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Abstract
This work presents a novel framework to guide the Viterbi de-
coding process of a hidden Markov model based speech recog-
nition system by means of broad phonetic classes. In a first
step, decision trees are employed, along with frame and seg-
ment based attributes, in order to detect broad phonetic classes
in the speech signal. Then, the detected phonetic classes are
used to reinforce paths in the search process, either at every
frame or at phonetically significant landmarks. Results obtained
on French broadcast news data show a relative improvement in
word error rate of about 2% with respect to the baseline.
Index Terms: Viterbi decoding, broad phonetic classes, land-
marks

1. Introduction
State of the art hidden Markov model (HMM) based automatic
speech recognition (ASR) often suffers a significant drop in per-
formance when being confronted with unknown variations in
speech, like new speaking styles or accents. Since the articu-
latory aspects of human speech production are well understood
nowadays and HMM-based ASR captures only few of this pho-
netic knowledge in its models, several studies have been aiming
at exploiting phonetic knowledge to achieve more robust ASR.

Some approaches to speech recognition, like Lexical Ac-
cess from Features (LAFF) [1] and event-based system recog-
nition [2], rely exclusively on phonetic knowledge by detecting
perceptual important events (landmarks) in the speech signal,
events which provide information about articulatory gestures
and the basic sound contrasts in speech. Phonetic knowledge
can also serve as additional source of knowledge inside proba-
bilistic frameworks, like in [3], where landmark and segment-
based information is combined inside a probabilistic ASR sys-
tem. The integration of articulatory information into a decod-
ing graph was also studied in [4], where broad phonetic classes
(BPCs) were used to concentrate computational efforts during
decoding inside reliable regions of speech. In [5], support vec-
tor machines are used to detect phonetic landmarks for perform-
ing lattice rescoring in a two-pass ASR system.

In this paper, we extend the framework initially proposed
in [6], which used landmarks in the form of BPCs to guide
a Viterbi decoding process, in order to obtain improved word
graphs. In that study, manually detected landmarks served as
anchor points during decoding to strictly prune paths incompat-
ible with the presented landmark information. Our first contri-
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bution lies in presenting a BPC classification system that orga-
nizes selected attributes into decision trees to detect BPCs in
the speech signal. We compare two approaches to BPC clas-
sification. The first one estimates the BPC for every frame in
the signal, while the second approach predicts the BPC only
for certain landmark-frames. These landmarks are obtained by
estimating the most salient points of articulatory gestures. Fur-
thermore, we replace the existing phonetically driven decoding
by a more flexible implementation that enhances paths accord-
ing to broad phonetic knowledge.

The paper is organized as follows: In the first part, we
present the phonetically driven Viterbi decoding and provide
details about our BPC classification system. The evaluation sec-
tion presents the experimental setup and reports recognition re-
sults, while the paper concludes with an outlook on future work.

2. ASR Driven by Phonetic Knowledge
In HMM-based ASR, the Viterbi algorithm uses dynamic pro-
gramming to keep track of the best path reaching state (j, t) by
computing a score

S(j, t) = max
i

S(i, t−1)+ log(aij)+ log(p(yt|j))+R(j, t). (1)

S(i, t − 1) is the score for being in state i at time t − 1,
log(aij) denotes the transition log-probability from state i to j
and log(p(yt|j)) represents the likelihood of the feature vector
yt conditional to state j. R (j, t) introduces knowledge about
the correct path at frame t into the Viterbi decoding by rein-
forcing state j by R (j, t) = λj,t · Rmax. λj,t is a binary
value, indicating whether state j is compatible with the external
knowledge source and Rmax acts as the enhancement factor,
limiting the influence of R (j, t) on the overall score. If there is
no knowledge about the correct path at frame t, R (j, t) = 0 for
all j. Broad phonetic knowledge can easily be introduced into
the decoder, since every state j is directly linked to one BPC.

BPCs organize phonemes into different classes according to
similarities in their articulatory gestures. The phonemes of one
BPC share the same acoustic properties, while the classes are
maximal discriminant towards each other. Our intention is to
add a BPC classifier parallel to the existing HMM-based ASR
system, that estimates the presence of BPCs in the signal. For
each frame for which a BPC is detected, all states that are mem-
ber of this BPC will be activated with λj,t = 1, while the re-
maining states are set to λj,t = 0. In the following section, we
will provide details about our BPC classification system.

