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Abstract Matrix models are ubiquitous for constraint problems. Manysuch prob-
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Keywords Double counting· necessary (implied) constraint· matrix model·
automaton constraint· nurse scheduling

This paper extends a prior version published as [2].

N. Beldiceanu
TASC team (CNRS/INRIA), Mines de Nantes, 44307 Nantes, France
E-mail: Nicolas.Beldiceanu@mines-nantes.fr

M. Carlsson
SICS, P.O. Box 1263, 164 29 Kista, Sweden
E-mail: Mats.Carlsson@sics.se

P. Flener· J. Pearson
Uppsala University, Department of Information Technology, Box 337, 751 05 Sweden
E-mail: Pierre.Flener@it.uu.se, E-mail: Justin.Pearson@it.uu.se



2 Beldiceanu, Carlsson, Flener, and Pearson

1 Introduction

Matrix models are ubiquitous for constraint problems. Despite this fact, only a few
constraints consider a matrix and some of its constraints asa whole: theallperm [13]
andlex2 [10] constraints were introduced for breaking symmetries in a matrix, while
thecolored matrix constraint [20] was introduced for handling a conjunction of gcc
constraints1 on the rows and columns of a matrix. We focus on another recurring
pattern, especially in the context of personnel rostering,which can be described in
the following way.

Given three positive integersR, K, andV , we have anR × K matrixM of
decision variables that take their values within the finite set of values{0, 1, . . . , V −
1}, as well as aV ×K matrixM# of cardinality variables that take their values within
the finite set of values{0, 1, . . . , R}. Each rowr (with 0 ≤ r < R) ofM is subject to
a constraint defined by an automaton2A and, depending on the search procedure, we
may break symmetries by a lexicographic ordering between adjacent rows [7,11,12].
For simplicity (except in Section 5), we assume that each rowis subject to the same
constraint. Each columnk (with 0 ≤ k < K) ofM is subject to agcc constraint
that restricts the number of occurrences of the values according to columnk ofM#:
let #v

k denote the number of occurrences of valuev (with 0 ≤ v < V ) in columnk
ofM, that is, the cardinality variable in rowv and columnk ofM#. We call this
pattern thematrix-of-automaton-and-gccpattern. We also introduce anR×V matrix
M′# of cardinality variables that take their values within the finite set of values
{0, 1, . . . ,K}. Each rowr (with 0 ≤ r < R) ofM is also subject to agcc constraint,
derived from the finite-state automaton, that restricts thenumber of occurrences of
the values according to rowr ofM′#: let #

′r
v denote the number of occurrences of

valuev (with 0 ≤ v < V ) in row r ofM, that is, the cardinality variable in column
v and rowr ofM′#. In the context of personnel rostering, a possible interpretation
of this pattern is:

– R, K, andV respectively correspond to the number of persons, days, andtypes
of work (e.g.,morning shift, afternoon shift, night shift, or day off) we consider.

– Each rowr ofM corresponds to the work of personr overK consecutive days.
– Each columnk ofM corresponds to the work by theR persons on dayk.
– The automatonA on the rows ofM encodes the rules of a valid schedule for a

person; it can be the product of several automata defining different rules.
– Thegcc constraint on columnk represents the demand of services for dayk. In

this context, the cardinality associated with a given service can either be fixed or
be specified to belong to a given range.

A typical problem with this kind of pattern is the lack of interaction between the
row and column constraints. This is especially problematicwhen, on the one hand,

1 Given a set of decision variablesvars and a set of value-variable pairsval occ, the
gcc(vars , val occ) constraint enforces for each value-variable pairval : occ of val occ that val oc-
cur exactlyocc times withinvars . Moreover, it imposes that all variables ofvars be assigned a value
from val occ.

2 Theautomaton(X,A) constraint [3] requires the sequenceX of decision variables to take values
that, seen as a string, are accepted by the finite-state automatonA, which is possibly augmented with
counters. In the absence of counters, this is equivalent to theregular (X,A) constraint [19].
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Figure 1 AutomatonC associated with theglobal contiguity constraint, with initial states0, accepting
statess0, s1, s2, and transitionst0, t1, t2, t3, t4 labelled by values0 or1. The missing transition for value
1 from states2 is assumed to go to a dead state. The automaton has been annotated with counters [3]: the
final value of counterc is the number of stretches of value0, whereasd is an auxiliary counter.

the row constraint is a sliding constraint expressing a distribution rule on the work,
and, on the other hand, the demand profile (expressed with thegcc constraints) var-
ies drastically from one day to the next (e.g., during weekends and holidays in the
context of personnel rostering). This issue is usually addressed by experienced con-
straint programmers by manually adding necessary conditions (implied constraints),
which are typically based on some simple counting conditions depending on some
specificity of the row constraints. Let us first introduce a toy example to illustrate this
phenomenon.

We show that implied constraints can be derived by using the combinatorial tech-
nique ofdouble counting(see for example [15]). We use the two-dimensional struc-
ture of the matrix, counting along the rows and the columns. Some feature is con-
sidered, such as the number of appearances of a word or stretch, and the occurrences
of that feature are counted for the rows and columns separately. When the counting
is exact, these two values will coincide. In order to derive useful constraints that will
propagate, we derive lower and upper bounds on the given feature occurring when
counted column-wise. These are then combined into inequalities saying that the sum
of these column-based lower bounds isat mostthe sum of given row-based upper
bounds, or that the sum of these column-based upper bounds isat leastthe sum of
given row-based lower bounds.

Example 1Take a3 × 7 matrixM of 0/1 variables (i.e.,R = 3, K = 7, V = 2),
where on each row we have aglobal contiguity constraint (all the occurrences of
value1 are contiguous) for which Figure 1 depicts a corresponding automatonC (the
reader can ignore the assignments to countersc andd at this moment). In addition,
M# defines the followinggcc constraints on the columns ofM:

– Columns 0, 2, 4, and 6 ofM must each contain two0s and a single1.
– Columns 1, 3, and 5 ofMmust each contain two1s and a single0.

A simple double counting argument proves that there is no solution to this problem.
Indeed, consider the sequence of numbers of occurrences of1s on the seven columns
of M, that is1, 2, 1, 2, 1, 2, 1. Each time there is an increase of the number of1s
between two adjacent columns, a new stretch of consecutive1s starts on at least
one row in the second of these columns of the matrix. From thisobservation we can
deduce that we have at least four stretches of consecutive1s, namely one stretch starts
at the first column (since implicitly before the first column we have zero occurrences
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of value1) and three stretches start at the columns containing two1s. But since we
have aglobal contiguity constraint on each row of the matrix and since the matrix
only has three rows, there is a contradiction. ⊓⊔

After giving a first basic use of double counting (Section 2),the contributions of
this paper include:

– Methods for deriving necessary conditions on the cardinality variables of thegcc
constraints from (combinations of) string properties thathold for an automatonA
(Sections 3.1 to 3.5), including when thegcc constraints on the columns are re-
placed by summation constraints (Section 3.6).

– A method for annotating an automatonA with counter variables extracting string
properties fromA (Section 3.7), and a heuristic for selecting relevant string prop-
erties (Section 3.8).

– Another method for deriving necessary conditions on the cardinality variables,
called thecardinality automaton, which simulates the overall behaviour of all the
row automata (Section 4).

– A method for achieving domain consistency on a chain of lexicographic ordering
constraints augmented with an arbitraryautomatonconstraint on every element
of the chain (Section 5).

– An evaluation of the impact of our methods in terms of runtimeand search effort
on a large set of nurse rostering problem instances (Section6).

2 Basic Double Counting

We now give a first basic use of double counting on matrixM. As sketched in the
introduction, we use for each columnk (with 0 ≤ k < K) and each rowr (with
0 ≤ r < R) of M a gcc constraint for linking the variables of a column ofM
and the variables of a row ofM with the occurrence variables of the corresponding
column ofM# and the occurrence variables of the corresponding row ofM′#. Let
us introduce for each value in the finite set{0, 1, . . . , V − 1} a counting variableCv

(with 0 ≤ v < V ) that denotes how many entries of matrixM are assigned valuev.
We have:

∀v ∈ [0, V − 1] : Cv =

K−1
∑

k=0

#v
k (1)

∀v ∈ [0, V − 1] : Cv =

R−1
∑

r=0

#
′r
v (2)

V−1
∑

v=0

Cv = R ·K (3)

Equation (3) may allow us to tighten the bounds of the counting variablesCv (with
0 ≤ v < V ), especially when some bounds of the counting variables come from
propagating Equation (1), while others come from propagating Equation (2).
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3 Deriving Necessary Conditions from String Properties

We now develop a first method for deriving necessary conditions for thematrix-of-
automata-and-gccpattern. The key idea is to approximate the set of solutions to the
row constraintC by string properties such as the following:

– Bounds on the number of letters, words, prefixes, or suffixes (see Section 3.1).
– Bounds on the number of stretches of a given value (see Section 3.2).
– Bounds on the lengths of stretches of a given value (see Section 3.3).
– The combination of forbidden prefixes or suffixes with boundson the number of

stretches of a given value (see Section 3.4).
– Value precedence relations between specific pairs of valuesin any solution toC

(see Section 3.5).

