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Abstract Matrix models are ubiquitous for constraint problems. Mangh prob-
lems have a matrix of variable®t, with the same constrair defined by a finite-
state automatosl on each row ofM and a global cardinality constraigtéc on each
column of M. We give two methods for deriving, by double counting, neaeg
conditions on the cardinality variables of thec constraints from the automatoh
The first method yields linear necessary conditions andlsiemithmetic constraints.
The second method introduces ttardinality automatonwhich abstracts the overall
behaviour of all the row automata and can be encoded by a $ieeaf constraints.
We also provide a domain consistency filtering algorithmtf@r conjunction of lex-
icographic ordering constraints between adjacent rowstaind (possibly different)
automaton constraints on the rows. We evaluate the impamtrofnethods in terms
of runtime and search effort on a large set of nurse rostg@riaglem instances.
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1 Introduction

Matrix models are ubiquitous for constraint problems. Otesthis fact, only a few
constraints consider a matrix and some of its constrairdssdle: theallperm [13]
andlez2 [10] constraints were introduced for breaking symmetries inatrix, while
the colored_matriz constraint[[20] was introduced for handling a conjunctibg@
constraint§ on the rows and columns of a matrix. We focus on another riarr
pattern, especially in the context of personnel rostenivigich can be described in
the following way.

Given three positive integerB, K, andV, we have ank x K matrix M of
decision variables that take their values within the fingecaf values{0,1,...,V —
1}, aswell as & x K matrix M# of cardinality variables that take their values within
the finite set of value§0, 1, ..., R}. Each rowr (with 0 < r < R) of M is subject to
a constraint defined by an automatohand, depending on the search procedure, we
may break symmetries by a lexicographic ordering betwegcadt rows([, 111, 12].
For simplicity (except in Sectidn 5), we assume that eachisosubject to the same
constraint. Each columh (with 0 < k£ < K) of M is subject to gcc constraint
that restricts the number of occurrences of the values diaapto columnk of M#:
let #} denote the number of occurrences of valugvith 0 < v < V) in columnk
of M, that is, the cardinality variable in rowand columnk of M#. We call this
pattern theamatrix-of-automaton-and-ggattern. We also introduce d@hx V' matrix
M'# of cardinality variables that take their values within theité set of values
{0,1,..., K}. Each rowr (with 0 < r < R) of M is also subjectto acc constraint,
derived from the finite-state automaton, that restrictsrimber of occurrences of
the values according to rowof M'#: let #.” denote the number of occurrences of
valuewv (with 0 < v < V) in row r of M, that is, the cardinality variable in column
v and rowr of M'#. In the context of personnel rostering, a possible integpien
of this pattern is:

— R, K, andV respectively correspond to the number of persons, daystyped
of work (e.g.,morning shift afternoon shiftnight shift or day off) we consider.

— Each rowr of M corresponds to the work of persemver K consecutive days.

— Each columrk of M corresponds to the work by tHepersons on day.

— The automatord on the rows ofM encodes the rules of a valid schedule for a
person; it can be the product of several automata definitfigrdift rules.

— The gcc constraint on columt represents the demand of services for dain
this context, the cardinality associated with a given s@rdan either be fixed or
be specified to belong to a given range.

A typical problem with this kind of pattern is the lack of in&etion between the
row and column constraints. This is especially problematien, on the one hand,

1 Given a set of decision variablesars and a set of value-variable pairsal_occ, the
gee(vars, val_occ) constraint enforces for each value-variable pait : occ of val_occ that val oc-
cur exactly occ times within vars. Moreover, it imposes that all variables ofirs be assigned a value
from val_occ.

2 The automaton (X, .A) constraint[[3] requires the sequen&eof decision variables to take values
that, seen as a string, are accepted by the finite-state attomd, which is possibly augmented with
counters. In the absence of counters, this is equivalefieteeyular (X, A) constraint[[19].
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Figure 1 AutomatonC associated with thelobal_contiguity constraint, with initial stateg, accepting
statesso, s1, s2, and transitiongo, t1, t2, t3, t4 labelled by value$ or 1. The missing transition for value
1 from statess is assumed to go to a dead state. The automaton has beentednath counters [3]: the
final value of countet is the number of stretches of valdewhereasi is an auxiliary counter.

the row constraint is a sliding constraint expressing aidigion rule on the work,
and, on the other hand, the demand profile (expressed withctheonstraints) var-
ies drastically from one day to the next (e.g., during wedkesnd holidays in the
context of personnel rostering). This issue is usually eslsid by experienced con-
straint programmers by manually adding necessary condiionplied constraints),
which are typically based on some simple counting conditidgepending on some
specificity of the row constraints. Let us first introduceyagsample to illustrate this
phenomenon.

We show that implied constraints can be derived by usingdhnebénatorial tech-
nigue ofdouble countindsee for example [15]). We use the two-dimensional struc-
ture of the matrix, counting along the rows and the columsn&feature is con-
sidered, such as the number of appearances of a word oihstaeit the occurrences
of that feature are counted for the rows and columns separgfben the counting
is exact, these two values will coincide. In order to derigeful constraints that will
propagate, we derive lower and upper bounds on the givearfeatcurring when
counted column-wise. These are then combined into ingépsaiaying that the sum
of these column-based lower boundsatsmostthe sum of given row-based upper
bounds, or that the sum of these column-based upper boulati$eiastthe sum of
given row-based lower bounds.

Example 1Take a3 x 7 matrix M of 0/1 variables (i.,e.R = 3, K =7,V = 2),
where on each row we havegdobal _contiguity constraint (all the occurrences of
valuel are contiguous) for which Figuké 1 depicts a correspondinigraatorC (the
reader can ignore the assignments to countensdd at this moment). In addition,
M# defines the followingjcc constraints on the columns @#:

— Columns 0, 2, 4, and 6 081 must each contain twos and a singlé.
— Columns 1, 3, and 5 oM must each contain twis and a singlé.

A simple double counting argument proves that there is natiswl to this problem.
Indeed, consider the sequence of numbers of occurrendssoofthe seven columns
of M, thatis1,2,1,2,1,2,1. Each time there is an increase of the numbet of
between two adjacent columns, a new stretch of consecisiv&@arts on at least
one row in the second of these columns of the matrix. Fromabséervation we can
deduce that we have at least four stretches of consedigjiveamely one stretch starts
at the first column (since implicitly before the first colume Wave zero occurrences
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of valuel) and three stretches start at the columns containinglsv®ut since we
have aglobal _contiguity constraint on each row of the matrix and since the matrix
only has three rows, there is a contradiction. O

After giving a first basic use of double counting (Secfidbnt@g contributions of
this paper include:

— Methods for deriving necessary conditions on the cardinadiriables of thejcc
constraints from (combinations of) string properties th@t for an automatoml
(Section$ 311 t6_315), including when thec constraints on the columns are re-
placed by summation constraints (Secfiod 3.6).

— A method for annotating an automatg@nwith counter variables extracting string
properties from4 (Sectiori3.77), and a heuristic for selecting relevant gtprop-
erties (Sectioh 318).

— Another method for deriving necessary conditions on theélinality variables,
called thecardinality automatonwhich simulates the overall behaviour of all the
row automata (Sectidd 4).

— A method for achieving domain consistency on a chain of legiephic ordering
constraints augmented with an arbitraytomatonconstraint on every element
of the chain (Sectionl5).

— An evaluation of the impact of our methods in terms of runtamd search effort
on a large set of nurse rostering problem instances (Sd@}ion

2 Basic Double Counting

We now give a first basic use of double counting on matvix As sketched in the
introduction, we use for each columin(with 0 < k& < K) and each row (with

0 < r < R) of M a gcc constraint for linking the variables of a column @&f
and the variables of a row 0¥1 with the occurrence variables of the corresponding
column of M# and the occurrence variables of the corresponding rowtét . Let

us introduce for each value in the finite §6t 1, ...,V — 1} a counting variabl€,
(with 0 < v < V) that denotes how many entries of mati¥t are assigned value

We have:

K-—1
Yo elo,V—1]:C, = - (1)
k=0
R—1
Vo e0,V—1:C, =Y #7 2)
r=0
V-1
C,=R-K (3)
v=0

Equation[(8) may allow us to tighten the bounds of the cogmiriablesC;, (with
0 < v < V), especially when some bounds of the counting variablesecfsom
propagating Equatiofif1), while others come from propageifiquation[(R).
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3 Deriving Necessary Conditions from String Properties

We now develop a first method for deriving necessary conuitior thematrix-of-
automata-and-gcpattern. The key idea is to approximate the set of solutiornke
row constraintC by string properties such as the following:

Bounds on the number of letters, words, prefixes, or suffizes Gectioh 3]1).
Bounds on the number of stretches of a given value (see EE8).

