary ∂IV corre-
sponds to the distributional divergence of V , i.e.

〈∂IV , ϕ〉 = −
∫

Ω
∇ϕ · V dx for every ϕ ∈ C∞(Ω).

This distribution as well has compact support in Ω.

Definition A.10. A 1-current I is called acyclic if, whenever we can write I = I1 + I2,
with M(I) = M(I1) + M(I2) and ∂I1 = 0, there must result I1 = 0.

For I = IV with V ∈ L1, we have the correspondence with Definition 2.6, i.e.

(A.1) V is acyclic⇐⇒ IV is acyclic.

A.2. Lipschitz curves as currents. We recall that we called L(Ω) the space of equiv-
alence classes of Lipschitz curves γ : [0, 1] → Ω (see the beginning of Section 4), with the
topology of uniform convergence.
Here we remark that to each γ ∈ L(Ω) we may associate a vector valued distribution, i.e.
a 1-current, denoted by [γ] and defined by requiring for all ω ∈ C∞(Ω,∧1RN )

〈[γ], ω〉 :=

∫
γ
ω =

∫ 1

0
ω(γ(t)) [γ′(t)] dt =

N∑
i=1

∫ 1

0
ωi(γ(t)) γ′i(t) dt.

Note that this expression is well-defined on L(Ω), since the integral on the right is invariant
under reparameterization.

For γ ∈ L(Ω) we have M([γ]) ≤ `(γ) :=
∫ 1

0 |γ
′(t)| dt with equality exactly when γ has a

representative which is injective for H1-almost every time. We are interested in a stronger
requirement, namely that the curve does not even intersect itself, so that an injective
representative exists (such curves are called “arcs” in [27]). We fix a notation for such
classes of curves.

Definition A.11 (Arcs). We define L̃(Ω) the subset of L(Ω) made of those classes of
curves γ : [0, 1]→ Ω which have an injective representative.

Remark A.12. One could think of the above-defined arcs as “acyclic curves”, where a
“cycle” can mean two things:

• we can have a cycle in the parameterization, where a cycle would be represented by
a curve satisfying (up to reparameterization) γ(t) = γ(1− t) and “inserting a cycle
of type γ” in another curve γ such that γ(t0) = γ(0) would result into the curve:

γ̃(s) =

 γ(2s) if s ∈ [0, t0/2]
γ(2s− t0) if s ∈ [t0/2, (t0 + 1)/2]
γ(2s− 1) if s ∈ [(t0 + 1)/2, 1].

• a curve which intersects itself (i.e. which has no injective parameterization) will
instead give rise to a 1-current which is not acyclic, since it will have a reparame-
terization containing an injectively parameterized loop.
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The fact that in the decomposition of acyclic currents one restricts to using just arcs (for
which neither type of cycle occurs) is then another natural consequence of the robustness
of the acyclicity requirement.

On 1-currents we consider the topology of distributions. The following result links the
two topologies:

Lemma A.13. The map L(Ω) 3 γ 7→ [γ] as defined above is continuous on the sublevels
of the lenght functional ` : L(Ω)→ R.

Proof. Assuming that γi → γ and `(γi) ≤ C we then obtain that γi converge uniformly. In
particular they converge as distributions. �

A.3. Smirnov decomposition theorem. We are now in a position of stating the theorem
on the decomposition of 1-currents due to Smirnov [36] and recenlty extended by Paolini
and Stepanov in [27, 28] to metric spaces. The result which is relevant for us is contained
in [36], though for its extension needed below we will use the techniques of [27].

Theorem A.14 ([27, 36]). Suppose that I is a normal acyclic 1-current on Ω. Then there
exists a finite Radon measure Q on the space of continuous curves on Ω, concentrated on

L̃(Ω), and such that the following decompositions of I are valid in the sense of distributions:

(A.2) I =

∫
L(Ω)

[γ] dQ(γ) and µI =

∫
L(Ω)

µ[γ] dQ(γ);

and

(A.3) ∂I =

∫
L(Ω)

∂[γ] dQ(γ) and µ∂I =

∫
L(Ω)

µ∂[γ] dQ(γ).