3. Detection of Broad Phonetic Information
Our BPC classifier estimates the probability pBPCc(t) of c = 8
classes: vowels, nasals, approximants, plosives, fricatives (fur-
ther divided by voiced and unvoiced) and a final group repre-
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Figure 1: Frame and segment-based BPC detection. Both approaches estimate BPC probabilities for each frame, respectively segment.
For each segment, the frame for which the detected segment-BPC has the highest frame probability is chosen as the landmark.

senting the non-speech events inbreath and silence. Introduc-
ing these automatically detected BPCs into the decoding is not
straightforward, since there is a trade-off between providing as
much phonetic information as possible, while preventing the in-
sertion of wrong information. We study two factors that influ-
ence this trade-off.

The first factor is the place where pBPCc(t) is estimated:
either for every frame in the speech signal or only for selected
landmark frames, where the acoustic correlates of articulatory
gestures are assumed to be most salient. While the frame-
based approach has the possibility to provide the most amount
of phonetic information, unreliable parts of speech, for exam-
ple phoneme transitions, are likely to misguide decoding due to
misclassified BPCs. In contrast to that, landmarks do not pre-
dict the BPC for every frame, but could still guide towards the
correct path by correctly enhancing at least one frame inside
each phoneme.

The second factor concerns the confusion between acous-
tically similar BPCs, like approximants and vowels. To reduce
the phonetic errors introduced into the decoding, we set a min-
imum BPC probability pd and merge the two most likely BPCs
into a more general phonetic class, until the probability of the
most likely BPC exceeds pd. By increasing pd, the phonetic
information at every classified frame might become very broad,
while the errors introduced into the decoding will decrease.

In section 3.1, we will focus on the extraction of attributes
for the frame and landmark-based BPC classifier. While both
approaches use frame-based acoustic attributes for prediction,
landmarks rely additionally on segmentation to estimate articu-
latory movements. The details about the mapping of those at-
tributes onto their respective BPCs by using decision trees are
provided in section 3.2.

3.1. Frame and Segment-based Attributes

At the frame level, the acoustic content of the BPCs is mod-
eled bym acoustic parameters (APs) xt,m that are extracted for
each frame t. Short-term contextual information is provided by
adding a small context window of one frame around t, resulting
in m · 3 attributes per frame.

To extract landmarks from the speech signal, we divide the
speech signal into a sequence of segments, using the forward-
backward divergence method [7], which sequentially detects
segment boundaries by comparing the parameters of a long term
with that of a short term auto-regressive (AR) model. A signifi-
cant change in the AR-models is supposed to indicate a change
in the articulatory movement. Segmentation groups the frame-
based representation of speech x = x1, . . . ,xt, into a sequence
of segments X = X1, . . . ,Xτ with Xτ containing all frames
xt inside the τ -th segment. The acoustic content of a segment is

described by the 3 frames at the center of each segment, to cap-
ture the spectral transitions of the articulatory movement. Con-
textual information of subsequent segments is again provided
by adding the attributes of the two neighbouring segments to a
total of 9 ·m attributes for each segment. After the classifier has
estimated the BPC probabilities of a segment, one frame inside
the segment is chosen as the landmark, by selecting the frame
where the most probable segment-BPC has the highest frame
probability.

3.2. Decision Trees for BPC Prediction

The design of our BPC classification system is motivated by
landmark-based approaches to speech recognition, like LAFF
[1], which provide a set of expert rules that map acoustic cues to
their respective phonetic classes. By employing decision trees,
we aim at automatically organizing the attributes into a similar
set of binary rules. Decision trees provide reliable probabil-
ity estimates, since the class probabilities are derived from the
distribution of the classes at the end nodes of the tree and can
accommodate for nominal information, in our case information
about the channel bandwidth. We compensate potentially un-
stable behaviour of single trees by bootstrap aggregating.

While Mel-frequency cepstral coefficients (MFCCs) are
state of the art for the acoustic modeling of phonemes, BPCs
might equally be discriminated by broader, yet more robust
APs, like low-level features describing general spectral shapes.
We employ correlation-based feature selection [8] to obtain
the most discriminative APs from a large amount of attributes,
which include MFCCs (with first and second order derivatives),
spectral shapes (e.g. spectral centroid), temporal statistics (e.g.
zero-crossing rate), energy measurements (e.g. bark bands) and
formant information.