Bounds on the lengths of stretches of a given value (seedBEERB).

The combination of forbidden prefixes or suffixes with bouadg¢he number of
stretches of a given value (see Secfion 3.4).

— Value precedence relations between specific pairs of vatuasy solution toC'
(see Section 3]5).

We first develop a set of formulae expressed in terms of siamitlemetic constraints
for such string properties. Each formula gives a necessarglitton for thematrix-
of-automata-and-gcpattern provided that the set of solutions to the row coidtra
satisfies a given string property. We then show how to adagtthesults when thec
constraints on the columns are replaced by summation cinist(see Sectidn 3.6).
The hurried reader can jump at any time to Sedfioh 3.7, butldhmte that many of
the string properties we consider occur naturally in thet@drof timetabling prob-
lems, such as the one of Sectidn 6.

We also show how to extract automatically such string prigefrom an auto-
maton (see Sectidn 3.7 and outline a heuristic for selecélgyant string properties
(see Sectioh 318). String properties can be seen as a comationichannel for en-
hancing the propagation between row and column constraints

A key advantage of the overall approach described in thifaseds its incre-
mental nature, which depends on a set of string propertié$amulae that can be
refined and enriched over time in order to get strong necgssaditions.

3.1 Constraining the Number of Occurrences of Words, Prefeed Suffixes

A word is a fixed sequence of values, seen as letters. Suppose wehkdedowing
bounds for each row on how many times a given word occurs (possibly in overlap-
ping fashion) in that row, denoted b¥,.(w), all numbering starting from zero:

— LW ,(w) is the minimum number of times that the watdoccurs in rowr (i.e.,

Wy (w) > LW, (w)).

- UW,(w)is the maximum number of times that the wasdccurs in rowr (i.e.,
Wi (w

) < UWr(w)).

Note that letters are just singleton words. It is not unugwal W ,.(w) (or UW . (w))
to be equal for all rows for a given wordw. From this information, we now infer by
double counting two necessary conditions for each such word
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K wordw= 1010 K wordw= 1010
— —
0|1]0 0
1/0|1]0 1]0(1]0
lwy(w) =2 wwy(w) =4
R||1]|0(f1]0 R||1(0]1]0
110 0 1|10]1|0
1 110 1|10]1|0
01 2 3 01 2 3
114|11(4|0 v 114|1|41|0 v
0(1|4|1]|5 0(1(4]|1]|5
number of occurrences number of occurrences
of each value in of each value in
each column each column
(A) (B)

Figure 2 Lower and upper bounds on the number of words starting atengielumn. Boldface in the
R x K matrices corresponds to partial instances of the word 1010 for which we try to minimise (A)
or maximise (B) the number of occurrences. Boldface inithe K matrices corresponds to letters of the
wordw = 1010.

3.1.1 Necessary Conditions

Let|w| denote the length of word, and letw; denote the letter at positiginin word
w. The following bounds:

Jw|—1

lw;,(w) = max Z #ijrj —(Jw] —1)- R,0 4)
=0

uw,(w) = min {#ijr] |0§j§|w|—1} (5)

correspond respectively to the minimum and maximum numbercourrences of
word w thatstartat columnk € [0, K — |w(]; this number is denoted by, (w) (i.e.,
lwy, (w) < wy,(w) < vww,(w)). These bounds can be obtained as follows:

— Since the cardinality variables only denote the numberrmoés a value occurs
in each column and do not constraimereit occurs, the lower bound(4) is the
worst-case intersection of all column value occurrences.

— Aword cannot occur more often than its minimally occurrietgér, hence bounfl(5).

Example 2Parts (A) and (B) of Figurgl2 respectively illustrate the émand upper
bounds expressed by equatiohk (4) ddd (5) on the number afrecces of word
w = 1010 starting at columm, provided that the numbers 6f(respectivelyl) in
columns), 1, 2, 3 are respectively equal th 1, 4, 0 (respectivelyl, 4, 1, 5). O



On Matrices, Automata, and Double Counting in ConstraimigPamming 7

Note that if some cardinality variable is not fixed, then dipres [4) and [(b)
should be interpreted as arithmetic constrainge get the following necessary con-
dition:

K—|w| R—-1
> wp(w) =D Wi(w) (6)
k=0 r=0

Note also that while evaluating the maximum value of the-hefihd side of equal-
ity (B), we may overestimate the maximum number of occurmemt wordw since,
for instance, if the first two letters af are distinct, then the maximum number of
occurrences of word starting in two consecutive columns is also limited Byand
not just byuw, (w) + vw; ., (w).

3.1.2 Generalisation: Replacing Each Letter by a Set ofdrstt

So far, all letters of the word were fixed. We now assume that each letter of a word
can be replaced by a finite nonempty set of possible lettersthis purpose, let;
now denote the set of letters for positipof word w. Hence the bounds,, (w) and
uw,, (w) are now defined by aggregation as follows:

|w|—1
o (w) =max [ | Y Y #5,; | - (lw—1)- R0 7
J=0 ccwy;
uwg(w) =min ¢ > #5|0< 5 < fw —1 ®)
cew;

We get the same necessary conditions as bfdtete that [7) and{8) specialise
respectively to[(4) and{5) when all; are singleton sets.

3.1.3 Extension: Constraining Prefixes and Suffixes

We now consider constraints on a word occurring as a prefexfitbt letter of the
word is at the first position of the row) or suffix (the last éstof the word is at the
last position of the row). LeWWP,.(w) (respectivelyWs.,.(w)) denote the number of
times wordw is a prefix (respectively a suffix) of row, and suppose we have the
following bounds:

— LWP,(w) is the minimum number of time$ ©r 1) word w is a prefix of rowr.
— UWP,(w) is the maximum number of time8 6r 1) word w is a prefix of row:r.
— LWS,.(w) is the minimum number of time$ (r 1) word w is a suffix of rowr.
— UWS,(w) is the maximum number of time$ ¢r 1) word w is a suffix of rowr.

3 When evaluating the number of occurrencescc; of a set of letters associated to the
potential value of the letter at positiom of word w in column k, we should also use an
among(noccl, (M[0, k], M[1,k],..., M[R — 1, k]), w;) constraint in order to get a possibly sharper
evaluation.
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From these bounds, we get the following necessary condition

R—-1
wp(w) = ) WP, (w) 9)
r=0
R—-1
r=0

Note that these necessary conditions also hold when eaehdét constrained prefix
or suffix is replaced by a set of letters.

3.2 Constraining the Number of Occurrences of Stretches

Given a sequenceof fixed variables and a valug astretchof valuewv is a maximum
sequence of values im that only consists of value. Suppose now that we have
bounds for each row on how many times a stretch of a given vatuean occur in
that row, denoted by, (v):

— LS, (v) is the minimum number of stretches of valuen rowr (i.e., S.(v) >
LS, (v)).

— US,(v) is the maximum number of stretches of valuen rowr (i.e., S, (v) <
US\(v)).

Itis not unusual fol.S,-(v) (or US,(v)) to be equal for all rows for a given value.

3.2.1 Necessary Conditions
The following bounds (under the convention théit , = 0 for each value)

sy (v) = max (0, #} — #7_,) (11)
usy (v) = #; — max(0, #}_, + #}, — R) (12)

correspond respectively to the minimum and maximum numbstretches of value
v thatstartat columnk, denoted by;," (v) (i.e.,ls} (v) < s (v) < usf (v)). Again,if
some cardinality variable is not fixed, then the equatiorsvashould be interpreted
as arithmetic constraintsThe intuitions behind these formulae are as follows:

— If the number of occurrences of valugn columnk (i.e., #}) is strictly greater
than the number of occurrences of valuie columnk — 1 (i.e.,#}_,), then this
means that at leagt;, — #,_, new stretches of valuecan start at columa.