We first develop a set of formulae expressed in terms of simplearithmetic constraints
for such string properties. Each formula gives a necessary condition for thematrix-
of-automata-and-gccpattern provided that the set of solutions to the row constraint
satisfies a given string property. We then show how to adapt these results when thegcc
constraints on the columns are replaced by summation constraints (see Section 3.6).
The hurried reader can jump at any time to Section 3.7, but should note that many of
the string properties we consider occur naturally in the context of timetabling prob-
lems, such as the one of Section 6.

We also show how to extract automatically such string properties from an auto-
maton (see Section 3.7 and outline a heuristic for selectingrelevant string properties
(see Section 3.8). String properties can be seen as a communication channel for en-
hancing the propagation between row and column constraints.

A key advantage of the overall approach described in this section is its incre-
mental nature, which depends on a set of string properties and formulae that can be
refined and enriched over time in order to get strong necessary conditions.

3.1 Constraining the Number of Occurrences of Words, Prefixes, and Suffixes

A word is a fixed sequence of values, seen as letters. Suppose we havethe following
bounds for each rowr on how many times a given word occurs (possibly in overlap-
ping fashion) in that row, denoted byWr(w), all numbering starting from zero:

– LW r(w) is the minimum number of times that the wordw occurs in rowr (i.e.,
Wr(w) ≥ LW r(w)).

– UW r(w) is the maximum number of times that the wordw occurs in rowr (i.e.,
Wr(w) ≤ UW r(w)).

Note that letters are just singleton words. It is not unusualfor LW r(w) (orUW r(w))
to be equal for all rowsr for a given wordw. From this information, we now infer by
double counting two necessary conditions for each such word.
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Figure 2 Lower and upper bounds on the number of words starting at a given column. Boldface in the
R×K matrices corresponds to partial instances of the wordw = 1010 for which we try to minimise (A)
or maximise (B) the number of occurrences. Boldface in theV ×K matrices corresponds to letters of the
wordw = 1010.

3.1.1 Necessary Conditions

Let |w| denote the length of wordw, and letwj denote the letter at positionj in word
w. The following bounds:

lwk(w) = max









|w|−1
∑

j=0

#
wj

k+j



− (|w| − 1) ·R, 0



 (4)

uwk(w) = min
{

#
wj

k+j | 0 ≤ j ≤ |w| − 1
}

(5)

correspond respectively to the minimum and maximum number of occurrences of
wordw thatstart at columnk ∈ [0,K − |w|]; this number is denoted bywk(w) (i.e.,
lwk(w) ≤ wk(w) ≤ uwk(w)). These bounds can be obtained as follows:

– Since the cardinality variables only denote the number of times a value occurs
in each column and do not constrainwhereit occurs, the lower bound (4) is the
worst-case intersection of all column value occurrences.

– A word cannot occur more often than its minimally occurring letter, hence bound (5).

Example 2Parts (A) and (B) of Figure 2 respectively illustrate the lower and upper
bounds expressed by equations (4) and (5) on the number of occurrences of word
w = 1010 starting at column0, provided that the numbers of0 (respectively1) in
columns0, 1, 2, 3 are respectively equal to4, 1, 4, 0 (respectively1, 4, 1, 5). ⊓⊔
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Note that if some cardinality variable is not fixed, then equations (4) and (5)
should be interpreted as arithmetic constraints.We get the following necessary con-
dition:

K−|w|
∑

k=0

wk(w) =

R−1
∑

r=0

Wr(w) (6)

Note also that while evaluating the maximum value of the left-hand side of equal-
ity (6), we may overestimate the maximum number of occurrences of wordw since,
for instance, if the first two letters ofw are distinct, then the maximum number of
occurrences of wordw starting in two consecutive columns is also limited byR, and
not just byuwk(w) + uwk+1(w).

3.1.2 Generalisation: Replacing Each Letter by a Set of Letters

So far, all letters of the wordw were fixed. We now assume that each letter of a word
can be replaced by a finite nonempty set of possible letters. For this purpose, letwj

now denote the set of letters for positionj of wordw. Hence the boundslwk(w) and
uwk(w) are now defined by aggregation as follows:

lwk(w) = max









|w|−1
∑

j=0

∑

c∈wj

#c
k+j



− (|w| − 1) · R, 0



 (7)

uwk(w) = min







∑

c∈wj

#c
k+j | 0 ≤ j ≤ |w| − 1







(8)

We get the same necessary conditions as before.3 Note that (7) and (8) specialise
respectively to (4) and (5) when allwj are singleton sets.

3.1.3 Extension: Constraining Prefixes and Suffixes

We now consider constraints on a word occurring as a prefix (the first letter of the
word is at the first position of the row) or suffix (the last letter of the word is at the
last position of the row). LetWPr(w) (respectivelyWS r(w)) denote the number of
times wordw is a prefix (respectively a suffix) of rowr, and suppose we have the
following bounds:

– LWPr(w) is the minimum number of times (0 or 1) wordw is a prefix of rowr.
– UWPr(w) is the maximum number of times (0 or 1) wordw is a prefix of rowr.
– LWS r(w) is the minimum number of times (0 or 1) wordw is a suffix of rowr.
– UWS r(w) is the maximum number of times (0 or 1) wordw is a suffix of rowr.

3 When evaluating the number of occurrencesnocci
k

of a set of letters associated to the
potential value of the letter at positioni of word w in column k, we should also use an
among(nocci

k
, 〈M[0, k],M[1, k], . . . ,M[R− 1, k]〉, wi) constraint in order to get a possibly sharper

evaluation.
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From these bounds, we get the following necessary conditions:

w0(w) =

R−1
∑

r=0

WPr(w) (9)

wK−|w|(w) =

R−1
∑

r=0

WS r(w) (10)

Note that these necessary conditions also hold when each letter of a constrained prefix
or suffix is replaced by a set of letters.

3.2 Constraining the Number of Occurrences of Stretches

Given a sequencex of fixed variables and a valuev, astretchof valuev is a maximum
sequence of values inx that only consists of valuev. Suppose now that we have
bounds for each rowr on how many times a stretch of a given valuev can occur in
that row, denoted bySr(v):

– LS r(v) is the minimum number of stretches of valuev on rowr (i.e.,Sr(v) ≥
LS r(v)).

– US r(v) is the maximum number of stretches of valuev on rowr (i.e.,Sr(v) ≤
US r(v)).

It is not unusual forLS r(v) (orUS r(v)) to be equal for all rowsr for a given valuev.

3.2.1 Necessary Conditions

The following bounds (under the convention that#v
−1 = 0 for each valuev)

ls+k (v) = max(0,#v
k −#v

k−1) (11)

us+k (v) = #v
k −max(0,#v

k−1 +#v
k −R) (12)

correspond respectively to the minimum and maximum number of stretches of value
v thatstartat columnk, denoted bys+k (v) (i.e.,ls+k (v) ≤ s+k (v) ≤ us+k (v)). Again,if
some cardinality variable is not fixed, then the equations above should be interpreted
as arithmetic constraints. The intuitions behind these formulae are as follows:

– If the number of occurrences of valuev in columnk (i.e.,#v
k) is strictly greater

than the number of occurrences of valuev in columnk− 1 (i.e.,#v
k−1), then this

means that at least#v
k −#v

k−1 new stretches of valuev can start at columnk.
– If the number of occurrences of valuev in columnk (i.e.,#v

k) plus the number
of occurrences of valuev in columnk − 1 (i.e.,#v

k−1) is strictly greater than the
number of rowsR, then the quantity#v

k−1 + #v
k − R represents the minimum

number of stretches of valuev that cover both columnk− 1 and columnk. From
this minimum intersection we get the maximum number of new stretches that can
start at columnk.
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Figure 3 Lower and upper bounds on the number of stretches starting ata given column. Boldface in the
R×K matrices corresponds to stretches of value1 starting at column1 that we are trying to minimise (A)
or maximise (B). Boldface in theV × K matrices corresponds to the occurrence constraints on value
v = 1.