The speaker diarization information of the speech recog-
nizer provides the possibility to normalize the APs on a com-
mon range for each speaker. Our normalization method first
divides the attributes of the m-th AP for each speaker into
q quantiles. Normalization is performed by replacing ev-
ery attribute xt,m with xnormt,m ∈ {1, 2, . . . , q} by xnormt,m =
arg min

q
|xt,m − cq,m|. cq,m is the median of the values inside

the q-th quantile of the m-th attribute for the current speaker.
Constant effects of the channel and speaker on xt,m, often mod-
eled as changes in mean and variance, will not affect the quan-
tiles of the distribution. Besides increasing the robustness, this
method reduces memory requirements, since xnormt,m requires
only 7 bits of memory, assuming q = 128. Furthermore, in
combination with decision trees, only 128 different split posi-
tions for each node have to be considered during training, which
equally reduces computation time.
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Figure 2: WER improvement of two news shows (135 min Africa 1 and 60 min TVME) as a function of Rmax.

4. Experiments
The speech recognizer used in this paper is a two-pass system,
with the first pass generating a word graph and the second pass
rescoring the previously obtained graph using more complex
models. The acoustic models employed in the first pass are
word-internal triphones with 4,019 distinct states and 32 Gaus-
sians per state and word trigrams are used as language model.
The rescoring pass uses 4-grams as language model and cross-
word triphone models with 6,000 states and 32 Gaussians each.
The acoustic models are trained on 150 hours of mainly planned
speech in studio broadcast environments. As proposed in [6],
we employ phonetic constraints only in the first pass, to gener-
ate better word graphs. The word error rates (WERs) reported
are calculated on the final hypotheses obtained after all passes.

Decision trees are built using the WEKA toolbox [9] with
information gain as splitting criterion, reduced-error pruning
and 30 bootstrap aggregating iterations on a 50% sample of the
training data. The APs are extracted using YAAFE [10] and
the Snack Sound toolkit [11] and we additionally add the nom-
inal attribute bandwidth, obtained from the diarization system,
to discriminate telephone from wide band speech. Trees are
trained on 1.67 million instances from 26 hours training data,
for both frame and segment-based training. For the frame-based
classifier, each training instance corresponds to the 3 · m at-
tributes from the three frames at the center of each segment,
while each instance of the segment-based classifier additionally
contains the 6 · m attributes of the neighbouring segments. A
segment was only used for training, if the large majority (e.g.
70%) of the segment was inside a phonemic boundary.

Experiments are conducted on radio broadcast news in
French language from the ESTER2 campaign [12], which con-
tain news shows with regular broadcast speech (RFI), but also
difficult tasks like debates (Inter) or accentuated speech (TVME

normalization m APs accuracy
not normalized 35 69.7
mean variance 35 71.7

quantiles (q = 128) 35 71.8
quantiles (q = 128) 62 72.3

Table 1: Comparison of classification performance on the de-
velopment set.

and Africa 1). Our development set contains 16 recordings from
the ESTER2 development set, covering three different news
shows (135 min Africa 1, 60 min Inter, 60 min TVME) and
the test set contains 23 recordings (90 min Africa 1, 70 min
RFI, 60 min Inter, 60 min TVME) from the ESTER2 test set.

4.1. BPC Classification
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Figure 3: Precision-recall curve, evaluated on the phoneme
level for the frame and landmark-based BPCs.

Feature selection resulted in 62 attributes, containing only
few MFCCs, mostly derivatives. For computational reasons,
we first used the 35 best ranked APs with 10 bagging iterations
and 30% sample size to optimize classification parameters like
pruning strategy or splitting criterion, considering only the wide
band speech during training and testing. Table 1 compares the
classification performance of the best settings obtained, but with
different normalization methods of the APs. The best perform-
ing quantile normalization method is also displayed using the
full 62 APs.

In Figure 3, we compare the precision-recall curve of the
frame-based BPCs to the landmark BPCs. For both cases,
the frames having a probability estimate pBPCc(t) higher than
the current threshold were used for evaluating the performance
on a phoneme level. A phoneme was considered as correctly
detected, as long as all classified frames inside the phoneme
matched the phoneme label. As soon there was one falsely pre-
dicted frame inside the phoneme boundaries, it was regarded
as a misclassified phoneme. If no frame inside a phoneme
was above the current threshold, the phoneme was consid-
ered as a missed phoneme. While the segmentation generally
over-segmented phonemes (see [7]), some parts of speech were



under-segmented, especially strongly co-articulated phonemes,
which led to a maximum recall for landmarks of 84%. It can
be seen that using our proposed method for landmark detection
increases the phoneme precision, compared to the frame-based
BPCs at equal recall.

Table 2 illustrates the relation between phonetic informa-
tion, as the the average cardinality of the detected BPCs intro-
duced into the system, and phoneme errors for several values
for pd. Increasing pd reduces classification errors at the cost of
less phonetic information, since many BPCs were merged into
very general phonetic classes.