— If the number of occurrences of valuen columnk (i.e., #}) plus the number
of occurrences of valuein columnk — 1 (i.e., #}_,) is strictly greater than the
number of rowsR, then the quantity#]_, + #} — R represents the minimum
number of stretches of valuethat cover both columk — 1 and columnrk. From
this minimum intersection we get the maximum number of netshes that can
start at columrk.
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K valuev= 1 K valuev= 1
1 +
1 “ Is{ (v) = max(0,4 — 3) 1 i usp (v) =4-2=2
L L imax(03+45)
1)1 1)1 ’
1)1 1
012 3 012 3
1/3]a iv 1(3|4 iv
0|21 0|21
number of occurrences number of occurrences
of each value in of each value in
each column each column
(A) (B)

Figure 3 Lower and upper bounds on the number of stretches startiagjigen column. Boldface in the
R x K matrices corresponds to stretches of valsgarting at columr that we are trying to minimise (A)

or maximise (B). Boldface in th& x K matrices corresponds to the occurrence constraints o valu
v=1.

Example 3Parts (A) and (B) of Figurgl3 respectively illustrate the éovand upper
bounds expressed by equations| (11) (12) on the numbeetttes of valua
starting at column, provided that the number of occurrence$ ¢fespectivelyl) in
columns0 and1 are equal t@ and1 (respectivel\3 and4). O

By aggregating these bounds for all the columns of the mairéxget the following
necessary condition using double counting:

K-1 R—-1
s = Si(v) (13)
k=0 r=0
Similarly, the following bounds (under the convention t#gt = 0 for each value)
Isy; (v) = max(0, #} — #111) (14)
usy (v) = #; — max(0, #¢, ., + # — R) (15)

correspond respectively to the minimum and maximum numbsiretches of value
v thatendat columnk, denoted by, (v) (i.e.,ls; (v) < s (v) < usy (v)). We get
a similar necessary condition:

K— R—1

D s = 8 (v) (16)

k=0 r=0

i
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3.2.2 Generalisation: Replacing the Value by a Set of Values

So far, the value of a stretch was fixed. We now assume that a stretch may caoffisist
a finite nonempty set, denoted byof possible letters that are all considered equival-
ent. Let#{ denote the quantity", ., (#}), that is the total number of occurrences
of the values ofb in columnk. The bounds (11)[(12),_(14],_(15) are generalised as
follows:

Isi (0) = max(0, #; — #1_,) (17)
usi (0) = #5, — max(0, #;_, + #4 — R) (18)
Isj; (0) = max(0, #4 — #741) (19)
usy (0) = #; — max(0, #{ 1, + #, — R) (20)

and we get the following necessary conditions:

st @) =YY S(v) (21)
k=0 veD r=0
K-—1 R—1

s (@)= 5 (22)
k=0 veD r=0

Note that[(2ll) and(22) specialise respectively{d (13) B \wheni = {v}.

3.3 Constraining the Minimum and Maximum Length of a Stretch

Suppose now that we have lower and upper bounds on the lehgtlsteetch of a
given valuev for each row:

— LLS(v) is the minimum length of a stretch of valuén every row.
— ULS(v) is the maximum length of a stretch of valuén every row.

3.3.1 Necessary Conditions
We get the following necessary conditions:
Vke[0,K —1]: #} > > IsT (v) (23)
j=max(0,k—LLS(v)+1)
min(K—1,k+LLS(v)—1)

VEe[0,K —1]: #% > > Is; (v) (24)
i=k
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The intuition behind(23) (respectively(24)) is that theethes starting (respectively
ending) at the considered columnmust overlap columg.

Vke[0,K —1— ULS(v)] :
ULS (v)

+ Y #h., < (ULS(v)— LLS(v) +1) - R (25)
j=LLS(v)
Vk € [ULS(v), K —1] :
ULS(v)
sy + S #), < (ULS(v) — LLS(v) +1) - R (26)
j=LLS(v)

The intuition behind[(25) is as follows. For each stretchibeigng at columnk there
must be an element distinct fromin a columnj € [k + LLS(v),k + ULS(v)]
of the same row. So the number of such values different froim columns[k +
LLS(v), k + ULS(v)] (i.e.,ls;; (v)) plus the number of occurrenceswoin columns

[k + LLS(v),k+ ULS(v)] (i.e. ZJULfL”S)(v) %+;) should not exceed the available
space( ULS(v) — LLS(v) + 1) - R. The reasoning fof(26) is similar but considers

stretche#ndingat columnk.

Example 4Figure[4 illustrates the necessary conditiod (25) on thermim number
of occurrences of valueg and 1 in columns2 and 3, provided that the minimum
number of stretches of valuestarting in columro is equal to3 (i.e., Isg (1) = 3),
and that the minimum and maximum lengths of a stretch of valaee respectively
equal to2 and3 (i.e., LLS(1) = 2 and ULS(1) = 3). In this context, inequality (25)
holds since its left-hand side, i.e., the minimum numberaafusrences of and1 in
columns2 and3, is equal to3 + (3 + 1), while its right-hand side, i.e., the available
space in columng and3, is equal to(3 — 2 + 1) - 5. O

3.3.2 Extension

We now provide another necessary condition, which holdarigvalues € [0,V —1]

and for anyULS (v) + 1 consecutive columns of the matrix(#. Let A, 5., (with

v € [0,V — 1] andk € [0, K — /]) denote the number of occurrences of values
different from valuev in any ¢ consecutive columns starting at colurhrmof matrix
M# . Also, letl, . (withu € [0,V — 1] andk € [0, K — ¢]) denote a lower bound
on the minimum number of stretches of valu¢hat for sure have at leastLS (u)
values within any consecutive columns starting at colufof matrix M. Formally:

k+2—-1

Appe=R-0— > # (27)
i=k
Iyge=max {# | k+ LLS(u)—1<i<k+{¢—LLS(u)} (28)
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K
—

olofolo] Bo()=
ool il rzsa)=2
R|[1]|1]1]o] ULS()=3
11110

1[1]o]o

0123
13331
02224¢V

number of occurrenct

of each value in

each column
Figure 4 Minimum number of occurrences of valuesand1 in columns 2 and 3 with respect to (a) the
minimum number of stretches starting in another column d)dhe minimum and maximum stretch
lengths. In theR x K matrix, boldface in columi corresponds to the requiremdsf (1) = 3, whereas
boldface in the box corresponds to the left hand sid@B8j: boldface 0s correspond to the temg(l);
boldface 1s correspond to the teEi?ZQ #Jl. Boldface in théd/” x K matrix corresponds to the occurrence

constraints on value = 1.
We get the following necessary condition:
Yo e 0,V —1]:Vke[0,K — ULS(v) — 1] :

R — Z Lk, urs(v)+1
u€[0,V—1]

< Ay k,ULS(0)+1 — Z LLS(u) + Ly g, ULS (v)+1
uw€[0,V —1]
uFv

The left-hand side of(29) corresponds to the number of rdwaairix M that do
not necessarily contain a stretch of lengthS (u) for a valueu different fromo. The
right-hand side of{(29) corresponds to the number of ocogss of values different
from valuev that are not necessarily part of a stretch of lengit (). If (£9) does
not hold, then we have a contradiction since at least one fthreanatrix M contains
more thanULS (v) occurrences of value. Figure[5(A) illustrates conditiof (29).

Example 5Let us illustrate constrainf(29) on ak = 3 by K = 6 matrix M of
variables taking their values in the s, 1,2,3} (i.e., V = 4). For this purpose,
assume that the numbers of occurrence®, df 2, 3 in the six consecutive columns
of M, as well as the minimum and maximum stretch lengths of valués2, 3 are
respectively equal to:

- #3 5 =01,0,1,2,1,2], LLS(3)=1, ULS(3)=2
- #2 . =10,0,0,0,0,0], LLS(2)=3, ULS(2)=3
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ULS(v)+1 _

-

A number of stretches of valueof length
= v‘= v Y ULS(v) + 1 (should be equal t6)

>

# v
#v
#v
#v
#v
#v
#v

(A) R

left-hand side of (29)
rig‘ht—hand side of (29)

o 8

minimum number of stretches of
#v . values# v completely included in
columnsk, ...,k + ULS(v)
v
r ” Y
- - >
minimum-length stretches

columnk columnk + ULS(v)

K

ULS(3)+1
- - »

3

w

AlO| | W

(B)

o~ N W
=

0
0
1
2

—~lo|lo|w
Rk |lo|r

2
0
1
0

N OO =

0 1 2 3 4 5
number of occurrences of each value in each column
Figure 5 (A): lllustration of necessary conditiof (29). (B): llluation of Exampléb, where a too long
stretch of valu occurs in column8 to 5 since, in these columns, the two occurrences (@éspectivelyl)
have to form a stretch; numbers in boldface respectiveloidethe columns we focus on (the last three

columns) and the number of occurrences of values we focuthem@mber of occurrences of valugsl,
and3 in column4).