Example 3Parts (A) and (B) of Figure 3 respectively illustrate the lower and upper
bounds expressed by equations (11) and (12) on the number of stretches of value1
starting at column1, provided that the number of occurrences of0 (respectively1) in
columns0 and1 are equal to2 and1 (respectively3 and4). ⊓⊔

By aggregating these bounds for all the columns of the matrix, we get the following
necessary condition using double counting:

K−1
∑

k=0

s+k (v) =

R−1
∑

r=0

Sr(v) (13)

Similarly, the following bounds (under the convention that#v
K = 0 for each valuev)

ls−k (v) = max(0,#v
k −#v

k+1) (14)

us−k (v) = #v
k −max(0,#v

k+1 +#v
k −R) (15)

correspond respectively to the minimum and maximum number of stretches of value
v thatendat columnk, denoted bys−k (v) (i.e., ls−k (v) ≤ s−k (v) ≤ us−k (v)). We get
a similar necessary condition:

K−1
∑

k=0

s−k (v) =

R−1
∑

r=0

Sr(v) (16)
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3.2.2 Generalisation: Replacing the Value by a Set of Values

So far, the valuev of a stretch was fixed. We now assume that a stretch may consistof
a finite nonempty set, denoted byv̂, of possible letters that are all considered equival-
ent. Let#v̂

k denote the quantity
∑

v∈v̂(#
v
k), that is the total number of occurrences

of the values of̂v in columnk. The bounds (11), (12), (14), (15) are generalised as
follows:

ls+k (v̂) = max(0,#v̂
k −#v̂

k−1) (17)

us+k (v̂) = #v̂
k −max(0,#v̂

k−1 +#v̂
k −R) (18)

ls−k (v̂) = max(0,#v̂
k −#v̂

k+1) (19)

us−k (v̂) = #v̂
k −max(0,#v̂

k+1 +#v̂
k −R) (20)

and we get the following necessary conditions:

K−1
∑

k=0

s+k (v̂) =
∑

v∈v̂

R−1
∑

r=0

Sr(v) (21)

K−1
∑

k=0

s−k (v̂) =
∑

v∈v̂

R−1
∑

r=0

Sr(v) (22)

Note that (21) and (22) specialise respectively to (13) and (16) whenv̂ = {v}.

3.3 Constraining the Minimum and Maximum Length of a Stretch

Suppose now that we have lower and upper bounds on the length of a stretch of a
given valuev for each row:

– LLS(v) is the minimum length of a stretch of valuev in every row.
– ULS(v) is the maximum length of a stretch of valuev in every row.

3.3.1 Necessary Conditions

We get the following necessary conditions:

∀k ∈ [0,K − 1] : #v
k ≥

k
∑

j=max(0,k−LLS(v)+1)

ls+j (v) (23)

∀k ∈ [0,K − 1] : #v
k ≥

min(K−1,k+LLS(v)−1)
∑

j=k

ls−j (v) (24)
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The intuition behind (23) (respectively (24)) is that the stretches starting (respectively
ending) at the considered columnsj must overlap columnk.

∀k ∈ [0,K − 1−ULS (v)] :

ls+k (v) +

ULS(v)
∑

j=LLS(v)

#v
k+j ≤ (ULS (v)− LLS (v) + 1) ·R

(25)

∀k ∈ [ULS(v),K − 1] :

ls−k (v) +

ULS(v)
∑

j=LLS(v)

#v
k−j ≤ (ULS (v)− LLS (v) + 1) ·R

(26)

The intuition behind (25) is as follows. For each stretch beginning at columnk there
must be an element distinct fromv in a columnj ∈ [k + LLS(v), k + ULS(v)]
of the same row. So the number of such values different fromv in columns[k +
LLS (v), k +ULS (v)] (i.e., ls+k (v)) plus the number of occurrences ofv in columns

[k + LLS(v), k + ULS(v)] (i.e.,
∑ULS(v)

j=LLS(v) #
v
k+j ) should not exceed the available

space(ULS (v) − LLS (v) + 1) · R. The reasoning for (26) is similar but considers
stretchesendingat columnk.

Example 4Figure 4 illustrates the necessary condition (25) on the minimum number
of occurrences of values0 and1 in columns2 and3, provided that the minimum
number of stretches of value1 starting in column0 is equal to3 (i.e., ls+0 (1) = 3),
and that the minimum and maximum lengths of a stretch of value1 are respectively
equal to2 and3 (i.e.,LLS(1) = 2 andULS(1) = 3). In this context, inequality (25)
holds since its left-hand side, i.e., the minimum number of occurrences of0 and1 in
columns2 and3, is equal to3 + (3 + 1), while its right-hand side, i.e., the available
space in columns2 and3, is equal to(3− 2 + 1) · 5. ⊓⊔

3.3.2 Extension

We now provide another necessary condition, which holds forany valuev ∈ [0, V −1]
and for anyULS (v) + 1 consecutive columns of the matrixM#. Let ∆v,k,ℓ (with
v ∈ [0, V − 1] andk ∈ [0,K − ℓ]) denote the number of occurrences of values
different from valuev in any ℓ consecutive columns starting at columnk of matrix
M#. Also, letΓu,k,ℓ (with u ∈ [0, V − 1] andk ∈ [0,K − ℓ]) denote a lower bound
on the minimum number of stretches of valueu that for sure have at leastLLS (u)
values within anyℓ consecutive columns starting at columnk of matrixM. Formally:

∆v,k,ℓ = R · ℓ−

k+ℓ−1
∑

i=k

#v
i (27)

Γu,k,ℓ = max {#u
i | k + LLS (u)− 1 ≤ i ≤ k + ℓ− LLS (u)} (28)
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0

0

1

1

1

0

0

each column
of each value in
number of occurrences

1

0

321

0
1
11

1
1

0

00

ULS (1) = 3

LLS (1) = 2

V

K

R

ls+0 (1) = 3

Figure 4 Minimum number of occurrences of values0 and1 in columns 2 and 3 with respect to (a) the
minimum number of stretches starting in another column and (b) the minimum and maximum stretch
lengths. In theR×K matrix, boldface in column0 corresponds to the requirementls+

0
(1) = 3, whereas

boldface in the box corresponds to the left hand side of(25): boldface 0s correspond to the termls+
0
(1);

boldface 1s correspond to the term
∑

3
j=2

#1
j . Boldface in theV ×K matrix corresponds to the occurrence

constraints on valuev = 1.

We get the following necessary condition:

∀v ∈ [0, V − 1] : ∀k ∈ [0,K − ULS(v)− 1] :

R−
∑

u∈[0,V −1]
u6=v

Γu,k,ULS(v)+1

≤ ∆v,k,ULS(v)+1 −
∑

u∈[0,V −1]
u6=v

LLS (u) · Γu,k,ULS(v)+1

(29)

The left-hand side of (29) corresponds to the number of rows of matrixM that do
not necessarily contain a stretch of lengthLLS (u) for a valueu different fromv. The
right-hand side of (29) corresponds to the number of occurrences of values different
from valuev that are not necessarily part of a stretch of lengthLLS (u). If (29) does
not hold, then we have a contradiction since at least one row of the matrixM contains
more thanULS(v) occurrences of valuev. Figure 5(A) illustrates condition (29).

Example 5Let us illustrate constraint (29) on anR = 3 by K = 6 matrixM of
variables taking their values in the set{0, 1, 2, 3} (i.e., V = 4). For this purpose,
assume that the numbers of occurrences of0, 1, 2, 3 in the six consecutive columns
ofM, as well as the minimum and maximum stretch lengths of values0, 1, 2, 3 are
respectively equal to:

– #3
0..5 = [1, 0, 1, 2, 1, 2], LLS(3) = 1, ULS (3) = 2

– #2
0..5 = [0, 0, 0, 0, 0, 0], LLS(2) = 3, ULS (2) = 3
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9)
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(A)

values6= v completely included in
minimum number of stretches of

columnsk, ..., k + ULS(v)
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v = 3

(B)
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ULS(3) + 1
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2

1

0

0 1 2 3 4 5

1

1
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1
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1
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0
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Figure 5 (A): Illustration of necessary condition (29). (B): Illustration of Example 5, where a too long
stretch of value3 occurs in columns3 to5 since, in these columns, the two occurrences of0 (respectively1)
have to form a stretch; numbers in boldface respectively denote the columns we focus on (the last three
columns) and the number of occurrences of values we focus on (the number of occurrences of values0, 1,
and3 in column4).

– #1
0..5 = [1, 1, 0, 0, 1, 1], LLS(1) = 2, ULS (1) = 2

– #0
0..5 = [1, 2, 2, 1, 1, 0], LLS(0) = 2, ULS (0) = 4

See Figure 5(B): we focus on valuev = 3 and on the collectionC of ULS(3)+1 = 3
consecutive columns of matrixM# that start at column3 (recall that columns are
numbered from 0). The number of occurrences of values different from valuev = 3
within C is equal to∆3,3,3 = 3 · 3 −

∑3+3−1
i=3 #3

i = 9 − (2 + 1 + 2) = 4. For each
valueu different from valuev = 3 (i.e., values0, 1, and2), consider the minimum
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number of stretches of valueu that for sure have at leastLLS (u) values withinC. We
have:

– Γ0,3,3 = max3+3−2
i=3+2−1 #

u
i = #0

4 = 1,
– Γ1,3,3 = max3+3−2

i=3+2−1 #
u
i = #1

4 = 1,
– Γ2,3,3 = max3+3−3

i=3+3−1 #
u
i = 0.