AVG BPC size incorrect phonemes [%]
pd landmark frame landmark frame
- 8 8 31 85

0.8 14 16 13 45
0.95 22 24 4 17

Table 2: Relation between average size of the BPCs detected
and phoneme errors on the development set for different pd.
The total number of speech and non-speech symbols is 40.

4.2. Speech Recognition

baseline frame landmark
pd - 0.8 0.6

Rmax - 2 8
broadcast dev test dev test dev test

Inter 21.9 18.7 21.7 18.4 21.6 18.6
RFI - 17.6 - 17.3 - 17.2

Africa 1 45.1 31.5 44.6 30.7 44.7 30.8
TVME 30.1 24.1 29.6 24.2 29.6 24.4

Table 3: WER[%] for the optimal pd andRmax on the develop-
ment and test set.

Figure 2 displays the improvement in WER as a function of
Rmax for four different experimental settings. Each setting was
applied on two radio stations of the development set. The left
column corresponds to recognition driven by landmark BPCs,
while the recognition with frame-based BPCs is on the right. pd
was not employed in the upper two rows, while pd = 0.95 was
used in the lower two rows. If no pd option is used, frame-based
BPCs are very sensitive towards the choice of Rmax and im-
provement in WER is only obtained inside a small window. Fur-
thermore, the two different radio shows differ in their optimal
Rmax. As soon as less errors are introduced into the system,
by using pd = 0.95 or introducing BPCs only at landmarks, the
exact choice of Rmax gets less important, since Rmax rarely
enhances the wrong path. For all values of pd being tested on
the development set, both, frame and landmark-driven decoding
improved the WER at the optimal Rmax.

The pairing Rmax and pd was optimized on the develop-
ment set for both, the landmark and frame-based approach and
the two optimal pairs were then applied on the test set. The over-
all improvement in WER with respect to the 23.5% WER of the
baseline of the test set was 0.4% for the frame-based BPCs and
0.3% for the landmark-based BPCs. The statistical significance
of the WER improvement was tested using a Wilcoxon signed
rank test and it proved to be significant at the 5% level, for both,
the landmark and frame-based case. Radio Inter achieved the
least gain on the development set with 0.2% (frame) and 0.3%
(landmarks) but confirmed this small gain on the test set. RFI

was not included in the development set, but gained 0.3% and
0.4%. Africa 1 performed well and improved the WER 0.8%
and 0.7% on the test set. While TVME gained 0.5% for both
approaches on the development set, this was not confirmed on
the test set, where two recordings containing partly non-native
speakers increased the WER.

5. Conclusions
In this paper, we proposed a method for driving the Viterbi de-
coding of a HMM-based ASR system by automatically detected
BPCs. We compared a frame-based and a landmark-based ap-
proach to BPC detection using decision trees and we limited
phonetic errors by merging similar BPCs according to estimated
BPC probabilities. While both approaches achieved a similar
improvement on broadcast news shows, landmarks proved to be
more robust towards the choice of the maximum enhancement
factor.

With the promising results phonetically driven decoding
was able to achieve in this study, one part of our future work
is to improve the existing BPC classification. Furthermore,
efforts will be made towards combining frame and landmark-
based BPC classification and exploring the integration of addi-
tional knowledge sources. Finally, we plan to explore methods
that introduce knowledge about BPCs into the word graph of
the rescoring step.
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[7] R. André-Obrecht, “A new statistical approach for the auto-
matic segmentation of continuous speech signals,” IEEE Trans.
on ASSP, vol. 36, pp. 29–40, 1988.

[8] M. Hall, “Correlation-based feature selection for machine learn-
ing,” Ph.D. dissertation, The University of Waikato, 1999.

[9] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software: an update,” ACM
SIGKDD Explorations Newsletter, vol. 11, pp. 10–18, 2009.

[10] B. Mathieu, S. Essid, T. Fillon, J. Prado, and G. Richard,
“YAAFE, an easy to use and efficient audio feature extraction soft-
ware,” in Proc. of ISMIR-2010, 2010.

[11] K. Sjlander, “The snack sound toolkit,” www.speech.kth.se/snack,
2004, accessed on 12 dec 2011.

[12] S. Galliano, G. Gravier, and L. Chaubard, “The ESTER 2 evalua-
tion campaign for the rich transcription of French broadcasts,” in
Proc. of INTERSPEECH-2009, 2009, pp. 1149–1152.