See Figurgl5(B): we focus on value= 3 and on the collectiof of ULS(3)+1 =3
consecutive columns of matrix{# that start at colums (recall that columns are
numbered from 0). The number of occurrences of values diffisrom valuey = 3
within C is equal toAz 33 = 3-3 — Y0727 #3 =9 — (2 + 1 + 2) = 4. For each
valuew different from valuev = 3 (i.e., value9), 1, and2), consider the minimum
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number of stretches of valuethat for sure have at leastL.S (u) values withinC. We
have:

- Toss =max,y o # = #1=1,

- Dss=max; 1) 7 #L=#1=1,

— Iy33=max; 33  #4=0.
Finally, since the conditioB— (1+1+0)=1<0=4—(2-14+2-1+43-0) does
not hold, thematrix-of-automata-and-gamnstraint pattern cannot be satisfied. This
can be interpreted as the fact that, in the last three colwhmsatrix M, there must
be at least one row containing three consecutive occursemic® This contradicts
the requirementVLS(3) = 2. O

3.4 Combining Two String Properties: Forbidden Prefixesudfi&s and Number
of Stretches

One can also combine several string properties and getggraonditions. For ex-
ample, assume that the row automatbhas the following properties with respect to
two distinct values, andv (with u,v € [0,V — 1]):

— The maximum number of stretches of valués equal to 1.
— The wordu™v is a forbidden prefix.

We then have the following necessary condition:
Vi€ [1,K — 2] max(0, #£§ + #¢ — R) + #0, <R (30)

The quantitymax (0, #§ + #1* — R) represents the minimum number of rows where
valuew for sure occurs both in columiisandi. Since we know that we can have at
most one stretch of valugin a row, this means that we have at leastx(0, #§ +
# — R) stretches of value starting at column 0. HencE (30) enforces that none of
these stretches be directly followed by.a

Similarly, whenvu is a forbidden suffix, we have that:

Vie[l,K—2] :max(0,#%_1+#: —R)+#] <R (32)

Example 6Let usillustrate[(30) on aR = 3 by K = 6 matrix M of variables taking
their values in the s€f0, 1, 2} (i.e.,V = 3). For this purpose, assume that any three
consecutive stretches within a row.0f must be over the valugd 02,01 2,01 0},
and that the numbers of occurrence$pf, 2 in the six columns ofM are respect-
ively equal to:

- #85 = [17 15 17 25 17 0]
- #(1)5 = [27 2,2,1,2, 0]
- #(2)5 = [07 0,0,0,0, 3]
Consider values = 1 andv = 2. Note that each row of matri®¢1 contains at most

one stretch of valué. Moreover, the word 2 cannot be the prefix of any row of
M. Now, focus on the two occurrences of valuboth in columng) and4 of matrix
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M, as well on the numbe#2 = 3 of occurrences of valuin the last column. We
have thatnax(0, #§ + #4 — 3) + #2 = max(0,2 + 2 — 3) + 3 = 4 is greater than
R = 3, which is a contradiction since the wordl 1 1 1 2 will necessarily be a row
of matrix M. O

3.5 Constraining Value Precedence

Suppose now that we require that if a vatueccurs at any positiok in a row, then
another value; also occur at leagttimes (with¢ > 0) before positiork in that row.
This can be directly translated into the following necegsandition

k—1
#0=0 A VEe[LK—1]:) #!>0-#; (32)

=0

wherel - #; represents a lower bound on the number of occurrences of uaiu
columns0, 1, ...,k — 1, under the hypothesis that we ha#§ occurrences of value
v on columnk.

Value precedence, with = 1, was originally introduced in_[16] to break sym-
metries in the context where all occurrences of a value caexbkanged with all
occurrences of another value, e.g., in graph colouringlpros the colours can be
exchanged unless additional constraints prevent thisievatecedence can also be
extracted from an automaton and Secfion 3.7 describes hpertorm this task auto-
matically.

3.6 Replacing th@cc Column Constraint by a Sum Constraint

Assume that we want to replace thec constraint on a given columh by the re-
quirement that the surfi of the variables of colum# be in a given intervall, u].

By first introducing cardinality variables on the column loétmatrixM for denoting
the number of occurrences of each value, and second linkimgéwly introduced
cardinality variables to the suswith a channelling constraint, we can directly reuse
all the results previously introduced. For this purposeijdes setting the minimum
and maximum value of to ¢ andu, we create &hannellingconstraint of the form

S=0-#0+1-#p+- -+ (V1) " (33)

We can set all the previous necessary conditions on the ristwyduced cardinality
i 1 V-1
variables#), #;., ..., #, .

3.7 Extracting Occurrence, Word, and Stretch Constraints fan Automaton, or
How to Annotate an Automaton with String Properties

Toward automatically inferring the constant bouddg . (w), LWP,.(w), LWS..(w),
LS. (w), etc., of the previous sub-sections, we now describe howengiutomaton
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A can be automatically annotated with counter variablestcaingd to reflect prop-
erties of the strings that the automaton recognises. Thaspecially useful if4 is

a product automaton for several constraints. For this mepee use thautomaton
constraint introduced iri_[3], which (unlike ttregular constraint[[19]) allows us to
associate counters to a transition. Each string propegyires (i) a counter variable
whose final value reflects the value of that string propeijydssibly some auxiliary
counter variables, (iii) initial values of the counter \aies, and (iv) update formu-
lae in the automaton transitions for the counter variabMessnow give the details for
some string properties.

In this contexty denotes an integer or a decision variabldenotes a 0/1 integer
or decision variablej denotes a set of letters] denotes a nonempty sequence of
letters ind, ands; denotes the letter at positionf word s. We describe the annotation
for the following string properties for any given string:

— wordoce(Ht, n): Word 9 occursn times.

— wordprefiz (0T, b): b = 1 if and only if word 9 is a prefix of the string.

— wordsuffizx (9%, b): b = 1if and only if word o™ is a suffix of the string.

— stretchoce(v, n): Stretches of letters in sétoccurn times.

— stretchminlen (0, n): If letters in setd occur, them is the length of the shortest
such stretch, otherwise = +oo.

— stretchmazlen(0,n): If letters in setv occur, them is the length of the longest
such stretch, otherwise = 0.

— wvalueprec(x, y,n): If y occurs, then: occursn times before the first occurrence
of y, otherwisen = 0.

For a given annotation, Tadlé 1 shows which counters it thtoes, their initial and
final values, as well as the formulae for counter updates tskd in the transitions.
Figurel shows an automaton annotatedsfoetchoce({0}, n).

An automaton can be annotated with multiple string prope#isince annota-
tions do not interfere with one another—and can be simplifiredrder to remove
multiple occurrences of identical counters that come friffeignt string properties.

It is worth noting that propagation is possible from the dixi variables to the
counter variables, and vice-versa.

3.8 Heuristics for Selecting Relevant String Propertieafo Automaton

In our experiments (see Sectigh 6), we chose to look for thewong string proper-
ties:

For each letter, lower and upper bounds on the number of disroences.

For each letter, lower and upper bounds on the number anthlefds stretches.
Each word of length at most 3 that cannot occur at all.

Each word of length at most 3 that cannot occur as a prefix dixsuf

These properties are derived, one at a time, as follows. \Wetate the automaton as
described in the previous sub-section by the candidategprioperty. Then we com-
pute by labelling the feasible values of the counter vaeaéflecting the given prop-
erty, giving up if the computation does not finish witlirtCPU seconds. Among the
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collected word, prefix, suffix, and stretch properties, s@mperties are subsumed
by others and are thus filtered away. Other properties car@ialy have been de-

rived, e.g., not only forbidden words, but also bounds omtln@ber of occurrences
of words. Our choice was based on two considerations: firgttwproperties we are

able to derive necessary conditions for, and second erapwluservations of what

actually pays off in our benchmarks.