Finally, since the condition3− (1 + 1+0) = 1 ≤ 0 = 4− (2 · 1+ 2 · 1+ 3 · 0) does
not hold, thematrix-of-automata-and-gccconstraint pattern cannot be satisfied. This
can be interpreted as the fact that, in the last three columnsof matrixM, there must
be at least one row containing three consecutive occurrences of 3. This contradicts
the requirementULS (3) = 2. ⊓⊔

3.4 Combining Two String Properties: Forbidden Prefixes or Suffixes and Number
of Stretches

One can also combine several string properties and get stronger conditions. For ex-
ample, assume that the row automatonA has the following properties with respect to
two distinct valuesu andv (with u, v ∈ [0, V − 1]):

– The maximum number of stretches of valueu is equal to 1.
– The wordu+v is a forbidden prefix.

We then have the following necessary condition:

∀i ∈ [1,K − 2] : max(0,#u
0 +#u

i −R) + #v
i+1 ≤ R (30)

The quantitymax(0,#u
0 +#u

i −R) represents the minimum number of rows where
valueu for sure occurs both in columns0 andi. Since we know that we can have at
most one stretch of valueu in a row, this means that we have at leastmax(0,#u

0 +
#u

i −R) stretches of valueu starting at column 0. Hence (30) enforces that none of
these stretches be directly followed by av.

Similarly, whenvu+ is a forbidden suffix, we have that:

∀i ∈ [1,K − 2] : max(0,#u
K−1 +#u

i −R) + #v
i−1 ≤ R (31)

Example 6Let us illustrate (30) on anR = 3 byK = 6 matrixM of variables taking
their values in the set{0, 1, 2} (i.e.,V = 3). For this purpose, assume that any three
consecutive stretches within a row ofMmust be over the values{1 0 2, 0 1 2, 0 1 0},
and that the numbers of occurrences of0, 1, 2 in the six columns ofM are respect-
ively equal to:

– #0
0..5 = [1, 1, 1, 2, 1, 0]

– #1
0..5 = [2, 2, 2, 1, 2, 0]

– #2
0..5 = [0, 0, 0, 0, 0, 3]

Consider valuesu = 1 andv = 2. Note that each row of matrixM contains at most
one stretch of value1. Moreover, the word1+2 cannot be the prefix of any row of
M. Now, focus on the two occurrences of value1 both in columns0 and4 of matrix
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M, as well on the number#2
5 = 3 of occurrences of value2 in the last column. We

have thatmax(0,#1
0 +#1

4 − 3) + #2
5 = max(0, 2 + 2− 3) + 3 = 4 is greater than

R = 3, which is a contradiction since the word1 1 1 1 1 2 will necessarily be a row
of matrixM. ⊓⊔

3.5 Constraining Value Precedence

Suppose now that we require that if a valuev occurs at any positionk in a row, then
another valueu also occur at leastℓ times (withℓ > 0) before positionk in that row.
This can be directly translated into the following necessary condition

#v
0 = 0 ∧ ∀k ∈ [1,K − 1] :

k−1
∑

i=0

#u
i ≥ ℓ ·#v

k (32)

whereℓ · #v
k represents a lower bound on the number of occurrences of value u in

columns0, 1, . . . , k − 1, under the hypothesis that we have#v
k occurrences of value

v on columnk.
Value precedence, withℓ = 1, was originally introduced in [16] to break sym-

metries in the context where all occurrences of a value can beexchanged with all
occurrences of another value, e.g., in graph colouring problems the colours can be
exchanged unless additional constraints prevent this. Value precedence can also be
extracted from an automaton and Section 3.7 describes how toperform this task auto-
matically.

3.6 Replacing thegcc Column Constraint by a Sum Constraint

Assume that we want to replace thegcc constraint on a given columnk by the re-
quirement that the sumS of the variables of columnk be in a given interval[ℓ, u].
By first introducing cardinality variables on the column of the matrixM for denoting
the number of occurrences of each value, and second linking the newly introduced
cardinality variables to the sumS with a channelling constraint, we can directly reuse
all the results previously introduced. For this purpose, besides setting the minimum
and maximum value ofS to ℓ andu, we create achannellingconstraint of the form

S = 0 ·#0
k + 1 ·#1

k + · · ·+ (V − 1) ·#V−1
k (33)

We can set all the previous necessary conditions on the newlyintroduced cardinality
variables#0

k,#
1
k, . . . ,#

V −1
k .

3.7 Extracting Occurrence, Word, and Stretch Constraints from an Automaton, or
How to Annotate an Automaton with String Properties

Toward automatically inferring the constant boundsLW r(w),LWPr(w),LWS r(w),
LS r(w), etc., of the previous sub-sections, we now describe how a given automaton
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A can be automatically annotated with counter variables constrained to reflect prop-
erties of the strings that the automaton recognises. This isespecially useful ifA is
a product automaton for several constraints. For this purpose, we use theautomaton
constraint introduced in [3], which (unlike theregular constraint [19]) allows us to
associate counters to a transition. Each string property requires (i) a counter variable
whose final value reflects the value of that string property, (ii) possibly some auxiliary
counter variables, (iii) initial values of the counter variables, and (iv) update formu-
lae in the automaton transitions for the counter variables.We now give the details for
some string properties.

In this context,n denotes an integer or a decision variable,b denotes a 0/1 integer
or decision variable,̂v denotes a set of letters,v̂+ denotes a nonempty sequence of
letters inv̂, andsi denotes the letter at positioni of words. We describe the annotation
for the following string properties for any given string:

– wordocc(v̂+, n): Word v̂+ occursn times.
– wordprefix (v̂+, b): b = 1 if and only if wordv̂+ is a prefix of the string.
– wordsuffix (v̂+, b): b = 1 if and only if word v̂+ is a suffix of the string.
– stretchocc(v̂, n): Stretches of letters in setv̂ occurn times.
– stretchminlen(v̂, n): If letters in set̂v occur, thenn is the length of the shortest

such stretch, otherwisen = +∞.
– stretchmaxlen(v̂, n): If letters in set̂v occur, thenn is the length of the longest

such stretch, otherwisen = 0.
– valueprec(x, y, n): If y occurs, thenx occursn times before the first occurrence

of y, otherwisen = 0.

For a given annotation, Table 1 shows which counters it introduces, their initial and
final values, as well as the formulae for counter updates to beused in the transitions.
Figure 1 shows an automaton annotated forstretchocc({0}, n).

An automaton can be annotated with multiple string properties—since annota-
tions do not interfere with one another—and can be simplifiedin order to remove
multiple occurrences of identical counters that come from different string properties.

It is worth noting that propagation is possible from the decision variables to the
counter variables, and vice-versa.

3.8 Heuristics for Selecting Relevant String Properties for an Automaton

In our experiments (see Section 6), we chose to look for the following string proper-
ties:

– For each letter, lower and upper bounds on the number of its occurrences.
– For each letter, lower and upper bounds on the number and length of its stretches.
– Each word of length at most 3 that cannot occur at all.
– Each word of length at most 3 that cannot occur as a prefix or suffix.

These properties are derived, one at a time, as follows. We annotate the automaton as
described in the previous sub-section by the candidate string property. Then we com-
pute by labelling the feasible values of the counter variable reflecting the given prop-
erty, giving up if the computation does not finish within5 CPU seconds. Among the
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collected word, prefix, suffix, and stretch properties, someproperties are subsumed
by others and are thus filtered away. Other properties could certainly have been de-
rived, e.g., not only forbidden words, but also bounds on thenumber of occurrences
of words. Our choice was based on two considerations: first which properties we are
able to derive necessary conditions for, and second empirical observations of what
actually pays off in our benchmarks.

4 The Cardinality Automaton of an Automaton

The previous section introduced different complementary ways of generating neces-
sary conditions (expressed in terms of arithmetic constraints) from a given automaton
for the row constraints of the matrixM when its columns are subject togcc or sum
constraints. This section presents an orthogonal systematic approach, again based on
double counting, which can handle the same class of column constraints completely
mechanically, without first having to choose relevant string properties.

Consider anR ×K matrixM, where in each row we have the same constraint,
represented by an automatonA of p statess0, . . . , sp−1, and in each column we
have agcc or linear (in)equality constraint where all the coefficients are the same.
We will first construct an automaton that simulates the parallel running of theR
copies ofA and consumes entire columns ofM at each transition. Since this new
automaton haspR states, we then use an abstraction where we justcountthe number
of automata that are in each state ofA. As even this abstracted automaton has a size
exponential inp, we then use a linear-size encoding with linear constraintsthat allows
us to consider the column constraints onM as well.