We now note down some reformulations of the items present in the above theorem, in
terms of measures and vector fields:

• the total variation is the mass norm, i.e. µI(Ω) = M(I) and µ∂I(Ω) = M(∂I);

• if V is a L1
loc vector field, then IV has variation measure µIV = |V | ·L N ;

• if ρ = ρ+ − ρ− is the decomposition of a signed Radon measure into positive and
negative part, then µρ = ρ+ + ρ−;

• in particular for γ ∈ L(Ω) we have µ∂[γ] = δγ(1) + δγ(0). Since this measure has
total variation 2 for all γ, we can quantify the total mass of the above Q by means
of the mass norm of the boundary of I. Namely, we have

Q(L(Ω)) =
1

2
µ∂I(Ω) =

M(∂I)

2
;

• for γ ∈ L̃(Ω), there holds µ[γ] = H 1 x Im(γ) is the arclenght measure of γ;

• by expanding the definitions and comparing to Section 4, we see that for I = IV
with V ∈ L1(Ω) and for Q as in Theorem A.14, there holds

|V | ·L N = µIV = iQ ·L N , V ·L N = I = iQ ·L N
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and

div V = ∂IV = (e0 − e1)#Q.

All these reformulations allow to translate Theorem A.14 in the case of I = IV , with
V ∈ Lp(Ω), for p ≥ 1. This is the content of the next result. Observe that since for a
bounded Ω we have the continuous inclusion Lp(Ω) ↪→ L1(Ω), we can restrict the result to
p = 1 without loss of generality.

Corollary A.15 (Reformulation of Theorem A.14). Suppose that V ∈ L1(Ω) is an acyclic
vector field such that div V is a signed Radon measure. Then there exists a finite Radon

measure Q on the space of continuous curves on Ω, concentrated on L̃(Ω), and such that
the following decompositions of V are valid in the sense of distributions:

(A.4) iQ = V and iQ = |V |,

and

(A.5) −div V = (e1 − e0)#Q and (div V )+ + (div V )− = (e1 + e0)#Q.

We are now lead to consider the extension of Theorem A.14 to the case where div V
is not a Radon measure. This is necessary since in our problem div V ∈ Ẇ−1,p(Ω), so
in general it is not a measure. Some non trivial issues arise in this case: first of all, the
measure Q which decomposes I may not be finite, in general.

Example A.16. For p < N
N−1 , we consider an infinite sequence of small dipoles {(ai, bi)}i

such that
∞∑
i=1

|ai − bi|N−p(N−1) < +∞, and Dai,bi are disjoint,

where as in Example 2.4 we used the notation

Dai,bi =

{
(x1, x

′) ∈ RN : |x′|+ |x1| ≤
|ai − bi|

2

}
.

If we consider the vector fields Vai,bi as in Example 2.4, then the new vector field defined
by V =

∑∞
i=1 Vai,bi verifies

‖V ‖pLp =

∥∥∥∥∥
∞∑
i=1

Vai,bi

∥∥∥∥∥
p

Lp

≤ CN
∞∑
i=1

|ai − bi|N−p (N−1) < +∞,

which implies T :=
∑

i(δai − δbi) ∈ Ẇ−1,p(Ω). By observing that ∞ = M(T ) =
∫
L(Ω) dQ

for any decomposing measure, we see that no finite measure Q can be found. On the other
hand, a σ−finite measure Q can be found, since each Vai,bi can be separately decomposed
with a measure Qi of mass 2 and the Qi have disjoint supports.

Example A.17. The following is another version of Example A.16, which exploits the
Sobolev embedding theorem. Let us take q > N , then Ẇ 1,q(Ω) can be identified with a
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space of functions which are Hölder continuous of exponent α = 1 − N/q. Then we pick
the following two curves (here ε� 1)

γ1(t) =
1

t2/α
(cos t, sin t) and γ2(t) =

1− ε
t2/α

(cos t, sin t), t ≥ 1.

We define the distribution

〈T, ϕ〉 =

∫ ∞
1

[
ϕ(γ1(t))− ϕ(γ2(t))

]
dt, ϕ ∈ C∞(Ω),

then again this is an element of Ẇ−1,p(Ω), since by Sobolev embedding [ϕ]C0,α ≤ CΩ ‖ϕ‖Ẇ 1,q ,
so that

|〈T, ϕ〉| ≤
∫ ∞

1
|ϕ(γ1(t))− ϕ(γ2(t))| dt ≤ C ‖ϕ‖W 1,q(Ω)

∫ ∞
1
|γ1(t)− γ2(t)|α dt

= C ‖ϕ‖W 1,q(Ω)

∫ ∞
1

εα

t2
dt

= C εα ‖ϕ‖W 1,q(Ω), ϕ ∈ Ẇ 1,q(Ω).