4 The Cardinality Automaton of an Automaton

The previous section introduced different complementaaysiof generating neces-
sary conditions (expressed in terms of arithmetic constisafrom a given automaton
for the row constraints of the matri%f when its columns are subject y@ac or sum
constraints. This section presents an orthogonal sysieaygiroach, again based on
double counting, which can handle the same class of columst@nts completely
mechanically, without first having to choose relevant gtpnoperties.

Consider amR x K matrix M, where in each row we have the same constraint,
represented by an automatshof p statessy,...,s,—1, and in each column we
have agcc or linear (in)equality constraint where all the coefficeare the same.
We will first construct an automaton that simulates the palralinning of theR
copies ofA and consumes entire columns.®f at each transition. Since this new
automaton hag” states, we then use an abstraction where wecjushtthe number
of automata that are in each stateAfAs even this abstracted automaton has a size
exponential irp, we then use a linear-size encoding with linear constréatisallows
us to consider the column constraints.bhas well.

4.1 Necessary Row Constraints

The vector automatondz consumes column vectors of sizzat each transition.
Its states are sequences Bfstates of.A, where sequence entiyis the state of
the automaton of row. There is a transition from statg;,,...,s;,_,) to state
(Sjos---18jm_,) If and only if for each? there is a transition itd from s;, to s;,.
A state (s;,, ..., Si,_,) IS initial (respectively accepting) if each of the, is the
initial (respectively an accepting) state.df

For example, in Figurgl6 (top) is the vector automaferfor the (counter-free
version of the) automatah (with p = 3 states) in Figurgll for thelobal_contiguity
constraint and vectors a8 = 2 elements over the s¢D,...,V — 1} for V = 2
values. Each state is aR-tuple of states of, indicating in which states of the
R copies ofC respectively are. There agg® = 32 = 9 states, each with at most
VI = 22 = 4 outgoing transitions, hence the size of the cardinalitpmaton is
exponential in the number of states of the original automaton. So let us stint
the number of copies of the original automaton that are i eads states: this leads
to the following concept.

Thecardinality (vecto) automaton ( Ay ) is an abstraction of the vector auto-
matonAg that also consumes column vectors of sizat each transition. Its states



18 Beldiceanu, Carlsson, Flener, and Pearson

[0,0] (1,0] [0,0] [0,1] [0,0]

Figure 6 (Top): Vector automatort, for the (counter-free version of the) automat@r(with p = 3
states) in Figur€ll for thglobal_contiguity constraint and vectors dR = 2 elements over the set
{0, 1}. (Bottom): Cardinality automatog (Cz ) for the automatoi€ and vectors of? = 2 elements.
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are sequences pfnumbers, whose sum I3, where entry is the number of automata
Ain states;. There is a transition from state;, , ..., c;,_,) to state(c;,,...,c;,_,)
if and only if there exists a multiset @t transitions in4 such that for eachthere are
¢, Of theseR transitions going out from,, and for eachn there are:;,, of theseR
transitions arriving inta,,,. A state(c;,, . .., ¢;,_, ) is initial (respectively accepting)
if ¢;, = 0 wheneves, is not the initial (respectively an accepting) state/of

For example, in FigurEl6 (bottom) is the cardinality autosnag: (C, ) for the
automatorC (with p = 3 states) and vectors @t = 2 elements. Each state igpa
tuple of natural numbers, indicating how many of tReopies ofC are in each state
of C. For instance, stategg, s;) and(sy, so) of Co are merged into statd, 1,0).
Note that this cardinality automaton is non-determinidticgeneral, the number of
states of# (Ag ) is the number of ordered partitionsmfand thus exponential in

However, it is possible to have a compact encodingéc(fA_R) via constraints.
Toward this, we use - (K + 1) decision variables? in the domain{0, 1, ..., R}
to encode the states of an arbitrary path of lenfiti{the number of columns) in
# (Ag ). We call S* a state-count variableit denotes the number of automata
that are in states; after columnk — 1 has been consumed; fér ¢ {1,..., K},
the sequencéSg, ST, ..., S)_,) has as possible values the statestof Ar ) after
the latter has consumed column- 1 in one transition; fork = 0, the sequence
(S9,57,...,8)_1) is fixed to (R, 0, ...,0) when, without loss of generality, is
the initial state of4d. We get the following constraint for colurrin

S§+Sf 4+ S, =R (34)
and the following additional constraint for the last coluin
Vi€ {0,...,p—1}: SK =0« s; is not an accepting state of (35)

Assume thatd has a se” = {(ao, £o, bo), (a1,¢1,b1),...,(ag—1,%q—1,bq—1)} Of

¢ transitions, where transitiof;, ¢;, b;) goes from state; € {so,s1,...,Sp—1} tO
stateb; € {so,s1,...,5p—1} upon reading lettef; € {0,1,...,V — 1}. We use
q - K decision variable€ in the domain{0, 1, ..., R} to encode the transitions of

an arbitrary path of lengttk in # (Ag ). We call T} atransition-count variable
it denotes the number of automadathat trigger the transition; after columnk has
been consumed, with € {0, ..., K —1}. We get the following constraint for column
k:

Toortobo) T Tl r o) ¥+ Ty vt R (36)

qflabqfl) -

Consider two state encodingsf, SF,..., S¥ ;) and(S§™, 5¢*, ..., M), and
consider the transition encodiKigi’, s, 1) Tlor 160y - -+ Loy 100 1.5,_1)) DETWEEN
these two state encodings (with< k& < K). To encode paths of lengtk” in
# (Ag ), we introduce the following constraints. First, we conistthe number of
automatad at any states; before reading columi to be equal to the number of
firing transitions going out from; when reading colum#:

V_j S {0,...,])—1} : Sjk = Z T(Ifu,éi,bi) (37)
(a; ;,b;)ET : a;=s;
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Second, we constrain the number of automdtat states; after reading columi to
be equal to the number of firing transitions coming infavhen reading columh:

Gl - Y i, @
(a;€i,b;)ET : bi=s;

These constraints will be illustrated in an example in thet sab-section. A refor-
mulation with linear constraints wheld = 1 and there ar@o column constraints is
described in[[B].

4.2 Necessary Column Constraints and Channelling Consdrai

The necessary constraints above on the state-count asdiarcount variables only
handle the row constraints, but they can also be used to éa@otlimn constraints
of the previously considered kinds. These necessary @ntsrcan thus be seen as
a communication channel for enhancing the propagationdsiwow and column
constraints.

If column k has agcc, then we constrain the number of occurrences of valine
columnk to be equal to the number of transitionswowhen reading columh:

Yo e{0,...,V—1}: #V = Z T o (39)
(ai,libi)€T : Li=v

If column k has a constraint on its sum, then we constrain that sum toumd &
the value-weighted number of transitions on valughen reading columh:

R—1 V-1
Mir k=Y v > T 00 0) (40)
r=0 v=0 (ai,li,b))ET : Li=v

Example 7Consider amR x K matrix M with a global _contiguity constraint on each
row and agcc constraint on each column (see Exanfple 1). An autom@sssociated
with the global _contiguity constraint is described by Figurk 1. It has- 3 statessg,
S1, S2 andq =5 tranSitionSto = (SQ,O,SQ), t1 = (50,1,81), to = (81,1751),
ts = (51,0, 82), t4 = (82,0, s2) labelled by value$ and1.