4.1 Necessary Row Constraints

The vector automatonAR consumes column vectors of sizeR at each transition.
Its states are sequences ofR states ofA, where sequence entryℓ is the state of
the automaton of rowℓ. There is a transition from state〈si0 , . . . , siR−1

〉 to state
〈sj0 , . . . , sjR−1

〉 if and only if for eachℓ there is a transition inA from siℓ to sjℓ .
A state〈si0 , . . . , siR−1

〉 is initial (respectively accepting) if each of thesiℓ is the
initial (respectively an accepting) state ofA.

For example, in Figure 6 (top) is the vector automatonC2 for the (counter-free
version of the) automatonC (with p = 3 states) in Figure 1 for theglobal contiguity
constraint and vectors ofR = 2 elements over the set{0, . . . , V − 1} for V = 2
values. Each state is anR-tuple of states ofC, indicating in which states ofC the
R copies ofC respectively are. There arepR = 32 = 9 states, each with at most
V R = 22 = 4 outgoing transitions, hence the size of the cardinality automaton is
exponential in the numberp of states of the original automaton. So let us justcount
the number of copies of the original automaton that are in each of its states: this leads
to the following concept.

Thecardinality (vector) automaton#
(

AR

)

is an abstraction of the vector auto-
matonAR that also consumes column vectors of sizeR at each transition. Its states
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〈s0, s0〉

〈s1, s1〉〈s0, s1〉 〈s1, s0〉

〈s1, s2〉〈s0, s2〉 〈s2, s1〉 〈s2, s0〉〈s2, s2〉

[0, 0]

[0, 1] [1, 0]
[1, 1]

[0, 0]

[0, 1]

[1, 0]

[1, 1]

[0, 0]
[0, 1][1, 0]

[1, 1]

[0, 0]
[0, 1]

[1, 0]
[1, 1]

[0, 0]

[1, 0] [0, 0]

[1, 0] [0, 0]

[0, 0]

[0, 1] [0, 0]

[0, 1]

〈2, 0, 0〉

〈0, 2, 0〉〈1, 1, 0〉

〈0, 1, 1〉〈1, 0, 1〉 〈0, 0, 2〉

[0, 0]

[0, 1]

[1, 0]

[1, 1]

[0, 0]

[0, 1]

[1, 0]

[0, 1] [1, 0]

[1, 1]

[0, 0]

[0, 1]

[1, 0]

[1, 1]

[0, 0]

[0, 1]

[1, 0]
[0, 0]

[0, 1][1, 0] [0, 0]

Figure 6 (Top): Vector automatonC2 for the (counter-free version of the) automatonC (with p = 3
states) in Figure 1 for theglobal contiguity constraint and vectors ofR = 2 elements over the set
{0, 1}. (Bottom): Cardinality automaton#

(

C2
)

for the automatonC and vectors ofR = 2 elements.
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are sequences ofp numbers, whose sum isR, where entryi is the number of automata
A in statesi. There is a transition from state〈ci0 , . . . , cip−1

〉 to state〈cj0 , . . . , cjp−1
〉

if and only if there exists a multiset ofR transitions inA such that for eachℓ there are
ciℓ of theseR transitions going out fromsℓ, and for eachm there arecjm of theseR
transitions arriving intosm. A state〈ci0 , . . . , cip−1

〉 is initial (respectively accepting)
if ciℓ = 0 wheneversℓ is not the initial (respectively an accepting) state ofA.

For example, in Figure 6 (bottom) is the cardinality automaton #
(

C2
)

for the
automatonC (with p = 3 states) and vectors ofR = 2 elements. Each state is ap-
tuple of natural numbers, indicating how many of theR copies ofC are in each state
of C. For instance, states〈s0, s1〉 and〈s1, s0〉 of C2 are merged into state〈1, 1, 0〉.
Note that this cardinality automaton is non-deterministic. In general, the number of
states of#

(

AR

)

is the number of ordered partitions ofp, and thus exponential inp.
However, it is possible to have a compact encoding of#

(

AR

)

via constraints.
Toward this, we usep · (K + 1) decision variablesSk

i in the domain{0, 1, . . . , R}
to encode the states of an arbitrary path of lengthK (the number of columns) in
#
(

AR

)

. We callSk
i a state-count variable: it denotes the number of automataA

that are in statesi after columnk − 1 has been consumed; fork ∈ {1, . . . ,K},
the sequence〈Sk

0 , S
k
1 , . . . , S

k
p−1〉 has as possible values the states of#

(

AR

)

after
the latter has consumed columnk − 1 in one transition; fork = 0, the sequence
〈S0

0 , S
0
1 , . . . , S

0
p−1〉 is fixed to 〈R, 0, . . . , 0〉 when, without loss of generality,s0 is

the initial state ofA. We get the following constraint for columnk:

Sk
0 + Sk

1 + · · ·+ Sk
p−1 = R (34)

and the following additional constraint for the last columnK:

∀i ∈ {0, . . . , p− 1} : SK
i = 0← si is not an accepting state ofA (35)

Assume thatA has a setT = {(a0, ℓ0, b0), (a1, ℓ1, b1), . . . , (aq−1, ℓq−1, bq−1)} of
q transitions, where transition(ai, ℓi, bi) goes from stateai ∈ {s0, s1, . . . , sp−1} to
statebi ∈ {s0, s1, . . . , sp−1} upon reading letterℓi ∈ {0, 1, . . . , V − 1}. We use
q ·K decision variablesT k

i in the domain{0, 1, . . . , R} to encode the transitions of
an arbitrary path of lengthK in #

(

AR

)

. We callT k
i a transition-count variable:

it denotes the number of automataA that trigger the transitionti after columnk has
been consumed, withk ∈ {0, . . . ,K−1}. We get the following constraint for column
k:

T k
(a0,ℓ0,b0)

+ T k
(a1,ℓ1,b1)

+ · · ·+ T k
(aq−1,ℓq−1,bq−1)

= R (36)

Consider two state encodings〈Sk
0 , S

k
1 , . . . , S

k
p−1〉 and〈Sk+1

0 , Sk+1
1 , . . . , Sk+1

p−1 〉, and
consider the transition encoding〈T k

(a0,ℓ0,b0)
, T k

(a1,ℓ1,b1)
, . . . , T k

(aq−1,ℓq−1,bq−1)
〉 between

these two state encodings (with0 ≤ k < K). To encode paths of lengthK in
#
(

AR

)

, we introduce the following constraints. First, we constrain the number of
automataA at any statesj before reading columnk to be equal to the number of
firing transitions going out fromsj when reading columnk:

∀j ∈ {0, . . . , p− 1} : Sk
j =

∑

(ai,ℓi,bi)∈T : ai=sj

T k
(ai,ℓi,bi)

(37)
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Second, we constrain the number of automataA at statesj after reading columnk to
be equal to the number of firing transitions coming intosj when reading columnk:

∀j ∈ {0, . . . , p− 1} : Sk+1
j =

∑

(ai,ℓi,bi)∈T : bi=sj

T k
(ai,ℓi,bi)

(38)

These constraints will be illustrated in an example in the next sub-section. A refor-
mulation with linear constraints whenR = 1 and there areno column constraints is
described in [9].

4.2 Necessary Column Constraints and Channelling Constraints

The necessary constraints above on the state-count and transition-count variables only
handle the row constraints, but they can also be used to handle column constraints
of the previously considered kinds. These necessary constraints can thus be seen as
a communication channel for enhancing the propagation between row and column
constraints.

If columnk has agcc, then we constrain the number of occurrences of valuev in
columnk to be equal to the number of transitions onv when reading columnk:

∀v ∈ {0, . . . , V − 1} : #v
k =

∑

(ai,ℓi,bi)∈T : ℓi=v

T k
(ai,ℓi,bi)

(39)

If columnk has a constraint on its sum, then we constrain that sum to be equal to
the value-weighted number of transitions on valuev when reading columnk:

R−1
∑

r=0

M[r, k] =

V−1
∑

v=0

v ·





∑

(ai,ℓi,bi)∈T : ℓi=v

T k
(ai,ℓi,bi)



 (40)

Example 7Consider anR×K matrixMwith aglobal contiguity constraint on each
row and agcc constraint on each column (see Example 1). An automatonC associated
with theglobal contiguity constraint is described by Figure 1. It hasp = 3 statess0,
s1, s2 and q = 5 transitionst0 = (s0, 0, s0), t1 = (s0, 1, s1), t2 = (s1, 1, s1),
t3 = (s1, 0, s2), t4 = (s2, 0, s2) labelled by values0 and1.