We then introduce the measure on paths QT , defined by

QT =

∫ ∞
1

δ
γ1(t) γ2(t)

dt,

where for every t ≥ 1, by γ1(t) γ2(t) we indicate the straight segment going from γ1(t) to
γ2(t). Observe that for every ϕ we have∫

L(Ω)
[ϕ(γ(0))− ϕ(γ(1))] dQT (γ) =

∫ ∞
1

[
ϕ(γ1(t))− ϕ(γ2(t))

]
dt = 〈T, ϕ〉,

and ∫
L(Ω)

`(γ) dQT (γ) =

∫ ∞
1
|γ1(t)− γ2(t)| dt =

∫ ∞
1

ε

t2/α
dt

= ε
α

α− 2
t1−

2
α

∣∣∣∞
1

= ε
α

2− α
<∞,

while QT is not finite, but just σ-finite.

The previous examples clarifies that we cannot hope to give a distributional meaning to
the positive and negative parts of the divergence of V , and the good definition of div V as
a distribution relies in general on some sort of “almost–cancellation”. Therefore the last
no-cancellation requirement (div V )+ +(div V )− = (e1 +e0)#Q of Smirnov’s Theorem A.14
must be relaxed when we extend it to a larger class of V ’s.

We introduce a notion needed in the next theorem:

Definition A.18. Let A,B,C be 1-currents. We say that C is a subcurrent of A if

M(A− C) + M(C) = M(A).
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In this case we write C ≤ A. If also M(B−C)+M(C) = M(B) we say that C is a common
subcurrent of A and B. We will use the notation

SC(A,B) = {C is a 1− current : C ≤ A and C ≤ B},
to denote the set of common subcurrents.

Let C ∈ SC(A,B), then we say that C is a largest common subcurrent of A and B if

SC(A− C,B − C) = {0},
where by 0 we denote the trivial 1−current such that 〈0, ϕ〉 = 0 for every 1−form ϕ. In
this case, we will use the notation C = A ∧B.

Lemma A.19. Let A,B be normal 1-currents. Then they admit a largest common sub-
current C.

Proof. The proof is exactly as in [27, Proposition 3.8] so we just indicate the main modifi-
cations needed in our case. For every pair of currents (T, S), we set

ξ(S, T ) := sup{M(C) : C ∈ SC(S, T )}.
Let us define {Aν , Bν , Cν}ν∈N recursively as follows

A1 = A− C0, B1 = B − C0,

C0 ∈ SC(A0, B0) such that M(C0) ≥ ξ(A0, B0)

2
,

Aν+1 = Aν − Cν , Bν+1 = Bν − Cν
where Cν ∈ SC(Aν , Bν) such that M(Cν) ≥ ξ(Aν , Bν)

2
for ν ≥ 1.

Then as in [27] we have that M(C) ≤ ξ(Aν , Bν)/2 for all C ∈ SC(Aν+1, Bν+1) and in
particular by taking the supremum we can infer

ξ(Aν+1, Bν+1) ≤ ξ(Aν , Bν)

2
≤ · · · ≤ ξ(A0, B0)

2ν+1
→ 0.

From this we obtain that {Aν}ν∈N and {Bν}ν∈N are converging in mass norm and by setting

A′ := lim
ν→∞

Aν and B′ := lim
ν→∞

Bν ,

we obtain A′ ≤ Aν and B′ ≤ Bν , for every ν ∈ N. This implies that any C ′ ∈ SC(A′, B′)
also belongs to SC(Aν , Bν) and by definition we have M(C ′) ≤ ξ(Aν , Bν) → 0, thus we
get C ′ = 0, i.e. the trivial current is the only common subcurrent of A′ and B′. We then
observe that A−A′ = B−B′, since Aν−1−Aν = Bν−1−Bν for ν ≥ 1 by construction, so
we have

A−A′ = lim
ν→∞

[A−Aν ] = lim
ν→∞

[C0 +A1 −Aν ]

= lim
ν→∞

[C0 + (A1 −A2) + · · ·+ (Aν−1 −Aν)]

= lim
ν→∞

[C0 + (B1 −B2) + · · ·+ (Bν−1 −Bν)]

= lim
ν→∞

[B −Bν ] = B −B′.
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We can finally set C = A − A′ = B − B′ ∈ SC(A,B) and obtain SC(A − C,B − C) =
SC(A′, B′) = {0}, i.e. C is a largest common subcurrent of A and B. �

Theorem A.20 (Smirnov Theorem for flat acyclic currents). Let I be an acyclic flat 1-
current, having finite mass. Then I is decomposable in curves, i.e. there exists a σ-finite

positive measure Q on curves such that Q is concentrated on L̃(Ω) and

(A.6) I =

∫
L(Ω)

[γ] dQ(γ).