The encoding of# (Cr ) hasp - (K + 1) state-count variableS such that
constraint[(34) is imposed + Sk + S5 = R for everyk. Sinces, is the initial state
of C, we require thaf) = RandS{ = 0 = S9. SinceC only has accepting states, no
SJK is required to be zero under constrainil(35). The encodswteds;- K transition-
count variable§’* such that constrairf(86) is imposd¢ + TF + Ty +T¥+TF = R

for everyk.
For instance, foR = 3andK =7, if M is
0 1 2 3 4 5 6
ojojofoj1|1(1]|1
1({o0{1|1(1]0|0]0O
2|/1]1/0/0|0|0]|O
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then the state-count variable matfxand transition-count variable matfixrespect-
ively are

0 1 2 3 4 5 6

0 1 2 3 4 5 6 7 t:012(171{0]0|0]|0
s0:0(3}2(1(1]0(0]0|O0 t1:0111(170(1]0|0|0
s;:1]0(1(2(1(2|1|1(1 t2:2]0(21(21(1]1|1|1
$9:210]0|0|1(|1|2|2]|2 t3:3/0]0(1/0(12]0]|0
t241010]0|21|1|2)|2

and they satisfy the constrainis{34) fal(36). The followtihigee sets of linear con-
straints link theS andT" variable matrices for every columin(with 0 < & < K) and
respectively are the necessary constralnik (B7), (38){&H)d

Sk =1k +TF (transitions that exit state,)
Sk =TF 4+ Tk (transitions that exit state, )
Sk =1k (transitions that exit state,)
Setl =T¢ (transitions that enter statg)
Sl — Tk 4 Tk (transitions that enter state)
STl =Tk Tk (transitions that enter statg)

O=TF+TF+Tf  (transitions labelled by valug)
#i =TF +T¥ (transitions labelled by valug)

Assume thgcc constraints on the columns of matei are as follows:

— Columns 0, 2, 4, 5, and 6 d¥1 must each contain twas and a singlé.
— Columns 1 and 3 oM must each contain twis and a singlé.

The previously given instance g¥ satisfies thesecc constraints. Setting the car-
dinality variables#} (with 0 < & < 7and0 < v < 1) according to thesgcc
constraints, the eight necessary constraints above asfiesht Note that the neces-
sary constrainf(40) is not applicable here, as it is usedwtte column constraint is
a summation constraint.

Now revise theycc constraint on columa so that the latter is required to contain
two 1s and a singl®, instead of vice-versa: we get thec constraints of Exampléd 1:

— Columns 0, 2, 4, and 6 081 must each contain twos and a singlé.
— Columns 1, 3, and 5 oM must each contain twis and a singlé.

Revising the cardinality variablegt (with 0 < v < 1) accordingly, the system of
linear constraintd (34) t¢_(89) fails when we post it usiranstard propagation on
each constraint independently. O

For even more propagation, we can link the state-counti@s&” and transition-
count variableg’} to thestate variablesndtransition variableghat are induced by
the decomposition of th& automatad, as discussed in|3]. For this purpose, let the
state variable§?, Q}l, ..., QK (with 0 < i < R) denote theX + 1 states visited by

the automatom on rows of length K. We get the following necessagyc constraint
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on columnk (with k € {0, ..., K'}) of this matrix@ of state variables and the matrix
S of state-count variables:

gee ((QG, QY- QR_1),(0: 55, 1:5F,....p—1:8F ) (41)

Similarly, let the transition variables?, £}, . . ., El.K*1 denote thes triggered trans-
itions of the automatont on row: of length K. We get the following necessapyc
constraint on columtk (with k£ € {0,..., K — 1}) of this matrix E' of transition
variables and the matrik of transition-count variables:

gec ((BE,BY, ... Ef ), (0:T§,1:TF, ... .q—1: T,§11>) (42)

4.3 Incomparability of Filtering by Cardinality Automatamd String Properties

The filtering by the cardinality automaton and the filterirygtoe string properties are
incomparable, as shown in the following example.

Example 8Take a3 x 6 matrix M of 0/1 variables (i.e.R = 3, K = 6,V = 2),
where each row must be a word of the fobrh1 01T or 1101707 (i.e., we have
two stretches of zeros and two stretches of ones). Assurhththaumbers of occur-
rences of) and1 in the six columns ofM are respectively) ; = [1,0,1,1,2,1]
and#} 5 = [2,3,2,2,1,2]. The filtering by the cardinality automaton finds a contra-
diction without labelling on the variables @1, but the filtering by the string prop-
erties (i.e., two stretches of zeros and two stretches of)ahees not. The converse
happens wheg:) - = [1,0,2,2,0,1] and#{ 5 = [2,3,1,1,3,2].

5 A Chain of Lexicographic Ordering Constraints Combined with Automaton
Constraints

Let us again consider aR by K matrix of variablesM where on each row we have a
constraint specified by an automaton. Contrary to the pussections, the automata
here need not be the same for all the rows. Moreover we rethétethe rows be
lexicographically ordered from the first to the last row. § a natural way to break
symmetries in the context of rostering problems, where eagtcorresponds to the
schedule of an employee. Without loss of generality, weragsa non-strict lexico-
graphic ordering constraint. Special cases of this patteme already considered in
thelex_chain constraint of SICStus Prologl[4, 8], where the additionalstraints on
the vectors weréncreasing and among. In that context, no guarantees were given
about achieving domain consistency.

The contributions of this section are theoretical. Firg,allow any constraint that
can be expressed by an automaton without counters. Secengiiavantee domain
consistency for this pattern.

We first sketch the basic filtering algorithm of the _chain constraint presented
in [7, Section 5] (see Sectidnb.1). Since this algorithriesebn feasible lower and
upper bounds being required for each vector, we then showtdnoampute the least



On Matrices, Automata, and Double Counting in ConstraimigPamming 23

vector that is both greater than or equal to a given fixed veetd accepted by a given
automaton (in Sectidng.2). Finally we show how to adapt #eédfiltering algorithm
in order to handle the extra automaton constraints on there(see Sectidn 3.3).

5.1 Basic Filtering Algorithm of théez_chain Constraint

The basic filtering algorithm of th&z _chain constraint consists of three steps:

1. Scan the vectors from the first to the last one and computedoh vector a
feasible lower bound with respect to the domains of the téetaand the feasible
lower bound of the previous vector, if any.

2. Scan the vectors from the last to the first one and computedoh vector a
feasible upper bound with respect to the domains of the blseand the feasible
upper bound of the next vector, if any.

3. Filter each vector according to the requirement that itdeated between two
fixed feasible bounds. This can be done by using Yeeen constraint [[7],
which enforces a sequence of variables to be lexicogralbhigaeater than or
equal to a fixed lower bound and less than or equal to a fixedruyzpand.

5.2 Computing the Least Vector with respect to a Fixed Lowauril and an
Automaton Constraint

In addition to the lexicographic ordering constraints kegw adjacent rows of the
matrix M, we have an automaton constraint on each rowvtf Consequently, we
have to compute during the first and second steps of theffigtexigorithm (recalled
in Section[5.11) lower and upper bounds that are feasible wigorespect to the
automaton constraint on the considered row. Without losgesferality, we show
how to compute a feasiblewer bound with respect to an automaton constraint.

Given an automatod and a vectol’ that must satisfyd and be lexicographically
greater than or equal to a fixed boufdg, ¢1,. .., {x_1], we show how to compute
the least vectofag, a1, . ..,ax—1] that is greater than or equal tty, 41, ..., k1]
and satisfiesd such that for allk in [0, K — 1] we have that:;, is in the domain of
V[k] (i.e., step 1). We state tha{{0] is greater than or equal # and compute the
minimum valuev, of V[0] with respect taA:

— If this new minimum valuey, is strictly greater tharfy, then we fix)[0] to
vy and compute the corresponding least solutiondtdy successively fixing
V[1],V[2],...,V[K — 1] to their minimum value and by propagatind after
fixing each variable.

— If this new minimum valuey, is equal toly, then we fixV[0] to vy and reiterate
the same process on variabled], V[2],..., VK —1].

Step 2 is performed in a similar way.
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5.3 Filtering Algorithm of theez _chain Constraint Combined with Automaton
Constraints

The following filtering algorithm, calletlex chainautomatonof thelez_chain con-
straint combined with automaton constraints on the vectls® consists of three
steps:

1. Scan the vectors from the first to the last one and computedoh vector a
feasible lower bound with respect t@) the domains of the variablesii) the
automaton constraint on that vector, artt)(the feasible lower bound of the
previous vector, if any.

2. Scan the vectors from the last to the first one and computedoh vector a
feasible upper bound with respect %) the domains of the variablesii) the
automaton constraint on that vector, afd)(the feasible upper bound of the next
vector, if any.