The encoding of#
(

CR
)

hasp · (K + 1) state-count variablesSk
i such that

constraint (34) is imposed:Sk
0 +Sk

1 +Sk
2 = R for everyk. Sinces0 is the initial state

of C, we require thatS0
0 = R andS0

1 = 0 = S0
2 . SinceC only has accepting states, no

SK
j is required to be zero under constraint (35). The encoding also hasq·K transition-

count variablesT k
i such that constraint (36) is imposed:T k

0 +T k
1 +T k

2 +T k
3 +T k

4 = R

for everyk.
For instance, forR = 3 andK = 7, if M is

0 1 2 3 4 5 6
0 0 0 0 1 1 1 1
1 0 1 1 1 0 0 0
2 1 1 0 0 0 0 0
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then the state-count variable matrixS and transition-count variable matrixT respect-
ively are

0 1 2 3 4 5 6 7
s0: 0 3 2 1 1 0 0 0 0
s1: 1 0 1 2 1 2 1 1 1
s2: 2 0 0 0 1 1 2 2 2

0 1 2 3 4 5 6
t0: 0 2 1 1 0 0 0 0
t1: 1 1 1 0 1 0 0 0
t2: 2 0 1 1 1 1 1 1
t3: 3 0 0 1 0 1 0 0
t4: 4 0 0 0 1 1 2 2

and they satisfy the constraints (34) to (36). The followingthree sets of linear con-
straints link theS andT variable matrices for every columnk (with 0 ≤ k < K) and
respectively are the necessary constraints (37), (38), and(39):

Sk
0 = T k

0 + T k
1 (transitions that exit states0)

Sk
1 = T k

2 + T k
3 (transitions that exit states1)

Sk
2 = T k

4 (transitions that exit states2)

Sk+1
0 = T k

0 (transitions that enter states0)
Sk+1
1 = T k

1 + T k
2 (transitions that enter states1)

Sk+1
2 = T k

3 + T k
4 (transitions that enter states2)

#0
k = T k

0 + T k
3 + T k

4 (transitions labelled by value0)
#1

k = T k
1 + T k

2 (transitions labelled by value1)

Assume thegcc constraints on the columns of matrixM are as follows:

– Columns 0, 2, 4, 5, and 6 ofM must each contain two0s and a single1.
– Columns 1 and 3 ofM must each contain two1s and a single0.

The previously given instance ofM satisfies thesegcc constraints. Setting the car-
dinality variables#v

k (with 0 ≤ k < 7 and0 ≤ v ≤ 1) according to thesegcc
constraints, the eight necessary constraints above are satisfied. Note that the neces-
sary constraint (40) is not applicable here, as it is used when the column constraint is
a summation constraint.

Now revise thegcc constraint on column5 so that the latter is required to contain
two 1s and a single0, instead of vice-versa: we get thegcc constraints of Example 1:

– Columns 0, 2, 4, and 6 ofM must each contain two0s and a single1.
– Columns 1, 3, and 5 ofMmust each contain two1s and a single0.

Revising the cardinality variables#v
5 (with 0 ≤ v ≤ 1) accordingly, the system of

linear constraints (34) to (39) fails when we post it using standard propagation on
each constraint independently. ⊓⊔

For even more propagation, we can link the state-count variablesSk
i and transition-

count variablesT k
i to thestate variablesandtransition variablesthat are induced by

the decomposition of theR automataA, as discussed in [3]. For this purpose, let the
state variablesQ0

i , Q
1
i , . . . , Q

K
i (with 0 ≤ i < R) denote theK + 1 states visited by

the automatonA on rowi of lengthK. We get the following necessarygcc constraint
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on columnk (with k ∈ {0, . . . ,K}) of this matrixQ of state variables and the matrix
S of state-count variables:

gcc
(〈

Qk
0 , Q

k
1 , . . . , Q

k
R−1

〉

,
〈

0 : Sk
0 , 1 : Sk

1 , . . . , p− 1 : Sk
p−1

〉 )

(41)

Similarly, let the transition variablesE0
i , E

1
i , . . . , E

K−1
i denote theK triggered trans-

itions of the automatonA on rowi of lengthK. We get the following necessarygcc
constraint on columnk (with k ∈ {0, . . . ,K − 1}) of this matrixE of transition
variables and the matrixT of transition-count variables:

gcc
(〈

Ek
0 , E

k
1 , . . . , E

k
R−1

〉

,
〈

0 : T k
0 , 1 : T k

1 , . . . , q − 1 : T k
q−1

〉)

(42)

4.3 Incomparability of Filtering by Cardinality Automatonand String Properties

The filtering by the cardinality automaton and the filtering by the string properties are
incomparable, as shown in the following example.

Example 8Take a3 × 6 matrixM of 0/1 variables (i.e.,R = 3, K = 6, V = 2),
where each row must be a word of the form0+1+0+1+ or 1+0+1+0+ (i.e., we have
two stretches of zeros and two stretches of ones). Assume that the numbers of occur-
rences of0 and1 in the six columns ofM are respectively#0

0..5 = [1, 0, 1, 1, 2, 1]
and#1

0..5 = [2, 3, 2, 2, 1, 2]. The filtering by the cardinality automaton finds a contra-
diction without labelling on the variables ofM, but the filtering by the string prop-
erties (i.e., two stretches of zeros and two stretches of ones) does not. The converse
happens when#0

0..5 = [1, 0, 2, 2, 0, 1] and#1
0..5 = [2, 3, 1, 1, 3, 2].

5 A Chain of Lexicographic Ordering Constraints Combined with Automaton
Constraints

Let us again consider anR byK matrix of variablesM where on each row we have a
constraint specified by an automaton. Contrary to the previous sections, the automata
here need not be the same for all the rows. Moreover we requirethat the rows be
lexicographically ordered from the first to the last row. This is a natural way to break
symmetries in the context of rostering problems, where eachrow corresponds to the
schedule of an employee. Without loss of generality, we assume a non-strict lexico-
graphic ordering constraint. Special cases of this patternwere already considered in
thelex chain constraint of SICStus Prolog [7,8], where the additional constraints on
the vectors wereincreasing andamong . In that context, no guarantees were given
about achieving domain consistency.

The contributions of this section are theoretical. First, we allow any constraint that
can be expressed by an automaton without counters. Second, we guarantee domain
consistency for this pattern.

We first sketch the basic filtering algorithm of thelex chain constraint presented
in [7, Section 5] (see Section 5.1). Since this algorithm relies on feasible lower and
upper bounds being required for each vector, we then show howto compute the least



On Matrices, Automata, and Double Counting in Constraint Programming 23

vector that is both greater than or equal to a given fixed vector and accepted by a given
automaton (in Section 5.2). Finally we show how to adapt the basic filtering algorithm
in order to handle the extra automaton constraints on the vectors (see Section 5.3).

5.1 Basic Filtering Algorithm of thelex chain Constraint

The basic filtering algorithm of thelex chain constraint consists of three steps:

1. Scan the vectors from the first to the last one and compute for each vector a
feasible lower bound with respect to the domains of the variables and the feasible
lower bound of the previous vector, if any.

2. Scan the vectors from the last to the first one and compute for each vector a
feasible upper bound with respect to the domains of the variables and the feasible
upper bound of the next vector, if any.

3. Filter each vector according to the requirement that it belocated between two
fixed feasible bounds. This can be done by using thebetween constraint [7],
which enforces a sequence of variables to be lexicographically greater than or
equal to a fixed lower bound and less than or equal to a fixed upper bound.

5.2 Computing the Least Vector with respect to a Fixed Lower Bound and an
Automaton Constraint

In addition to the lexicographic ordering constraints between adjacent rows of the
matrixM, we have an automaton constraint on each row ofM. Consequently, we
have to compute during the first and second steps of the filtering algorithm (recalled
in Section 5.1) lower and upper bounds that are feasible alsowith respect to the
automaton constraint on the considered row. Without loss ofgenerality, we show
how to compute a feasiblelower bound with respect to an automaton constraint.

Given an automatonA and a vectorV that must satisfyA and be lexicographically
greater than or equal to a fixed bound[ℓ0, ℓ1, . . . , ℓK−1], we show how to compute
the least vector[a0, a1, . . . , aK−1] that is greater than or equal to[ℓ0, ℓ1, . . . , ℓK−1]
and satisfiesA such that for allk in [0,K − 1] we have thatak is in the domain of
V [k] (i.e., step 1). We state thatV [0] is greater than or equal toℓ0 and compute the
minimum valuev0 of V [0] with respect toA:

– If this new minimum valuev0 is strictly greater thanℓ0, then we fixV [0] to
v0 and compute the corresponding least solution toA by successively fixing
V [1],V [2], . . . ,V [K − 1] to their minimum value and by propagatingA after
fixing each variable.

– If this new minimum valuev0 is equal toℓ0, then we fixV [0] to v0 and reiterate
the same process on variablesV [1],V [2], . . . ,V [K − 1].