Moreover, we have

(A.7) µI =

∫
L(Ω)

µ[γ] dQ(γ)

and

(A.8) ∂I =

∫
L(Ω)

∂[γ] dQ(γ).

Proof. We start observing that thanks to Lemma A.7, our current I is approximable by
normal currents {Ji}i∈N in the mass norm, i.e. limM(I−Ji) = 0 and M(Ji)+M(∂Ji) <∞.
We construct a first decomposition of I using this information.

Step 1. (I can be decomposed in normal currents). We may assume that {Ji}i∈N is a
Cauchy sequence in the mass norm, i.e. that M(Ji−1 − Ji) ≤ 2−i for all i. We then define{

Ĩ0 = Ji0 ,

Ĩk = Ji0+k − Ji0+k−1 for k ≥ 1.

It then follows that I =
∑

k Ĩk and
∑

kM(Ĩk) ≤ 2M(I) if i0 ∈ N is chosen large enough.

We then modify the Ĩk into a better decomposition Ik as follows:{
I0 = Ĩ0,

Ik+1 = Ĩk+1 − Ĩk+1 ∧ Ik for k ≥ 0.
,

where we recall that Ĩk+1 ∧ Ik denotes a largest common subcurrent of Ĩk+1 and Ik, which
is well-defined thanks to Lemma A.19. From these definitions it follows that we have the
decomposition

I =
∑
k≥0

Ik, M(I) =
∑
k≥0

M(Ik).

Moreover the currents Ik are still normal since each of them is a finite sum of subcurrents
of normal currents.

Step 2. (Use of Smirnov’s result for normal currents). By applying Theorem A.14 to

each of the Ik we obtain a sequence of measures Qk on the set L(Ω) concentrated on L̃(Ω),
such that Qk decomposes Ik in the sense of Theorem A.14. From the previous step we
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obtain then a decomposition for I as follows:

(A.9) I =
∑
k≥0

Ik =
∑
k≥0

∫
L(Ω)

[γ] dQk(γ),

and

(A.10) M(I) =
∑
k≥0

M(Ik) =
∑
k≥0

∫
L(Ω)

`(γ) dQk(γ).

Step 3. (Construction of a σ-finite measure). We may then define a measure on L(Ω) by
setting

Q(A) =
∑
k≥0

Qk(A), for every Borel set A ⊂ L(Ω),

where the series on the right has to be intended as
∑

k≥0Qk(A) = limν→∞
∑ν

k=0Qk(A) and

this limit exists by monotonicity (it is in fact a supremum), since the measures {Qk}k∈N
are positive. At first, we verify that Q is indeed a measure: we have

Q(∅) =

∞∑
k=0

Qk(∅) = 0, as Qk(∅) = 0, for every k ∈ N,

and also for any collection {Ai}∞i=1 of disjoint Borel sets in L(Ω) we get

Q

( ∞⋃
i=1

Ai

)
=

ν∑
k=0

Qk

( ∞⋃
i=1

Ai

)
=
∞∑
k=0

∞∑
i=1

Qk(Ai)

=
∞∑
i=1

∞∑
k=0

Qk(Ai) =
∞∑
i=0

Q(Ai),

where we have the right to exchange the two series, since each term Qk(Ai) is positive.
This finally shows that Q is a measure on L(Ω). We also observe that

Q
(
L(Ω) \ L̃(Ω)

)
=
∞∑
k=0

Qk

(
L(Ω) \ L̃(Ω)

)
= 0,

as each Qk is concentrated on L̃(Ω).
In order to verifiy that Q is σ−finite, for all h ∈ Z we define the Borel sets Bh := {γ ∈

L(Ω) : `(γ) ∈ [2h, 2h+1[}, which form a partition of L(Ω). Observe that the fact that Bh is
a Borel set easily follows from the lower semicontinuity of the length functional. Moreover,
for fixed h ∈ Z there holds

Q(Bh) =
∑
k≥0

Qk(B
h) ≤ 2−h

∑
k≥0

M(Ik) = 2−hM(I) < +∞.

This finally shows that Q is σ−finite. The fact that Q verifies (A.6) and (A.7) follows
directly from (A.9) and (A.10), while (A.8) is a consequence of (A.6), which suffices to test
on special forms ω = dφ. �
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Remark A.21. The proof of the Theorem A.20 extends to general currents on metric
spaces, following [27] (see also [28] and [36]).
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