3. Filter each vector according to the requirement that itdeated between two
fixed feasible bounds and accepted by the automaton cartsifahe considered
vector. This can be done by computing the minimised prodiittt@automaton
of the between constraint([¥] and the automaton of the considered vectar by
filtering each vector with respect to this new automaton.

We now show that this algorithm achieves domain consistency
Theorem 1 AlgorithmLex_chainautomatormmaintains domain consistency.

Proof We show that if we set the variable at positibriwith 0 < k£ < K) of vec-
tor V to any remaining value of its domain, then we can always ektkis to a full
assignment that satisfies all the lexicographic orderirtyanomaton constraints in
three steps:

1. We show how to fix completely vectd), assuming/[k] is set to one of its poten-
tial valuesv. We compute the minimised product of the automaton obtiecen
constraint and the automatoh of the constraint on vectay. We then use this
automaton for finding a solutiopso, s1, ..., sx—1] wheres; = v satisfiesA as
well as the required lower and upper bounds on vextor

2. All vectors that precede vectdr can be fixed to their respective lower bounds,
computed by the first step of the filtering algorithm. By counstion, these lower
bounds are all lexicographically smaller than or equal twadsg, s1, . .., Sk —1].

3. We can also fix all vectors that follow vectdrto their respective upper bounds
computed, by the second step of the filtering algorithm. €hgsper bounds are
all lexicographically greater than or equal to vedtr, s1, ..., sx—1]. O

6 Experimental Evaluation
NSPLib [21] is a very large repository of (artificially geaéed) instances of theurse

scheduling problerfNSP), which is about constructing a duty roster for nursiiady.
Let R be the number of nursek; the number of days of the scheduling horizon, and
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V the number of shifts. The objective is to constructiarx K matrix of values in
the integer interval0, V' — 1], with valueV — 1 representing the off-duty “shift”.

In theinstance filesthere are hardoverage constraintand soft preference con-
straints; we only use the former here: they give for eachdlagd shifts the lower
bound on the number of nurses that must be assigned tossbiftdayd, and can
be modelled by a global cardinality constraigt{) on the columns. Note that the
gce constraints on any two columns are in generaithe same. There are instance
files for R x 7 rosters withR € {25,50,75,100}, and for R x 28 rosters with
R € {30,60}. There are three complexity indicators on the coveragetminss,
giving rise t0270 instances for each of th# configurations of these indicators for
the R x 7 rosters, as well as ®0 instances for each of tHe configurations of these
indicators for theR x 28 rosters.

In the case filesthere are four hard constraints on the rows. For each shift
there are lower and upper bounds on the number of occurrefedn any row (the
daily assignment of some nurse): this can be modellegtbgonstraints on the rows.
There are also lower and upper bounds on the cumulative nuofilbecurrences of
the working shift®), ..., V' —2in any row: this can be modelled lyy¢c constraints on
the off-duty valuel” — 1 and always gives tighter occurrence bounds on viluel
than the previougcc constraints. For each shift there are also lower and upper
bounds on the length of any stretch of value any row: this can be modelled by
stretch_path constraints on the rows. Finally, there are lower and uppends on the
length of any stretch of the working shifts. .., V' — 2 in any row: this can be mod-
elled by generalisestretch_path_partition constraints[4] on the rows. Note that the
constraints on any two rows are tb@me There are3 case files for the? x 7 rosters,
and anotheR case files for theR x 28 rosters. Instead of posting four constraints
on every row, we automatically generated (dele [4] for detaleterministic finite
automata (DFA) for the row constraints of each case, usiag thinimised product
DFA (obtained through standard DFA algorithms) to achiewmdin consistency on
the conjunction of row constraints|[3]. (Since we use dlutomatonconstraint|[[3]
rather than theegular constraint[[19], the unfolding of the product automatondor
given numberK of days is not an issue here, nor is the minimisation of thelinf
ded automaton.) For each case, string properties were atitathy selected off-line
as described in Sectidn 3.8, and cardinality automata wenevatically constructed
off-line as described in Sectidh 4, by using constralnt} &@ [41). We can usE(41)
but not [42) since the SICStus implementation of dhomatonconstraint[[8] uses
explicit Q¥ state variables but has rigf transition variables.

Under these choices, the NSPLib benchmark corresponde tpattern studied
in this paper. To reduce the risk of reporting improvementerg another search
procedure can achieve much of the same impact, we use a @segearch that
exploits the fact that there is a single domain-consistenstaint on each row and
column:

— Phase 1 addresses the column (coverage) constraints brsgeks to assign
enough nurses to given shifts on given days to satiifiput onecoverage con-
straint.
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— In Phase 2, one column constraint and all row constraintsireto be satisfied.
But these constraints form a Berge-acyclic CSP [1], andsodmaining decision
variables can be easily labelled without search.

We cannot use the symmetry breaking method described ino8&s;t for it would
break the Berge-acyclicity in Phase 2. Instead, we breakrsstnies during search
in Phase 1 by maintaining an equivalence relation: two rowsges) are in the same
equivalence class while they are assigned to the same ahdtdays.

This search procedure is much more efficient than row-wiselliag under de-
creasing value ordering (valdé — 1 always has the highest average number of oc-
currences per row) combined with decreasing lexicograpfiering of the rows.

The objective of our experiments is to measure the impaatritime and back-
tracks when using either or both of our methods. In the erpants, we used SICStus
Prolog 4.2 on a quad core 2.8 GHz Intel Core i7-860 machink 8B cache per
core, running Ubuntu Linux (using only one processor cdfe).each instance, we
searched for its first solution, using a timeout of 1 CPU neénifor each case and
nurse count?, we used thdirst 10 instances for each configuration of the NSPLib
coverage complexity indicators, that is instante®r0 for the R x 7 rosters (Casebk-

8) and1-120 for the R x 28 rosters (Case$-16).

Table[2 summarises the running of thele0 instances using neither, either,
and both of our methods. Each row marked ‘sat’ (for satisfipbdr a given case
and nurse counk shows the performance of each variant, namely the number of
instances solved without timing out, as well as the totatime (in seconds) and the
total number of backtracks on all instances wheomeof the four variants timed
out. Please note: this means that these totals@marablebut also that they do not
reveal any performance gains on instances where some t{gjiamed out. Similarly
for each row marked ‘unsat’ (for unsatisfiable). Numbers atdEace indicate best
performance in a row. Instance-wise plots of the runtimesgiven in Figure§]7
to[10; since for many runtimes there are multiple instanttes plots are made to
appearto contain as many points as instances by multiplying evangime for every
variant by a new random number in the interfdal), 1.3]: the purpose of the plots is
only to compare thapproximatdocations of the median runtimes for all variants.

It turned out that Cases—6, 9-10, and12—14 are very simple (in the absence
of preference constraints), so that our methods only deerbacktracks on one of
those2220 instances, but increase runtime. It also turned out thaé Cass very
difficult (even in the absence of preference constraintsthat even our methods
systematically time out, because the product automatot v constraints is very
big; we could have overcome this obstacle by using the buiftec constraint and
the product automaton of the other two row constraints, litwanted to compare
all the cases under the same scenario. Hence we do not regogsailts on Casels-

6 and9-14.

Phase 1 uses dynamic choices, so the shape of the searchnrie affected by
whether or not the necessary conditions generated by otratietire included. In a
few cases, their inclusion does not yield the fewest back&a

An analysis of Tablgl2 and Figurigs 7[id 10 reveals that our oustdecide more
instances without timing out, and that they often dradijcaduce the runtime and
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Figure 7 Runtimes (in milliseconds) of theatisfiableinstances of NSPLib cases 7 and 8 using neither,
either, or both of our methods.

number of backtracks (by up to four orders of magnitude)eeistly on the common
unsatisfiable instances. However, runtimes are often ase (by up to one order
of magnitude) on the common satisfiable instances. Striogagties are only rarely
defeated by the cardinality DFA on any of the three perforceaneasures, but their
combination is often the overall winner, though rarely byaegé margin. It would
take a more fine-grained evaluation to understand when tevkigd string properties
without increasing runtime on the satisfiable instances.Jdod performance of our
methods on unsatisfiable instances is indicative of gainsnwdxploring the whole
search space, such as when solving an optimisation ver§itie groblem or using
soft (preference) constraints.