Step 2 is performed in a similar way.
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5.3 Filtering Algorithm of thelex chain Constraint Combined with Automaton
Constraints

The following filtering algorithm, calledLex chain automaton, of thelex chain con-
straint combined with automaton constraints on the vectors, also consists of three
steps:

1. Scan the vectors from the first to the last one and compute for each vector a
feasible lower bound with respect to (i) the domains of the variables, (ii) the
automaton constraint on that vector, and (iii) the feasible lower bound of the
previous vector, if any.

2. Scan the vectors from the last to the first one and compute for each vector a
feasible upper bound with respect to (i) the domains of the variables, (ii) the
automaton constraint on that vector, and (iii) the feasible upper bound of the next
vector, if any.

3. Filter each vector according to the requirement that it belocated between two
fixed feasible bounds and accepted by the automaton constraint of the considered
vector. This can be done by computing the minimised product of the automaton
of thebetween constraint [7] and the automaton of the considered vector, and by
filtering each vector with respect to this new automaton.

We now show that this algorithm achieves domain consistency.

Theorem 1 AlgorithmLex chainautomatonmaintains domain consistency.

Proof We show that if we set the variable at positionk (with 0 ≤ k < K) of vec-
tor V to any remaining value of its domain, then we can always extend this to a full
assignment that satisfies all the lexicographic ordering and automaton constraints in
three steps:

1. We show how to fix completely vectorV , assumingV [k] is set to one of its poten-
tial valuesv. We compute the minimised product of the automaton of thebetween

constraint and the automatonA of the constraint on vectorV . We then use this
automaton for finding a solution[s0, s1, . . . , sK−1] wheresk = v satisfiesA as
well as the required lower and upper bounds on vectorV .

2. All vectors that precede vectorV can be fixed to their respective lower bounds,
computed by the first step of the filtering algorithm. By construction, these lower
bounds are all lexicographically smaller than or equal to vector[s0, s1, . . . , sK−1].

3. We can also fix all vectors that follow vectorV to their respective upper bounds
computed, by the second step of the filtering algorithm. These upper bounds are
all lexicographically greater than or equal to vector[s0, s1, . . . , sK−1]. ⊓⊔

6 Experimental Evaluation

NSPLib [21] is a very large repository of (artificially generated) instances of thenurse
scheduling problem(NSP), which is about constructing a duty roster for nursingstaff.
LetR be the number of nurses,K the number of days of the scheduling horizon, and
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V the number of shifts. The objective is to construct anR × K matrix of values in
the integer interval[0, V − 1], with valueV − 1 representing the off-duty “shift”.

In the instance files, there are hardcoverage constraintsand soft preference con-
straints; we only use the former here: they give for each dayd and shifts the lower
bound on the number of nurses that must be assigned to shifts on dayd, and can
be modelled by a global cardinality constraint (gcc) on the columns. Note that the
gcc constraints on any two columns are in generalnot the same. There are instance
files for R × 7 rosters withR ∈ {25, 50, 75, 100}, and forR × 28 rosters with
R ∈ {30, 60}. There are three complexity indicators on the coverage constraints,
giving rise to270 instances for each of the27 configurations of these indicators for
theR× 7 rosters, as well as to80 instances for each of the12 configurations of these
indicators for theR× 28 rosters.

In the case files, there are four hard constraints on the rows. For each shifts,
there are lower and upper bounds on the number of occurrencesof s in any row (the
daily assignment of some nurse): this can be modelled bygcc constraints on the rows.
There are also lower and upper bounds on the cumulative number of occurrences of
the working shifts0, . . . , V −2 in any row: this can be modelled bygcc constraints on
the off-duty valueV − 1 and always gives tighter occurrence bounds on valueV − 1
than the previousgcc constraints. For each shifts, there are also lower and upper
bounds on the length of any stretch of values in any row: this can be modelled by
stretch path constraints on the rows. Finally, there are lower and upper bounds on the
length of any stretch of the working shifts0, . . . , V − 2 in any row: this can be mod-
elled by generalisedstretch path partition constraints [4] on the rows. Note that the
constraints on any two rows are thesame. There are8 case files for theR× 7 rosters,
and another8 case files for theR × 28 rosters. Instead of posting four constraints
on every row, we automatically generated (see [4] for details) deterministic finite
automata (DFA) for the row constraints of each case, using their minimised product
DFA (obtained through standard DFA algorithms) to achieve domain consistency on
the conjunction of row constraints [3]. (Since we use theautomatonconstraint [3]
rather than theregular constraint [19], the unfolding of the product automaton fora
given numberK of days is not an issue here, nor is the minimisation of the unfol-
ded automaton.) For each case, string properties were automatically selected off-line
as described in Section 3.8, and cardinality automata were automatically constructed
off-line as described in Section 4, by using constraints (39) and (41). We can use (41)
but not (42) since the SICStus implementation of theautomatonconstraint [8] uses
explicitQk

i state variables but has noEk
i transition variables.

Under these choices, the NSPLib benchmark corresponds to the pattern studied
in this paper. To reduce the risk of reporting improvements where another search
procedure can achieve much of the same impact, we use a two-phase search that
exploits the fact that there is a single domain-consistent constraint on each row and
column:

– Phase 1 addresses the column (coverage) constraints only: it seeks to assign
enough nurses to given shifts on given days to satisfyall but onecoverage con-
straint.
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– In Phase 2, one column constraint and all row constraints remain to be satisfied.
But these constraints form a Berge-acyclic CSP [1], and so the remaining decision
variables can be easily labelled without search.

We cannot use the symmetry breaking method described in Section 5, for it would
break the Berge-acyclicity in Phase 2. Instead, we break symmetries during search
in Phase 1 by maintaining an equivalence relation: two rows (nurses) are in the same
equivalence class while they are assigned to the same shiftsand days.

This search procedure is much more efficient than row-wise labelling under de-
creasing value ordering (valueV − 1 always has the highest average number of oc-
currences per row) combined with decreasing lexicographicordering of the rows.

The objective of our experiments is to measure the impact in runtime and back-
tracks when using either or both of our methods. In the experiments, we used SICStus
Prolog 4.2 on a quad core 2.8 GHz Intel Core i7-860 machine with 8MB cache per
core, running Ubuntu Linux (using only one processor core).For each instance, we
searched for its first solution, using a timeout of 1 CPU minute. For each case and
nurse countR, we used thefirst 10 instances for each configuration of the NSPLib
coverage complexity indicators, that is instances1–270 for theR×7 rosters (Cases1–
8) and1–120 for theR× 28 rosters (Cases9–16).

Table 2 summarises the running of these3120 instances using neither, either,
and both of our methods. Each row marked ‘sat’ (for satisfiable) for a given case
and nurse countR shows the performance of each variant, namely the number of
instances solved without timing out, as well as the total runtime (in seconds) and the
total number of backtracks on all instances wherenoneof the four variants timed
out. Please note: this means that these totals arecomparable, but also that they do not
reveal any performance gains on instances where some variant(s) timed out. Similarly
for each row marked ‘unsat’ (for unsatisfiable). Numbers in boldface indicate best
performance in a row. Instance-wise plots of the runtimes are given in Figures 7
to 10; since for many runtimes there are multiple instances,the plots are made to
appearto contain as many points as instances by multiplying every runtime for every
variant by a new random number in the interval[1.0, 1.3]: the purpose of the plots is
only to compare theapproximatelocations of the median runtimes for all variants.

It turned out that Cases1–6, 9–10, and12–14 are very simple (in the absence
of preference constraints), so that our methods only decrease backtracks on one of
those2220 instances, but increase runtime. It also turned out that Case 11 is very
difficult (even in the absence of preference constraints), so that even our methods
systematically time out, because the product automaton of all row constraints is very
big; we could have overcome this obstacle by using the built-in gcc constraint and
the product automaton of the other two row constraints, but we wanted to compare
all the cases under the same scenario. Hence we do not report any results on Cases1–
6 and9–14.

Phase 1 uses dynamic choices, so the shape of the search tree can be affected by
whether or not the necessary conditions generated by our methods are included. In a
few cases, their inclusion does not yield the fewest backtracks.

An analysis of Table 2 and Figures 7 to 10 reveals that our methods decide more
instances without timing out, and that they often drastically reduce the runtime and
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Figure 7 Runtimes (in milliseconds) of thesatisfiableinstances of NSPLib cases 7 and 8 using neither,
either, or both of our methods.

number of backtracks (by up to four orders of magnitude), especially on the common
unsatisfiable instances. However, runtimes are often increased (by up to one order
of magnitude) on the common satisfiable instances. String properties are only rarely
defeated by the cardinality DFA on any of the three performance measures, but their
combination is often the overall winner, though rarely by a large margin. It would
take a more fine-grained evaluation to understand when to usewhich string properties
without increasing runtime on the satisfiable instances. The good performance of our
methods on unsatisfiable instances is indicative of gains when exploring the whole
search space, such as when solving an optimisation version of the problem or using
soft (preference) constraints.

With constraint programming, NSPLib instances (without the soft preference
constraints) were also used in [5,6], but under row constraints different from those of
the NSPLib case files that we used. NSP instances from a different repository were
used in [18], though with soft global constraints: one of theinsights reported there
was the need for more interaction between the global constraints, and our paper shows
steps that can be taken in that direction.

7 Conclusion

Since the necessary conditions generated by our methods areessentially linear con-
straints, these methods should be applicable also in the context of linear program-
ming. Future work may also consider the integration of our techniques with the
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Figure 8 Runtimes (in milliseconds) of theunsatisfiableinstances of NSPLib cases 7 and 8 using neither,
either, or both of our methods.

multicost-regularconstraint [17], which allows the direct handling of agcc constraint
in the presence of automaton constraints (as on the rows of NSPLib instances) without
explicitly computing the product automaton, which can be very big.

Besides the fact that they can be used for generating necessary conditions for the
matrix-of-automata-and-gccpattern, annotated automata can be used for at least two
other purposes:

– First, it is well known that making the product of several automata in order to
achieve domain consistency for a conjunction ofautomatonconstraints on the
same sequence of variables usually leads to a size explosion. Now note that if we
use the same set of string properties in order to annotate twoautomata that are ap-
plied to the same sequence of variables, then the variables corresponding to these
string properties can act as a communication channel between these automata. By
restricting the bounds of a given string property, an automaton communicates a
partial view of its solution space to another automaton.

– Second, given a violatedmatrix-of-automata-and-gccpattern, the necessary con-
ditions generated from a given string property can capture asharp explanation of
the reason of failure. This kind of explanation is sharp for two reasons. On the
one hand, by essence, the necessary conditions catch directly the interaction of
the row and column constraints of the matrix. On the other hand, most necessary
conditions typically point to a small subset of columns of the matrix as well as
to specific cardinality variables of thegcc constraints. For instance, this is the
case when the necessary condition corresponds to a forbidden word. This usually
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provides a clear hint on how to relax the domains of the cardinality variables in
order to achieve feasibility.

The tractability of propagating thematrix-of-automaton-and-gccpattern of our [2]
and the present extension thereof is studied in [14].
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Annotation Counter values Counter updates

wordocc(v̂+, n)

[0, ...,0]
[c1, ..., cℓ]
[ , ..., n]

[1, ...] if u ∈ v̂+
1

[..., ci−1, ...] if 1 < i < ℓ ∧ u ∈ v̂+i
[..., cℓ + cℓ−1] if u ∈ v̂+

ℓ

[...,0, ...] if 0 < i < ℓ ∧ u 6∈ v̂+i
[..., cℓ] if u 6∈ v̂+

ℓ

ci, i < ℓ is 1 if and only if the most recently seeni letters match a
prefix of v̂+. cℓ is the number of occurrences of words matchingv̂+

so far.

wordprefix (v̂+, b)

[1, 0, ...,0]
[c0, c1, ..., cℓ]

[ , ..., b]

[0, ..., ci−1, ...] if 0 < i < ℓ ∧ u ∈ v̂+i
[0, ...,max(cℓ, cℓ−1)] if u ∈ v̂+

ℓ

[0, ...,0, ...] if 0 < i < ℓ ∧ u 6∈ v̂+i
[0, ..., cℓ] if u 6∈ v̂+

ℓ

c0 is 1 if and only if the automaton is in the start state.ci, 0 < i < ℓ

is 1 if and only if the automaton has seen exactlyi letters matching
a prefix of v̂+. cℓ is 1 if and only if the firstℓ letters seen by the
automaton matcĥv+.

wordsuffix (v̂+, b)

[0, ...,0]
[c1, ..., cℓ]
[ , ..., b]

[1, ...] if u ∈ v̂+
1

[..., ci−1, ...] if 1 < i < ℓ ∧ u ∈ v̂+i
[..., cℓ−1] if u ∈ v̂+

ℓ

[...,0, ...] if 0 < i < ℓ ∧ u 6∈ v̂+i
[..., cℓ] if u 6∈ v̂+

ℓ

ci is 1 if and only if the most recently seeni letters match a prefix of
v̂+.

stretchocc(v̂, n)

[0, 0]
[c, d]
[n, ]

[c− d+ 1, 1] if u ∈ v̂

[c,0] if u 6∈ v̂

c andd respectively denote the number of stretches of values match-
ing v̂ encountered so far, and whether or not the current position cor-
responds to values matchinĝv.

stretchminlen(v̂, n)

[+∞,+∞, 0]
[c, d, e]
[n, , ]

[min(d, e+ 1), d, e+ 1] if u ∈ v̂

[c, c, 0] if u 6∈ v̂

c is the length of the shortest stretch of values matchingv̂ seen so far,
or∞ if no such stretch has been seen.d is the length of the shortest
finished such stretch seen so far, or∞ if no such stretch has been
seen.e is the length so far of the current such stretch, or 0 otherwise.

stretchmaxlen(v̂, n)

[0, 0]
[c, d]
[n, ]

[max(c, d+ 1), d+ 1] if u ∈ v̂

[c,0] if u 6∈ v̂

c andd respectively denote the maximum length of the stretches of
values matchinĝv encountered so far, and the length of any such
stretch corresponding to the current position.

valueprec(x, y, n)

[0, 0]
[c, d]
[n, ]

[c, d+ 1] if x = u

[max(c, d),−∞] if y = u

[c, d] if x 6= u 6= y

c is 0 if no y has been seen, and the number ofx’s seen before the
first y otherwise.d is the number ofx’s seen if noy has been seen,
and−∞ otherwise.

Table 1 Given an annotation shown in the first column, the second column shows the counters used by
the annotation: their initial values, their names, and their final values. The final value of one counter is the
value computed by the annotation; the shared variable name indicates which one it is. Given a transition
of the automaton reading letteru, the third column gives formulae for the counter updates performed in
that transition, and under what conditions each given formula applies. For the first three annotations,ℓ is
the word length. Finally, for each annotation, we give the interpretation of the respective counters.
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Neither String Properties Cardinality DFA Both
Case R Status Found #Inst Time #Bktk #Inst Time #Bktk #Inst Time #Bktk #Inst Time #Bktk

7 25 sat 230 230 30.1 32109 230 47.4 13919 230 34.4 13823 230 66.1 13791
unsat 38 37 94.5 113413 38 63.4 19491 38 33.2 21156 38 50.9 12905

7 50 sat 216 213 16.1 12165 216 24.6 11055 214 28.2 11077 216 44.3 11057
unsat 43 40 88.6 79603 42 40.5 8678 43 104.3 60544 43 32.8 5821

7 75 sat 210 208 18.6 12709 209 20.8 628 210 41.9 12421 210 42.6 340
unsat 48 48 103.7 155490 48 35.8 8858 48 42.0 12042 47 38.1 8304

7 100 sat 219 216 13.0 361 219 28.9 361 217 44.7 355 219 65.0 355
unsat 26 22 37.1 8909 24 5.5 452 23 4.6 1000 25 2.5 459

8 25 sat 263 263 6.3 282 263 12.6 282 263 12.2 76 263 19.7 76
unsat 7 7 96.2 121367 7 0.1 19 7 0.2 21 7 0.2 21

8 50 sat 259 259 11.1 136 259 16.8 136 259 24.0 136 259 36.3 136
unsat 11 10 64.1 49358 11 4.8 715 10 52.0 29784 11 3.4 592

8 75 sat 246 245 14.1 449 245 23.1 230 246 39.2 449 246 53.6 230
unsat 22 21 69.9 112880 22 0.1 21 22 0.5 62 22 0.3 30

8 100 sat 262 261 17.4 239 262 31.4 239 261 55.0 239 262 76.9 239
unsat 6 4 0.3 73 6 0.0 4 4 0.4 73 6 0.1 4

15 30 sat 87 84 171.2 37 86 180.3 37 86 910.1 37 87 922.6 37
unsat 23 9 23.5 2513 23 1.5 9 18 14.1 88 23 5.0 14

15 60 sat 87 87 256.3 131 87 271.4 131 87 1590.6 131 87 1616.1 131
unsat 13 8 23.7 1001 13 2.1 8 11 31.4 394 13 5.2 12

16 30 sat 100 100 391.8 153 100 399.3 153 100 1907.0 153 100 1922.2 153
unsat 10 5 7.8 172 10 1.0 4 6 51.4 167 10 4.3 6

16 60 sat 105 105 578.5 145 105 592.2 145 104 3217.7 145 105 3242.2 145
unsat 3 1 16.9 579 3 0.0 1 2 0.7 2 3 0.7 2

Table 2 NSPlib benchmark results.
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