With constraint programming, NSPLib instances (withow goft preference
constraints) were also used Inl[5, 6], but under row conssalifferent from those of
the NSPLib case files that we used. NSP instances from adliffeepository were
used in [18], though with soft global constraints: one of itigghts reported there
was the need for more interaction between the global cantdrand our paper shows
steps that can be taken in that direction.

7 Conclusion

Since the necessary conditions generated by our metho@sseatially linear con-
straints, these methods should be applicable also in thexoof linear program-
ming. Future work may also consider the integration of owhtéques with the
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Figure 8 Runtimes (in milliseconds) of thensatisfiablénstances of NSPLib cases 7 and 8 using neither,
either, or both of our methods.

multicost-regulaiconstraint[[17], which allows the direct handling of& constraint
in the presence of automaton constraints (as on the rowsBEN$stances) without
explicitly computing the product automaton, which can bey\sg.

Besides the fact that they can be used for generating negessalitions for the
matrix-of-automata-and-gquattern, annotated automata can be used for at least two
other purposes:

— First, it is well known that making the product of severalamata in order to
achieve domain consistency for a conjunctioraatomatonconstraints on the
same sequence of variables usually leads to a size expldsimnnote that if we
use the same set of string properties in order to annotatattemmata that are ap-
plied to the same sequence of variables, then the variabtessponding to these
string properties can act as a communication channel batthese automata. By
restricting the bounds of a given string property, an automaommunicates a
partial view of its solution space to another automaton.

— Second, given a violatedatrix-of-automata-and-gqeattern, the necessary con-
ditions generated from a given string property can captstesap explanation of
the reason of failure. This kind of explanation is sharp feo reasons. On the
one hand, by essence, the necessary conditions catchiydifexinteraction of
the row and column constraints of the matrix. On the othedharost necessary
conditions typically point to a small subset of columns & thatrix as well as
to specific cardinality variables of the:c constraints. For instance, this is the
case when the necessary condition corresponds to a forbidalel. This usually
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Figure 9 Runtimes (in milliseconds) of theatisfiableinstances of NSPLib cases 15 and 16 using neither,
either, or both of our methods.

provides a clear hint on how to relax the domains of the cailijnvariables in
order to achieve feasibility.

The tractability of propagating thematrix-of-automaton-and-gqeattern of our[[2]
and the present extension thereof is studied.in [14].
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Annotation Counter values Counter updates
[1,..] if u € by
[0, ...,0] [Cimty] f 1<i<lAu€d]
wordocc (97, n) [ex, s el Lo+ o] i ue {)ZL
’ [ m] [n0,.] if 0<i<EAugdf
[.., e if u g of

ci,t < £is 1if and only if the most recently seéretters match a
prefix of 51 . ¢, is the number of occurrences of words matchirty
so far,

wordprefiz (v, b)

1,0, ...,0] 0,.cim1,..]  if 0<i<lAuedS
[CO 7617 ceey CA [O7 ...,maX(CZ, C(,l)} if u e 62’

’[ b} ' [0, ...,0,..] if 0<i<lAugdf
-y eeey [0,,,,701} if Ugﬁj

cp is 1 if and only if the automaton is in the start statg.0 < ¢ < ¢
is 1 if and only if the automaton has seen exagtlgtters matching
a prefix of 6T ¢, is 1 if and only if the first¢ letters seen by the
automaton matcjpt

wordsuffiz (97, b)

[,..] if u € of
[0, ...,0] [ocict,.] if 1<i<lAu€D]
[Cl,...,cd [...,C[,ﬂ if UE@ZF
[ [0,.] i O<i<lAugo)
[.,co] if u g of

¢; is 1if and only if the most recently seéfetters match a prefix of
ot
()

stretchoce (0, n)

[0,0] —
[c—d+1,1] if ued
{Zd% 0] if uge

c andd respectively denote the number of stretches of values mat
ing © encountered so far, and whether or not the current position ¢
responds to values matchitig

ch

stretchminlen (9, n)

[+o[o,;ll—o<}>,0} [min(d,e + 1),d,e+ 1] if uwed
[2’ ,e] [c,c, 0] if ugd

cis the length of the shortest stretch of values matcliisgen so far,

or oo if no such stretch has been seéris the length of the shortest
finished such stretch seen so far,carif no such stretch has been
seene is the len

th so far of the current such stretch, or 0 oth&xwis

stretchmazlen(,n)

[0,0] ) A
[max(c,d+1),d+ 1] if ued
{;’,Cﬂ [c, 0] if ugd

c andd respectively denote the maximum length of the stretches

values matchingd encountered so far, and the length of any sug

stretch corresponding to the current position.

> Q
=

valueprec(z, y,n)

[0,0] ,d+1  z=u
e, d] [max(c,d), —oco] if y=wu
[n7 —] [C, d} If x 7£ U 7£ Yy

cis 0 if noy has been seen, and the numbersfseen before the
first y otherwise.d is the number oft’s seen if noy has been seen,
and—oo otherwise.

Table 1 Given an annotation shown in the first column, the secondnmolghows the counters used by
the annotation: their initial values, their names, andrtfieal values. The final value of one counter is the
value computed by the annotation; the shared variable nadieates which one it is. Given a transition
of the automaton reading letter, the third column gives formulae for the counter updatesopered in
that transition, and under what conditions each given féarapplies. For the first three annotatiofiss
the word length. Finally, for each annotation, we give thternpretation of the respective counters.
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Neither String Properties Cardinality DFA Both
Case R | Status| Found | #Inst | Time #Bktk || #Inst | Time | #Bktk || #Inst Time | #Bktk || #Inst Time | #Bktk
7 25 sat 230 | 230 | 30.1| 32109 230 | 47.4| 13919 230 34.4 | 13823 230 66.1 | 13791
unsat 38 37 94.5 | 113413 38 63.4 | 19491 38 33.2 | 21156 38 50.9 | 12905
7 50 sat 216 | 213 16.1 | 12165 216 | 24.6 | 11055 214 28.2 | 11077 216 44.3 | 11057
unsat 43 40 88.6 | 79603 42 40.5| 8678 43 104.3 | 60544 43 32.8 | 5821
7 75 sat 210 | 208 18.6 | 12709 209 | 20.8 628 210 41.9 | 12421 210 42.6 340
unsat 48 48 | 103.7 | 155490 48 35.8 | 8858 48 42.0 | 12042 47 38.1| 8304
7 | 100 sat 219 | 216 13.0 361 219 | 28.9 361 217 447 355 219 65.0 355
unsat 26 22 37.1 8909 24 5.5 452 23 4.6 1000 25 25 459
8 25 sat 263 | 263 6.3 282 263 12.6 282 263 12.2 76 263 19.7 76
unsat 7 7 96.2 | 121367 7 0.1 19 7 0.2 21 7 0.2 21
8 50 sat 259 | 259 11.1 136 259 16.8 136 259 24.0 136 259 36.3 136
unsat 11 10 64.1 49358 11 4.8 715 10 52.0 | 29784 11 34 592
8 75 sat 246 | 245 14.1 449 245 | 231 230 246 39.2 449 246 53.6 230
unsat 22 21 69.9 | 112880 22 0.1 21 22 0.5 62 22 0.3 30
8 | 100 sat 262 | 261 17.4 239 262 | 31.4 239 261 55.0 239 262 76.9 239
unsat 6 4 0.3 73 6 0.0 4 4 0.4 73 6 0.1 4
15 30 sat 87 84 | 171.2 37 86 | 180.3 37 86 910.1 37 87 922.6 37
unsat 23 9 235 2513 23 15 9 18 14.1 88 23 5.0 14
15 60 sat 87 87 | 256.3 131 87 | 271.4 131 87 | 1590.6 131 87 | 1616.1 131
unsat 13 8 23.7 1001 13 21 8 11 314 394 13 5.2 12
16 30 sat 100 100 | 391.8 153 100 | 399.3 153 100 | 1907.0 153 100 | 1922.2 153
unsat 10 5 7.8 172 10 1.0 4 6 51.4 167 10 4.3 6
16 60 sat 105 105 | 578.5 145 105 | 592.2 145 104 | 3217.7 145 105 | 3242.2 145
unsat 3 1 16.9 579 3 0.0 1 2 0.7 2 3 0.7 2

Table 2 NSPIib benchmark results.
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